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Abstract

To be autonomous, intelligent robots must learn the founda-
tions of commonsense knowledge from their own sensorimo-
tor experience in the world. We describe four recent research
results that show how a robot learning agent can bootstrap
from the “blooming buzzing confusion” of the pixel level to a
higher-level ontology including distinctive states, places, ac-
tions, and objects.

Introduction
Commonsense knowledge is a bottleneck problem on the
way to artificial intelligence (McCarthy 1968). Common
sense, and hence most other human knowledge, is built on
knowledge of a few foundational domains, such as space,
time, action, objects, causality, and so on (Piaget & Inhelder
1967; Minsky 1975). Spatial knowledge is arguably the
most fundamental of these foundational domains (Lakoff &
Johnson 1980). We are investigating how the foundations of
spatial knowledge can be learned from unsupervised senso-
rimotor experience.

We have done extensive work on human and robot knowl-
edge of large-scale space (the cognitive map), leading to
the Spatial Semantic Hierarchy (Kuipers 2000; Remolina &
Kuipers 2004). The multiple levels of the SSH demonstrate
how higher levels of representation can be based on lower,
simpler levels. The SSH Control level, the lowest, makes a
good target for bootstrap learning.

The basic idea behind bootstrap learning is to reach a
learning goal by composing multiple simple machine learn-
ing methods, using weak but general learning methods to
create the prerequisites for applying stronger but more spe-
cific learning methods. The result is a lattice of learning
methods that collectively learn the desired knowledge.

We assume that a learning agent1, human or robot, starts
with a low-level ontology for describing its sensorimotor
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1We use the term “robot” to refer to the physical system and

interaction with the world. William James called this the
“blooming buzzing confusion” that confronts the infant from
its unfamiliar senses. From a robotics perspective, we call
it the “pixel level”, referring to the individual pixels of a
camera image, the individual measurements in a laser range
scan, the incremental motions caused by motor signals, the
individual cells of an occupancy grid map, and so on. The
learning task is to create useful higher-level representations
for space, time, actions, objects, etc, to support effective
planning and action in the world, bootstrapping up from ex-
perience at the pixel level.

As a matter of research strategy, we place secondary im-
portance on determining whether a particular learning prob-
lem is solved by the species or by the individual. When
comparing across species, it is clear that knowledge that is
innate in one species is learned by individuals in another. We
focus our attention on computational modeling of the learn-
ing process, and postpone the decision of where to place the
evolutionary/developmental boundary. In general, we will
write as though all learning is done by the individual learn-
ing agent, but this is not to preclude evolutionary learning.

Another matter of research strategy is that we do not be-
gin with a commitment to a particular set of computational
primitives. We assume that the learning agent has access
to some collection of domain-independent statistical learn-
ing methods, but not to knowledge about the nature of its
own sensors and effectors, or of the environment it lives in.
Once we have a sufficient set of successful learning meth-
ods, we can begin identifying minimal subsets compatible
with particular implementation technologies, including bio-
logical ones.

In this paper, we describe four recent research results that
carry us significantly further toward the goal of autonomous
learning of foundational representations for commonsense
knowledge.

Learning from Uninterpreted Sensors
and Effectors

The lowest level problem is faced by a learning agent in an
unknown environment with unknown sensors and effectors.

its sensors and effectors. The “learning agent” is the computa-
tional process observing and learning to control the robot. Body
and mind, if you wish.



(a) (b) (c)
Figure 1:Exploring a simple world at three levels of competence.
(a) The robot wanders randomly while learning a model of its sen-
sorimotor apparatus. (b) The robot explores by randomly choosing
applicable homing and open-loop path-following behaviors based
on the static action model while learning the dynamic action model
(see text). (c) The robot explores by randomly choosing applica-
ble homing and closed-loop path-following behaviors based on the
dynamic action model.

Our goal is to learn the foundation for the Spatial Seman-
tic Hierarchy (Kuipers 2000). The SSH rests on a set of
hill-climbing and trajectory-following control laws and the
knowledge of the sensorimotor interface to support them.
How can this knowledge be learned from unsupervised ex-
perience?

Pierce and Kuipers (1997) answered this question in the
context of a simulated mobile robot with unknown sensors
and effectors. The learning agent conducted a variety of
experiments and analyzed the data, building a hierarchy of
representations of both the sensory and motor systems, and
eventually creating control laws that could define distinctive
states (Figure 1). The experiment had the following steps.

(1) Gather observations during random sequences of ac-
tions. First, coarsely cluster the sensors according to the
qualitative properties of a histogram of values returned by
each sensor. Then, within appropriate clusters, compute
pairwise correlations among sensor values and interpret
them as similarity measures.

(2) Assign the sensors in a cluster to positions in a
high-dimensional space reflecting their pairwise similarities.
Project to a low-dimensional subspace (2D in our examples)
that best accounts for most of the variance in the cluster.
Once sensor values have a spatial as well as temporal depen-
dence, we can calculate spatial as well as temporal deriva-
tives, and thus define motion fields.

(3) The motion fields corresponding to different motor
signals are analyzed using principal component analysis to
determine the most significant motion effects and the motor
signals that correspond to them. These signals are used as
the natural primitives for the motor space.

(4) Higher-level sensory features are proposed, based on
the spatial and temporal attributes of the field of primitive
sensory values. These include features such as discontinu-
ities, local minimum and local maximum, with magnitude,
position, and scope. Proposed features are evaluated accord-
ing to stability, predictive power, and extensibility.

(5) Evidence is collected of the effects of primitive mo-
tor commands on higher-level features, searching for motor
commands that change features in predictable ways. “Lo-
cal state variables” are defined for particular neighborhoods
in the environment. Trajectory-following and hill-climbing
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Figure 2: The lattice of learning methods and their results,
from Pierce & Kuipers [1997].

control laws are defined according to which local state vari-
ables correspond to features that are both observable and
controllable.

(6) Open-loop control laws are defined by identifying
commands that reliably change one feature while keeping
another one relatively constant. Closed-loop control laws
are defined by searching for and identifying commands that
can reduce deviations in the relatively constant feature, ac-
tively keeping it close to a desired setpoint. (Think of mov-
ing along a wall, turning slightly to maintain a desired dis-
tance from it. Compare figures 1(b,c).)

Figure 1 shows exploration traces at three stages of the
learning process. The analysis uses a variety of mathemati-
cal methods, but only ones that can be applied to weakly in-
terpreted data, using local computations such as neural net-
works. Figure 2 shows the lattice of learning methods that
supported these conclusions.

One lesson from this work is that learning even an appar-
ently simple sensorimotor skill such as wall-following re-
quires a large number of distinct learning algorithms, con-
structing a lattice of different representations of the sensory
and motor capabilities of the robot.

Learning Distinctive States
In Pierce and Kuipers (1997), the learning of high-level
sensory features and hill-climbing and trajectory-following
control laws made use of certain background knowledge, al-
beit of an abstract and domain-independent kind. In order to
eliminate this use of background knowledge, Provost, et al
(2004) are revising this approach to use more generic learn-



Figure 3:Navigation using Learned Abstraction. The up-
per diagram shows the robot’s environment and an example
episode after the agent has learned the task using theA1 ac-
tions. The triangles indicate the distinctive states the robot is
in at the start of eachA1 action. The bottom part of the fig-
ure shows the sequence of perceptual features corresponding
to these distinctive states. The narrow line indicates the se-
quence ofA0 actions used by theA1 actions. Navigating to
the goal requires only 9A1 actions, instead of hundreds of
A0 actions – task diameter is vastly reduced.

ing methods such as self-organizing maps and reinforcement
learning to achieve the same goals.

Modern robots are endowed with rich, high-dimensional
sensory systems, providing measurements of a continu-
ous environment. In addition, many important real-world
robotic tasks havehigh diameter, that is, their solutions re-
quire a large number of primitive actions by the robot, for
example, navigating to distant locations using primitive mo-
tor control commands. Reinforcement learning (RL) meth-
ods show promise for automatic learning of robot behavior,
but extending these methods to high-dimensional, contin-
uous, high-diameter problems remains a major challenge.
Thus, the success of RL on real-world tasks still depends on
human analysis of the robot, environment, and task to pro-
vide a useful set of perceptual features and an appropriate
decomposition of the task into subtasks. Our goal is to cre-
ate autonomous learning agents, relying on few assumptions
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about the nature of the robot and its world.
Self-Organizing Distinctive-state Abstraction(SODA) is

a new method for automatic discovery of high-level percep-
tual features and large-scale actions for reinforcement learn-
ing in continuous environments (Provost, Kuipers, & Mi-
ikkulainen 2004). SODA requires little prior knowledge of
the task, the robot’s sensorimotor system, or its environment.

A small and general set of higher-level perceptual features
appropriate to action in the agent’s domain is found by unsu-
pervised learning using a self-organizing feature map (Ko-
honen 1995). We use a variant SOM called the Growing
Neural Gas (Fritzke 1995) that allows the number of units
and the topology of the mesh to adapt to the properties of
the domain. Using these learned features, the agent builds
a set of high-level actions that carry it betweenperceptually
distinctive statesin the environment. SODA thus combines
a perceptual abstractionof the agent’s sensory input into
useful perceptual features, and atemporal abstractionof
the agent’s motor output into extended, high-level actions,
thereby reducing both the dimensionality and the diameter
of the task.

Given high-dimensional, continuous-valued sensory in-
put, and continuous motor output SODA works as follows.

1. Explore the environment with primitive (A0) actions, us-
ing a self-organizing feature map to learn a set of high-
level perceptual features that define distinctive states in
the environment. Figure 3(bot) shows examples of the
learned perceptual features.

2. Learn a set of high-level (A1) actions in the form of con-
trol laws that carry the robot from one distinctive state
to another. Each action consists of a trajectory-following
control law that repeats a primitive action until a new
perceptual feature becomes dominant, followed by a hill-
climbing control law that maximizes the new dominant
feature.



3. Use reinforcement learning in the abstracted space of
high-level features and actions to learn a policy for the
same high-diameter task, which now has much lower di-
ameter with respect to the (A1) actions.

An experiment on a simulated robot navigation task (Fig-
ure 3) shows that the agent using SODA can learn to per-
form a task requiring 300 small-scale, local actions using
as few as 9 autonomously-learned, temporally-extended, ab-
stract actions. The learning time is substantially improved
(Figure 4).

The methods discussed so far can learn the properties of
the pixel-level sensorimotor system well enough to support
autonomous learning of control laws and distinctive states
suited to the environment the robot is embedded in. These
distinctive states and the actions connecting them are the
first steps toward a higher-level ontology for describing the
robot’s world. We now turn to two learning scenarios that
build further on this higher-level ontology. First we look at
the problem ofplace recognition: overcoming the variability
of the pixel-level sensory image to recognize the current dis-
tinctive state directly and correctly from sensory input. And
second, we take an important step toward learning the con-
cept ofobject, a higher-level explanatory concept that make
it possible to learn useful causal regularities about the world.

Bootstrap Learning for Place Recognition
It is valuable for a robot to know its position and orientation
with respect to its map of the environment. This allows it to
plan actions and predict their results, using its map. Kuipers
and Beeson (2002) applied the bootstrap learning approach
to the problem of learning to recognize places that may have
originally been perceptually aliased.

We defineplace recognitionas identifying the current po-
sition and orientation in a large-scale space, a task some-
times called “global localization” (Thrunet al. 2001). How-
ever, not every location in the environment is a “place”, de-
serving of independent recognition. Humans tend to remem-
ber places which are distinctive, for example by serving as
decision points, better than intermediate points during travel
(Lynch 1960).

We assume that the world and the agent’s sensors are both
very rich, so distinguishing information exists, but is hard
to find. Real sensors are imperfect, so important but subtle
image features may be buried in sensor noise. Two comple-
mentary problems stand in the way of reliable place recog-
nition.

• Perceptual aliasing: different places may have similar or
identical sensory images.

• Perceptual variability: the same position and orientation
may have different sensory images on different occasions,
for example at different times of day.

These two problems trade off against each other. With rel-
atively impoverished sensors (e.g., a sonar ring) many places
have similar images, so the dominant problem is perceptual
aliasing. With richer sensors such as vision or laser range-
finders, discriminating features are more likely to be present
in the image, but so are noise and dynamic changes, so the
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Figure 5: Bootstrap learning of place recognition. Solid ar-
rows represent the major inference paths, while dotted ar-
rows represent feedback.

dominant problem for recognition becomes image variabil-
ity. We want to use real sensors in real environments, avoid-
ing assumptions that restrict us to certain types of sensors or
make it difficult to scale up to large, non-simply-connected
environments.

When unique place recognition cannot be done using the
current sensory image alone, active exploration will provide
history information that can localize the robot and determine
the correct place. However, when subtle features, adequate
for discriminating between different places, are buried in the
noise due to image variability, we want to recover those fea-
tures.

We build on the abstraction of the continuous environ-
ment to a discrete set ofdistinctive states(dstates), provided
by the Spatial Semantic Hierarchy(SSH) (Kuipers 2000).
We assume that the agent has previously learned a set of
features and control laws adequate to provide reliable tran-
sitions among a set of distinctive states in the environment
(Pierce & Kuipers 1997; Provost, Kuipers, & Miikkulainen
2004).

The steps in our solution to the place recognition problem
apply several different learning methods (Figure 5).

1. Restrict attention to recognizingdistinctive states
(dstates). Distinctive states are well-separated in the
robot’s state space.

2. Apply an unsupervised clustering algorithm to the sen-
sory images obtained at the dstates in the environment.
This reduces perceptual variability by mapping different
images of the same dstate into the same cluster, even at
the cost of increasing perceptual aliasing by mapping im-
ages of different states into the same cluster. We define
each cluster to be aview, in the sense of the SSH (Kuipers
2000).



3. Build the SSH causal and topological maps — sym-
bolic descriptions made up of dstates, views, places,
and paths — by exploration and abduction from the ob-
served sequence of views and actions (Kuipers 2000;
Remolina & Kuipers 2004). This provides an unambigu-
ous assignment of the correct dstate to each experienced
image, which is feedback path (a) in Figure 5.

4. The correct causal/topological map labels each image
with the correct dstate. Apply a supervised learning al-
gorithm to learn a direct association from sensory image
to dstate. The added information in supervised learning
makes it possible to identify subtle discriminating features
that were not distinguishable from noise by the unsuper-
vised clustering algorithm. This is feedback path (b) in
Figure 5.

We evaluated this method in experiments in two different
real-world environments, one constructed to have a subtle
distinguishing feature in an otherwise simple and symmetri-
cal environment, and the other the main corridor in an office
building. In both cases, unsupervised clustering produced
significant amounts of perceptual aliasing, but with the help
of the learned topological map, supervised learning was able
to converge rapidly to 100% accurate place recognition.

This is a paradigm example ofbootstrap learning. A
weak learning method (k-means clustering) provides the
prerequisites for an abductive method (topological map-
building), which in turn provides the labels required by
a stronger supervised learning method (nearest neighbor),
which finally achieves high performance.

Bootstrap Learning of Object Representations
The blooming buzzing confusion of the pixel-level world is
too variable to contain meaningful causal regularities use-
ful for prediction and planning. Among the many important
achievements in early childhood development is learning the
higher-level concept ofobject, which along with higher-
level actions is capable of supporting learning of causal
regularities useful for understanding and manipulating the
world (Spelke 1990).

In recent work toward this goal (Modayil & Kuipers
2004), we have shown how an agent can autonomously learn
an ontology ofobjectsto explain many aspects of its sensor
input from an unknown dynamic world. For an agent to learn
about an unknown world, it must learn to identify the objects
in it, what their properties are, how they are classified, and
how to recognize them.

The robot’s sensorimotor system provides time-varying
sensor inputs and motor outputs. From this, we assume that
it can construct a description of the local environment in
the “pixel-level” ontology of occupancy grid models.2 The
learning scenario described here takes place in “small-scale
space”, the space within the immediate sensory surround of

2The learning methods in Pierce and Kuipers (1997) can learn
the properties of sensors and effectors from experience. We assume
that the occupancy grid representation and inference method can
be learned in a similar way. We have a sketch of such a learning
scenario, but it is outside the scope of this research on objects.

(a) (b)

(c) (d)

Figure 6: Multiple representations of a scene. The robot ob-
server is the small round robot in the foreground. The larger
ATRV-Jr is used as a non-moving object.(a): A photograph
of the scene.(b): A range image of the scene at approxi-
mately the same time.(c): An occupancy grid representa-
tion of the scene.(d): An iconic representation of the scene.
This is a symbolic description of the robot’s environment
enabled by the learned object ontology. The location of the
observing robot is indicated by a small triangle (�). A mov-
ing object (pedestrian) of amorphous shape is shown with its
trajectory. A non-moving object (ATRV-Jr) has been classi-
fied, and is shown by the convex hull of its shape model. The
permanently occupied cells in the occupancy grid represent
the static environment.

the agent where it can reliably localize itself (Kuiperset al.
2004).

The occupancy grid representation for local space does
not include the concept ofobject. The occupancy grid rep-
resentation assumes that the robot’s environment can be di-
vided into cells that are empty and those that are occupied.
Evidence provided by range sensors is used to update the
probability of occupancy of each cell. Simultaneous local-
ization and mapping (SLAM) algorithms can efficiently con-
struct an occupancy grid map and maintain accurate local-
ization of a mobile robot within it using range sensor data
(Moravec 1988; Thrun, Fox, & Burgard 2000).

In this bootstrap learning scenario, the learning agent ac-
quires a working knowledge ofobjectsfrom unsupervised
sensorimotor experience. We begin by using the properties
of occupancy grids to classify individual sensor readings as
static or dynamic. A cell in the occupancy grid is consid-
ereddynamicif it changes from high-confidence occupied
to high-confidence free, or vice-versa. A cell is considered
staticif it achieves and keeps a single high-confidence label,
occupied or free. An individual sensor reading is labeled



static or dynamic according to the label of the cell it falls in.
Static readings are considered to be explained by the struc-
ture of the fixed environment.

The representation of objects is constructed from dynamic
sensor readings in four steps: Individuation, Tracking, Im-
age Description, and Categorization. Dynamic readings are
clustered and the clusters are tracked over time to identify
objects, separating them both from the background of the
static environment and from the noise of unexplainable sen-
sor readings. Once trackable clusters of sensor readings
(i.e., objects) have been identified, we build shape models
when shape is a stable and consistent property of these ob-
jects. However, the representation can tolerate, represent,
and track amorphous objects as well as those that have well-
defined shape. The shape models are classified, so that in-
stances of the same type of object can be categorized to-
gether.

In Modayil and Kuipers (2004), we demonstrate this
learning process using a mobile robot equipped with a laser
range sensor, experiencing an indoor environment with sig-
nificant amounts of dynamic change. The agent learned to
individuate and track dynamic objects in the scene, acquired
shape models where the shape was stable, and created a cat-
egorization of shape models. The scene could then be de-
scribed in terms of the static environment (grounded to the
static portions of the occupancy grid), and the dynamic ob-
jects (whose identities and trajectories could be described
symbolically, grounded to the tracked objects in the scene).
Figure 6 shows selected steps leading to this result.

Conclusions

To be autonomous, a robot must be able to learn its own
ontology of higher-level concepts from its own pixel-level
experience with the world, rather than obtaining it from an
external programmer. We have described recent research
that shows how the structure of unknown sensors and ef-
fectors can be learned (Pierce & Kuipers 1997); how high-
level perceptual features and actions can be learned and used
to define distinctive states (Provost, Kuipers, & Miikku-
lainen 2004); how high performance place recognition can
be learned by bootstrapping unsupervised learning, map-
building, and supervised learning (Kuipers & Beeson 2002);
and how an ontology of objects can be learned from low-
level experience with a dynamic world (Modayil & Kuipers
2004).

There are many other aspects of commonsense knowl-
edge of the physical world still to be learned. We have al-
ready mentioned the need to learn the occupancy grid rep-
resentation, or more generally, a local perceptual map rep-
resentation of the immediate sensory surround (Kuiperset
al. 2004). We are also extending the learned theory of ob-
jects with the actions that affect those objects, along with
their preconditions and postconditions (Modayil & Kuipers
2004). Another important research direction will be learn-
ing to use vision as a sensory modality. Naturally, this kind
of learning will straddle the evolutionary/developmental
boundary.
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