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Abstract— Topological and metrical methods for representing
spatial knowledge have complementary strengths. We present a
hybrid extension to the Spatial Semantic Hierarchy that combines
their strengths and avoids their weaknesses. Metrical SLAM
methods are used to build local maps of small-scale space within
the sensory horizon of the agent, while topological methods are
used to represent the structure of large-scale space. We describe
how a local perceptual map is analyzed to identify a local topology
description and is abstracted to a topological place. The map-
building method creates a set of topological map hypotheses
that are consistent with travel experience. The set of maps is
guaranteed under reasonable assumptions to include the correct
map. We demonstrate the method on a real environment with
multiple nested large-scale loops.

Index Terms— map-building, topological maps, metrical maps,
closing loops, structural ambiguity.

I. INTRODUCTION

Large-scale space is space that extends beyond the sensory
horizon of an agent. When exploring and mapping large-scale
space, a mobile robot must often decide whether it has returned
to a previously visited location. For simple environments
without large loops, this problem is easily solved. However, if
a large loop may (or may not) have been closed, or if there are
several different ways the loop may have closed, then there
is a structural ambiguity between alternate map hypotheses
(Figure 1).

We present a hybrid mapping method that extends the
Spatial Semantic Hierarchy (SSH) [2] to combine the strengths
of metrical mapping methods in local regions with the ability
of topological mapping methods to resolve global structural
ambiguity. We describe the results of a real-world mapping
experiment in an environment with multiple nested large-scale
loops.

A. Metrical Mapping

Powerful probabilistic methods have been developed re-
cently for simultaneous localization and mapping (SLAM)
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Fig. 1. Structural Ambiguity Examples. In these street-and-intersection
environments, places are explored in alphabetical order and at least one street
is long and/or convoluted enough to prevent accurate localization in a single
frame of reference. In (a), place D looks just like place A, so there is a
structural ambiguity between a map in which D = A and one in which D 6= A.
After one more exploration step, D = A is refuted by observing E 6= B. The
structural ambiguity between F = A and F 6= A is resolved because F = A
implies the simplest consistent map [3]. In (b), the structural ambiguity is
between three map hypotheses: E = A, E = B and E 6= A∧ E 6= B. More
exploration will resolve these alternatives similarly.

within a single frame of reference [4]. Many of these methods
are accurate and reliable when doing online incremental lo-
calization within local neighborhoods. In local regions, many
correspondence problems, such as the closing of large loops,
can be excluded. The absence of large loops eliminates the
problem of large-scale structural ambiguity in the metrical
map. Sensing with sufficiently high frequency relative to local
motion guarantees large overlap between successive sensory
images and means that data association only has to be handled
locally.

In recent work, metrical SLAM methods have been ap-
plied to larger and more complex environments, with impres-
sive results. However, on closer examination, none of these
have solved the problem of large-scale structural ambiguity.
Some assume correct data association in order to simplify
the mapping problem [5], [6]. Others accept false negative
place matches, mislabeling a previously seen place as a new
place [7]. This can eliminate the possibility of finding the
correct map.

To avoid premature commitment to a possibly-incorrect
maximum likelihood map hypothesis, some particle-filtering
methods explicitly represent a distribution of belief over the
space of possible maps [8]–[10]. Intractably large numbers



of particles may be required to avoid particle depletion when
exploring large loops, resulting in the failure to have a particle
in the distribution that adequately approximates the correct
map.

B. Topological Mapping

A topological map is a concise description of the large-
scale structure of the environment [3], [11]. It compactly
describes the environment as a collection of places linked by
paths. When large loops in the environment result in structural
ambiguity, a topological representation can concisely represent
the loop attachment hypotheses using only a single map for
each qualitatively distinct alternative.

An important strength of the topological representation
is that the process of generating possible topological maps
from experience and testing them for consistency can provide
formal guarantees that the correct map is generated and never
discarded [12], [13]. A logic-based theory of topological maps
makes explicit the assumptions upon which those guarantees
depend.

C. A Hybrid Approach

Metrical and topological representations for space are very
different in character, or more precisely, in ontology. The
topological map describes the structure of large-scale space.
It abstracts away the specific nature of sensory input and the
specific methods used for matching sensory images when the
topological map is created. The local perceptual map, on the
other hand, exists precisely to capture the structure within the
sensory horizon: small-scale space.

We use the term local perceptual map (LPM) for the
metrical map resulting from applying an online SLAM method
to a simple local region. During travel, a temporary LPM can
be used as a scrolling map of the robot’s immediate surround,
for local motion planning and obstacle avoidance. Our current
implementation of the LPM is an occupancy grid created using
a particle filter method [14], but any accurate and reliable local
metrical mapping algorithm will suffice.

To create a hybrid mapping method, using a metrical repre-
sentation for small-scale space and a topological representation
for large-scale space, we must show how processes operating
on the LPM can create the objects necessary for building maps
of large-scale space.

The hybrid SSH has several advantages that aid online map-
building. First, local metrical motion planning and obstacle
avoidance can take place within the LPM. Second, metri-
cal localization can be done quickly after entering a place
neighborhood, rather than requiring physical hill-climbing to
a distinctive pose. If resources needed for metrical localization
become unavailable, navigation can fall back on hill-climbing
as in the basic SSH. Third, structural ambiguity due to large
loops or false positive place matches can be represented
compactly by a set of alternative topological maps, some of
which may be discarded by future observations.

We demonstrate our hybrid SSH implementation exploring
an office environment with multiple nested large loops and

perceptual aliasing among place neighborhoods. During map-
building, we deliberately refrain from using odometry to link
frames of reference of adjacent place neighborhoods, in order
to show that these methods will scale up to more demanding
environments where odometry is unreliable. We describe the
creation of LPMs, models of their local topology, the tree
of alternative global topological structures, and methods for
discriminating among alternate topological maps.

II. THE SPATIAL SEMANTIC HIERARCHY

The Spatial Semantic Hierarchy (SSH) [2] represents knowl-
edge of large-scale space with four distinct representations:
1) control laws for reliable motion among distinctive states
(dstates) xi; 2) causal state-action-state schemas 〈x,a,x′〉 and
relations view(x,v) between a state and its observable view,
abstracting the continuous world to a deterministic finite
automaton; 3) a topological model consisting of places, paths,
and regions explaining how the distinctive states are linked by
turn and travel actions; 4) local metrical information about the
magnitudes of actions, the lengths of path segments, and the
directions of paths at place neighborhoods.

The Spatial Semantic Hierarchy factors spatial uncertainty
into distinct components, controlled in distinct ways. Move-
ment uncertainty is controlled by the behavior of feedback-
driven motion control laws. Pose uncertainty is controlled in
the basic SSH by hill-climbing to dstates and in the hybrid
SSH by incremental localization within the local perceptual
map. Structural ambiguity about the large-scale topology of
the environment is controlled by the abduction process that
builds the topological map. Global metrical uncertainty is
controlled by relaxing metrical information from separate local
frames of reference into a single global frame of reference,
guided by the topological map.

The basic SSH explores the environment by selecting an
alternating sequence of trajectory-following and hill-climbing
control laws, moving between and localizing at distinctive
states. In the hybrid SSH, localization by hill-climbing is
replaced by localization in an LPM.

Remolina and Kuipers [13], [15] present a formalization
of the SSH framework as a non-monotonic logical theory.
The theory contains axioms describing the properties and rela-
tionships of actions, views, distinctive states, causal schemas,
places, paths, and regions. One set of axioms describes the
robot’s sensorimotor experience by asserting causal schemas.
Another set of axioms enforces the SSH topological properties.
A third set of axioms (not used in the research reported in this
paper) incorporates local metrical information, such as bounds
on the path distances between places and the local radial angles
between paths at a place.

This theory provides a precise specification of the possible
logical models (topological maps) that are consistent with the
axioms and the sequence of actions and views observed while
exploring. A prioritized circumscription policy (expressed as
a nested abnormality theory [16]) specifies how these logical
models are ordered by simplicity.



Suppose the robot performs an action a, resulting in a view v.
For each 〈M,x〉 on the fringe of the tree:

1) If M includes 〈x,a,x′〉 and view(x′,v′),
• if v′ = v, then 〈M,x′〉 is the successor to 〈M,x〉;
• if v′ 6= v, then mark 〈M,x〉 as inconsistent.

2) Otherwise, M does not include 〈x,a,x′〉. Let M′ be M
extended with a new distinctive state symbol x′ and the
assertions view(x′,v) and 〈x,a,x′〉. Consider the k ≥ 0
dstates x j in M such that view(x j,v). Then 〈M,x〉 has
k +1 successors:
• 〈M′∪{x′ = x j},x′〉 for 1 ≤ j ≤ k, plus
• 〈M′∪{∀ j x′ 6= x j},x′〉.

3) If any of the new successor maps violates the topological
axioms, mark it inconsistent.

4) If the prioritized circumscription policy finds more than
one “simplest” map, perform active exploration to dis-
criminate among the alternatives.

Fig. 2. Building the tree of topological maps in the basic SSH.

Conceptually, the topological map-builder maintains a tree
whose nodes are pairs 〈M,x〉, where M is a topological
map and x is a dstate within M representing the robot’s
current position. The leaves of the tree represent all possible
topological maps consistent with current experience. Figure 2
gives the algorithm for extending the tree after an action
and resulting observation. So far, it has been feasible to do
exhaustive expansion of the tree of maps, terminating upon
identifying a unique minimal topological map that explains
the observations.

III. EXTENDING THE SSH

Our new hybrid SSH extends the basic SSH by using met-
rical mapping methods to create and store a local perceptual
map (LPM) of each place neighborhood. Exploration at the
control level identifies gateways where control shifts from
motion between place neighborhoods to localization within a
neighborhood. The set of gateways in a local perceptual map
can be analyzed to describe the local topology of the place
neighborhood, simplifying the construction of the topological
map.

A. Local Perceptual Maps

The SSH topological map describes a place according to its
role in large-scale space: a place is a point location on one
or more one-dimensional paths. Each path has two directions
denoting downstream (+) or upstream (−) in the order on its
set of places. Each place has a dstate facing each direction
along each of its paths. After arriving at one dstate at a place,
a turn action takes the robot to another dstate, ready to travel
along a path to a different place.

This simplified large-scale-space description of a place is
an abstraction of a richer small-scale-space description of the
place as a region within the sensory scope of the agent. The lo-
cal perceptual map describes this region in terms of small-scale

space.1 The LPM serves as a virtual sensor (or “observer”),
supporting reliable localization within the LPM’s frame of
reference, local path planning, and obstacle avoidance.

When creating an LPM of a place, the robot must explore
enough to eliminate uncertainty about which positions are free
or obstructed within the bounded scope of the local place
neighborhood. In return, the robot obtains two substantial
benefits in terms of its spatial knowledge. First, it can localize
unambiguously at any pose within the LPM rather than relying
on the basic SSH strategy of hill-climbing to an unambiguous
pose. Second, it constructs a complete representation of the
paths at the place, and hence of the dstates and possible turn
actions. This complete local topology description is valuable
when constructing the global topological map.

B. Identifying Gateways and Path Fragments

A gateway is a boundary between qualitatively different
regions of the environment: in the basic SSH, the boundary
between trajectory-following and hill-climbing applicability.
Each gateway has two directions, inward and outward. Gate-
ways can be identified using several different criteria that
appear to be closely related. We plan to investigate these
alternatives in more detail in future work.

• Positions within an LPM can be tagged with the control
law applicability conditions they satisfy, allowing gate-
ways to be defined as boundaries between regions of
different control law applicability.

• Chown et al. [17] define gateways as the locations of ma-
jor changes in visibility. “In buildings, these [gateways]
are typically doorways. . . . Therefore, a gateway occurs
where there is at least a partial visual separation between
two neighboring areas and the gateway itself is a visual
opening to a previously obscured area. At such a place,
one has the option of entering the new area or staying
in the previous area” (page 32). We believe that these
visibility changes can be quantified using the concept of
isovists [18].

• A geometric criterion for identifying gateways in cor-
ridors is the medial axis of free space in the LPM.
A gateway corresponds to a “constriction” (or “critical
line” [19]) along a medial axis edge, where the distance
between the edge and obstacles is a local minimum near
a larger maximum. This is the criterion used in the
examples in Figures 3 and 5.

The local perceptual map of a place neighborhood also
includes path fragments: portions of large-scale paths that are
grounded in small-scale space. Each gateway is associated
with exactly one path fragment, while each path fragment is
associated with either one or two gateways. If a path fragment
terminates at a place, it will have only one gateway. If it passes
through, it will have two. (See Figure 3(a-d).)

1Arriving at a dstate at a place corresponds to arriving at a gateway
associated with a path fragment in the LPM, facing inward. A turn action
between dstates corresponds to local motion within the LPM from an inbound
gateway to an outbound gateway.
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Small-scale star
description from PF1+

((PF1+, (gw1,out) & (gw4,in), MIDLINE),
(PF2+, (gw2,out), MIDLINE),
(PF3+, (gw5,in), DEADEND),
(PF4+, (gw3,out), MIDLINE),
(PF1-, (gw4,out) & (gw1,in), MIDLINE),
(PF4-, (gw3,in), DEADEND),
(PF3-, (gw5,out), MIDLINE),
(PF2-, (gw2,in), DEADEND))

An example large-scale
star abstraction
((ds1, Pa1+),
(ds2, Pa2+),
(ds3, (Pa3+)),
(ds4, Pa4+),
(ds5, Pa1-),
(ds6, (Pa4-)),
(ds7, Pa3-),
(ds8, (Pa2-)))

(e) (f)

Fig. 3. Identifying Gateways and Local Topology in an LPM. Our current implementation of a local perceptual map (LPM) is a bounded occupancy
grid. The robot is shown as a circle in the center of the LPM. (a) To find gateways in corridor environments, the algorithm computes the medial axis of the
occupancy grid free space. (b) The maximum of the medial axis graph is found (where the distance of obstacles from the graph is maximal) and each edge
is traversed, looking for “constrictions” (where the distance between the graph edge and obstacles is a local minimum). (c) The final gateways are drawn as
lines connecting the graph edge minima (circle) with the closest obstacles. (d) Given the gateways, the path fragments are identified. (e) The local topology is
initially described by the small-scale star for the place. The star enumerates all the path fragments encountered in clockwise order. (f) Once a local topology
is extracted, the map builder enumerates dstates and paths for the place (a large-scale star). This environment has five gateways, four paths, and eight dstates.
Directed paths in parentheses denote termination at the place.

The robot is required to have a procedure for analyzing the
LPM, identifying all path fragments and gateways within it,
and determining whether a path fragment passes through or
terminates at the place. The same procedure constructs the
circular order on gateways at the place (Section III-C and
Figure 3(e)). In our implementation, the criterion for path
continuity is that for each of two gateways, after arrival at
one in the inbound direction, the clear unique default travel
continuation is the other in the outbound direction. However,
any other criterion that gives consistent decisions for path
continuity and circular order will work.

C. Describing the Local Topology

The local topology of a place is the circular order of directed
paths at that place. In the small-scale-space ontology of the
LPM, the small-scale star describes the local topology in
terms of directed gateways, directed path fragments, and travel
control laws (Figure 3(e)). This is then mapped into the large-
scale-space ontology of the cognitive map, where the large-
scale star describes the local topology in terms of distinctive
states and directed paths (Figure 3(f)).

Whether a robot is reasoning about large-scale or small-
scale space, when the robot arrives at a place on a path, it
must select a path and direction on which to depart. From the
complete set of path fragments and gateways identified in the

LPM, the local topological structure of the place neighborhood
defines the options for this choice.

The small-scale star is constructed as follows:
1) Create a set of tuples 〈PF,GW,CL〉, where:

• PF is a path fragment and a direction (+ or −)
along it;

• GW is the directed gateway (or pair of gateways)
on PF facing the same direction;

• CL is the control law for a travel action away from
the place along the path fragment in that direc-
tion. For an office environment, these are: MIDLINE,
LEFTWALL, RIGHTWALL, DEADEND, and NONE. (For
terminating path fragments, DEADEND means that
further travel is blocked, while NONE means that no
control law is applicable.)

2) Initialize the circular order with those tuples containing
outward-facing gateways, in their clockwise sequence
around the place. For path fragments that both enter
and leave the place neighborhood, both directed path
fragments will now appear in the order.

3) Each remaining tuple contains an inward-facing gateway
and a path fragment that terminates at the place. It is in-
serted into the order between outward-facing gateways,
as determined by the procedure that decides whether a
path fragment continues through the neighborhood.



When an LPM is abstracted to a place in the topological
map, each of its path fragments is bound to a corresponding
path, and a distinctive state is defined for each (path, direction)
combination. The small-scale star description can then be
transformed into the large-scale star, entirely within the large-
scale-space ontology.

The local topology description provides a purely qualitative
account of “left” and “right”. Starting from the robot’s current
path fragment and direction, the subset of path fragments (or
dstates in the large-scale star) encountered by moving down
the circular order until observing the same path fragment in the
opposite direction yields the possible destinations of a “Turn
right” action. This avoids the need to define “right” and “left”
in terms of a threshold on some angular variable.

Since the set of path fragments and gateways in the LPM
is complete, the description of the dstates and directed paths
at the place in the circular order of the large-scale star is
also complete. Causal schemas for turn actions 〈xi, turn,x j〉
are implicitly defined between every pair of dstates xi and x j at
the place. This simplifies construction of the global topological
map.

D. Building the Topological Map

Within the hybrid SSH, the structure of the algorithm
for building the topological map remains the same as in
Figure 2, with one important difference. Just as before, the
topological map-builder maintains a tree whose nodes are
pairs 〈M,x〉, where M is a topological map and x is a dstate
within M representing the robot’s current position. However,
view matching is done by matching local topologies from the
perspective of a particular gateway, so the unit of matching
in the algorithm becomes the place rather than the distinctive
state, and ambiguity can only arise after travel actions.

A view is represented by the structure v = 〈LPM,τ,gw〉,
where LPM is the local perceptual map of the current place
neighborhood, τ is the small-scale star description of its
local topology, and gw is the gateway at which the last
action terminated. Matching two views consists of (a) testing
whether the two local topologies τ are isomorphic, and (b)
testing whether the two LPMs match, with alignment given
qualitatively by the corresponding gateways.

Suppose the robot performs an action a, resulting in experi-
encing a view v = 〈LPM,τ,gw〉. With the revised definition of
views and view-matching, the algorithm in Figure 2 becomes
substantially more efficient. Since the local topology of a
place completely describes all possible turn actions, every turn
action is handled in Step 1 in Figure 2, so the branching of
the map-tree in Step 2 takes place only for travel actions.

There is an exponential decrease in complexity from the
dstate-matching version of the topological map-building al-
gorithm (Figure 2) to this place-matching version of the
same algorithm. Both algorithms are worst-case exponential,
O(bd), where b− 1 is the number of known matches to the
observations and d is the number of actions that can cause
branching. The size of b is reduced because matching places,
using complete local topologies and LPMs, is more restrictive

After performing action a and observing the resulting view
v = 〈LPM,τ,gw〉, for each 〈M,x〉 on the fringe of the tree:

1) If M includes 〈x,a,x′〉 and view(x′,v′),
• if 〈τ ′,gw′〉 = 〈τ,gw〉, then 〈M,x′〉 is the successor

to 〈M,x〉;
• if 〈τ ′,gw′〉 6= 〈τ,gw〉, then mark 〈M,x〉 as inconsis-

tent.
2) Otherwise, a is a travel action, and M does not include

〈x,a,x′〉. Let M′ be M extended with a new distinc-
tive state symbol x′ and the assertions view(x′,v) and
〈x,a,x′〉. Consider the k≥ 0 dstates x j in M such that the
local topology of view(x j) matches the local topology of
view(x′). Then 〈M,x〉 has k +1 successors:
• 〈M′∪{x′ = x j},x′〉 for 1 ≤ j ≤ k, plus
• 〈M′∪{∀ j x′ 6= x j},x′〉.

3) If any of the new successor maps violates the topological
axioms, mark it inconsistent.

4) If the prioritized circumscription policy finds more than
one “simplest” map, discriminate among the alterna-
tives by (a) apply more expensive global topological
constraints to test model consistency; (b) testing dstate
equalities x′ = x j by matching their LPMs, not just
their local topologies; (c) apply more expensive global
metrical constraints by relaxing the local places into
a single global metrical frame of reference; and (d)
actively explore the environment in search of discrimi-
nating observations (cf. Figure 1).

Fig. 4. Building the tree of topological maps in the hybrid SSH.

than matching views at dstates. And d is reduced by at least
a factor of two because only travel actions, rather than both
travels and turns, can lead to branching.

We can make the algorithm of Figure 2 into the even more
efficient algorithm in Figure 4 by dividing view-matching
into the simple, reliable matching of local topologies, and
the more expensive matching of LPMs. Creating new map
hypotheses based on matching local topologies is more liberal
than matching LPMs as well, but it preserves the guarantee
that all consistent maps are generated and leaves the problem
of filtering out the inconsistent maps to subsequent stages of
the process.

IV. EXPERIMENTAL RESULTS

We applied the hybrid SSH map-builder to an exploration
of an office environment with multiple nested large loops.
Figure 5 shows (a) the pattern of exploration of the envi-
ronment, (b) the sequence of LPMs observed at successive
place neighborhoods, and (c) the unique simplest topological
map that resulted from the mapping algorithm, with LPMs
overlaid at corresponding places in the correct topological
map. No attempt was made to build a global metrical map of
this environment within a single frame of reference (though
this specific environment is within the capabilities of an offline
metrical mapping implementation).
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Fig. 5. An environment with multiple nested loops. In the CAD drawing (a), we show the path traveled between places in the environment. We enumerate
the order of places in the exploration taken by the robot. In (b), we show the LPMs created at the places during the travel. The stars generated from these
LPMs are used to search through the space of consistent topological maps. In (c), we show the unique topological map generated after matching local stars
and LPMs. The map is overlaid with the LPMs generated at the places, with the gateways, and with the connections between gateways which lie on the same
path.

The environment contains 6 paths and 9 places with 4
distinct local topologies. After an exploration consisting of
14 travel actions, the topological mapper finds 83 possible
configurations of the environment that are consistent with the
observed local topologies and the topological axioms. The pri-
oritized circumscription [13], [16] on this set of maps produces
4 minimal models. All but one of these can be eliminated
with further exploration or by simply matching LPMs using
the alignments specified by the four minimal maps. This final
map model is the correct topological representation of the
environment.

If we assume planarity of the environment, we can use a
more sophisticated version of the topological map-building al-
gorithm [20] that rules out many more models as inconsistent.
Here, there are only 46 consistent configurations of the explo-
ration experience, and the circumscription policy produces a
single minimal model, which is the correct topological map of
the environment (Figure 5(c)). Currently, our implementation
can build the tree of models and determine the unique minimal
map of this environment in ∼200 ms on the robot’s Pentium
III 450MHz processor.

The hybrid SSH mapping method depends on two capabil-
ities: (1) the ability to construct local bounded LPMs within
separate frames of reference and (2) the ability of travel actions
to move reliably from one place neighborhood to the next.
Because these methods are not dependent on the overall size
of the environment, the mapping method will be scalable.
The results presented on this office environment would be
unchanged if the path segments were longer or convoluted
so that odometry failed, as long as these two conditions are
satisfied.

V. RELATED WORK IN HYBRID MAPPING

We review related work on two important themes in hybrid
metrical-topological mapping. First, the “patchwork metrical

map” consists of local metrical maps with separate frames of
reference, linked by topological relations. Second, ambiguity
in the topological map means multiple maps are consistent
with the travel experience. Other approaches combine topolog-
ical and metrical maps, for example creating a global metrical
map first and then parsing it into topological regions [19], but
these fall outside the scope of this paper.

In the “patchwork metrical map,” places in the global
topological map are annotated with local metrical maps with
limited extent and separate frames of reference. In early work
on the SSH, Kuipers and Byun [3] associated topological
places with local landmark maps and path segments with
generalized cylinder models. The local frames of reference
could be relaxed into a single global frame of reference by
spreading metrical errors evenly across the topological map.

Yeap and Jefferies [21] build maps consisting of adjacent
metrical maps of rooms, which are directly connected by
gateway-like entities. Bosse et al. [7] link together perceptual
maps of a fixed number of landmark features. Similarly,
Duckett and Saffiotti [22] connect overlapping local occupancy
grid maps to form a dense topological network. Lankenau et
al. [23] create a topological graph of travel paths annotated
with metrical maps at the “corners” where paths intersect.

Most mapping implementations only maintain a single map
hypothesis, selected through greedy or maximum likelihood
methods. Perceptual aliasing may lead to ambiguity about
whether the robot has closed a loop or just reached a similar,
nearby place. A single map hypothesis cannot model this
ambiguity. However, a few hybrid mapping techniques do
reason about structural ambiguity.

Kuipers and Byun [3] detect perceptual aliasing and check
for possible loop closures by performing physical motion
to obtain more evidence. Tomatis et al. [24] use a prob-
abilistic framework to localize and detect loops. When the



estimate of the robot’s location has two probable hypotheses,
the framework assumes it is recreating a previously known
portion of the topological map. The robot will then physically
backtrack until the location estimate converges to a single
hypothesis, producing a simpler topological map. Assuming
the environment does not contain large topologically identical
substructures, both of these methods handle the two cases of
whether a loop is present or not; however Tomatis et al. cannot
handle environments with multiple possible locations for the
loop closure.

As in our work, Dudek et al. [12] construct an “exploration
tree” of all possible consistent world models. To extend the
exploration tree, they use the degree of each node (the number
of graph edges) in the same way that we use local topology
to match places. By using local topology (and even LPMs
when necessary), our method has a smaller branching factor.
To prune the exploration tree, they use exhaustive search
to check for global topological inconsistencies whereas we
find axiomatically inconsistent maps. They forecast the use of
values to rank map hypotheses in the tree, while we actually
are able to rank map hypotheses using the circumscription
operator.

VI. CONCLUSION

We have presented a hybrid mapping algorithm that com-
bines the detail of metrical maps in small-scale space with
the conciseness of topological maps in large-scale space.
These two spatial ontologies are connected by extracting the
topology of a local place, which is then used for efficient
global topological inference. Finally, we have demonstrated
the capabilities of this algorithm with an implementation
that finds all possible topological maps before selecting the
minimal, correct map. This is done entirely without the use of
a global frame of reference.
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