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Abstract

We show how a robot can autonomously learn an ontology
of objects to explain aspects of its sensor input from an un-
known dynamic world. Unsupervised learning about objects
is an important conceptual step in developmental learning,
whereby the agent clusters observations across space and
time to construct stable perceptual representations of objects.
Our proposed unsupervised learning method uses the proper-
ties of allocentric occupancy grids to classify individual sen-
sor readings as static or dynamic. Dynamic readings are clus-
tered and the clusters are tracked over time to identify objects,
separating them both from the background of the environment
and from the noise of unexplainable sensor readings. Once
trackable clusters of sensor readings (i.e., objects) have been
identified, we build shape models where they are stable and
consistent properties of these objects. However, the represen-
tation can tolerate, represent, and track amorphous objects as
well as those that have well-defined shape. In the end, the
learned ontology makes it possible for the robot to describe
a cluttered dynamic world with symbolic object descriptions
along with a static environment model, both models grounded
in sensory experience, and learned without external supervi-
sion.

Introduction
Part of the symbol anchoring problem is understanding how
an agent learns this skill. It is a daunting task to anchor
symbols to the environment in a large intelligent system.
We intend to make the problem of anchoring symbols more
tractable by examining how an agent can construct its own
symbol representations directly from sensation.

For a robot to learn about an unknown world, it must
learn to identify the objects in it, what their properties are,
how they are classified, and how to recognize them. The
robot’s sensorimotor system provides a “pixel-level” ontol-
ogy of time-varying sensor inputs and motor outputs. Even
after a substantial learning process (Pierce & Kuipers 1997)
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provides the organization on the sensors along with the abil-
ity to follow control laws and defines distinctive states to
describe the large-scale structure of the environment, the
robot’s ontology still does not include objects. In this pa-
per, starting from a lower-level ontologies that includes ego-
centric range sensors and incremental motion, and an occu-
pancy grid model of the local environment, we show how an
ontology of objects can be learned without external supervi-
sion. These generated representations facilitate the creation
of controls, the recognition of objects, and the development
of object based rules. The method is designed to work for a
mobile robot; it works in unstructured environments, it uses
online algorithms, and it is computationally efficient.

Learning about Objects
We claim that a robot can learn a working knowledge
of objects from unsupervised sensorimotor experience by
representing moveable objects in four steps: Individua-
tion, Tracking, Image Description, and Categorization. We
demonstrate this learning process using a mobile robot
equipped with a laser range sensor, experiencing an indoor
environment with significant amounts of dynamic change.

This is a kind of “bootstrap learning” (Kuipers & Bee-
son 2002) since we combine multiple learning stages, each
stage learning the prerequisites for subsequent stages. In
particular, recognition depends on image description that re-
lies on tracking that in turn relies on individuation. The de-
scribed sequence of stages provides an initial pathway for
developing object representations before rich prior knowl-
edge is available. In future work, we intend to show how
this initial sequence can be used to gather informative prior
knowledge that is required for other algorithms (Schulz &
Burgard 2001).

A major motivation for this work is to understand how
complex cognitive structures can autonomously develop in a
learning agent. We know that tremendous leaps in cognitive
complexity occur through evolution and during infant de-
velopment, using high dimensional sensory experience ac-
quired in unconstrained environments. Computational learn-
ing theory tells us that learning is exponentially hard in the
dimensionality of the representation space (Hastie, Tibshi-
rani, & Friedman 2001). Learning in a high dimensional
representation space (such as an observation stream) should
be vastly harder than learning in a low dimensional (sym-
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Figure 1: Object Individuation. (a) The occupancy grid representation of the environment generated online by a SLAM algo-
rithm up to the current time t. The boxed region is shown in the following plots. (b) Sensor readings at time t classified as static
(+) or dynamic (2) according to the occupancy grid cells they fall on. The robot (�) is in the upper-left portion of the plot,
so nearby dynamic objects occlude parts of the static environment. (c) Dynamic readings are clustered and hence individuated
into objects. Each of the two clusters is assigned to a tracker (circles). [All of these figures are clearer in the color PDF than in
grayscale prints.]

bolic) representation. The premise of bootstrap learning is
that an agent can apply a variety of high bias, but unsuper-
vised learning algorithms to simple tasks (recognizing mov-
able objects) to transform a high dimensional representation
(an observation stream) into one with significantly lower di-
mension (a symbolic representation).

Individuation
The process of individuation starts by using an occupancy
grid to classify sensor readings. The occupancy grid rep-
resentation for local space does not include the concept of
“object.” It assumes that the robot’s environment is static,
that it can be divided into locations that are empty and
those that are occupied. A cell of an occupancy grid holds
the probability that the corresponding region of the envi-
ronment is occupied. Simultaneous localization and map-
ping (SLAM) algorithms can efficiently construct an occu-
pancy grid map and maintain accurate localization of a mo-
bile robot within it using range sensor data (Moravec 1988;
Thrun, Fox, & Burgard 2000; Eliazar & Parr 2003).

The occupancy grid representation embodies a static
world assumption. Sense data reflecting dynamic change in
the environment are treated as noise. Fortunately, occupancy
grid algorithms are quite robust to failures of the static world
assumption. If changes in the environment are slow relative
to repeated observation (12 Hz for the laser range-finder),
changes in occupancy are quickly washed out by new obser-
vations, restoring the grid to a reasonably accurate descrip-
tion of the current state of the environment. We exploit this
property and add a new attribute to the occupancy grid. A
grid cell is labeled transient if it has ever been unoccupied
(i.e., the probability of occupancy falls below a threshold),
and permanent if it has never been unoccupied.1

1To account for small localization errors, a transient cell may

The low-resolution occupancy grid cell labeling is used
to classify individual high-resolution range sensor readings.
Each individual range sensor reading is labeled as static or
dynamic, depending on whether the endpoint of the reading
falls in a cell labeled as permanent or transient, respectively.
Permanent grid cells and static sensor readings represent the
static background environment, and the learning algorithm
restricts its attention to the dynamic range sensor readings.
Note that a non-moving object such as a trash bin would be
labeled with dynamic sensor readings if the robot had ever
observed the space the readings are located in as unoccupied.

Next, the learning algorithm clusters the endpoints of the
dynamic range sensor readings.2 The coordinates of the end-
points xi are represented in the fixed local frame of reference
of the occupancy grid. Two endpoints are considered close
if their distance is less than the threshold value δI :

close(xi, xj) ≡ ‖xi − xj‖ < δI .

The individual clusters are the connected components of the
close relation: i.e., the equivalence classes of its transitive
closure. Within a single observation frame at time t, these
clusters {Si,t} are called object snapshots. They are the ini-
tial representation for individual objects. The process of in-
dividuation is shown in Figure 1.

Tracking
An object snapshot Si,t at time t has a spatial location and
extent <µi, ri>: its center of mass µi and the distance ri

also require that all of its neighbors cells are unoccupied, which
leaves permanent cells surrounded by a thin rim of unlabeled cells.

2Recall that the endpoints of range sensor readings, like the lo-
calization of the robot, are not limited to the resolution of the oc-
cupancy grid, but have real-valued coordinates, albeit with limited
precision and accuracy.



Figure 2: Object Tracking. The shape of an object can vary greatly during tracking whether it has a rigid body or not. This
figure shows a sequence of time steps prior to the scene in Figure 1. The actual trackers use data at much finer temporal
granularity than the time-points (columns) shown. Note that the robot is moving while tracking. Top: The tracked dynamic
objects, superimposed for reference on a low-intensity display of the permanent cells in the occupancy grid. Middle: A tracked
pedestrian object, showing its irregular shape over time. Bottom: Tracked snapshots of a non-moving object (an ATRV-Jr).

from its center of mass to its farthest reading. The dissimi-
larity between two snapshots Si and Sj is

dS(Si, Sj) = ‖µi − µj‖+ |ri − rj |.

This function is robust to random noise and incorporates
both the observed center and radius since the snapshots of
a moving, dynamic object (such as a person) will vary in
both dimensions. Where the successor to time t is t′, we say
that object snapshot St has unique clear successor S′

t′ if

dS(St, S
′
t′) < δT and

∀S′′
t′ 6= S′

t′ dS(St, S
′′
t′) > dS(St, S

′
t′) + δR.

An object tracker is a function Tk(t) whose value is an
object snapshot Si,t at time t, such that for successive time-
points t and t′, Tk(t′) is the unique clear successor of Tk(t).
An object tracker Tk thus defines a collection of correspond-
ing object snapshots extending from frame to frame in the
observation stream, with at most one snapshot in each frame.
The process of object tracking is depicted in Figure 2.

The domain of a particular object tracker ends at the time-
points where the unique clear successor relation cannot be
extended. “Object permanence”, the ability of an object
tracker to tolerate breaks in the sequence of frames, is clearly

a learned ability in young children (Spelke 1990). Our cur-
rent implementation includes the ability to tolerate two miss-
ing frames in a sequence. Three missing frames terminates
a tracker. New trackers are generated for large unexplained
snapshots. Small snapshots without trackers are treated as
noise and ignored.

Dynamic objects being tracked will converge and diverge,
for example pedestrians in a crowded hallway. We have not
incorporated velocity estimation into the tracker since it in-
creases the complexity of state estimation. Object trackers
will successfully track individuals over segments of their be-
havior, losing them when they get too close together and
their readings are merged into a single snapshot. When they
separate again, new trackers will be created to track the dif-
ferent individuals. More sophisticated methods for “object
permanence” will be required to infer the identity of object
trackers across such merges and splits. Following our boot-
strap learning approach, we learn properties of objects dur-
ing the periods of time when tracking is unambiguous and
learning is easy. We expect those properties will make it
possible to track objects under more difficult circumstances.

We define these trackable clusters of dynamic sensor read-
ings to be objects. Each tracker represents a distinct sym-



bolic identity which is assumed to be the cause of the read-
ings associated with it. At this point, objects have only
two properties: spatial location and temporal extent. These
properties are sufficient for the trackers to guide the robot’s
actions to acquire additional information about the object.
For example, control laws for following, circling and avoid-
ance are easily specified using trackers to specify the de-
sired goals. The next step will be to acquire properties of
the object instances that are stable across changes in space
and time. This makes it possible to categorize them into ob-
ject classes.

Image Description
We have defined the object snapshot to be the set of sensor
readings associated with an object at a particular time. The
shape model for an object is a subset of the object snapshots
collected over the time that the object is tracked.

The problem is how (and whether) the snapshots can be
aggregated into a consistent, object-centered frame of refer-
ence. We consider it important to describe both objects with
stable shapes that can be learned, and objects that are amor-
phous in the sense that they can be individuated and tracked,
but their shape is beyond the capacity of the agent to describe
and predict. For our robot learning agent, at its current level
of sophistication, pedestrians are good examples of amor-
phous objects. At a later stage, the learning agent may be
able to model a pedestrian as two alternately-moving legs
(observed as 2D blob shapes), but for now, object snapshots
of pedestrians change too much to form stable shape models.

Consider a temporarily non-moving object such as an
ATRV-Jr (a mobile robot). To be individuated and tracked
as an object, it must be located at a position that was un-
occupied at some time, so its sensor readings are consid-
ered dynamic. Since the object doesn’t move in the environ-
ment, tracking is quite simple. However, as the robot moves
around it, the object snapshot still changes slowly (Figure 2).

The agent creates a shape model by accumulating distinc-
tive snapshots while the object appears to be non-moving
(Figure 3). Both tasks, detecting the lack of object mo-
tion and determining distinctiveness, are accomplished by
a non-symmetric dissimilarity function dD that compares
snapshots.

dD(Snew, Sold) =
1

|Snew|
∑

s∈Snew

min(1,
1
ε

min
t∈Sold

‖s− t‖)

When successive snapshots differ by a large amount, δM , the
agent assumes the object has moved, and discards the cur-
rent shape model. Otherwise, if the current snapshot is suf-
ficiently distinct, δN , from snapshots currently in the shape
model, the new snapshot is added to the shape model. Fi-
nally, snapshots in the shape model are discarded if they are
incompatible with the full set of current sensor readings.

The shape model also records the directions from which
the snapshots have been observed, and is considered com-
plete when the full 360◦ surround has been sufficiently
densely sampled.3

3In the current implementation, this means at least one snapshot
exists in each of six 60◦ pose buckets around the object.

While the shape model is incomplete, it is considered
“amorphous”. When the shape model is complete, the agent
creates a standard shape image for the object by placing the
snapshots of the shape model into a canonical frame of refer-
ence. The snapshots are first rotated so that the primary axis
of the readings is aligned with the y-axis. This is accom-
plished by rotating the shape model to minimize the entropy
of the projection onto the x-axis. Next, the shape model
is translated to minimize the distance of the farthest points
from the origin. (See Figure 4.)

Categorization
Once an individual object has a standard shape image, the
agent must categorize it. Note that the learning agent is re-
sponsible for building its own classes. Moreover, since the
object observations come in incrementally, the agent must
add new classes incrementally. The task of adding new
classes incrementally is known as online clustering, and sev-
eral algorithms exist (Duda, Hart, & Stork 2001). For sim-
plicity however, we solve this clustering task with a distance
function.

We define the asymmetric dissimilarity function between
two aligned shape images V and W by comparing their
component snapshots

d′(V,W ) =
1
|V |

∑
v∈V

min
w∈W

dD(v, w).

We use this to define the symmetric distance measure

dC(V,W ) = max(d′(V,W ), d′(W,V )).

If the image of an instance is less than a threshold dis-
tance, δC , from multiple known types, then its classification
is uncertain. If there is only one known type within δC , then
it is classified as that type. If it is more than δC from any
known type, then a new category is formed. For example,
when the shape model in Figure 3 is converted into a stan-
dard shape image and compared to the known categories in
Figure 4, it is recognized as an instance of the ATRV-Jr cat-
egory. It is then displayed as a known type in Figure 5(d).

The robot does not learn a shape model by observing a
continuously moving object, but it can learn a shape model
if the object stops for a short period. Once an object has
been classified, the tracker retains this classification and the
corresponding shape model even when perception is diffi-
cult. Furthermore, the robot can obtain individual snapshots
of a moving object, and we predict that those snapshots will
be useful as evidence toward the classification of a moving
object within an existing class hierarchy.

Even without a complete shape model, the robot can still
generate a standard shape image for an object. For an in-
complete image, the dissimilarity function is useful because
it has the property that if V ⊂ W , then d′(V,W ) = 0. This
makes it suitable for comparing an incomplete model of an
instance V with complete models that are already known.
Also, this can be used to guide active perception by defining
the observations that are most informative for classification.



Figure 3: Object Shape Model. This shows the incremental shape model creation for the ATRV-Jr observed in Figure 2. The
range sensor endpoints in each snapshot are shown with different symbols. Selected snapshots combine to form a shape model.

(a) (b) (c) (d)

Figure 4: Categorization entails both clustering and classification. Standard shape images and photographs for four learned
object classes: (a) recycling bin, (b) chair, (c) robot wheelchair, and (d) an ATRV-Jr robot.

Experimental Results

The above system was implemented on a RWI Magellan Pro
robot equipped with a SICK PLS laser rangefinder. The pa-
rameters mentioned in the paper had the following values:
δI = 0.5m, δT = 1.0m, δR = 0.01m, δM = 0.5, δN = 0.1,
and δC = 0.33. A set of learned shape images is shown in
Figure 4.

An occupancy grid representation of the environment
(shown in Figure 1(a)) is generated online in the presence
of object motions. The process of individuation is displayed
in the subsequent two images, first showing the classifica-
tion of laser scans as static or dynamic, and then clustering
the dynamic readings to form snapshots. The snapshots are
associated with trackers in Figure 2, providing temporal ex-
tent to the object representation. The ATRV-Jr robot is not
moving during this time, so an image description is incre-
mentally accumulated, as shown in Figure 3. When the de-
scription is sufficiently complete, the agent compares it to
the set of objects, shown in Figure 4. The agent discovers

that the image description best matches that of the ATRV-Jr
robot.

The agent’s world description is graphically represented
in Figure 5 along with a photo of the same scene. The
result is a discretization of a natural environment into sev-
eral entities which are useful for later reasoning: a coarsely
represented fixed environment (walls+furniture), a localized
agent (the Magellan Pro robot), an amorphous moving ob-
ject (a pedestrian), and a classified known object (the ATRV-
Jr). Moreover, since the agent can autonomously generate
new categories online, its ability to succinctly and accurately
describe nearby objects should improve with experience.

These results demonstrate several qualitative goals. The
system is able to go from an ontology of sensation to an
ontology of objects. It can learn quickly without requiring
complex a priori models. However, it gathers statistics of
objects, and these statistics will be useful for the principled
construction of prior models in future work. The system cre-
ates symbols that are ground in sensation. We have not per-
formed a quantitative evaluation because it is not yet clear



which quantities accurately capture our goal of understand-
ing how an agent can learn to create objects from sensations.
While the components of the system could be compared to
state of the art algorithms, the comparison is not meaning-
ful. Hence, we are presenting purely qualitative results in
this paper.

Related Work
There are multiple earlier articles that motivate both the need
for the gradual construction of an object ontology, and the
techniques we employed.

There is a large body of literature on individuation in
both psychology and computer vision. Work in develop-
mental psychology (Spelke 1990) suggests that infants learn
Gestalt principles of perception. Work in perceptual psy-
chology (Geisler & Diehl 2003) demonstrates that the natu-
ral statistics of the environment can provide sufficient train-
ing data for acquiring grouping mechanisms. Individuation
in vision has been achieved by a variety of criteria using the
normalized cut algorithm (Shi & Malik 2000).

Our approach to tracking unknown objects provides the
learning agent with symbols (trackers) that are ground in
the sensory experience (snapshots). Issues related to anchor-
ing symbols have been explored in (Coradeschi & Saffiotti
2001). This work describes how anchored symbols can be
used for planning and reasoning in a dynamic world.

The ARGUS vision system (Gribble 1995) used local
windows on visual features to track moving objects through
the visual field. The tracker made it possible to collect and
analyze visual shape data in a stable object-centered frame
of reference, even while the object itself was moving too
quickly for traditional methods to recognize it. We use a
similar idea for describing shapes of moving objects.

There is extensive work on view based categorization,
particularly in the vision community. The “Chorus of Pro-
totypes” (Edelman 1999) uses prototype silhouettes to ef-
ficiently index a space of object views. Using distances
between views provides an efficient mechanism for deter-
mining when a view is sufficiently distinct from previously
known models. We intend to incorporate these ideas when
our system learns sufficiently many objects.

Multiple researchers have examined how prior knowledge
can be used to improve performance on various state esti-
mation tasks. With prior shape models, it becomes possi-
ble to estimate pose of an object in the environment (Schulz
& Burgard 2001). Articulated shape models can be created
from three dimensional range snapshots, provided the snap-
shots correspond to the same object (Anguelov et al. 2004).

State estimation techniques can also be applied to create
shape models from occupancy grids (Biswas et al. 2002;
Anguelov et al. 2002), thereby generating new object types.
They assume that the world is static during observation,
which permits the use of a standard SLAM algorithm to cap-
ture the shape of the objects in a grid representation. The
assumption that the entire environment stays static is fairly
restrictive, since many environments and objects of interest
move regularly. Moreover, their algorithm uses an offline
learning process. This makes the online incremental acqui-
sition of new object types difficult.

Finally multiple studies describe how models of objects
can be acquired in an unsupervised manner.

The construction of shape models of non-rigid objects has
been explored in (Hähnel, Thrun, & Burgard 2003). Us-
ing a variant of the iterative closest point algorithm, they
are able to merge dense three-dimensional range scans into
a single coherent shape model even when the object under-
goes small motions. This algorithm creates a qualitatively
consistent model when an person moves their arms or head
between successive scans. Because it relies on having sig-
nificant amounts of data to align the scans, it is unclear that
this method can be extended to handle non-rigid motion as
observed by a two-dimensional range scanner.

Recent work on the Navlab project (Wang, Thorpe, &
Thrun 2003) has demonstrated the feasibility and value of
tracking unknown objects in the environment. This work
describes how a truck equipped with multiple range sen-
sors is able to detect and track moving objects while driving
down a road. The ability to track unknown moving objects
is required for their goal of safe autonomous control at high
speeds on urban streets. They are also able to recognize in-
stances of a few object classes. A significant difference from
the work in this paper is their inability to generate new object
types.

Work on the VSAM project (Collins et al. 2000) demon-
strated visual detection and tracking of objects using mul-
tiple cameras at fixed locations. Objects are detected and
tracked using frame differencing and background subtrac-
tion. These objects were later classified using silhouette
models of the object shapes. This work does not address
the needs of mobile robotics very well, since their vision al-
gorithms rely heavily on fixed locations for the cameras.

Object discovery has been convincingly demonstrated in
vision. Work on simultaneous language and object learning
has shown impressive results (Yu, Ballard, & Aslin 2003).
Using a vector to describe image features, they are able to
bind phoneme sequences (words) to objects. A flexible al-
ternative image description is provided by constellations of
features (Li, Fergus, & Perona 2003). Segmenting objects
in static scenes using the statistics from dynamic scenes has
been demonstrated in vision (Ross & Kaelbling 2003). It is
difficult to make direct comparisons with these works since
vision and range sensors have very different characteristics,
though it would be very valuable to integrate the two sen-
sors.

Conclusions and Future Work
We have described and implemented a method for an agent
to autonomously learn properties of novel dynamic objects
in a natural environment without complex prior knowledge.
This paper demonstrates how a learning agent can efficiently
build an ontology of objects as part of a bootstrap learn-
ing process. Using this autonomously acquired ontology, a
robot can categorize the dynamic objects it encounters in the
world. This system demonstrates the feasibility of learning
to ground object symbols to sensation without supervision.

This work may be incrementally improved in multiple
ways. Small errors in localization cause the shape models



Figure 5: Multiple representations of the scene in Figure 1. The robot observer is the small round robot in the foreground. The
larger ATRV-Jr is used as a non-moving object. (a): A photograph of the scene. (b): A range scan representation of the scene.
(c): An occupancy grid representation of the scene. (d): An iconic representation of the scene. This is a symbolic description
of the robot’s environment enabled by the learned object ontology. The location of the observing robot is indicated by a small
triangle (�). A moving object (pedestrian) of amorphous shape is shown with its trajectory. A non-moving object (ATRV-Jr)
has been classified (as an instance of Figure 4(d)), and is shown by the convex hull of its shape model. The permanent cells in
the occupancy grid are shown for reference, representing the static environment.

to become noisy, a problem that may be alleviated by bet-
ter snapshot alignment. Also, the method is specified for a
range sensor, so testing it with stereo vision is desirable.

An important part of bootstrap learning has not yet been
explored here, namely utilizing acquired knowledge to con-
struct informed priors to improve competence in harder
tasks. This leads to several directions for future work: ex-
amining how class knowledge can aid in image description
(by selecting discriminating observation angles), examining
how image description can aid in tracking (by providing
feedback on the plausible motion of the object), and using
tracking to aid in individuation (by providing feedback for
separating objects). Finally, we would like to examine how
the learned object ontology can be used to speed up further
learning tasks.
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