
Copyright

by

Joseph Varughese Modayil

2007

The Dissertation Committee for Joseph Varughese Modayil

certifies that this is the approved version of the following dissertation:

Robot Developmental Learning of an Object Ontology
Grounded in Sensorimotor Experience

Committee:

Benjamin Kuipers, Supervisor

Raymond Mooney

Peter Stone

Brian Stankiewicz

David Kortenkamp

Robot Developmental Learning of an Object Ontology

Grounded in Sensorimotor Experience

by

Joseph Varughese Modayil, B.Sc., M.Sc.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

For Joanna

Acknowledgments

This work would not have been possible without the support of many individuals.

My advisor Ben Kuipers has been a source of constant support and stimulation. Without his

guidance, my research would have been both less ambitious and less interesting. His relentless pur-

suit of clear answers to important questions in science is tempered with joviality and compassion.

These qualities have shaped my approach to research.

My thesis committee has significantly influenced this work, both in my research and by

the demand that lofty claims are supported by empirical evidence. Ray Mooney introduced me to

the importance of evaluation in empirical AI. Brian Stankiewicz gave me an understanding of how

psychologists can evaluate human performance, and this allowed me to evaluate robot performance.

David Kortenkamp inspired me to think about how a robot can pay attention to events outside of

a narrowly specified task with a talk at AAAI that mentioned the difficulty of having a planetary

rover notice a dinosaur bone. Peter Stone encouraged me to consider the relevance of reasoning

about agents and actions on physical robots.

My lab colleagues have patiently endured many discussions, thoughtfully prodded on the

weak spots in my research, suggested improvements, critiqued documents, and aided in experimen-

tal setups. Special thanks go to Patrick Beeson, Aniket Murarka, Matt MacMahon, Subramanian

Ramamoorthy, Jefferson Provost, Harold Chaput, Jonathan Mugan, Changhai Xu, and Shilpa Gu-

lati.

My many friends in Austin have preserved my sanity over the years. Special thanks go

out to Mikhail Bilenko, Matt Horstman, Prem Melville, Amol Nayate, and Lucas Wilcox for being

v

great friends and roommates. Thanks are also due to Katherine Mack whose excitement in robotics

sustained my faith.

Finally, thanks are due to my family for supporting me through the years. I would not

have been able to come this far without their constant encouragement. Their support has been

immeasurable.

JOSEPH VARUGHESE MODAYIL

The University of Texas at Austin

August 2007

vi

Robot Developmental Learning of an Object Ontology

Grounded in Sensorimotor Experience

Publication No.

Joseph Varughese Modayil, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Benjamin Kuipers

How can a robot learn to conceptualize its environment in terms of objects and actions,

starting from its intrinsic “pixel-level” sensorimotor interface? Several domains in artificial intelli-

gence (including language, planning, and logic) rely on the existence of a symbolic representation

that provides objects, relations, and actions. With real robots it is difficult to ground these high-level

symbolic representations, because hand-written object models and control routines are often brittle

and fail to account for the complexities of the real world. In contrast, developmental psychologists

describe how an infant’s naı̈ve understanding of objects transforms with experience into an adult’s

more sophisticated understanding. Can a robot’s understanding of objects develop similarly?

vii

This thesis describes a learning process that leads to a simple and useful theory of objects,

their properties, and the actions that apply to them. The robot’s initial “pixel-level” experience

consists of a range-sensor image stream and a background model of its immediate surroundings.

The background model is an occupancy grid that explains away most of the range-sensor data using

a static world assumption. To this developing robot, an “object” is a theoretical construct abduced

to explain a subset of the robot’s sensorimotor experience that is not explained by the background

model.

This approach leads to the Object Perception and Action Learner (OPAL). OPAL starts

with a simple theory of objects that is used to bootstrap more sophisticated capabilities. In the

initial theory, the sensor returns explained by an object have spatial and temporal proximity. This

allows the robot to individuate, track, describe, and classify objects (such as a chair or wastebasket)

in a simple scene without complex prior knowledge [73]. The initial theory is used to learn a more

sophisticated theory. First, the robot uses the perceptual representations described above to create

structurally consistent object models that support object localization and recognition [74]. Second,

the robot learns actions that support planning to achieve object-based goals [75].

The combined system extends the robot’s representational capabilities to include objects

and both constant and time-varying properties of objects. The robot can use constant properties

such as shape to recognize objects it has previously observed. It can also use time-varying prop-

erties such as location or orientation to track objects that move. These properties can be used to

represent the learned preconditions and postconditions of actions. Thus, the robot can make and

execute plans to achieve object-based goals, using the pre- and post-conditions to infer the ordering

constraints among actions in the plan.

The learning process and the learned representations were evaluated with metrics that sup-

port verification by both the robot and the experimenter. The robot learned object shape models that

are structurally consistent to within the robot’s sensor precision. The learned shape models also

support accurate object classification with externally provided labels. The robot achieved goals

specified in terms of object properties by planning with the learned actions, solving tasks such

viii

as facing an object, approaching an object, and moving an object to a target location. The robot

completed these tasks both reliably and accurately.

ix

Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 Motivating the Development of an Object Ontology 2

1.2 The Apparent Simplicity of Object Perception . 3

1.3 The Difficulty of Object Perception . 3

1.4 Bootstrap Learning . 6

1.5 Learning about Objects . 7

Chapter 2 Related Work in Object Perception and Action 8

2.1 Natural Systems . 9

2.1.1 Human Physiology . 10

2.1.2 Comparative Psychology . 11

2.1.3 Developmental Psychology . 12

2.1.4 Perceptual Psychology . 13

x

2.1.5 Action . 14

2.2 Artificial Systems . 15

2.2.1 Object Segmentation . 15

2.2.2 Object Recognition . 18

2.2.3 Object Based Attention and Inference . 20

2.2.4 Learning Actions . 20

2.2.5 Robotics . 21

2.3 Summary . 23

Chapter 3 An Object Ontology 24

3.1 Platform . 24

3.2 Conceptual Assumptions . 26

3.3 Prerequisites . 27

3.4 Formalism . 28

Chapter 4 Bootstrap Learning for Object Discovery 32

4.1 Principles . 33

4.2 Learning about Objects . 34

4.2.1 Individuation . 36

4.2.2 Tracking . 37

4.2.3 Image Description . 40

4.2.4 Classification . 41

4.3 Demonstrative Results . 43

4.3.1 Tracking Limitations . 46

4.4 Related Work . 47

4.5 Summary . 48

Chapter 5 Learning Structural Shape Models 50

5.1 Introduction . 50

xi

5.2 Motivation for Structural Models . 51

5.3 Using Angular Constraints for Scan-Alignment 52

5.4 Recognition and Localization . 58

5.5 Evaluation . 59

5.5.1 Model Construction . 60

5.5.2 Recognition . 60

5.5.3 Localization . 64

5.6 Classification . 64

5.7 Hierarchies of Shape . 70

5.8 Related Work . 72

5.9 Summary . 73

Chapter 6 Learning Actions for Objects 74

6.1 Introduction . 74

6.2 Continuous Actions . 75

6.2.1 Background . 75

6.2.2 Actions for Planning . 76

6.2.3 Learning . 77

6.3 Action Definition . 78

6.4 Learning Algorithm . 79

6.5 Training Scenario . 83

6.6 Planning with Goals . 84

6.7 Evaluation . 86

6.7.1 Optimal Performance for Action Tasks 87

6.7.2 Alternate Utility Functions for Learning Actions 89

6.8 Extensions . 91

6.9 Related Work . 97

6.10 Summary . 98

xii

Chapter 7 Contributions and Future Directions 99

Bibliography 103

Vita 115

xiii

List of Tables

5.1 Reliability of perimeter and area properties . 62

5.2 Residual errors . 62

5.3 Simulated localization error . 65

6.1 Interaction performance . 86

6.2 Optimal performance . 87

6.3 Evaluation of alternate utility functions . 91

6.4 Actions learned using the U utility function. 92

6.5 Actions learned using the U without repeatability utility function. 93

6.6 Actions learned using the F-measure utility function. 94

6.7 Actions learned using the accuracy utility function. 95

6.8 Actions learned using the weighted accuracy utility function. 96

xiv

List of Figures

3.1 Four representations of the environment . 25

3.2 Learned shape models . 30

4.1 Object individuation . 36

4.2 Object tracking . 38

4.3 Perceptual shape model . 40

4.4 Objects with learned shape models . 42

4.5 A scene described in multiple representations . 44

4.6 Tracking examples . 45

5.1 Describing a scan of an object . 54

5.2 Exterior and interior scan constraints . 55

5.3 Example of enforcing scan constraints . 57

5.4 Object with shape models . 61

5.5 Modeling error measured by constraint violation 62

5.6 Perimeter and area for shape discrimination . 63

5.7 Learned shape models . 66

5.8 Classification accuracy using the nearest neighbor based on shape. 67

5.9 Classification accuracy using the intrinsically defined symbolic shape classes. . . . 68

5.10 Shape hierarchies . 71

xv

6.1 Properties used for learning actions . 78

6.2 Learned actions . 85

6.3 Pushing an object to a goal location . 87

xvi

Chapter 1

Introduction

People exhibit intelligence in language, planning and reasoning. People are better than robots at

these tasks because people are good at decomposing the world into weakly interacting components.

In particular, people decompose the world into objects. A person observes a scene and conceptu-

alizes it in an internally constructed ontology of objects that represents object properties, relations,

and potential interactions. These internal representations can be employed to solve a variety of

tasks.

Although robot perception and control can benefit from an object based model of the world,

years of research have shown that constructing such models is difficult. Perception is often hard-

coded or learned offline for a handful of task specific object classes. Control laws require a pro-

grammer to select a task relevant world model with state variables that are estimated from the

robot’s sensory experience. This approach to perception and action leads to robots that can rarely

solve interesting tasks in dynamic environments. The limitations often arise not because the robot’s

sensors and motors are inadequate, but because the robot cannot perceive objects—it cannot con-

struct stable object representations.

Object perception is a critical developmental step for a person learning to interact with the

environment. Whether human or robot, an intelligent agent can use perceived objects to select

appropriate actions based on past experiences. Moreover by using an object representation, a robot

1

can specify and test hypotheses, which can facilitate autonomous learning of actions [85, 30].

In spite of its apparent utility, no system for general purpose object perception and action is

currently available. This thesis will first present desirable attributes for a developmentally inspired

object perception system and then describe an implementation that meets these requirements using

the sensory and computational resources available on modern robots. The Object Perception and

Action Learner (OPAL) is used to test the following claims. One, starting from egocentric and

allocentric representations of sensory experience, a robot is able to reliably perceive objects in

unstructured environments without complex prior knowledge. Two, the robot is able to create

structurally consistent object models that support fast localization and recognition. Three, the

representations generated by perception are sufficient for learning actions that can be used by a

planner to achieve goals.

1.1 Motivating the Development of an Object Ontology

Decades of AI research have yielded techniques for learning, inference, and planning that depend

on human-provided ontologies of self, space, time, objects, actions, and properties. Since robots

are constructed with low-level sensor and motor interfaces that do not provide these concepts,

the human robotics researcher must create the bindings between the required high-level concepts

and the available low-level interfaces. This raises the developmental learning question of how a

learning agent can create high-level concepts from its own low-level experience.

People have acquired their cognitive capabilities through evolution and individual devel-

opment. Understanding how cognitive competence can arise in autonomous robots poses an in-

teresting developmental learning problem at the boundary between robotics, machine learning and

knowledge representation. Robotics research provides an embodied agent that uses sensorimotor

interfaces to interact with the world. Machine learning research provides a collection of meth-

ods for learning to perform tasks. Knowledge representation research provides symbolic inference

methods that mimic several cognitive capabilities of people. This raises the research question of

whether these components can be combined and extended to create intelligent machines.

2

Since objects are natural for human reasoning, a great deal of cognition relies on the avail-

ability of objects. Most nouns in natural language refer to objects. Logical reasoning occurs in

symbolic worlds populated with objects. Methods for motor skill acquisition and intelligent behav-

ior in robots assume that relevant objects can be identified in the environment. Object perception

transforms the robot’s experience from sensorimotor impressions into persistent object representa-

tions that facilitate communication, planning and learning.

1.2 The Apparent Simplicity of Object Perception

On first consideration, object perception is simple and effortless. As people, we look around and

are immediately aware of a world filled with objects. On further reflection, we realize that what

we sense with our eyes, ears and skin are not the objects themselves, but rather impressions from

the world that our minds are aggregating to form object models. We have no sensor that returns

objects. However, we have a deep-seated tendency to perceive the world as being composed of

objects, and this tendency is not easily changed.

The perception of objects occurs without conscious effort. Infants appear to perceive ob-

jects. Babies see and mimic faces from birth. Shortly after birth, chicks imprint on a nearby object

and they perceive it as a relative [71]. This example suggests that extensive worldly experience is

not always required for object perception. If even baby bird-brains can see objects, how difficult

can object perception be? The sensory input for object perception appears to be similar for robots

and animals. Visual input is represented by neuron activations for animals and pixel activations for

robots and the two inputs are roughly comparable.

1.3 The Difficulty of Object Perception

Children parse their worlds into distinct objects. A child on the beach will happily perceive a wave

and a beach-ball as objects. However, the beach-ball and the wave are so different that it is difficult

to define what makes them both objects. The boundary of the beach-ball is clearly visible; the

3

boundary of a wave is not. The beach-ball is nearly rigid; the wave is amorphous. The beach-ball

exists for an extended duration; the wave ceases to exist when it hits the beach. The matter that

comprises the beach-ball is largely fixed in time as an amount of plastic in the ball’s shell. The

matter that composes the wave is largely transient, since the water in the wave does not move along

with the wave.

In spite of all these distinctions, the most intuitive interpretation for a child is that both

the beach-ball and the wave are objects. A physical characterization of the child’s intuitive notion

of an object is surprisingly difficult. Our first inclination is to say that an object is a physical

entity. But this does not explain the existence of the wave, whose constituent matter is constantly

changing. Alternatively, we can claim that an object’s existence is provided by the extent of its

physical form, the boundary between where the object exists and where it does not. This does not

suffice to describe a wave that does not posses a precise boundary, for the wave’s crest is composed

of a mixture of water and air. We can claim that although objects in the world might not be simple

to define, objects are segmented from the images formed by the world projected onto our eyes,

and that this segmentation into figure and ground is unambiguous. However, this interpretation

fails because several optical illusions provide multiple interpretations for the “object”. Figure and

ground can be interchanged with minimal effort in the classic vase and faces illusion.

This leaves the explanation that objects are being formed by our minds. Initially, this is

troubling. How did they get there? How does everyone appear to perceive the same objects? Why

do our minds form objects? Are there objects in our heads? How can we provide object models for

robots? Do roboticists have to worry about things like waves, or is most of the world sufficiently

well behaved that robots can manage by believing that objects exist in the world? How can an

experimenter validate that the objects perceived by the robot correspond to objects perceived by

people? There are two ways to proceed given the ambiguous nature of object semantics in the

physical world: to forgo object models completely, or to construct object models that explain an

agent’s sensorimotor experience of the world.

The first approach leads to computational methods that ignore object perception to avoid

4

the fragility and computational burden of reliably finding object instances in an agent’s sensory

input. This is the approach promoted in behaviorism and reactive robotics [16], which advocate

having agents that do not model the world. However, these approaches fail to provide insight into

the mechanisms that generate the objects that humans manifestly use. They also fail to provide

interfaces that allow humans to provide information about objects. Finally, these methods are

limited by their inability to generalize from prior experiences with objects.

Approaches that build object models use different object representations depending on the

task. Machine vision addresses several tasks including image segmentation (which groups each

pixel in an image with neighboring pixels that lie on the same object), structure recovery (discov-

ering the three dimensional structure of the object using a variety of information sources including

motion, shading, stereo disparity, and texture), registration (finding the object model parameters

that best describe an object’s pose in the world), and recognition (matching an observed entity with

a known class). Many algorithms can also jointly perform multiple steps (for example simultane-

ous classification and segmentation), which often provides better performance though at a higher

computational cost.

These techniques can work well when their prerequisites are satisfied, and the prerequi-

sites tend to be reasonable for controlled environments. Because of their reliability, many machine

vision algorithms have been successfully deployed in industrial settings that provide a controlled

closed-world environment where only a few rigid objects must be recognized and where the ob-

ject models are provided a priori. These prerequisites are significantly more onerous for mobile

robots that contend with worlds that are not closed (unknown environments and objects), and lim-

ited computation. Although traditional 3D structural object models can support computationally

efficient object localization, existing theories provide few clues about how such complex models

can acquired autonomously.

5

1.4 Bootstrap Learning

This work on learning object representations is part of a larger research endeavor to understand

how an autonomous agent can develop an understanding of its environment. It is inspired by the

observation that adults acquire their cognitive capabilities through a combination of evolution and

development. It sometimes is called bootstrap learning to indicate that the robot’s existing repre-

sentations and capabilities must be used to bootstrap new representations and algorithms. Although

this approach is relatively new and the goals are ambitious, significant progress has already been

made.

The term bootstrap learning is used in [60] to describe a self-supervised learning process. 1

Initially, the robot has the ability to use its travel history for place recognition. This ability was used

to provide labeled examples to train a fast place recognition algorithm that only requires a single

sensor observation. This new capability allows the robot to relocalize in its map if it becomes lost,

since the fast process for place recognition does not rely on the robot’s having an accurate model

of its past experience.

Pierce and Kuipers [85] showed how a simulated robot can take a bag of sensors and deter-

mine their spatial structure, use the perceptual spatial structure to reformulate its motor interface,

and create control laws to navigate through large scale spaces. Perceptual organization was ex-

tended by Olsson and colleagues [82] to use an information metric to measure the distance between

sensors. The work on learning spatial navigation is extended by Provost and colleagues. [87] to

operate without requiring control templates. Research by Stronger and Stone [103] explore how an

agent can autonomously learn the relationship between continuous sensors and effectors.

In a discretized environment, Drescher [30] showed how a simulated agent can generate

new states and learn rules to predict the consequences of its actions. Chaput [20] extended this work

by showing how this learning process can be more efficiently implemented using self organizing

maps.
1The term is also used for the related task of semi-supervised learning [114].

6

1.5 Learning about Objects

This thesis describes how an agent can bootstrap useful object representations using simple theories

of objects to explain the robot’s experiences in unstructured environments. In contrast, most other

approaches construct object models by some combination of external knowledge of specific objects

of interest and learning environments that are constructed to simplify perception.

This thesis makes the assumption that two ontologies are already developed and available

on the learning robot. One is egocentric, describing the world using sensors and acting in the world

using motors. The second is allocentric, describing the environment using a static reference frame,

and acting in the world by setting goal points, planning motor commands and performing them.

The first is provided by default on engineered mobile robots, and the second is provided for certain

robot configurations by localization and navigation algorithms. Both descriptions are at the level

of pixels since the value of each feature provides relatively little information. These ontologies

provide the input for learning an object ontology.

The goal is to understand how an agent can move from a pixel-level understanding of

its sensorimotor experience to an object level understanding. The Object Perception and Action

Learner (OPAL) permits robust object perception in spite of environmental clutter. The first step

is to describe a process by which early perceptual learning can occur without requiring engineered

environments, precise sensor modeling, or restrictive assumptions about the physical nature of the

objects. Subsequent steps improve on the initial capabilities by creating structural object models

and learning actions that change object properties.

The main results of this work demonstrate how a robot can start the development of an ob-

ject ontology by tracking dynamic objects, forming structural models of object shapes, and learning

actions for objects. The next chapter reviews relevant related work and the insights provided from

prior research. The following chapter provides an overview of the object ontology, which is then

described in detail in the remainder of the thesis.

7

Chapter 2

Related Work in Object Perception and

Action

The question of how an agent can perceive and act on objects is not new. Prior research into object

representations in natural and artificial systems provides both motivation and guidance. Studies

of natural systems demonstrate both that multiple representations are used and that control mech-

anisms are involved at a low level. Studies in artificial systems demonstrate impressive perfor-

mance when task appropriate prior knowledge is available. However, natural systems are usually

too complex to be completely understood, and artificial systems are rarely robust in unstructured

environments due to difficulties in acquiring adequate background knowledge.

This chapter surveys research on how agents perceive objects and how they interact with

them. Although there are useful studies on action, particularly haptic control in humans and rein-

forcement learning in artificial systems, the majority of these studies focus on perception. Object

perception is studied for several distinct purposes including control, recognition, communication,

and inference. The variation in the goals and topics of study in different papers yields significantly

different answers to the following questions.

• What constitutes an object representation for an agent?

8

• How are the object representations used in perception?

• What actions do the object representations afford?

Research into object perception can be broadly divided into the study of biological and

artificial systems. Object perception in biological systems is studied in physiology and psychol-

ogy. Researchers in physiology investigate perception in the nervous system and in the brain.

Psychological research can be divided into three relevant areas: comparative psychologists study

perception in animals, developmental psychologists study perception in infants, and perceptual

psychologists study perception in mature humans. Object perception in artificial systems is stud-

ied by researchers in machine vision and robotics. The machine vision community has developed

an array of techniques for object segmentation and recognition. Much of this work assumes that

the environment can be controlled, the sensors have been modeled, and that object models have

already been acquired. Robotics researchers often use task specific heuristics (blobs of the right

size are legs, people can be discovered using heat sensing and color matching) to perceive ob-

jects in unconstrained environments. These models tend to sacrifice generality for robustness and

simplicity.

2.1 Natural Systems

Animals, infants and adults are natural systems that perceive and act on objects. Neural represen-

tations that are directly observable in natural systems are typically far from high level cognition.

However, indirect experiments are still able to shed light on many aspects of natural object rep-

resentations. Two ideas recur in several studies. One is that natural noise can be robust to large

amounts of systematic and random perturbations. Another is that multiple coupled object repre-

sentations are used. The robustness and adaptability of these systems contrasts with the artificial

systems discussed later. Finally, since objects are defined by the agent, the cognitive abilities and

needs of the agent result in substantially different object representations for animals, infants, and

adults.

9

2.1.1 Human Physiology

It is particularly interesting when the usually robust adult human visual system fails. Many cases

arise from patients who exhibit unusual behavior after some mental trauma. One account [43] de-

scribes a patient after a near asphyxiation who was unable to verbally describe visual orientations,

nor was she able to move her hand to match the orientation of a slot. However, she was perfectly

capable of “mailing” a letter into a slot, a task that required the same perceptual and control skills.

Further experiments suggest the motor control system can perceive the primary axis of an object,

but does not have significantly more shape information, as the subject was only 50% accurate at

“mailing” an elongated cross into its corresponding slot.

Livingstone and Hubel [67] discuss the separation of the human visual system into two co-

operating systems where each system has a cortical/subcortical division, the dorsal/magnocellular

system and ventral/parvocellular system. The magnocellular system handles depth and motion at

high speeds. The parvocellular system works on a slower time scale and handles color and form.

They separate the parallel systems through optical illusions that work with intensity contrasts but

change radically under equiluminance displays (using two colors for contrast). Their examples

demonstrate perceptual differences in scenarios with the same information, which supports the ex-

istence of two distinct pathways. Although the cortical/subcortical division looks convincing, other

research suggests that this claim is oversimplified.

Mareschal and Johnson [69] explore the two cortical visual object processing routes. They

state the dorsal route is concerned with the “where” information needed for action (location, mo-

tion, size, crude shape but no color or face information) and the ventral route is concerned with

the “what” information needed for identification (color, face information, size, shape, but no lo-

cation). They postulate that these two routes are integrated in the frontal lobes. Since the frontal

lobes are not fully developed in four month old infants, tests on these infants should reveal dis-

tinctions in performance. The results of object occlusion studies suggest that these infants have

difficulty remembering information from both routes. Moreover, objects that afford action retain

location properties while other objects preserve identification properties. This is surprising, since

10

the authors state that infants are unable to physically reach for objects at this age. This suggests the

infants are remembering how other agents interact with objects.

Although vision research is the most prevalent in the literature, there is relevant research

into other senses including sound, touch and smell. Research into perceptual grouping of audi-

tory cues found Gestalt principles similar to those observed in vision [15] and has been explored

computationally [25]. Research into grasping has shown that models of the backs of objects are

formed for grasping, whereas vision is used to generate models of the front of objects [64]. Even

smell may be subject subject to a perceptual grouping process that uses a variant of blind source

separation to identify distinct objects [50].

2.1.2 Comparative Psychology

A study of object parsing in rhesus monkeys [78] compared animal responses to infant responses.

The study finds that monkeys show surprise similarly to infants older than 11 months when pre-

sented with an unusual support scenario (support from above). However, they differ in surprise to

support situations involving hands: infants recognize that hands provide support from an age of 6

months but adult rhesus monkeys seem to ignore hands. Both appear to parse objects using feature

cues. Earlier work demonstrates the use of spatio-temporal cues for object perception in younger

infants.

There are several animals that learn to use objects in complex ways. Crows create and use

tools to fetch food [112]. Grey parrots can name objects and solve simple grouping and counting

tasks [83]. Otters learn to use stones as anvils in the wild [48]. These examples provide sample

tasks that are cognitively simpler than matching the capabilities of an adult human.

Several examples of object perception and action from [71] are described below. The ex-

amples provide strong evidence that animals perceive objects but interact with them with differing

levels of sophistication.

The well-known “monkeys and bananas” logic problem is likely inspired by Köhler’s

work [56]. Köhler described chimpanzees stacking boxes to reach bananas suspended from a

11

ceiling. He also filmed chimpanzees using poles to bring down suspended bananas, as well as

chimpanzees who used combinations of boxes and poles to get the bananas. Other chimpanzees

would place a pole on the ground, run up the pole and grab the bananas before the pole toppled.

In a different setup, he showed a chimpanzee in a cage with two poles, where neither pole was

long enough to reach the bananas. After failing to reach the bananas with the short poles, the

chimpanzee plays with the poles, accidentally fits them together to make a long pole, and then

immediately uses the extended pole to reach the bananas.

Köhler used these scenarios to claim the chimpanzees were showing signs of insight. This

interpretation may be overly simplistic, since Schiller [91] observed chimpanzees stacking crates

for fun. He observed that chimpanzees stack crates and climb to the top with their arms outstretched

even when they have never been presented with bananas suspended from a ceiling. Still, Köhler’s

work and films show chimpanzees can acquire skills with objects, and can organize tools in a

variety of novel ways.

Wild chimpanzees use grass and twigs as tools, using them to extract termites from

mounds [110]. This skill is learned by child chimps from adult chimps. This suggests that chim-

panzees must learn to discretize part of their environment into objects for use as tools, they learn

new control skills with these objects, and they learn which objects can be acted on with these tools.

Herring gulls have problems distinguishing between eggs and boxes [4]. This suggests

that they do not construct a structural representation for an object before performing classification.

Their poor classification skills stand in contrast to birds targeted by cuckoos. Cuckoos lay their

eggs in the nests of other birds, and individual cuckoos specialize in making their eggs look like

those of a particular host species. Species which have been targeted by the cuckoo in the past tend

to reject eggs which do not look substantially similar to their own [28].

2.1.3 Developmental Psychology

Spelke [99] has investigated the mechanisms used by infants to find objects in the environment.

Infants begin individuating objects by using low level features, and they increase their inference

12

capabilities with age. Infants use similar motion to group features into objects (the Gestalt mech-

anism of “common fate”) before they gain related motor skills (head control and grasping). After

these motor skills are acquired, they acquire the remaining Gestalt grouping skills. A later pa-

per [98] discusses spatio-temporal integration of edge filters into the same framework.

Bloom [10] suggests that these “Spelke objects” discovered by prelinguistic children corre-

spond directly to those found relevant to language acquisition. He claims that the rapid vocabulary

learning in young children is accounted for in part by a child’s knowledge of these objects.

Carey and Xu [18] speculate that the mechanisms used in infant vision are the same as those

used in mid-level vision by mature subjects. The speculative nature of this claim reveals the current

limitations in the understanding of perceptual development. The paper also points to computational

models of attention and object perception, notably the MOT (multiple object trackers) model of

Pylyshyn [92].

2.1.4 Perceptual Psychology

Braun [14] showed that people can track “objects” that are spatially overlapping multidimensional

features that are continuously changing. Each object was a translucent diffraction pattern with

three features (color, orientation, and wavelength). The experimenters overlapped two patterns and

continuously varied the feature values. Observers were told to track the two objects. By the end

of each trial, the two object had exchanged their original feature values. The results showed that

people tend to track an object as a whole instead of as individual features.

Geisler and Diehl [40] present a summary of recent psychological experiments that use

Bayesian ideal observers to perform perceptual tasks. Since different assumptions lead to differ-

ent ideal observers, different theories can be compared based on how well their ideal observers

match human performance. This approach provides insight into which perceptual representations

are effective for capturing environmental statistics and how well these statistics predict human be-

havior. This work supports the claim that an agent can improve its perceptual skills by learning the

statistics of its operating environment.

13

Cavanaugh and colleagues [19] measure the response time required to classify the motion

of moving dots. Even when patterns are simple (rotating pairs) or familiar (human gaits), it appears

that attention is required. Moreover, the authors suggest that the creation of links between the dots

is an active part of perception and not recognized by innate “sprites”. The authors claim that sprites

can be used to reduce cognitive load once a dynamic representation is constructed.

Scholl, Pylyshyn and Feldman [92] explore reasonable definitions of visual objects. They

use multiple object tracking experiments to study the effect of distractors on an observer’s object

construction process.

Kubovy and Valkenburg [59] state that definitions of “object” tend to be rooted in the visual

system. However, this leaves the status of objects in other modalities unclear. They give a definition

of objects based on an observer’s ability to separate an object signal from the background.

2.1.5 Action

There are at least two reasons to characterize object properties for action. One is to generate a

functional object description, namely to determine the resulting state from performing an action on

an object. The other is to develop a model of an object’s dynamics for skilled motion control.

Several studies on control in psychology examine hand motor skills. Lederman and

Klatzky [64] provide an overview of a sequence of studies on active haptic perception. People

use several actions to characterize and recognize objects. By manufacturing a set of physical ob-

jects that vary in shape, shape envelope, mass, hardness, and texture, the experimenters were able

to determine that people select actions that efficiently identify the objects.

Another study explored the relationship between prediction and control [39]. Prediction

and control are intimately related as prediction provides a forward model of a system (an action

from a state leads to a next state), and control requires an inverse model (getting to a desired state

from a known state requires the identification of appropriate actions). The experimenters required a

subject to push a lever that has a non constant load. By measuring grip and load along the path, the

experiment demonstrated that people learned to predict the required force before they learned to

14

control the load. By careful construction of apparatus, experimenters are able to decouple actions

from sensations [58]. This approach to generating control from prediction is employed by artificial

systems using model-based reinforcement learning.

2.2 Artificial Systems

Object perception in artificial systems is still heavily influenced by the work of Marr [70] who

advocated constructing a geometric representation of the world at each time step. The difficulties

of constructing and maintaining world models at each time step led to the subsequent popularity of

reactive robotics [16], which advocated using little (if any) internal representation. More recently,

particle filters and Bayesian probability have been employed to simplify the process of maintaining

models of the world [52]. This probabilistic approach uses knowledge of the past to propose models

for the present. For this probabilistic approach, the two main tasks are to generate reasonable

starting model parameters from data and to generate new models to explain data better than existing

models.

In contrast with a person’s perceptual robustness in arbitrary environments, machine vision

studies have usually focused on generating systems with high recognition accuracy in controlled

environments [36]. Many industrial object classification tasks are now computationally feasible,

and system performance can be quantified and evaluated. To maximize recognition rates, machine

vision systems tend to constrain both the environment and the number of potential objects. The

problem of reliably perceiving an object is complicated by the many factors that affect an object’s

appearance including lighting, reflectance, scale, rotation and deformation.

2.2.1 Object Segmentation

Traditionally, segmentation first finds low-level features in an image and then connects these fea-

tures to segment the image. Several mechanisms are known for producing reliable low-level visual

features. Edge detection and kernel convolution are standard preprocessing techniques for finding

15

interesting image features. Despite the relatively long history of this approach [70], difficulties

remain with thresholding features and achieving reliable segmentation.

Sometimes, low-level features are selected to support reliable tracking. Without knowing

the actual objects in a scene, many point features can be reliably tracked [96] by assuming the fea-

tures arise from locally planar surfaces. With the appropriate statistical machinery, more complex

entities such as splines can be used track object boundaries [52].

An alternative to tracking a single feature through multiple frames is to segment the entire

image into interesting and uninteresting regions. The simplest method for this separation is to

perform background subtraction when the background is static or known. If the images of the

objects do not touch, then each object is a connected component. This approach to object discovery

was used effectively in the VSAM project [24] to automatically discover categories of objects in

an outdoor urban environment, and to classify future observations into known categories.

Moving objects can be discovered using a fixed camera [90]. First a model of the back-

ground is learned. As objects are brought into the scene, their associated pixels violate the back-

ground model and these errors can be spatially clustered to define objects. This approach allows

objects to be defined without strong assumptions about object structure (e.g. rigidity, opaqueness).

This approach can construct a complete object model even when the object is always partially oc-

cluded in observations. Limitations of this work include inadequate support for recognition, and

the reliance on a fixed video camera.

When the background is not static, images are segmented by clustering image regions based

on figural goodness [53]. Several tools are available for automatically making trade-offs between

the accuracy of a description and its generality. Some approaches that have been taken include

minimum description lengths [29], Bayesian techniques [55], and energy minimization [57].

Shi and Malik [95] perform image segmentation using a graph-theoretic notion of a nor-

malized cut. Small portions of an image (or image sequence) are compared with their neighbors

to determine similarity. This transforms the image into a graph with weights between image frag-

ments. They introduce the criterion of a normalized cut to create a bipartition of the graph which

16

minimizes the weight of the cut while compensating for the size of the cut. Although an exact com-

putation of the optimal cut is NP-complete, effective approximation techniques are known. These

approximation techniques are based on computing generalized eigenvectors, where the signs of

the eigenvector components indicate membership. Multiple objects are found by either recursively

breaking components, or by using multiple eigenvectors to generate multiple cuts. The experiments

demonstrate the utility of this algorithm measuring similarity on a variety of features: motion, color,

and texture. However, this method is too slow to run online.

Weiss [113] uses the apparent motion of local features as evidence for object motions. This

work demonstrates how features from the overlap of two distinct objects can lead to local image

motions which do not correspond to any physical entity. This model demonstrates how several

optical illusions involving motion can be explained by Bayesian principles. The model encodes as

prior knowledge that there is image noise and that the scene contains a few layers of slow, smooth

motion. The model achieves similar degradations in behavior as humans in varying conditions.

Weiss also makes the insightful observation that in the presence of noise, point and line features lie

on a continuum.

Another algorithm [55] decomposes unconstrained video into a background and layers of

flexible sprites. Users can click on an object to remove it from the video sequence, which in turn

reveals objects that were previously occluded. This method does not need to be given structural

object models, but the input does include the number of sprites and layers. The algorithm permits

semi-transparent objects to be present, and it handles background motion. The method uses an

approximate Bayesian approach for inference.

Nicolescu and Medioni [80] describe a method for grouping moving objects in images

using 4D tensors that encode local velocity and position. They note that motion estimates near

object boundaries are uncertain. The algorithm produces accurate motion segmentation within

these regions by only using neighbors on the same side of the perceived boundary to influence the

motion estimate. They have tested their algorithm on both natural and synthetic data.

17

2.2.2 Object Recognition

Object recognition is a motivating task for much of machine vision. The standard approach is to

perform segmentation, identify the structure of each object, and then classify each object based on

its structure. Faugeras [36] describes the geometry and algorithms required for the recognition of

rigid three dimensional objects. This work is mostly concerned with object recognition and regis-

tration using stereo depth perception. The theory relies heavily on the mathematics of projective

geometry and linear algebra. It provides results that are robust to noise and occlusion. However,

the approach is limited to searching for small numbers of rigid objects. Moreover, this work does

not address the problems of model acquisition.

Traditional approaches to recognition have focused on settings where only a few object

models are available for matching, and these approaches do not scale well to recognizing many

objects in unstructured environments. In contrast, Edelman’s “Chorus of Prototypes” [33] can

efficiently recognize objects from 100-1000 models using a limited number of comparisons by

comparing an object’s silhouette to those of a few prototypes. An alternative approach is to use a

grammar to specify possible configurations of primitives. This has been explored with geons [8],

and it has been tested with both neural net implementations and human trials.

Recent work has shown some exciting results for recognition without segmentation or

known structural models. These algorithms look for constellations of visual features [37] or re-

curring patterns of low level features [93]. This is a reasonably challenging learning scenario, but

it appears some human adults are capable of learning object prototypes without segmentation as

well [13]. This is an even more interesting because only half of the adult subjects were capable of

performing this task. However, it seems that much prior experience with object shapes is required

to solve this task.

A major limitation of most artificial systems is their inability to learn quickly. One exten-

sion of the constellation work [66] generates model priors so that it can learn a new class from a

single observation. Another extension has been to quickly learn from labeled feature sets instead

of feature vectors [45].

18

Incorporating language capabilities into robots usually relies on object recognition.

Duygulu and colleagues [32] approach object recognition as a machine translation task. For in-

put, their algorithm takes a set of images annotated with a few words that describe the main objects

in the image. They use the normalized cut algorithm to segment images into a set of regions,

and they use the words to define potential labels for each region. For each region, 33 features are

measured. Each featurized region is then a point in a 33-dimensional space, and these points are

grouped using k-means to form blobs that represent categories. Finally, EM is used to generate

probabilistic matches between blobs and words. Evaluation consists of measuring precision-recall

curves for retrieval on automatically annotated images. From a vocabulary of 371 words, models

were learned for 80 words.

Work on word learning [115] produced a system that learns both visual feature representa-

tions of objects and phoneme sequences to represent words. In the learning scenario, a storybook

with pictures is read aloud. The algorithm relies on the reader or listener to point to the appropriate

object as each word is read. Their visual representation of objects as feature vectors is not sensitive

to image segmentation errors, and objects are defined using agglomerative clustering.

Campbell and Krumm [17] investigate object recognition in an intelligent room. They first

capture a few images of each desired object. The object is manually outlined, and the algorithm

synthesizes more views based on the assumption that the image of the object is an orthographic

projection. Scale is not considered to be a problem, since the chosen objects are observed on a

desk. Each image is passed through a Canny edge detector, and features are generated by extracting

7 × 7 sub windows around every detected edge. These features are quantized and run through

a dendogram to find prototype features for the object. From the training images, each prototype

feature is associated to many possible locations for the object’s centroid. A Hough kernel generates

potential locations for the object in a test image by first classifying the edge features in the test

image and then accumulating the votes from each prototype. The experiments demonstrate that

this recognition process must be integrated with color pruning for reliability. This method achieves

high recognition rates at 0.7 Hz for partially occluded objects. Although tracking is not used in this

19

work, the authors suggest the use of a tracker could reduce the number of false positives.

2.2.3 Object Based Attention and Inference

Sun and Fisher [104] describe a visual attention system that incorporates both object and feature

driven competition. Two major mechanisms are present: visual salience of objects and hierarchical

selectivity. The system is evaluated on both natural and synthetic scenes. They address three major

concerns: (1) top-down and bottom-up processing, (2) the dependence of attention on stimulus,

and (3) the dependence of attention on objects and spatial proximity. This system does not define

objects, but rather it demonstrates how attention can move between objects. The authors also

assume that hierarchies are provided by an earlier process. They demonstrate the shift of attention

in visual scenes, but there is no clear evaluation of the results.

Chella and colleagues [21] describe a logical representation for representing the dynamics

of objects in scenes. The main thrust of this work is to create a “conceptual space” which acts

as an intermediary between low level subsymbolic data and high level symbolic representations.

Actions and processes can be represented in this space. However, they do not describe how these

conceptual spaces can be created automatically or used for learning. Since they use superquadrics

to represent objects at a low level, they demonstrate intelligent reasoning and action is possible

with only an approximate shape representation.

2.2.4 Learning Actions

Finney et al. [38] simulated the task of a robot learning to manipulate its environment using a

deictic representation. This work presents fairly negative results, but it highlights two facts. One

is that reinforcement learning, like most existing artificial learning systems, has difficulties with

representations that use objects. The second is that using a deictic representation (coupling the

object with its egocentric position into a world state) does not immediately solve the problem,

since attention becomes a major stumbling block.

A unified approach to handling uncertainty in actions is to use a reinforcement learning

20

framework. In model-based reinforcement learning, Atkeson and Santamaria [3] constructed both

a forward and an inverse model of the results of actions on the state space. This information

is used to predict, plan, and update actions. This approach allowed a control task to be learned

in approximately ten trials instead of thousands of trials. The input representation consists of a

couple of relevant continuous state variables (coded using CMAC), and joint actions. All the of

the feedback for the system comes through the reward function, which is provided to the learning

agent.

2.2.5 Robotics

Several algorithms in robotics research find and use objects in the environment. Objects are re-

quired for control, communication and interaction. In robotics, perception often uses task specific

heuristics that simplify object individuation.

Horswill [51] developed a robot that perceives colored blobs in the environment and can

interact with them. Although the visual system is limited to dealing with objects of a single color,

these objects can be used in many ways. The robot can crash into a desired block (“Crash into the

red block”). An object can be specified using its relative position (“Turn towards the blue block on

the red block”). Limited natural language queries about a scene can be answered. This robot can

individuate objects, act on them, and ascribe properties to them. The robot can also specify objects

using language, and use relational information between objects.

Object tracking has been explored by many researchers, particularly with known object

models. Work on the NavLab project [111] demonstrates the ability to track and model objects

with both structural models (cars) and behavioral models (pedestrians).

Biswas and colleagues [9] find quasi-static objects in occupancy grids. They assume the

environment is stationary during observation, and objects in the environment can move between

visits. The robot relocalizes in the environment at the start of each visit. By comparing the grids

between visits, the robot can find non-touching objects. A low pass filter is applied to remove noise

on the boundary of the object. The number of models present can be estimated using a Bayesian

21

technique. Object’s shapes are found using expectation maximization and are represented using

occupancy grids. The algorithm as demonstrated learned four objects. Although learning more

objects causes scaling problems in their formulation, the authors claim techniques are available for

overcoming this issue.

Angelov and colleagues [1] have shown how 3D range scans of people can be automatically

decomposed into articulated components. Starting with segmented raw data, the algorithm uses the

local distances between points to approximate the surface of the object. Using multiple examples

of the same object with different articulations, the algorithm is able to find joints in the object and

optimize the required number of joints using the EM algorithm.

Steels and colleagues [101] investigated how robots can acquire a lexicon to describe ob-

jects in their world. The robots can point to objects, associate sounds with objects, create object

properties which may also acquire a name, and engage in word games with other agents to in-

duce a common lexicon. This work explores how discrete, shared, and stable concepts can arise

as multiple agents experience continuous, noisy worlds. To attain real-time interactions on a com-

putationally limited platform, their method does not separate the object from the background. The

vision input is run through a histogram to generate a statistic summarizing the sense impression

of perceiving the object. For recognition, the histograms are classified using the nearest neighbors

algorithm.

Becker and colleagues [6] have a robot that can perceive, recognize and grasp common

objects. A model of each object is learned from multiple views of the object rotating on a turntable.

The most discriminating edge features are stored in chains that are used later for recognition. Each

known object is assumed to possess strong edge features, and these features allow the object to

be perceived on backgrounds without strong edge features. The recognition process also finds

the object’s pose in the environment. The robot uses the pose information with predefined grasp

positions to determine how to grasp the object.

There is also work on learning the motion patterns of objects. Arbuckle and colleagues [2]

describe how temporal occupancy grids can separate the environment into regions with similar tem-

22

poral properties. This approach does not yield objects, but it can be used as a precursor to finding

dynamic objects in occupancy grids. Jenkins and Matarić [54] present an algorithm that automat-

ically characterizes the motion pattern of an articulated figure using a nonlinear dimensionality

reduction technique. The input consists of joint angles that are captured using special markers on

a human. This work demonstrates how motions primitives can be mined from articulated objects

whose joint angles can be reliably tracked.

2.3 Summary

Despite extensive study, there is not an adequate understanding of how agents can learn to perceive

objects or learn to interact with objects. There are several studies of perception in natural agents

that indicate motion is incorporated at a low level. Other studies describe how object perception is

used by high-level cognitive processes. Implementations of object perception in artificial systems

yield several computational models for aspects of the problem. Existing research provides many

useful tools and techniques for solving subproblems in creating an object ontology. However, since

these studies use different object representations, they do not provide an integrated picture of how

an agent can learn about objects.

23

Chapter 3

An Object Ontology

A robot’s knowledge of objects is limited by its experience and by its background knowledge. This

chapter introduces the components of an ontology for objects. The subsequent chapters describe

how the elements in this ontology are created and learned from existing ontologies of self and

space.

3.1 Platform

The experimental platform for this work is a Magellan Pro with a SICK laser rangefinder, shown

in Figure 3.1(a). The robot has a non-holonomic base that is commanded with drive and turn

velocities through a Player [41] interface. The laser rangefinder takes measurements of the distance

to obstacles on a plane approximately 40 cm above the ground. The laser rangefinder returns one

distance reading per degree, over a 180◦ field. Each observation is a vector of distance readings

over the sensor indices Θ as shown in Figure 3.1(b),

zt : Θ → <.

The robot also has a model of its local space that is maintained by a simultaneous local-

ization and mapping (SLAM) algorithm [106]. Figure 3.1(c) shows a local map, m, in which the

24

0 50 100 150 200
0

1

2

3

4

5

Sensor Index

R
a
n
g
e
 (

m
)

(a) (b)

(c) (d)

Figure 3.1: (a) A scene with the learning robot observing a physical object. (b) The sensor measures
distances to obstacles, with readings taken at every degree. (c) The robot creates an occupancy
grid using a geometric projection of the observations from the range sensor. The occupancy grid
provides a map of the static obstacles around the robot. The robot stays localized in the map by
continuously updating its estimated position and heading. (d) At the end of the object learning
process, the robot has a structured description of its local environment consisting of a static map,
the learning robot, and a recognized object.

25

robot is able to stay localized. The robot has actions that allow it to move to accessible goal poses

within the map.

The robot’s task is to create an object ontology that enables object perception, reasoning,

and interaction. Figure 3.1(d) shows the robot’s description of the environment after the object

ontology has been learned. The robot can then represent an object in the environment, recognize

the object, and estimate an object’s pose from a single observation. The robot can also interact with

the object using learned actions.

3.2 Conceptual Assumptions

The learning process starts from the assumption that the robot has already acquired ontologies

of self and space. Although the experimental platform uses manually provided interfaces to the

robot’s ontology of self and space, it is reasonable to assume that the robot can autonomously

develop similar interfaces.

Research by Pierce and Kuipers [85] describes how the robot can autonomously develop

an ontology of self. That work showed how an unordered collection of sensors can be spatially

organized, providing a meaningful sensory index to each distance reading. That work also showed

how a drive and turn motor interface can be learned for robots with a different motor interface (such

as velocities for the left wheel and right wheel).

The ontology of local space has been extensively studied for robot mapping but there is not

a complete theory for how the robot autonomously develop this ontology. There are two critical

components, a local map and actions to move the robot to a goal. For large scale space, multiple

studies [85, 87] have shown how the robot can learn control laws for navigation between places.

The construction of a local map in SLAM algorithms relies on the knowledge of the transforma-

tion between the range data and Cartesian space. A similar (though not identical) transformation

between sensor data and Cartesian space is provided by the Action Respecting Embedding al-

gorithm [12]. Given this transformation, a local map can be maintained using scan matching to

estimate the robot’s pose. Actions are also required to move a robot to a given pose. The ontol-

26

ogy of self provides drive and turn primitives, for which the robot can form local motion models.

Local motions can chained to go to a desired pose in the absence of obstacles. When obstacles

are present, motion planning algorithms can use local motion models to find a collision free path

to a goal using A∗ on a discretized state space or the Rapidly-exploring Random Tree (RRT) [63]

algorithm on a continuous state space. In short, although a complete local space ontology has not

been learned autonomously on a mobile robot, it is plausible that a local space ontology can be

learned.

3.3 Prerequisites

At a low level of description, the robot’s sensors produce a stream of observations as input

. . . , zt−1, zt, zt+1 . . . (3.1)

and the robot generates a sequence of motor commands as output

. . . , ut−1, ut, ut+1 . . . (3.2)

which move the robot through space. Note that the sensor data and motor commands do not corre-

spond to exactly the same time t. There are typically some latencies in the system in the acquisition

of sensory data zt, in the computation of an appropriate motor command ut, and in the time taken

for the motors to achieve a steady state output.

The structure of these inputs and outputs on a robot are at the “pixel level”. The input

might be an array of range sensor readings or an array of pixels in an image. The output might be

set-points for voltages or velocities. Programming the robot at this level of description makes it

difficult to progress beyond simple reactive behaviors.

Several abstractions are used to provide more semantically meaningful interfaces to the

external world. These are perceptual filters (which are functions of the observation stream), classes

27

(each class is a set of values from a perceptual filter), and actions (which abstract the motor output).

The perceptual filters, classes and actions form components of an ontology for representing the

robot’s knowledge of self and space.

In the robot’s existing ontologies of self and space, the robot senses the rangefinder data

and wheel odometry. The simultaneous localization and mapping algorithm provides perceptual

filters that simultaneously generate the local map and estimate the robot’s position and heading in

the map. The robot can also abstract the local map into a view [61], and each view forms a class.

The robot has actions to move to a desired pose in the local map.

3.4 Formalism

The object ontology is a tuple,

O ≡ 〈 Trackers, F ilters, Classes,Actions 〉 (3.3)

consisting of trackers (Trackers), perceptual filters (Filters), perceptual classes (Classes), and

actions (Actions).

An object, considered as part of the agent’s knowledge representation, is a hypothesized

entity that accounts for a spatio-temporally coherent cluster of sensory experience. Note that the

word “object”, when used in this sense, does not refer to a thing in the external world, but to

something within the agent’s knowledge representation that helps it make sense of its experiences.

A tracker τ ∈ Trackers names two corresponding things. One is the active process that

forms clusters from sensory experience gathered over multiple time steps. The second is the symbol

in the agent’s knowledge representation that represents the object (i.e., the hypothesized entity that

accounts for the tracked cluster).

A perceptual filter f ∈ Filters is used to estimate some variable of interest based on

the robot’s observation stream. A filter f is parameterized by the tracker τ to measure an object

property f(τ) such as the object’s location in the map. The percept ft(τ) represents a property of τ

28

at time t. The percept is formed from the sensory experience of the tracker τ . Examples of simple

percepts include the distance, location, and color of a particular object at a particular time. A more

complex percept is the shape of an object, which can be assembled from multiple observations over

time.

For a particular perceptual filter f , a class σf,q′ ∈ Classes is the set of percepts similar to

a prototype percept q′ ≡ ft′(τ ′),

σf,q′ = {q | d(q, q′) < δ}, (3.4)

where d is an appropriate distance function and δ is a threshold. This is an unsupervised learning

approach, but the choice of the distance function d will strongly influence the utility of the learned

classes. In this thesis, the distance functions are manually specified along with the perceptual

filters. For a robot equipped with vision, the robot could create prototype color classes and declare

(color(τ)= ’red’). Using range sensors, the robot can create a structural model of an object’s

shape, allowing the robot to create a class based on prototype shapes and declare (shape(τ) =

’recycle-bin’). Figure 3.2 shows ten shape models, which are percepts obtained from the robot’s

sensory experience with the ten depicted objects. These individual percepts belong to ten classes,

each corresponding to percepts obtained from the same real-world object on different occasions.

An action α ∈ Actions is specified by a description D of its effects on the object’s per-

cepts, the perceptual context C in which the action is reliable, and an associated control law H .

α = 〈D,C,H〉 (3.5)

Each action is described by a qualitative change that it induces in one percept, for example causing

the distance to an object to decrease. The context is a set of constraints on the percepts required

for the control law to reliably have the desired effect, for example requiring that the object lies in

front of the robot. A control law is a function from percepts to a motor output. The robot can use

actions to achieve a goal by executing actions that reduce the difference between its current state

29

Figure 3.2: A set of physical objects with their learned shapes.

30

and the goal state. Actions are described in greater detail in Chapter 6.

The learned object ontology changes the robot’s description of the world to contain objects

as shown in Figure 3.1(d). The robot knows its self, with a shape and pose in the map. The

robot represents the static world as obstacles and clear space. The robot represents objects that

it can track. The robot can interact with the objects and it can recognize some objects that it has

previously observed.

The above ontology differs from purely symbolic ontologies as used in symbolic planning

examples. The above ontology describes the sensed environment in terms of tracked objects (τ),

continuous properties of these objects as measured by perceptual filters (such as the distance to

the object distance(τ)), perceptual classes used for recognition (such as shape(τ)=’recycle-bin’),

and actions that can be applied to an object (such as decreasing distance(τ)). In a STRIPS rep-

resentation of the blocks world [89], objects are defined by atoms (A,B) and the objects have

corresponding perceptual classes (BLOCK(A)). However, additional geometric knowledge is re-

quired to support spatial binary relations (ON(A,B)) and fully symbolic parameterized high-level

actions (MOVE(B,X,Y)). In future work, the ontology of objects in continuous spaces developed in

this thesis might be used to support the development of a completely symbolic object ontology.

The subsequent chapters describe the Object Perception and Action Learner (OPAL), which

is a set of algorithms that creates the object ontology from the robot’s experience. The trackers,

classes and actions are learned, meaning that they are induced from the data. The perceptual filters

are specified manually as functions of the tracker data stream. Although the perceptual filters have

not been learned, they are defined using the representations available to the robot.

31

Chapter 4

Bootstrap Learning for Object

Discovery

A significant amount of effort in robotics is focused on achieving competent behavior for a small

predetermined set of tasks. While this leads to reliable behaviors, the emphasis on performance

and accuracy for engineered tasks leads to robots that lack any ability to autonomously learn in

the unstructured world. This chapter examines how a robot can discover unknown objects, namely

how a robot can perceive, track, model and recognize novel dynamic objects in an unstructured

environment.

This work is inspired by the developmental learning process, where a learning agent must

autonomously construct its own internal vocabulary to describe and interact with the world. To

achieve this goal, robots can not use algorithms that provide competence only for a limited set of

objects and viewing circumstances. Instead, robots should begin with an inclusive definition of

objects so that they achieve some level of interaction with a broad range of objects. Other work

has shown how a robot can develop more sophisticated skills using statistics gathered from moving

objects [88]. This work demonstrates how a basic level of competency can be acquired.

For a robot to learn about an unknown world, the robot must identify the objects in its

environment, learn object properties, and learn how to classify objects. The robot’s sensorimotor

32

system provides a “pixel-level” ontology of time-varying sensor inputs and motor outputs. A sub-

stantial learning process [85] can provide the organization on the sensors along with the ability to

follow control laws and define distinctive states to describe the large-scale structure of the envi-

ronment. However, at the end of this learning process the robot’s ontology still does not include

objects. Starting from lower-level ontologies that provide range sensors, incremental motion, and

an occupancy grid model of the local environment, this chapter shows how an ontology of objects

can be learned without external supervision.

4.1 Principles

This thesis on developmental learning of an object ontology has several motivating principles.

1. A developing perception system should work in unstructured environments. Animals

live in unstructured environments. Perceptual systems should begin learning in unstruc-

tured environments with simple models and should generate progressively more sophisti-

cated models. When the environmental structures become unreliable due to the presence of

noise and background distractions, perception should degrade back to simpler models.

2. Objects are cognitive structures used to explain observations of the world. Attempts to

create precise physical definitions of objects are elusive and usually unproductive. People are

adept at decomposing a scene into sets of objects, but they are equally capable of changing

their attention so as to perceive new objects from parts of objects or clusters of objects.

3. A developing perception system should learn how to factor observations into represen-

tations of objects. Factoring observations of the world into objects helps an agent generalize

from past experience into the present. An agent should learn how to factor its observations

since the agent’s understanding of objects evolves over time. The agent should learn repre-

sentations of objects to improve object perception.

33

4. Dynamic sensor readings that are spatially and temporally proximal may have a com-

mon cause. Hypothesizing an object to explain motion is a reasonable mechanism for gen-

erating object models. There is physiological and psychological evidence that motion is

perceived early in evolution and development. A mature agent’s skill in static scene analysis

may be bootstrapped from the knowledge attained through the observation of mobile objects.

5. Perception can function over many computational scales. Organisms have a wide range

of sensors and computational capabilities. It is likely that perceptual capabilities of modern

robots can be improved without waiting for faster processors or better sensors. Percep-

tual algorithms should be designed to accept additional sensors and computational resources

without substantial alteration.

4.2 Learning about Objects

These principles lead to the Object Perception and Action Learner (OPAL) that can autonomously

learn an ontology of objects to explain aspects of its sensor input from an unknown dynamic world.

The proposed unsupervised learning method uses the properties of allocentric occupancy grids to

classify individual sensor readings as static or dynamic. Dynamic readings are clustered and the

clusters are tracked over time to identify objects, separating them both from the background of the

environment and from the noise of unexplainable sensor readings. Once trackable clusters of sensor

readings (i.e., objects) have been identified, the robot generates shape models where they are stable

and consistent properties of these objects. However, the representation can tolerate, represent, and

track amorphous objects as well as those that have well-defined shape. The learned ontology makes

it possible for the robot to describe a cluttered dynamic world with symbolic object descriptions

along with a static environment model, both models grounded in sensory experience, and learned

without external supervision.

The occupancy grid representation for local space does not include the concept of “object.”

It assumes that the robot’s environment is static, that it can be divided into locations that are empty

34

and those that are occupied, and that the set of occupied locations has an arbitrary shape that can be

detected by range sensors. A cell of an occupancy grid holds the probability that the corresponding

region of the environment is occupied. Simultaneous localization and mapping (SLAM) algorithms

can efficiently construct an occupancy grid map and maintain accurate localization of a mobile

robot within it using range sensor data [76, 108, 34].

This work shows how a robot can acquire a working knowledge of objects from unsu-

pervised sensorimotor experience by representing movable objects in four steps: Individuation,

Tracking, Image Description, and Classification. This learning process is demonstrated using a

mobile robot equipped with a laser range sensor, experiencing an indoor environment with signif-

icant amounts of dynamic change. For the work presented in this chapter, the robot was manually

controlled by a joystick, and maneuvered around a room with multiple objects. As such, the robot’s

sensations of the world were controlled externally, but the robot is completely autonomous in build-

ing its perceptual models of the environment.

The learning process is a kind of “bootstrap learning” [60] since the algorithm combines

multiple learning methods, where each step in the process is learning the prerequisites for subse-

quent steps. For example, the representations used by tracking are used to aid in object description.

A major motivation for this work is to understand how complex cognitive structures can au-

tonomously develop in a learning agent. Tremendous leaps in cognitive complexity occur through

evolution and during infant development, using experience acquired in unconstrained environ-

ments.

Learning in a high dimensional representation space (such as an observation stream) should

be substantially more difficult than learning in a low dimensional (symbolic) representation. The

premise of bootstrap learning is that an agent can apply a variety of high bias, but unsupervised

learning algorithms to simple tasks (recognizing movable objects) to transform a high dimensional

representation (an observation stream) into one with significantly lower dimension (a symbolic

representation).

35

(a) (b) (c)

Figure 4.1: Object Individuation. (a) The occupancy grid representation of the environment gen-
erated online by a SLAM algorithm up to the current time t. The boxed region is shown in the
following plots. (b) Sensor readings at time t classified as static (+) or dynamic (2) according to
the occupancy grid cells they fall on. The robot (�) is in the upper-left portion of the plot, so nearby
dynamic objects occlude parts of the static environment. (c) Dynamic readings are clustered and
hence individuated into objects. Each of the two clusters is assigned to a tracker (circles). [All of
these figures are clearer in the color PDF than in grayscale prints.]

4.2.1 Individuation

The occupancy grid representation embodies a static world assumption. Sense data that correspond

to dynamic change in the environment are treated as noise. Fortunately, occupancy grid algorithms

are quite robust to failures of the static world assumption. If changes in the environment are slow

relative to repeated observation (12 Hz for the laser range-finder), changes in occupancy are quickly

washed out by new observations, restoring the occupancy grid to a reasonably accurate description

of the current state of the environment.

The stability of the occupancy grid in the presence of dynamic changes allows the addition

of a new attribute to the occupancy grid. A grid cell is labeled transient if it has ever been unoccu-

pied (i.e., the probability of occupancy falls below a threshold), and permanent if it has never been

unoccupied.1

The low-resolution occupancy grid cell labeling is used to classify individual high-

resolution range sensor readings. Each individual range sensor reading is labeled as static or
1To account for small localization errors, a transient cell may also require that all of its neighbors cells are unoccupied,

which leaves permanent cells surrounded by a thin rim of unlabeled cells.

36

dynamic, depending on whether the sensor reading falls in a cell labeled as permanent or tran-

sient, respectively. Permanent grid cells and static sensor readings represent the static background

environment, and the learning algorithm restricts its attention to the dynamic range sensor readings.

Note that a non-moving object such as a trash bin is perceived with dynamic sensor readings if the

robot ever observes the space in which the readings are located as unoccupied.

Next, the learning algorithm clusters the endpoints of the dynamic range sensor readings.2

The coordinates of the endpoints xi are represented in the fixed local frame of reference of the

occupancy grid. Two endpoints are considered close if their distance is less than the threshold

value δI :

close(xi, xj) ≡ ‖xi − xj‖ < δI .

The individual clusters are the connected components of the close relation: i.e., the equivalence

classes of its transitive closure. Within a single observation frame at time t, these clusters {Si,t}

are called object snapshots. They are the initial representation for individual objects. The process

of individuation is shown in Figure 4.1. Each tracker Tk introduces a new tracker symbol τ into

the robot’s object ontology. Properties of the tracked object are interpreted as perceptual filters

associated with the tracker. Examples of the perceptual filters include the snapshots, the center of

mass of the snapshot and the radius of the snapshot.

4.2.2 Tracking

An object snapshot Si,t at time t has a spatial location and extent 〈µi, ri〉: its center of mass µi

and the distance ri from its center of mass to its farthest reading. The dissimilarity between two

snapshots Si and Sj is

dS(Si, Sj) = ‖µi − µj‖+ |ri − rj |.

This function is robust to random noise and incorporates both the observed center and radius since

the snapshots of a moving, dynamic object (such as a person) will vary in both dimensions. Where
2Recall that the endpoints of range sensor readings, like the localization of the robot, are not limited to the resolution

of the occupancy grid, but have real-valued coordinates, albeit with limited precision and accuracy.

37

Figure 4.2: Object Tracking. The observations of an object’s shape can vary greatly during track-
ing, regardless of whether the object has a rigid body. This figure shows a sequence of time steps
prior to the scene in Figure 4.1. The actual trackers use data at much finer temporal granularity
than the time-points (columns) shown. Note that the robot is moving while tracking. Top: The
tracked dynamic objects, superimposed for reference on a low-intensity display of the permanent
cells in the occupancy grid. Middle: A tracked pedestrian object, showing its irregular shape over
time. Bottom: Tracked snapshots of a non-moving object (an ATRV-Jr).

the successor to time t is t′, define the object snapshot St to have a unique clear successor S′
t′ if

dS(St, S
′
t′) < δT

∀S′′
t′ 6= S′

t′ dS(St, S
′′
t′) > dS(St, S

′
t′) + δR, and

∀S′′
t 6= St dS(S′′

t , S
′
t′) > dS(St, S

′
t′) + δR.

An object tracker is a function Tk(t) whose value is an object snapshot Si,t at time t, such

that for successive time-points t and t′, Tk(t′) is the unique clear successor of Tk(t). An object

38

tracker Tk thus defines a collection of corresponding object snapshots extending from frame to

frame in the observation stream, with at most one snapshot in each frame. The process of object

tracking is depicted in Figure 4.2.

The domain of a particular object tracker ends at the time-points where the unique clear

successor relation cannot be extended. “Object permanence”, the ability of an object tracker to

tolerate breaks in the sequence of frames, is arguably a learned ability in young children [99]. The

current implementation includes the ability to tolerate two missing frames in a sequence. Three

missing frames terminates a tracker. New trackers are generated for large unexplained snapshots.

Small snapshots without trackers are treated as noise and ignored.

Dynamic objects being tracked will converge and diverge, for example pedestrians in a

crowded hallway. Object trackers will successfully track individuals over segments of their be-

havior, losing them when they get too close together and their readings are merged into a single

snapshot. When they separate again, new trackers will be created to track the different individuals.

More sophisticated methods for “object permanence” will be required to infer the identity of object

trackers across such merges and splits. Following the bootstrap learning approach, the robot learns

properties of objects from portions of experience when tracking is unambiguous and learning is

easy.

Define these trackable clusters of dynamic sensor readings to be objects. Each tracker

represents a distinct symbolic identity which is assumed to be the cause of the readings associated

with it. At this stage, objects have only two properties: spatial location and temporal extent.

These properties are sufficient for the trackers to guide the robot’s actions to acquire additional

information about the object. For example, control laws for following, circling and avoidance

are easily specified using trackers to specify the desired goals. The next step will be to acquire

properties of the object instances that are stable across changes in space and time. This makes it

possible to associate trackers with object classes.

39

Figure 4.3: Perceptual Shape Model. This shows the incremental perceptual shape model creation
for the ATRV-Jr observed in Figure 4.2. The range sensor endpoints in each snapshot are shown
with different symbols. Selected snapshots combine to form a shape model.

4.2.3 Image Description

The object snapshot is defined to be the set of sensor readings associated with an object at a par-

ticular time. The perceptual shape model Mk(t) for an object is a subset of the object snapshots

collected over the time that the object is tracked.

Mk(t) ⊂ {Tk(t′) |t′ ≤ t}. (4.1)

The problem is how (and whether) the snapshots can be aggregated into a consistent, object-

centered frame of reference. It is important for the robot to describe both objects with stable shapes

that can be learned, and objects that are amorphous in the sense that they can be individuated and

tracked, but their shape is beyond the capacity of the agent to describe and predict. For the robot

learning agent, at its current level of sophistication, pedestrians are good examples of amorphous

objects. In future work, the learning agent may be able to model a pedestrian as two alternately-

moving legs (observed as 2D blob shapes), but for now, object snapshots of pedestrians change too

much to form stable shape models.

Consider a temporarily non-moving object such as an ATRV-Jr (a mobile robot). To be

individuated and tracked as an object, it must be located at a position that was unoccupied at

some time, so its sensor readings are considered dynamic. Since the object does not move in

the environment, tracking is quite simple. However, as the robot moves around the object, the

40

snapshots change slowly (Figure 4.2).

The agent creates a shape model by accumulating distinctive snapshots while the object

appears to be non-moving (Figure 4.3). Both tasks, detecting the lack of object motion and de-

termining distinctiveness, are accomplished by a non-symmetric dissimilarity function dD that

compares sets of points (snapshots).

dD(Snew, Sold) =
1

|Snew|
∑

s∈Snew

min(1,
1
ε

min
t∈Sold

‖s− t‖)

When successive snapshots differ by a large amount, δM , the agent assumes the object has moved,

and discards the current shape model. Otherwise, if the current snapshot is sufficiently distinct

(δN) from the points currently in the shape model, the new snapshot is added to the shape model.

Finally, snapshots in the shape model are discarded if they are incompatible with the full set of

current sensor readings.

The shape model also records the directions from which the snapshots have been observed,

and is considered complete when the full 360◦ surround has been sufficiently densely sampled.3

While the shape model is incomplete, it is considered “amorphous”. When the shape model

is complete, the agent creates a standard shape image for the object by placing the snapshots of

the shape model into a canonical frame of reference. The snapshots are first rotated so that the

primary axis of the sensor readings is aligned with the y-axis. This is accomplished by rotating the

shape model to minimize the entropy of the projection onto the x-axis. Next, the shape model is

translated to minimize the distance of the farthest points from the origin. (See Figure 4.4.)

4.2.4 Classification

Once an individual object has a standard shape image, the agent must classify it. Note that the

learning agent is responsible for building its own classes. Moreover, since the object observa-

tions come in incrementally, the agent must add new classes incrementally. The task of adding
3In the current implementation, this means at least one snapshot exists in each of six 60◦ pose buckets around the

object.

41

(a) (b) (c) (d)

Figure 4.4: Object Classification. Standard shape images and photographs for four learned object
shape classes: (a) recycling bin, (b) chair, (c) robot wheelchair, and (d) an ATRV-Jr robot.

new classes incrementally is known as online clustering, and several algorithms exist [31]. For

simplicity however, this clustering task is solved with a distance function.

Define the asymmetric dissimilarity function between two aligned shape images V and W

by comparing their component snapshots

d′(V,W) =
1
|V |

∑
v∈V

min
w∈W

dD(v, w).

This is used to define the symmetric distance function 4

dC(V,W) = max(d′(V,W), d′(W,V)). (4.2)

If the shape image of an instance is less than a threshold distance, δC , from multiple known

prototypes, then its classification is uncertain. If there is only one known prototype within δC ,

then the shape image is placed in the prototype’s class. If a shape image is more than δC from all

prototypes, then a new shape class is formed. For example, when the shape model in Figure 4.3
4The “distance” function dC is not a mathematical distance function since it does not ensure d(x, y) = 0 ⇐⇒ x =

y.

42

is converted into a standard shape image and compared to the known classes in Figure 4.4, the

shape is recognized as an instance of the ATRV-Jr class. The prototype is then displayed, as in

Figure 4.5(d).

At this stage in OPAL, the robot cannot learn a shape model by observing a continuously

moving object, but the robot can learn a shape model if the object stops for a short period. Once

an object has been classified, the tracker retains this classification and the corresponding shape

image even when perception is difficult. Furthermore, the robot can obtain individual snapshots of

a moving object, and at a later stage these snapshots are useful for the classification of a moving

object within an existing class hierarchy.

Even without a complete shape model, the robot can still generate a standard shape image

for an object. For an incomplete image, the dissimilarity function is useful because it has the

property that if V ⊂ W , then d′(V,W) = 0. This makes it suitable for comparing an incomplete

model of an instance V with complete models that are already known. Also, this can be used to

guide active perception by defining the observations that are most informative for classification.

4.3 Demonstrative Results

The above system was implemented on an iRobot Magellan Pro robot equipped with a SICK PLS

laser rangefinder. The parameters mentioned in the paper had the following values: δI = 0.5m,

δT = 1.0m, δR = 0.01m, δM = 0.5, δN = 0.1, and δC = 0.33. The system performance not very

sensitive to the selected parameter values and similar results arise when the parameters are varied

by twenty percent.

The implementation was tested by running the robot in the lab. An occupancy grid repre-

sentation of the environment (shown in Figure 4.1(a)) is generated online in the presence of object

motions. The process of individuation is displayed in the subsequent two images, first showing the

classification of laser scans as static or dynamic, and then clustering the dynamic readings to form

snapshots. The snapshots are associated with trackers in Figure 4.2, providing temporal extent to

the object representation. The ATRV-Jr robot is not moving during this time, so a shape model is

43

(a) (b) (c) (d)

Figure 4.5: Multiple representations of the scene in Figure 4.1. The robot observer is the small
round robot in the foreground. The larger ATRV-Jr is used as a non-moving object. (a) A photo-
graph of the scene. (b) A range scan representation of the scene. (c) An occupancy grid represen-
tation of the scene. (d) An iconic representation of the scene. This is a symbolic description of the
robot’s environment enabled by the learned object ontology. The location of the observing robot is
indicated by a small triangle (�). A moving object (pedestrian) of amorphous shape is shown with
its trajectory. A non-moving object (ATRV-Jr) has been classified (as an instance of Figure 4.4(d)),
and is shown by the convex hull of its shape model. The permanent cells in the occupancy grid are
shown for reference, representing the static environment.

incrementally accumulated, as shown in Figure 4.3. When the description is sufficiently complete,

the agent compares it to the objects learned earlier in the run, shown in Figure 4.4. The agent

discovers that the shape model best matches that of the ATRV-Jr robot.

The agent’s world description is graphically represented in Figure 4.5 along with a photo

of the same scene. The result is a discretization of a natural environment into several entities

which are useful for later reasoning: a coarsely represented fixed environment (walls+furniture),

a localized agent (the Magellan Pro robot), an amorphous moving object (a pedestrian), and a

classified known object (the ATRV-Jr). This demonstrates that object perception (individuation,

tracking, description, and classification) in cluttered environments is feasible even when using

limited prior knowledge and simple representations. Moreover, since the agent can autonomously

generate new classes online, its ability to succinctly and accurately describe nearby objects should

improve with experience.

44

-3

-2

-1

 0

 1

 2

 1.5 2 2.5 3 3.5 4 4.5

-3

-2

-1

 0

 1

 2

 1.5 2 2.5 3 3.5 4 4.5

(a) (b)

Figure 4.6: Two examples of tracking. In both examples, two people are walking, starting at the
bottom of the figure and moving to the top. The plus signs show laser readings taken at one second
intervals, shown in the coordinates of the local map. These readings are shown in the bounding
circles of their associated snapshots. The lines indicate the path of the trackers. The units on
the axes are in meters. (a) The people first approach each other and then move apart. Since the
people do not come too close together, the tracking system generates exactly two trackers, one for
each person. The two paths show the trajectory of the center of each tracker. (b) This example
demonstrates two methods by which tracking can fail. One is the failure to track a single object
in the presence of distractions. The second is the failure to notice when a tracked cluster separates
into multiple distinct entities. Initially at the bottom of the figure, each person has a separate
tracker. As they approach, the individuation process returns a single snapshot for both people.
Since the snapshot at the merger has no clear successor (as each of the original trackers can explain
the merged snapshot), the existing trackers are terminated and a new tracker is created. A similar
inference occurs when the two people move apart. Object individuation creates two snapshots that
must be explained. The tracking algorithm finds that one snapshot is the only clear successor for
the merged tracker and a new tracker is formed for the second snapshot.

45

4.3.1 Tracking Limitations

Part of an agent’s development are early failures in the perceptual system. One commonly dis-

cussed phenomenon in child development is the lack of object permanence, where the child fails to

maintain a representation for an object when it is not perceived in the observation stream. Another

type of failure is the failure to correctly track objects. The following example demonstrates both

kinds of failure.

Figure 4.6 shows two examples of a scenario where two people are walking. The people

start at the bottom of the figures and walk towards the top, first approaching one another and then

separating. The people are observed using a SICK LMS-200 sensor at a height of 40cm above the

ground plane. In the first example, the people remain sufficiently far apart so both individuation and

tracking keep the two people separate. In the second example, as the people move close together,

the individuation process fails to separate them. This failure in individuation causes a new tracker

to be created. As the two people separate, the tracker for the pair follows one person, and a new

tracker is created for the other person.

The second example demonstrates the lack of object permanence since the robot does not

represent the persistence of individual objects through the merge and split of trackers. One ap-

proach to represent persistence is to create relations between trackers. Relations can be created

when two trackers merge to create a new tracker, or when one tracker splits off from another

tracker. An agent can reason over these relations to infer the potential location of an individual

physical object that has been merged into a group.

The second example also demonstrates a limitation of the underlying tracking system. One

way to improve tracking is to improve object individuation through the use of temporal information.

In the current algorithm, the individuation process does not use information from prior time steps to

create snapshots at the current time step. The robot could improve the individuation of a scene into

object snapshots by incorporating information about the snapshots and the trackers from previous

time steps.

46

4.4 Related Work

Other researchers have examined how object classes can be learned. Work on learning object

classes in vision [66] demonstrates how a new class can be learned from a few examples. How-

ever, that work requires significant background knowledge of both generative models and priors on

parameters. The background knowledge must in turn be acquired from a more intensive learning

process. In contrast to their work, OPAL shows how complex background knowledge can be ob-

tained autonomously by the robot. Related work has shown how the objects found through motion

segmentation can provide background knowledge to bootstrap a static image segmentation [88].

There is a large body of literature on individuation in both psychology and computer vi-

sion. Work in developmental psychology [99] suggests that infants learn Gestalt principles of

perception. Work in perceptual psychology [40] demonstrates that the natural statistics of the envi-

ronment can provide sufficient training data for acquiring grouping mechanisms. The normalized

cut algorithm [95] has been used for segmentation in vision in several feature dimensions.

Recent work on the Navlab project [111] has demonstrated the feasibility and value of

tracking unknown objects in the environment. This work describes how a truck equipped with

multiple range sensors is able to detect and track moving objects while driving down a road. The

ability to track unknown moving objects is required for their goal of safe autonomous control at

high speeds on urban streets. This approach is also able to recognize a few object classes. A

significant difference from the work in this thesis is their inability to generate new object shape

classes.

Other research has explored the construction of shape models of non-rigid objects [47].

Using a variant of the iterative closest point algorithm, the algorithm is able to merge dense three-

dimensional range scans into a single coherent shape model even when the object undergoes small

motions. This algorithm creates a qualitatively consistent model when a person moves their arms

or head between successive scans. Because it relies on having significant amounts of data to align

the scans, it is unclear that this method can be extended to handle non-rigid motion as observed by

a two-dimensional range scanner.

47

Work by Biswas and colleagues [9] creates shape models from occupancy grids to generate

new shape classes. They assume that the world is static during observation, which permits the use

of a standard SLAM algorithm to capture the shape of the objects in a grid representation. The

assumption that the entire environment stays static is fairly restrictive, since in many environments

the objects of interest move regularly. Moreover, their algorithm uses an offline learning process.

This makes the online incremental acquisition of new object shape classes difficult.

Our approach to tracking unknown objects provides the learning agent with symbols (track-

ers) which are grounded in the sensory experience (snapshots). Issues related to symbol grounding

have also been explored in [26]. In this work they describe how anchored symbols can be used for

planning and reasoning in a dynamic world.

There is extensive work on view based classification, particularly in the vision community.

The “Chorus of Prototypes” [33] uses prototype silhouettes to efficiently index a space object

views. Using distances between views provides an efficient mechanism for determining when a

view is sufficiently distinct from previously known models.

Work on the VSAM project [24] demonstrated visual detection and tracking of objects

using multiple cameras at fixed locations. Objects are detected and tracked using frame differencing

and background subtraction. These objects were later classified using silhouette models of the

object shapes. This work does not address the needs of mobile robotics very well, since their

vision algorithms rely heavily on the cameras having fixed locations.

4.5 Summary

This chapter describes the first stage of OPAL: a method for an agent to autonomously learn prop-

erties of novel dynamic objects in a unstructured environment without complex prior knowledge.

It introduces trackers for objects, creates perceptual filters for the trackers (radius, centers of mass,

and shape models), and creates shape classes. This work demonstrates how a learning agent can

efficiently learn representations of objects as part of a bootstrap learning process. Using this au-

tonomously acquired vocabulary, a robot can classify some of the dynamic objects it encounters in

48

the world. Classification is improved in the next chapter which provides an algorithm that creates

structurally consistent object shape models.

49

Chapter 5

Learning Structural Shape Models

Mobile robots do not adequately represent the objects in their environment; this weakness hinders

a robot’s ability to utilize past experience. This chapter describes a simple and novel algorithm

to create object shape models from range sensors. The algorithm enforces angular constraints

between sensor scans of an object. These constraints are used to align the scans, creating a coherent

object shape model. Consisting of scans and poses, this shape model is useful for both object

recognition and localization. The structural reconstructions are accurate to within sensor precision.

The structural model improves the object ontology with the introduction of more accurate object

classes, and the addition of a new perceptual filter for object localization.

5.1 Introduction

The previous chapter showed that individual moving objects can be separated from the static envi-

ronment. The occupancy grid representation for local space can distinguish between cells that are

occupied either permanently or transiently. Sensor returns falling in transient cells are clustered in

space, then tracked over time. The tracked entities acquire a shape model and can be classified.

This is a form of bootstrap learning since the learning process does not rely on prior knowledge

about objects.

50

This chapter shows how coherent models of the shapes of objects can be created. These

models are used to reliably recognize objects and to localize the object in the robot’s egocentric

reference frame.

This chapter introduces an algorithm that defines angular constraints between multiple sen-

sor scans of an object. These constraints are used to align the scans, creating a maximally coherent

object shape model. The shape model, consisting of scans and poses, is useful for both object

recognition and localization.

The problem of aligning scans occurs in different guises. Most commonly in robotics,

scan-alignment is required for mapping and localization. These localization algorithms typically

use some combination of scan-matching (matching points in scans to one another [46]), feature

matching (Kalman filter approaches [65]), and grid based approaches (matching the points in a

scan to an occupancy grid [107]). In contrast to these methods, structural shape model relies on the

angular constraints of a scan that bound the space occupied by the object.

To clarify the distinction between using this approach and the point/feature/grid matching

algorithms, consider the following thought experiment. Imagine using a range sensor to observe a

leafy bush from several distinct poses in an otherwise featureless environment. Moreover, assume

that no two scans observe data from the same part of the bush. This type of data from “porous”

objects can cause significant problems for scan matching and feature based approaches. Probabilis-

tic occupancy grid mapping approaches can create a fuzzy image given an appropriate likelihood

function. However, the task should not be difficult to solve since the angle and the distance to the

bush are tightly bounded. This is the underlying intuition behind the use of angular constraints.

5.2 Motivation for Structural Models

Finding objects in the environment is useful for interacting with the world. Using structural models

of objects, it becomes simple to describe several of the interactions that a robot could learn in its

environment, such as pushing a chair, hiding in a box, or putting garbage in the trash. Before

learning these actions, the robot must learn to perceive and represent these objects.

51

Research into object representations falls broadly into three types of model: appearance-

based, structural and functional. Appearance-based models represent the sensory impression of

the object, storing sense impressions from particular viewpoints. Appearance-based models are

particularly important in vision [33, 66]. Structural models represent the geometry of the object.

A geometric shape model permits the robot to reason about space, and to find consistent configu-

rations of objects, namely those where the objects are non-intersecting. Structural models can also

support object recognition and object localization (estimating the object’s pose in a robot centered

reference frame). Finally, functional models capture the interactions of the object with a robot or

human agent, thus yielding object affordances [102]. This chapter only develops a structural model

of the object’s shape.

Although work on robot mapping has generated several algorithms and data structures for

representing the robot’s surroundings, these techniques do not adequately address the needs of ob-

ject perception. Range sensors might only receive a few readings from an object at a distance, and

this data sparsity can cause SLAM techniques to fail. An object can be moved by external forces

while being observed by the robot, so good motion models might not be available. Confronted with

these problems, particle based localization methods can not adequately search the space of poses,

and point based scan matching techniques lack sufficient data. Approaches based on point features

are limited by the nearly non-existent texture in range sensor data. Faced with these weaknesses, a

new scan-alignment technique is desirable for learning object shape models.

5.3 Using Angular Constraints for Scan-Alignment

Given sensor scans of an object as shown in Figure 5.1(a), the task of scan-alignment is to infer a

pose for each scan to create a coherent shape model. This work makes the assumption that the robot

has a range sensor that returns the distance to obstacles along different angles. Let Θ denote the

angles at which the sensor takes measurements, so the distance readings of a scan S = (rS ,SuppS)

are given by

rS : Θ → <,

52

and the support of the object on the sensor indices is given by SuppS ⊂ Θ.

A shape model is defined as a set of observed scans (indexed in Λ) with their associated

poses:

M = {(S, pS)|S ∈ Λ}.

For a given pose, define xS(pS) to be the Cartesian coordinates of the scan endpoints that fall on

the object, namely

xS(pS) ≡ {T (pS , rS(θ), θ)| θ ∈ SuppS}

where the function T (p, r, θ) is a transformation of a point from polar coordinates (r, θ) with an

origin at the pose p to Cartesian coordinates, namely

T ((x, y, θ1), r, θ2) ≡ (x+ r cos(θ1 + θ2), y + r sin(θ1 + θ2)).

From the sensor scan S, define the left and right limits of the object’s extent (shown in

Figure 5.1(b)).

LeftObjectS ≡ max{θ ∈ SuppS}

RightObjectS ≡ min{θ ∈ SuppS}

LeftBoundS ≡ successor(LeftObjectS ,Θ)

RightBoundS ≡ predecessor(RightObjectS ,Θ)

The algorithm ignores scans for which the angles LeftBoundS or RightBoundS do not

exist. A ray is defined from the pose p at each of the above angles. These rays are denoted

by LOS(p), ROS(p), LBS(p), and RBS(p). The scan endpoint at LeftObjectS(p) is denoted

LOS(p) and the endpoint along RightObjectS(p) is ROS(p).

Given an object O, the bounding rays constrain the space occupied by the object. Using a

pose p as the origin of a radial coordinate system, denote the angle from p to a point q ∈ <2 by

ψp(q). The angular projection of each point on the object is constrained between LeftBoundS

53

ObjectS

T

S

LeftBound

LeftObject

RightObject

RightBound

(a) (b)

Figure 5.1: (a) An object being observed from two different poses generates the sensor scans S
and T. Each scan has readings from the object (points) and readings from the environment (rays).
The task of scan-alignment is to infer poses for the scans when the object is unknown. (b) For each
scan, define the extreme left and right angles that bound the object. Also define the extreme left and
right angles at which the object is observed. The radial projection of the object on the observation
pose can not extend beyond the bounding angles, and must extend to the object angles.

54

S

T

e
L,S,T

S

T

e
I,S,T

(a) (b)

Figure 5.2: (a) Exterior constraints: Since all points on the object must lie within the constraints
of T, the pose of S must change by (at least) the vector eL,S,T which is formally defined in Equa-
tion 5.2. (b) Interior constraints: For a convex object, at least one point from T should lie between
the boundary and object rays of S. The right side of S is chosen here because pT is on the non-
object side of the right bounding angle. The interior error vector is denoted by eI,S,T and is defined
in Equation 5.3.

and RightBoundS , i.e.

LeftBoundS > ψp(o) > RightBoundS ,

for all points o ∈ O. Thus, the rays LBS(pS) and RBS(pS) constrain the space occupied by

the object. Hence, given two scans S, T of the object taken from different poses, as shown in

Figure 5.1(a), the bounding rays LBT (pT) and RBT (pT) constrain xS(pS), the scan endpoints of

S.

The above formulation is valid when there is no inaccuracy in the sensor readings. Real sen-

sors suffer from multiple limitations including discretization, precision limits, and noise. Hence,

the algorithm minimizes the violations of these constraints. First, define the set of vectors repre-

55

senting constraint violations of the left bound of T ,

U ≡ {vec(x, LBT (pT)) |x ∈ xS(pS), ψpT (x) > LeftBoundT } ∪ {(0, 0)} (5.1)

where vec(p, L) denotes the shortest length vector connecting the point p with the line L. Using

this, define the left exterior error vector as the largest in U (see Figure 5.2(a))

eL,S,T (pS , pT) ≡ arg max
u∈U

||u||. (5.2)

The right exterior error vector (eR,S,T) is defined correspondingly.

Even if all exterior error vectors are zero, the scans can be significantly misaligned. Fig-

ure 5.2(b) demonstrates how no point in xT lies between the rays LOS(pS) and LBS(pS). Al-

though this object shape is possible (as demonstrated in Figure 5.1(a)), it is improbable. Thus,

the algorithm minimizes the distance of the point set xT from the region between these two rays

(LOS(pS) and LBS(pS)). The exterior constraint vector handles points on the wrong side of

LBS(pS) so only LOS(pS) remains to be considered.

This motivates defining an interior error vector as the minimum length translation required

by pT so that some point in xT (pT) will fall on to the object support ray LOS(pS) (see Fig-

ure 5.2(b)). Assume that ψpS (pT) < RightBoundS . Then, using

V ≡ {vec(q,ROS) | q ∈ xT , ψpS (q) > RightObjectS }

and

W ≡ {q | q ∈ xT , ψpS (q) ≤ RightObjectS},

define the interior error as

eI,S,T ≡

 arg minv∈V ||v|| if W = ∅

(0, 0) otherwise.
(5.3)

56

(a) (b)

Figure 5.3: Scans from an object (a) before and (b) after scan-alignment. The two rays emanating
from each robot pose indicate the left and right bounds. Scans are aligned by minimizing BV in
Equation 5.4.

The above definition is used only when ψpS (pT) < RightBoundS . Otherwise, the interior error

vector is defined similarly using the left boundaries.

Given all the error vectors {eL, eR, eI}, scan-alignment becomes the task of finding poses

such that all vectors are as close to zero as possible. This is accomplished by defining an objective

function for boundary violations

BV (M) ≡
∑
S∈Λ

∑
T∈Λ

||eL,S,T (pS , pT)||2 + ||eR,S,T (pS , pT)||2 + ||eI,S,T (pS , pT)||2, (5.4)

and then using a numerical optimizer to minimize BV by perturbing the poses. The resulting

figures are visually accurate (Figure 5.3).

57

5.4 Recognition and Localization

Object recognition and localization are pragmatically important for a robot. Object recognition

allows a robot to define a context for its current situation, and thus generalize from past experience.

Object localization allows the robot to reason about the configuration of the environment, which is

necessary for planning and acting with objects in continuous worlds.

Fortunately, the tasks of object recognition and localization can be solved using the same

error minimization technique used for scan-alignment. The tasks can be split up into three cat-

egories: (1) object recognition without model-alignment using properties of an object instance,

(2) object recognition by finding the best shape model-alignment of the instance to the canonical

model, and (3) localizing the pose of the class shape model from a single scan of the object instance

(object localization).

Recognition by properties without model-alignment can significantly reduce the compu-

tational load of object recognition. Aligning shape models can be computationally expensive,

particularly if model-alignment must be performed for each object shape class. Recognition is sig-

nificantly simplified by computing coordinate-invariant properties of an object instance and using

the properties to classify the object.

First, given a shape model M , define the hull as the convex hull of the object endpoints.

hull(M) = ConvexHull(∪S∈ΛxS(pS)).

The hull is efficiently computed in O(n log n) time [44] where n is the number of points. Since the

hull is a polygon, computing the area, perimeter and center of mass are straightforward.

Properties of the hull, such as area and perimeter, can be used for object recognition without

shape model-alignment. These properties can be used for learning names for objects (supervised

learning) or for learning to form object shape classes by clustering (unsupervised learning). The

utility of a property is inversely proportional to its variance. Ideally, the measurement varies less

between object instances from the same class than between classes.

58

For some tasks, merely recognizing the object is insufficient. The robot might need to find

the transformation between the class model and instance model to apply knowledge from the shape

class, for example to identify the “front” of the object. Aligning the shape models also permits

more discriminating recognition than is available through properties alone.

Model-alignment is performed by minimizing the BV error between the class model, M

and instance model N , namely

fC(M,N) ≡ min
p
BV (M ∪ t(N, p)) (5.5)

where t(N, p) translates the pose of each scan in N by p. The error is minimized by hill-climbing

from the robot’s initial poses. To speed convergence of the numerical optimizer, the initial value

for p is selected so the center of mass of the hull of N coincides with that of M , so only the angle

needs optimization.

The final task considered here is object localization. When an object is moving, the robot

may know the approximate object pose based on prior observations, but may need to know the ob-

ject’s pose precisely using a single scan. This is the object localization task, and it introduces

new perceptual filters into the object ontology for the location (location(τ)) and the heading

(heading(τ)) of the object τ . Localization is solved by minimizing fC , where N contains the

single scan and the algorithm assumes an initial estimate of the pose is available. Since N is in-

complete, the optimization occurs over both the position and heading of the pose p. The accuracy

of localization in heading is naturally limited for objects with rotational symmetries.

5.5 Evaluation

The robot autonomously collected observations of selected objects that can be easily confused for

one another. The robot was a Magellan Pro equipped with a SICK LMS 200. The sensor returned

the distance to obstacles with a one centimeter precision, over a 180 degree viewing angle, with one

reading per degree. A Nelder-Mead simplex algorithm from the scipy library for Python was used

59

for numerical optimization. The algorithm is initialized with the original poses provided by the

robot’s mapping and localization algorithm, and performs hill-climbing to find a local minimum

for the objective function.

The robot collected data by circling around an object selected by the experimenter. Five

objects were selected, and each object was observed five times. The following subsections describe

how this data was used to evaluate model construction, recognition and localization.

5.5.1 Model Construction

The quality of the scan-alignment is good both visually and quantitatively. The scans for one

object are shown in Figure 5.3, showing both the raw scan-alignment provided by the robot’s map-

localization, and the aligned scans. The aligned scan endpoints for all observed object instances

are shown in Figure 5.4. A comparison of the BV error before and after scan-alignment is shown

in graphs in Figure 5.5. Notably, the maximum external error is less than a centimeter, which is the

sensor’s precision.

An explanation is required for the effectiveness of a generic optimizer for scan-alignment.

One caveat is that the starting poses for scan-alignment come from robot map-localization in a

known environment. This yields accurate orientations, but can suffer from visible errors in transla-

tion. For fixed orientations, the objective function is a piecewise smooth quadratic function, a good

property for most optimization techniques. Allowing the angle to vary implies BV is no longer

quadratic in theta, but the objective function is still differentiable and the starting values for theta

are near the true value.

5.5.2 Recognition

Property reliability for recognition without model-alignment was measured by computing the area

and perimeter of all objects, then computing variation within and between classes. The results for

property reliability are shown in Figure 5.6 and Table 5.1. Figure 5.6 graphically demonstrates that

most of the objects are separable by either perimeter or area, although the garbage-can and recycle-

60

red-chair recycle-bin garbage-can dell-box big-chair

0 1 2 3 4 5
0

1

2

3

4

5

Figure 5.4: Pictures of the objects with labels are shown with aligned shape models generated from
separate observations. The scale for the axes is in meters. Each object is observed by the range
sensor from approximately 40 cm above the ground plane. Scans of an object are autonomously
gathered by the robot. For each object observation, the endpoints from the aligned scans are shown
below the object’s image.

61

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

B
V

 e
rr

o
r

(m
2
)

Object ID

BV error

Raw Data
Aligned

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25

M
a
x
 e

x
te

ri
o
r

e
rr

o
r

(m
)

Object ID

Max exterior error

Raw Data
Aligned

Figure 5.5: Modeling error measured by constraint violation. The graphs compare the error in
the raw data with the errors after scan-alignment. The errors after scan-alignment are significantly
smaller than the original data. The maximum length of an exterior error vector is less than a
centimeter, indicating that the scans are aligned to within the sensor precision.

Area σ Perimeter σ

recycle-bin 932 39 113.7 2.3
big-chair 3288 42 210.4 1.3
garbage-can 889 27 106.6 1.5
red-chair 2237 44 169.9 1.6
dell-box 4257 80 252.3 1.7

Table 5.1: Property reliability for object recognition. The area (in cm2) and perimeter (cm) along
with their standard deviations. Note that the standard deviation in perimeter is small, making it a
particularly useful property for recognition.

fC error (min–max) recycle-bin big-chair garbage-can red-chair dell-box
recycle-bin 0.001–0.004
big-chair 1.412–2.005 0.001–0.005
garbage-can 0.013–0.039 1.662–2.643 0.001–0.005
red-chair 0.479–0.690 0.193–0.376 0.609–0.986 0.001–0.003
dell-box 2.775–4.532 0.239–0.439 3.073–5.632 0.958–1.789 0.002–0.006

Table 5.2: Residual error after shape model-alignment. Models are aligned by minimizing fC

in Equation 5.5. The performance of model-alignment is measured by the range of fC error
(minimum–maximum). The fC error can successfully discriminate between all tested objects.

62

Figure 5.6: Perimeter and area are properties that can discriminate between many object instances
without shape model-alignment. All classes are well separated except for recycle-bin and garbage-
can. These classes can be separated after model-alignment (Table 5.2) but that is more computa-
tionally expensive.

63

bin are confusable. The table demonstrates that the variance in perimeter is largely independent of

object size, but the variance in area is significantly larger.

Model-alignment for recognition was measured by comparing all observations of an in-

stance of one object with all instances from a second object (dropping self comparisons). The

minimum and maximum errors were measured and are shown in Table 5.2. From the table, perfect

classification can be achieved using the fC-error with a single threshold of 0.01. Notably, fC-error

does a better job than properties for discriminating between the garbage-can and the recycling bin.

The use of fC-error for recognition is limited, because fC-error cannot distinguish between ob-

jects that have the same hull. If required, better distance metrics may be efficiently employed by

minimizing fC-error to initially align shape models.

5.5.3 Localization

Localization is evaluated in three steps. First, two instances of the same object are aligned using

fC error. Second, a single scan from the second model is perturbed by a fixed amount. Finally,

the perturbed scan is localized against the first model and subtracting the resulting pose difference

from the unperturbed scan provides a measure of localization error. The measured error is the

difference between object pose estimates in the robot’s reference frame. The errors are tabulated

in Table 5.3. Relocalization error in position is typically less than 1 cm, and never greater than

3 cm. After localization, the maximum external error is less than 1 cm, indicating the final poses

are consistent with the shape-model.

5.6 Classification

Two questions arise when predicting externally provided labels for a physical object using its ob-

served shape. One question is the extent to which the robot can use an observed shape model to

predict the externally provided labels. A second question is the extent to which the robot can use

internally defined symbolic shape classes to predict externally provided labels.

64

Error Localization fC

position θ BV max(eL, eR)
(m) (rad) (m2) (m)

recycle-bin 0.012 0.003 0.000 0.000
0.003 0.091 0.000 0.008
0.005 0.112 0.000 0.002
0.009 0.036 0.000 0.000

big-chair 0.006 0.043 0.001 0.006
0.005 0.034 0.001 0.006
0.003 0.006 0.001 0.007
0.023 0.137 0.001 0.008

garbage-can 0.005 0.006 0.000 0.005
0.008 0.110 0.000 0.001
0.006 0.159 0.000 0.000
0.009 0.121 0.000 0.000

red-chair 0.009 0.010 0.000 0.000
0.006 0.017 0.000 0.005
0.021 0.017 0.000 0.000
0.015 0.009 0.001 0.006

dell-box 0.011 0.290 0.001 0.006
0.010 0.034 0.001 0.006
0.006 0.087 0.001 0.006
0.006 0.125 0.001 0.006

Table 5.3: Localization error for each object after a perturbation of (0.1 m, 0.1 m , 0.1 rad). One
instance of the object is taken as the canonical model. From the each of the other four model-
aligned instances of the object, a single scan is perturbed by (0.1 m, 0.1 m , 0.1 rad) and then the
scan is localized to the model. The deviation between the pose after localization from the original
pose is used to define a positional and angular error. Note that the errors in position (xy) and the
exterior vectors are small (typically less than a centimeter).

65

big-chair black-garbage dell-box dolly garbage-can

recycle-bin red-chair vulcan wood-chair yoga-ball

Figure 5.7: A set of physical objects with their learned shapes.

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

A
c
c
u
ra

c
y

Training Examples

fC-aligned
Optimal

dC-aligned
fC-original

dC-original

Figure 5.8: Classification accuracy using the nearest neighbor based on shape.

The data for this task comes from the ten physical objects in Figure 5.7 which are each

observed on five separate occasions. Each observation contains scans of the object from multiple

angles. The robot gathered the data by autonomously circling each object using an externally

provided control routine. Each physical object is given a distinct label, and each observation of

a physical object is tagged with the object’s label. The robot’s task is to predict the externally

provided label using the observed shape model. The collected data is used to run classification

experiments using five-fold stratified cross validation.

Multiple shape distances are tested on this classification task. The fC function is defined

in Equation 5.5 using the angular constraints between shape models M and N as

fC(M,N) ≡ min
p
BV (M ∪ t(N, p)).

The dC function defined in section 4.2.4 also measures the distance between shapes but uses the

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

A
c
c
u
ra

c
y

Training Examples

fC-aligned
Optimal

dC-aligned
fC-original

dC-original

Figure 5.9: Classification accuracy using the intrinsically defined symbolic shape classes.

points in the standard shape images.1 The distances are applied to shape models formed with both

the original scans and the aligned scans (aligned with BV error minimization).

Recall from Section 3.4, that for a particular shape distance d, a shape model M is used as
1Recall from chapter 4 that dD is defined as a distance between the points of two snapshots S and S′ (where each

snapshot is a set of points in the plane).

dD(S′, S) =
1

|S′|
X
p∈S′

min(1,
1

ε
min
q∈S

||p− q||)

Then dD is used to define the distance d′ between shapes V and W which are represented as sets of snapshots.

d′(V, W) =
1

|V |
X
v∈V

min
w∈W

dD(v, w).

Finally, dC is defined as
dC(V, W) = max(d′(V, W), d′(W, V)).

68

a prototype for the symbolic shape class σf,M (with a threshold distance δ).

σf,M = {N | d(N,M) < δ}

When the robot observes an object with the shape N , the robot checks if the shape falls into an

existing class, and if not the robot creates a new class.

The two tasks are to perform classification with nearest neighbors using (1) the shape

model, and (2) the symbolic shape class of the object. For classification of an object based on its

symbolic shape class, the algorithm returns the label most frequently observed with the instances

associated with the symbolic shape class. As there are ten possible object labels, random guessing

would achieve ten percent accuracy, while an optimal learner would achieve 100% accuracy after

observing all ten objects.

The results from the first task of shape model classification are shown in Figure 5.8. Clas-

sification accuracy after shape alignment is good both with dC and fC . Classification accuracy is

significantly worse before alignment for both distance functions (using a two-tailed paired t-test at

p = .01). Using the aligned data, the fC function performs better than the dC function, but the

differences are not significant on this task.

The second task is for the robot to use the internally defined shape classes to predict the

externally provided labels. This task is a better method for evaluating a robot’s classification ac-

curacy in open environments as the robot encounters novel objects for which it has not formed

models. The threshold δ used for defining classes was set manually using the sensor resolution of

0.01m for fC function with aligned shape data, the resolution of the occupancy grid of 0.1m for

the unaligned fC function, and 0.33 for the dC function (as set in Chapter 4). The results from the

using symbolic shapes are shown in Figure 5.9. The results from using symbolic shape classes are

worse than using shape models because generalization does not extend beyond the threshold δ for

the formation of a new class. Classification accuracy is significantly better for aligned models than

the unaligned models. Moreover, on the aligned data the fC function performs significantly better

than the dC function (using a two-tailed paired t-test at p = .01).

69

From the two experiments, there are multiple conclusions. One is that classification is

significantly better using shape models aligned with the BV function than with unaligned models.

The fC function is better than dC though neither is really bad. Classification is better using the

raw shape models than using the shape classes. However, using the symbolic shape class reduces

the memory requirements for the robot since it does not have to remember every observation of

every physical object and the symbolic shape classes still perform well (90% accuracy with the fC

function). Future work can look at forming classes with semi-supervised methods that make use of

external labels or other object information.

5.7 Hierarchies of Shape

The distance functions fC and dC are used to induce a hierarchy between the shape models as

shown in Figure 5.10. Different observations of each physical object are given distinct identifiers

in this figure. The scans in individual shape models have been previously aligned using BV error

minimization. The individual shape models can be considered as the nodes in a graph, and each

distance function defines the length of an edge between all pairs of nodes. A shape hierarchy is

created by finding the minimum spanning tree in the distance graph. The tree is displayed as a

dendrogram where the horizontal axis indicates the link length at which a set of nodes is connected

to its neighbors.

The groupings for fC demonstrate that all observations of a physical object are typically

clustered together with a distance near zero before joining larger clusters to include observations

from other objects. This fails only for distinguishing between the recycle bin and the black garbage

bin, which have nearly indistinguishable shapes.

Although the number of examples is limited, this figure provides some evidence that fC

distance between object shapes could be used to predict a human notion of an object’s function.

The recycle bin and black garbage bin are the closest two objects, and the garbage can is linked to

these before any others. All three of the physical objects share the human notion of being waste

receptacles. The three chairs are also linked together into a cluster. This “chair” cluster is joined

70

vulcan1059

wood-chair3014

dell-box5816

black-garbage2800
black-garbage2353

dolly1301

big-chair0313

red-chair0758

black-garbage4252

recycle-bin5045

red-chair1859

wood-chair0736

wood-chair4304

vulcan1537

yoga-ball5016

big-chair5053

big-chair1257

dell-box0245

yoga-ball5721

black-garbage3019

dell-box5339

garbage-can3947

wood-chair2228

recycle-bin5635

red-chair2117

red-chair1652

dolly1108

yoga-ball0022

vulcan0853

recycle-bin5455

black-garbage4105

vulcan0244

garbage-can3719

vulcan1305

dolly1611

yoga-ball4518

wood-chair2516

dolly0945

big-chair0059

garbage-can4154

big-chair0517

garbage-can4403

yoga-ball0444

dell-box0526

recycle-bin5850

red-chair2628

dell-box0040

recycle-bin4855

dolly1830

garbage-can4653

0.0 0.05 0.1 0.15 0.2

vulcan1059

wood-chair3014

dell-box5816

black-garbage2800
black-garbage2353

dolly1301

big-chair0313

red-chair0758

black-garbage4252

recycle-bin5045

red-chair1859

wood-chair0736

wood-chair4304

vulcan1537

yoga-ball5016

big-chair5053

big-chair1257

dell-box0245

yoga-ball5721

black-garbage3019

dell-box5339

garbage-can3947

wood-chair2228

recycle-bin5635

red-chair2117
red-chair1652

dolly1108

yoga-ball0022

vulcan0853

recycle-bin5455

black-garbage4105

yoga-ball0444

garbage-can3719

vulcan1305

dolly1611

yoga-ball4518

wood-chair2516

dolly0945

big-chair0059

garbage-can4154

garbage-can4403

vulcan0244

big-chair0517

dell-box0526

recycle-bin5850

red-chair2628

dell-box0040

recycle-bin4855

dolly1830

garbage-can4653

0.0 0.2 0.4 0.6 0.8

(a) (b)

Figure 5.10: Shape hierarchies are created from multiple observations of the objects in Figure 5.7.
The identifiers for the objects are included here for clarification and they are not available for the
clustering algorithm. The graphs depict the minimum spanning trees formed using the distances
between the observed shapes. The trees are induced by (a) fC (the distance function using angular
constraints) and by (b) dC (the view based distance function). Both distances are computed after
scan alignment usingBV . The horizontal axis indicates the distance at which a branch is connected
to its neighbors. In the tree formed by fC , all observations of the same physical object are grouped
near zero. However, the dC function does not form clusters of a single physical object at a single
threshold.

71

to another cluster with a variant of a chair (Vulcan the wheelchair) but excludes other large objects

(including the yoga ball and the box).

In contrast to the fC function, the dC function does not form clusters with a single threshold

from multiple observations of the same physical object. Without such a threshold, a robot without

external supervision can not reliably detect when it is observing a previously modeled physical

object. Hence, although the dC function can be used successfully for the classification of object

shapes, it does not form symbolic shape clusters as well as the fC function.

In summary, the dC function is less useful for forming a shape hierarchy than fC , and it

is less capable of autonomously defining shape classes that correspond to a single physical object.

The fC function provides a shape hierarchy that is able to separate most of the physical objects

into distinct classes. Finally, future work may be able to predict human notions of similar object

function based on the distance between object shapes as measured with the fC function.

5.8 Related Work

This work demonstrates the use of angular constraints to solve the tasks of creating and using object

shape models. This approach is accurate to the precision of the sensor. Related work on shape

modeling has focused on somewhat different issues. Biswas et al [9] demonstrate how occupancy

grid models of an object’s shape can be constructed. Angelov et al [1] have demonstrated how

articulated models can be constructed from dense 3D range data. Neither of these papers evaluate

the empirical error of the resulting models for recognition and localization. Shape model algorithms

in the graphics community can create dense three dimensional models of sculptures when given

more computation and data [27], but do not address object recognition or localization.

The idea of using geometric constraints in 3D mapping has been explored for build-

ings [109]. Similar ideas for inferring object structure from silhouettes or shadows have been

pursued in vision, typically without the use of range information, but with notable exceptions. Es-

teban and Schmitt combine stereo with silhouettes to model objects in three dimensions [35], and

a similar approach is taken in [22]. Both approaches provide a solution for three dimensions but

72

neither empirically quantifies the errors in model construction, recognition, and localization.

5.9 Summary

The primary idea in this chapter is that the underlying tasks in object shape model construction,

recognition, and localization can be solved by minimizing violations of angular constraints. Scans

are aligned by constraining the object data in one scan using bounds from other scans. This ap-

proach is effective as quantified by the measured residual errors. Moreover, these residual errors

are of approximately the same magnitude as the sensor precision.

This chapter improves the original object ontology in multiple ways. It introduces the

use of angular constraints, which improves on the original perceptual filter for shape, and thus

improves the shape classes. The same constraints are used to create new perceptual filters for

object localization in real-time, allowing the robot to estimate the pose of known rigid objects.

Future work can extend this approach to 3D data from stereo vision or other range data.

The next chapter will use object localization to facilitate mining a robot’s experience for interesting

actions.

73

Chapter 6

Learning Actions for Objects

Previous chapters have shown how objects can be individuated from low-level sensation, and cer-

tain properties can be learned for individual objects. This chapter shows how high-level actions can

be learned autonomously by searching for conditions where object properties change in predictable

ways. A physical robot is used to demonstrate how high-level actions are learned from the robot’s

own experiences, and how the robot achieves goals by planning with the learned actions.

6.1 Introduction

People and robots use a finite set of sensor and actuator capabilities to interact with the effectively

infinite state of the environment. To manage the inherent complexity, people generate high-level

abstractions to simplify reasoning about a problem and planning a solution. Abstraction must also

occur within a developing agent learning models of the reliable portions of its sensorimotor expe-

rience. Previous chapters have demonstrated how a robot can autonomously learn object models.

Perceptual filters applied to trackers generate object properties that the robot can observe but does

not yet know how to control.

This chapter describes an algorithm for a robot to autonomously learn new high-level ac-

tions to change object properties. This work extends the learned ontology of objects by learning

74

actions that are grounded in the robot’s sensorimotor experience. This learning approach is in-

spired by the observation that infants incrementally develop capabilities both to perceive and to

act [68, 99].

Actions are created by learning the conditions under which individual object properties

change reliably. The algorithm searches through a log of the robot’s experience of object interac-

tions to find constraints on perceptual contexts and motor commands that cause an object property

to change reliably. The learned actions are evaluated for their utility in accomplishing goals.

6.2 Continuous Actions

Previous chapters have described how the robot can track objects and learn models of object shapes.

The robot also can estimate an object’s position and heading in the world, and it is possible to define

additional perceptual filters to estimate the distance and angle to the object. However, the robot

does not have actions that can change these properties. For example, the robot does not know how

to move an object to a target location, how to approach an object, or how to turn to face an object.

These behaviors can be specified using target values for object properties. The actions learned by

OPAL have control laws that cause one property to change reliably. The robot can use these actions

to achieve perceptually specified goals, such as changing the position of a recycling-bin to lie in

the center of a room.

6.2.1 Background

Actions vary in form and function in symbolic planning and motion planning. In symbolic plan-

ning, actions are hand-crafted to achieve domain specific symbolically parameterized subgoals. At

this level of description, an action from the Monkeys and Bananas problem can be Move(Box,

Bananas) for the high level task of moving a box under a bunch of bananas. Converting this

symbolic action into a continuous motion in the environment involves changing a continuous state

variable (the box’s position) to a target region (under the bananas). In motion planning, algo-

75

rithms operate with a low dimensional continuous variable, using forward and backward chaining

of motion primitives to plan a path to a target region. For this, motion planning requires forward

or backward motion models. Motion planning algorithms plan over all components of the state

vector simultaneously which often causes the computational complexity to rise exponentially with

dimension.

Consider the task of moving an object to a target location. One method for the robot to

accomplish this task is to push the object towards the target. But the robot cannot successfully

push the object if the robot is not sufficiently close to the object. Hence, the robot must first

approach the object. But to approach the object, the robot must be facing the object. Facing an

object is a relatively simple task when the object is perceived, as it only requires turning in place.

This example illustrates several issues that arise when acting on objects. One is that ac-

complishing a task can be complex and involve multiple stages, which suggests that planning is

useful. A second is that some tasks can be specified as a constraint on a single object property,

for example that the distance from the object to the target is less than a threshold. A third is that

destination locations can vary, and the action must generalize across destinations. A fourth is that

the action does not depend greatly on which object is being moved, and so actions should support

generalization across objects.

6.2.2 Actions for Planning

Several difficulties arise when creating descriptions of actions. The qualification problem is the

difficulty of specifying all of the preconditions that must be fulfilled for an action to be successful.

The ramification problem is the difficulty of specifying all consequences of performing an action.

The frame problem is the difficulty of specifying all non-consequences of an action (all states of

the world that do not change).

To guarantee the success of a plan, a planner needs to represent all the consequences and

preconditions of an action. However, the real world is infinitely complex and so all consequences

and preconditions of an action can not be known. The robot can still plan and achieve goals with

76

high reliability if it knows the consequences and preconditions that are applicable in its operating

environment. In particular, the robot can learn actions whose consequences and preconditions have

simple descriptions.

For actions to support forward or backward chaining, the consequences of one action should

help to fulfill the preconditions of other actions. Thus, goals and action consequences should have

complementary forms. Since changing an object property to a desired value can take multiple time

steps, it is useful for the robot to monitor the effects of executing an action to ensure progress is

being made.

6.2.3 Learning

The complexity of the real world presents a daunting challenge for an autonomous agent learning

new actions. The agent must reason with its finite resources about the known consequences of

an action but the results of procedural routines for perception and action depend implicitly on the

effectively infinite state of the world.

The robot learns actions by observing the effects of performing random motor babbling in

the presence of the object. Motor babbling is a process of repeatedly performing a random motor

command for a short duration. One strength of the action learning approach presented here is that

the robot is able to use this goal-free experience to form actions that are used for goal directed

planning. The robot performs self-supervised learning, where the observations in the training data

are labeled using the qualitative changes that occur to a single object property. The learned actions

are used to achieve goals by reducing the difference between the robot’s current perception and the

desired goal. This is demonstrated in the evaluation. Thus goals are not required while the actions

are being learned but they are required for planning and execution.

77

Name Definition Dim
robot-location robot’s location in the map 2
robot-heading robot’s heading in the map 2
distance(τ) distance from sensor to object τ 1
angle(τ) angle from sensor to object τ 1
location(τ) location in map of object τ 2
heading(τ) heading in map of object τ 2

Figure 6.1: Perceptual filters used by the learning robot. The robot has previously learned actions
that change its location and heading in the map. The robot learns to control the properties of the
object image on its sensor array (the angle and distance to the object). The robot also learns an
action to control the object position in the environment (Figure 6.2).

6.3 Action Definition

An action is defined in Equation 3.5 as

α = 〈D,C,H〉

a tuple with a description D of the change in an object property caused by the action, a perceptual

context C in which the action can reliably cause the described change, and a control law H that

sends output to the motors. These components are now formally defined.

The action learning algorithm is restricted to perceptual filters fj that are either vector-

valued or failure (when the object is not perceived).

fj,t(τ) ∈ <nj ∪ {⊥}. (6.1)

In particular, the robot does not learn an action to change the shape of an object, as a shape percept

is represented by a set. The change in a perceptual filter is denoted by δ,

δj,t = fj,t+1 − fj,t. (6.2)

78

The description of an action’s consequences,

D = 〈 j, b, qj,b 〉,

consists of the name j of the perceptual filter to be controlled, the qualitative behavior b,

b ∈ {inc, dec} ∪ {dir[fk] | fk ∈ Filters}, (6.3)

and the quantitative effect qj,b. Two qualitative behaviors are defined for a scalar perceptual filter:

increasing (inc) and decreasing (dec). The qualitative behavior dir[fk] for a vector-valued percep-

tual filter fj means that fj changes in the direction of the vector-valued perceptual filter fk. The

quantitative effect for scalars is bounded by εj,b,

qinc(δj,t) ≡ δj,t > εj,inc, qdec(δj,t) ≡ −δj,t > εj,dec. (6.4)

The quantitative effect for vectors is also bounded by ε′j ,

qdir[fk](δj,t) ≡ ||δj,t|| > εj,dir[fk] ∧
〈δj,t, fk,t〉

||δj,t|| · ||fk,t||
> 1− ε′j . (6.5)

The context of an action is represented as a conjunction of inequality constraints on scalar

perceptual filters:

(fRc) where f ∈ Filters, R ∈ {≤,≥}, c ∈ <. (6.6)

Finally, the control law of an action is a function H from the perceptual filters to a motor

output. In this work, the control laws are restricted to constant functions.

6.4 Learning Algorithm

The learning algorithm is initially given a log of observations of object interactions. The log con-

sists of percept values and motor outputs gathered at every time step. The learning algorithm uses

79

the log to search for actions that reliably induce a qualitative change in the observed values for each

perceptual filter.

The learning algorithm takes multiple steps to find the components of the action as defined

in Equation 3.5. The learning algorithm starts with a perceptual filter fj and a qualitative behavior

b. First, a threshold ε is selected from the observed values of δ to complete the description. Next,

the quantitative effect is used to search for constraints on the perceptual context and motor output

that reliably induce the desired behavior. Finally, the constraints are used to define a perceptual

context and a control law. The learning process is initially described for scalar perceptual filters,

and then the modifications for vector perceptual filters are described.

For each scalar perceptual filter with a qualitative behavior, a threshold ε is chosen by

running a Parzen window with a Gaussian kernel over the observations of δ for b = inc (−δ for

b = dec). The threshold ε is set to the first local minimum above zero if it exists, otherwise it is set

to a value one standard deviation from the mean. This completes the description D of the action.

The threshold ε is used to define qj,b, and qj,b is used to label the examples of the desired

behavior in the training data. The learning algorithm uses the labeled examples to search for

constraints on the percepts and motor outputs. The constraints are represented by the intersection

of axis aligned half-spaces, specified as inequalities (as in Equation 6.6) over the scalar perceptual

filters (fk) and the components of the motor vector (πk(u)).

Given the log of babbling experience as a sequence of observations (zt) and motor output

(ut), the action learning algorithm attempts to find perceptual constraints C and motor constraints

M that support the following rule:

zt ∈ C ∧ ut ∈M =⇒ qj,b(δj,t) ∧ zt+1 ∈ C. (6.7)

This equation states that if at one time step the robot’s perception satisfies the perceptual constraints

(zt ∈ C) and the robot sent a motor command that satisfies the motor constraints (ut ∈ M) then

at the next time step the object property of interest changed in the desired manner (qj,b(δj,t)) and

the robot’s perception still satisfies the perceptual constraints (zt+1 ∈ C). This constraint on the

80

observation of the next time step is included to encourage the discovery of repeatable actions:

actions that can be used on multiple consecutive time steps.

The learning algorithm is capable of only creating actions whose context can be be ex-

pressed as a conjunction of perceptual constraints. This limitation simplifies not only the learning

process, but also the difficulties of planning. The absence of disjunctions in the context allows

backwards chaining without the need to consider multiple options for satisfying the context of a

desired action.

To find the perceptual constraints C and motor constraints M , define a set of measures for

the precision (µ0), recall (µ1), and repeatability (µ2). The utility function U is their geometric

mean. These functions are defined using empirical probabilities (Pr) as observed in the training

data.
Pr(a|b) = Pr(a,b)

Pr(b) = #{t|at∧bt}
#{t|bt}

µ0 = Pr(qj,b(δj,t) | zt ∈ C ∧ ut ∈M)

µ1 = Pr(zt ∈ C ∧ ut ∈M | qj,b(δj,t))

µ2 = Pr(zt+1 ∈ C | zt ∈ C ∧ ut ∈M)

U = (µ0µ1µ2)
1
3

(6.8)

The components of this utility function are each contributing an important weight. The

precision measures the probability that a positive classification implies a positive label. The recall

measures the probability that a positive label implies a positive classification. The repeatability

measures the probability that if the robot’s motor command meets the motor constraints and the

robot’s percept meets the perceptual constraints, then the robot perception at the next time step will

also meet the perceptual constraints (and thus can repeat the motor command).

The learning algorithm creates a constraint set that is initially empty, and greedily adds

constraints. At each iteration, the algorithm finds the best new constraint to add for each variable

(searching over both the perceptual filters and the motor outputs). For each variable, the algorithm

sorts the observed values of the variable. For each value, the algorithm tests the utility of setting

adding a constraint at that value. The algorithm selects the proposed constraint that yields the

81

greatest increase in utility when added to the current constraint set. The process terminates when

adding a constraint provides no significant improvement to utility. The newly generated action is

discarded if the final utility measure is low.

For vector percepts the above algorithm requires a few modifications. First, the threshold

for finding ε is set using a Parzen window over ||δ||. Second, the function qj,b in the search for C

and M is given by q = qj,mag(δ) = ||δ|| > εj,mag. Third, the constant ε′j is set after the constraints

C and M are learned. The algorithm generates a potential threshold α for every observed value

(from Equation 6.5).

α =
〈δj,t, fk,t〉

||δj,t|| · ||fk,t||
. (6.9)

In this form, α acts as an analog version of the precision, as it quantifies the amount by which the

change lies in the direction of fk. The algorithm selects the value of α that maximizes the product

of α and the recall. Finally α is used to define the threshold ε′j = 1− α.

The learned constraints are split between the perceptual constraints C and the motor con-

straints M . The perceptual constraints C become the context of the action. A constant control law

is defined from M .

H(zt) = m = arg min
ut∈M

||ut|| (6.10)

The constant control law is enhanced in two ways. The first is to account for perceptual latencies by

predicting the current value of the percept. The second is to scale the motor output by the minimum

effect ε, when the robot wants to change a percept to a goal value g.

s(g, τ) = min(1, ||E[fk,t(τ)]− g||/ε) (6.11)

H(zt) = s(g, τ) ·m (6.12)

Putting the learned components together creates the new action α = 〈D,C,H〉.

82

6.5 Training Scenario

Several perceptual filters were used for learning and they are listed in Table 6.1. Filters for the

robot’s location and heading come from the robot’s ontology of space. The robot’s heading is

represented as a unit vector. The remaining filters are computed for each tracker. The support

of a tracker, Suppt(τ) ⊂ Θ, is given by the sensor indices of the points in the snapshots, and is

represented as a subset of the sensor indices Θ. The support is used to define the angle and distance

to the object.

anglet(τ) = mean{i | i ∈ Suppt(τ)} (6.13)

distancet(τ) = min{zt(i) | i ∈ Suppt(τ)} (6.14)

Object localization, described in the previous chapter, provides the position and heading of the

object.

The robot was physically modified for this experiment by the addition of a small foam

bumper to the front of the robot. The bumper reduced the impact of the object collisions on the

robot’s body. The bumper also kept the objects further away from the range sensor which limited

the amount of the environment obscured by the object. This was necessary as the localization

algorithm requires an adequate view of the static environment to keep the robot localized in the

map.

The robot created a log of observations for training data. The robot gathered observations

by randomly selecting a motor command and executing it for a fixed duration. The motor com-

mands for drive and turn (linear and angular velocities) were selected from the following set.

{−0.2, 0.0, 0.2}m/s× {−0.4, 0.0, 0.4}rad/s

The data was gathered in different environmental configurations, where the experimenter changed

the environment between trials. The experimenter ensured the robot could see the training ob-

ject (the recycle-bin) at the start of every trial. Approximately ten minutes of training data were

83

gathered, at approximately one observation per second.

Running the learning algorithm generated several useful actions that are shown in Fig-

ure 6.2. These actions can be thought of as simple affordances of the object; actions which the

robot currently assumes will always work. However, the action for pushing an object can fail for

heavy objects. As an extension to the current work, the robot can use these actions to create new

perceptual filters that predict which objects are not pushable.

The learning algorithm was not able to learn an action to control every object property. In

particular, it was not able to learn a useful action for changing the heading of the object. The robot’s

physical configuration makes it is difficult for the robot to continuously push and turn the object.

When the robot pushes the object off-center, the object tends to slide off the bumper. Because of

the lack of examples of successfully turning an object, the learning algorithm was unable to create

a reliable action for the task.

6.6 Planning with Goals

Part of the value of the object ontology lies in providing a language for representing goals. The

high-level task given by “Place a recycle bin in the center of the room” can be represented as a goal

state with a tracker whose shape corresponds to a recycle bin and whose location is in the center of

the room. The robot can set goals and measure its progress towards achieving them. The learned

actions are used by a planner to achieve goals by sequentially reducing differences between the

robot’s current percepts and the goal.

To achieve goals, the planner uses backward chaining with the constraints provided in

an action’s context. The planner creates reactive plans to change a percept to a desired value.

Attempting to sequentially satisfy the constraints in an action’s context can fail when more than

one precondition is not satisfied.

In this condition, the robot simulates observations from possible robot poses to find a pose

from which the perceptual context is satisfied. The algorithm creates an error vector, with one

dimension per constraint. The value of each component of the vector is the amount by which the

84

Action I
Description 〈 angle(τ) , inc , δ > 12 〉
Context ∅
Control Law (0.0 m/s , -0.4 rad/s)
Utility 73 %

Action II
Description 〈 angle(τ) , dec, −δ > 12 〉
Context ∅
Control Law (0.0 m/s , 0.4 rad/s)
Utility 74 %

Action III
Description 〈 distance(τ) , inc , δ > .19 〉
Context ∅
Control Law (-0.2 m/s , 0.0 rad/s)
Utility 69 %

Action IV
Description 〈 distance(τ), dec, -δ > .19 〉
Context (distance(τ) ≥ 0.43) ∧ (angle(τ) ≤ 132) ∧ (angle(τ) ≥ 69)
Control Law (0.2 m/s , 0.0 rad/s)
Utility 61 %

Action V
Description 〈 location(τ), dir[robot-heading], ||δ|| > .21 ∧ ε′ = .13 〉
Context (distance(τ) ≤ 0.22) ∧ (angle(τ) ≥ 68) ∧ (angle(τ) ≤ 103)
Control Law (0.2 m/s , 0.0 rad/s)
Utility 65 %

Figure 6.2: The above actions were learned by the robot from its observations of the effects of
motor babbling. These actions cause changes in (I,II) the angle to the object (by turning), (III,IV)
the distance to the object (by driving), and (V) the location of the object in the map (by pushing).
The context of an action represents the precondition for the action to be successfully executed for
a single time step.

85

Behavior Goal Distance Accuracy Time (s)
Face | angle(τ) -90 | < 10 45 ◦ 7.4◦ (σ=3) 4.38 (σ= .51)
Approach distance(τ) < 1 1.8 m 0.04 m (σ=0.02) 21.1 (σ=5.7)
Move || location(τ) - (3,2) || < 0.15 2.0 m 0.09 m (σ=0.04) 258 (σ=138)

Table 6.1: The robot used the learned actions to perform three tasks: facing the object, approaching
the object and moving the object. The columns indicate the initial distance to the goal, the final
distance from the goal and elapsed time. Ten runs were performed for each task, and the results
are shown with the standard deviations. Accuracy was measured by the final distance to the target
value as measured by the robot. All trials succeeded with the robot accurately achieving its goals.
The time to task completion has a high variance since the robot keeps trying until it succeeds.

corresponding constraint is violated. The algorithm hill-climbs on the error vector length in the

space of robot poses to find a pose with a zero length error vector. A procedure for simulating

observations from different poses was provided externally to the learning agent. The robot moves

to this pose and then attempts to execute the desired action.

6.7 Evaluation

The learned actions were evaluated on three tasks: facing the object, approaching the object and

moving the object to a location. These tasks were represented by setting goal values for the

angle(τ), distance(τ) and location(τ) properties respectively.

The starting state for the three tasks was approximately the same (the object was placed at

different orientations), and is shown in Figure 6.3. The robot starts at the origin of the map with an

orientation of 45◦ from the object. The object starts three meters away from the robot at the map

coordinates (3,0), and the location target for the object is at (3,2) which is two meters away from

the object’s starting position. The desired final states for the tasks are to have the object in front of

the robot (|angle− 90| < 10), to have the robot near the object (distance ≤ 1.0), and to have the

object at the goal location in the figure (||location(τ)− (3, 2)|| < .15 m).

Ten runs were performed for each task. The same final state is used in each run to reduce

task variation between runs. The experimenter physically verified successful task completion for

86

(a) (b)

Figure 6.3: (a) The robot pushes a recycling bin towards a goal location. (b) The shaded shapes
show the robot’s percepts for itself and the object. The starting poses of the robot and the object
are shown unshaded, and the goal location for the object is indicated by ×.

Behavior Goal Distance Time (s) Optimal
Face | angle(τ) -90 | < 10 45 ◦ (σ=3) 4.38 (σ= .51) 4.0
Approach distance(τ) < 1 1.8 m 21.1 (σ=5.7) 11
Move || location(τ) - (3,2) || < 0.15 2.0 m 258 (σ=138) 27

Table 6.2: The robot used the learned actions to perform three tasks: facing the object, approaching
the object and moving the object. The columns indicate the distance to the goal, the elapsed time,
and a lower bound on the optimal time.

each run, and the robot measured its performance for each run. The results in Table 6.1 show that

the robot is able to achieve these goals reliably and accurately. Figure 6.3 shows an example of the

robot pushing the object to a goal.

6.7.1 Optimal Performance for Action Tasks

The robot used learned actions to complete multiple tasks. Lower bounds on the optimal time

required to complete the tasks are computed by adding the latency in the motor system with the

travel time required by the robot at maximum velocity. The robot’s maximum command velocities

87

are 0.2 m/s and 0.4 rad/s, and the latency is 2 seconds. Thus for the Face task, the minimum time is

2s+
π

4
rad/(0.4rad/s) ≈ 4.0s.

For the Approach task, the robot must move 1.8 meters so the minimum time is

2s+ 1.8m/(.2m/s) ≈ 11s.

For the Move task, the robot first must approach an object that is three meters away and then push

it for two meters so the minimum time is

2s+ 3m/(.2m/s) + 2m/(.2m/s) ≈ 27s.

The robot’s performance does not approach the lower bound except for the Face task, but

the robot’s performance is within a factor of two on the Approach task and a factor of ten on the

Move task. These times indicate that the robot is accomplishing the tasks efficiently.

The performance times exceed the lower bounds for the Approach task since the robot does

not turn to directly face the object before approaching it. Rather, the robot only attempts to satisfy

the angular constraints for approaching the object and it can satisfy the angular constraints even

when turned slightly away from the object. In this condition, the robot makes progress for multiple

time steps, but eventually it will fail to satisfy the angular constraints. A better control law would

provide a closed loop correction [86] on the angular constraints to improve the robot’s ability to

approach the object.

For the Move task, a significant amount of time is spent by the simulation routine to find

a pose from which multiple perceptual constraints are simultaneously satisfied. The simulation

routine is externally provided to the robot and provides a function from the robot and object poses

to sensor observations. This function could be learned autonomously by the robot using a large

number of training examples. Although this function could be learned, learning the function is

88

uninteresting for evaluating the performance of the learned actions and so it has been provided

manually in this work.

The robot uses the simulation to find a pose from which it can simultaneously satisfy multi-

ple perceptual constraints. The mean time spent in simulation on a single run is 113 seconds with a

standard deviation of σ = 73 seconds. In addition to the time taken by simulation, the robot occa-

sionally needs to reposition itself. While pushing the object, the robot can move out of alignment

with the object and the goal. The robot must move to reposition itself in this situation, and this

takes additional time. The number of reposition events varied between runs, and this contributed

to the large variance in the time required on the Move task. The amount of repositioning required

could be reduced by using a closed loop control law.

6.7.2 Alternate Utility Functions for Learning Actions

Utility functions other than U (as defined in Equation 6.8) can be used for learning actions. Several

functions were tried and found to be lacking. The following tables show the actions that are learned

from the data using several utility functions. Except for theU function, all utility functions generate

at least one action that is qualitatively inadequate.

The observation log from the robot’s motor babbling is used to learn actions. The effects for

each action are defined from the observation log as in the original action learning experiment. An

example from the observation log is given a positive label if the observed effect between time steps

meets the threshold of quantitative change qj,b(δt). Using this labelled data, the utility functions

are used to learn perceptual and motor constraints. An example is classified as positive if it meets

the perceptual and motor constraints in C and M (namely zt ∈ C ∧ ut ∈M).

The utility functions are defined using the number of examples with a given label and

classification.

Positive Label Negative Label

Classified Positive true positive false positive

Classified Negative false negative true negative

89

The counts for these examples are used to define the precision and recall.

precision = true positive/(true positive + false positive)

recall = true positive/(true positive + false negative)

The repeatability is defined to be the fraction of the examples that satisfy the perceptual

constraints at the next time step that are classified as true for the current time step.

repeatability =
#{t | zt+1 ∈ C ∧ zt ∈ C ∧ ut ∈M}

#{t | zt ∈ C ∧ ut ∈M}

The tested utility functions are listed below. The U utility function is introduced in this

thesis. The U without repeatability function is used to measure the contribution of repeatability to

the learning process. The F-measure is commonly used in information retrieval [5]. The accuracy

function [72] is typically used in machine learning. The weighted accuracy function is a variant of

the accuracy function which provides equal weight to the positive and negative examples, and thus

corrects for the skewed distribution towards negatively labelled training data.

Utility Function Description

U (precision · recall · repeatability)
1
3

U w/o repeatability (precision · recall)
1
2

F-measure 2 · (precision−1 + recall−1)−1

Accuracy true positive+true negative
number of examples

Weighted accuracy 1
2(true positive

true positive+false negative + true negative
true negative+false positive)

Errors in learned actions consist of qualitative inadequacies. The inadequacies are not

known to the robot but are known to an external experimenter. One kind of error is the failure to

find relevant perceptual and motor constraints, a failure that is most visible in the actions learned

with accuracy as the utility function. A second failure mode is the inclusion of irrelevant constraints

into an action’s context. To test for the second kind of failure, features for the robot and object

90

Utility Function Action I Action II Action III Action IV Action V Details
U Y Y Y Y Y Table 6.4
U w/o repeatability N Y Y N N Table 6.5
F-measure N Y N N N Table 6.6
Accuracy N N N N N Table 6.7
Weighted Accuracy Y Y Y Y N Table 6.8

Table 6.3: The table shows which actions are qualitatively adequate, namely the actions include
required constraints and exclude irrelevant constraints. Learned actions that are qualitatively ade-
quate are labelled with Y and others are labelled N. The weighted accuracy and F-measure perform
well, but fail on at least one action.

heading were included as the scalar features robot-theta and object-theta. These features measure

the angle in radians (between [−π, π]) of the robot and object in the reference frame of the map,

and both of these features are irrelevant for the all of the learned tasks.

Table 6.3 summarizes the qualitative adequacy of the learned actions. TheU utility function

is qualitatively adequate for all actions. Removing the repeatability component from U causes the

learned actions to include more irrelevant features in the perceptual constraints. This problem

also affects both the F-measure and weighted accuracy. The standard accuracy function fails to

find correct actions in all cases, because for every desired action there are many more negative

examples than positive examples.

6.8 Extensions

The action learning algorithm has been tested on a physical system with real data, but it has not

been tested on a great breadth of problems. The algorithm can be improved in many ways. A simple

extension is to learn non-constant closed-loop control laws. Another extension is to learn actions

to recover from perceptual failures (when the perceptual filter returns ⊥). Directional control can

be extended to handle cases where the direction of change is a function of percepts instead of being

parallel to a single percept. This approach requires the simulation of observations from different

states to resolve conflicting preconditions. This simulation function could be learned instead of

91

Action I
Effect: 〈 angle,inc, δ > 12.30 〉
Context:
Control: (0.0 m/s, -0.4 rad/s)
Utility: 73 %
Adequate: Yes

Action II
Effect: 〈 angle,dec,- δ > 12.30 〉
Context:
Control: (0.0 m/s, 0.4 rad/s)
Utility: 74 %
Adequate: Yes

Action III
Effect: 〈 distance,inc, δ > 0.19 〉
Context:
Control: (-0.2 m/s, 0.0 rad/s)
Utility: 70 %
Adequate: Yes

Action IV
Effect: 〈 distance,dec,- δ > 0.19 〉
Context: distance≥0.430 ∧ angle≥68 ∧ angle≤132
Control: (0.2 m/s, 0.0 rad/s)
Utility: 61 %
Adequate: Yes

Action V
Effect: 〈 location,dir[robot-heading],||δ|| > .21 ∧ ε′ = .13 〉
Context: distance≤0.220 ∧ angle≤103 ∧ angle≥68
Control: (0.2 m/s, 0.0 rad/s)
Utility: 65 %
Adequate: Yes

Table 6.4: Actions learned using the U utility function.

92

Action I
Effect: 〈 angle,inc, δ > 12.30 〉
Context: angle≤130 ∧ object-theta≥-0.923 ∧ angle≥31 ∧ robot-theta≥-2.866
Control: (0.0 m/s, -0.4 rad/s)
Utility: 71 %
Adequate: No: includes constraint on an irrelevant variable

Action II
Effect: 〈 angle,dec,- δ > 12.30 〉
Context: angle≥25
Control: (0.0 m/s, 0.4 rad/s)
Utility: 66 %
Adequate: Yes

Action III
Effect: 〈 distance,inc, δ > 0.19 〉
Context: angle≤122 ∧ angle≥53 ∧ distance≥0.360
Control: (-0.2 m/s, 0.0 rad/s)
Utility: 65 %
Adequate: Yes

Action IV
Effect: 〈 distance,dec,- δ > 0.19 〉
Context: distance≥0.430 ∧ angle≤132 ∧ angle≥68 ∧ robot-theta≤2.924
Control: (0.2 m/s, 0.0 rad/s)
Utility: 59 %
Adequate: No: includes constraint on an irrelevant variable

Action V
Effect: 〈 location,dir[robot-heading],||δ|| > .21 ∧ ε′ = .13 〉
Context: distance≤0.220 ∧ angle≤103 ∧ angle≥68 ∧ robot-theta≥-2.483
Control: (0.2 m/s, 0.0 rad/s)
Utility: 66 %
Adequate: No: includes constraint on an irrelevant variable

Table 6.5: Actions learned using the U without repeatability utility function.

93

Action I
Effect: 〈 angle,inc, δ > 12.30 〉
Context: angle≤130 ∧ object-theta≥-0.923 ∧ angle≥31 ∧ robot-theta≥-2.866
Control: (0.0 m/s, -0.4 rad/s)
Utility: 70 %
Adequate: No: includes constraint on an irrelevant variable

Action II
Effect: 〈 angle,dec,- δ > 12.30 〉
Context: angle≥25 ∧ distance≥0.320
Control: (0.0 m/s, 0.4 rad/s)
Utility: 67 %
Adequate: Yes

Action III
Effect: 〈 distance,inc, δ > 0.19 〉
Context: angle≤122 ∧ angle≥64 ∧ object-theta≤2.624 ∧ object-theta≥-0.921
Control: (-0.2 m/s, 0.0 rad/s)
Utility: 69 %
Adequate: No: includes constraint on an irrelevant variable

Action IV
Effect: 〈 distance,dec,- δ > 0.19 〉
Context: distance≥0.430 ∧ angle≤130 ∧ angle≥68 ∧ object-theta≥-2.474

∧ robot-theta≤2.924 ∧ robot-theta≥-2.688
Control: (0.2 m/s, 0.0 rad/s)
Utility: 60 %
Adequate: No: includes constraint on an irrelevant variable

Action V
Effect: 〈 location,dir[robot-heading],||δ|| > .21 ∧ ε′ = .13 〉
Context: distance≤0.220 ∧ angle≤103 ∧ angle≥68 ∧ robot-theta≥-2.483
Control: (0.2 m/s, 0.0 rad/s)
Utility: 65 %
Adequate: No: includes constraint on an irrelevant variable

Table 6.6: Actions learned using the F-measure utility function.

94

Action I
Effect: 〈 angle,inc, δ > 12.30 〉
Context: object-theta≥2.444
Control: (0.0 m/s, -0.4 rad/s)
Utility: 92 %
Adequate: No: includes constraint on an irrelevant variable

Action II
Effect: 〈 angle,dec,- δ > 12.30 〉
Context: angle≥174
Control: (0.0 m/s, 0.0 rad/s)
Utility: 86 %
Adequate: No: no motion

Action III
Effect: 〈 distance,inc, δ > 0.19 〉
Context:
Control: (0.0 m/s, -0.4 rad/s)
Utility: 94 %
Adequate: No: turning to increase distance

Action IV
Effect: 〈 distance,dec,- δ > 0.19 〉
Context:
Control: (0.0 m/s, -0.4 rad/s)
Utility: 94 %
Adequate: No: turning

Action V
Effect: 〈 location,dir[robot-heading],||δ|| > .21 ∧ ε′ = .13 〉
Context: object-theta≤-3.042
Control: (0.0 m/s, 0.0 rad/s)
Utility: 92 %
Adequate: No: no motion

Table 6.7: Actions learned using the accuracy utility function.

95

Action I
Effect: 〈 angle,inc, δ > 12.30 〉
Context:
Control: (0.0 m/s, -0.4 rad/s)
Utility: 82 %
Adequate: Yes

Action II
Effect: 〈 angle,dec,- δ > 12.30 〉
Context:
Control: (0.0 m/s, 0.4 rad/s)
Utility: 78 %
Adequate: Yes

Action III
Effect: 〈 distance,inc, δ > 0.19 〉
Context:
Control: (-0.2 m/s, 0.0 rad/s)
Utility: 85 %
Adequate: Yes

Action IV
Effect: 〈 distance,dec,- δ > 0.19 〉
Context: distance≥0.430 ∧ angle≤134 ∧ angle≥68
Control: (0.2 m/s, 0.0 rad/s)
Utility: 86 %
Adequate: Yes

Action V
Effect: 〈 location,dir[robot-heading],||δ|| > .21 ∧ ε′ = .13 〉
Context: distance≤0.230
Control: (0.2 m/s, 0.0 rad/s)
Utility: 87 %
Adequate: No: Missing constraints on angle

Table 6.8: Actions learned using the weighted accuracy utility function.

96

being externally provided. A final extension is to move beyond motor babbling to active learning,

where the robot actively gathers data to test partially learned actions.

6.9 Related Work

Work in psychology has explored the development of object representations in children.

Spelke [99] has studied the perceptual development in children as it progresses from using mo-

tion as a indicator of object unity to using other perceptual cues. Mandler [68] has explored how

concepts might form in more general conditions. Bloom [11] has studied how objects and concepts

are used to quickly learn a language.

Previous work in developmental robotics [85, 84, 23] has shown how the structure of an

agent’s sensory and motor systems can be learned. A key method in this process is the projec-

tion of high-dimensional observations into a low-dimensional space. Further advances include

Isomap [105] which identifies manifolds in the data, and the use of information distance [82].

Other researchers have also studied how a robot can learn object representations with ac-

tions. Stoytchev [102] has a robot learning the affordances of simple tools using a single continuous

variable to represent the state. Other work [49] demonstrates how a robot can learn the precondi-

tions for actions. Natale [79] has shown how motor babbling with a robot arm can be used to learn

how to move objects. These approaches use stationary perception, whereas the work in this thesis

demonstrates the use of mobile perception.

Related work has also explored object recognition and action but not in conjunction. Work

on object recognition has used mapping techniques [9], and image-based models [66].

Actions have been learned in simulated symbolic domains [94, 42, 7, 81, 116]. These

approaches provide methods for learning actions when an object model is already available, but do

not address how continuous actions can be learned on a mobile robot.

97

6.10 Summary

This chapter adds learned actions to the object ontology. Actions are learned to reliably change

scalar and vector perceptual filters. Using these actions, the robot is able to plan and achieve goals.

OPAL shows how a robot starting with ontologies of sensorimotor organization and space

can construct object representations. Multiple representations are acquired, which can be inter-

preted as perceptual, structural and functional object models. The object snapshots and trackers

form perceptual representations. The shape model provides a structural representation. A func-

tional model is available through the learned action of pushing: this action could be used to define

the pushing affordance of an object. By integrating these different aspects of objects, the learned

representations support perception, geometric inference, and goal-directed planning.

These representations are part of an ontology of objects grounded in the robot’s sensorimo-

tor experience. The learned ontology creates trackers for individual objects, forms percepts from

observations, forms classes to generalize from past experience, and learns actions to change the

perceived properties of an object. Using this ontology, the physical robot is able to recognize ob-

jects and plan with learned actions to achieve goals. The learned ontology is simple and lays the

foundation for learning more complex object models. In future work, the learned object represen-

tations can be used to extend a robot’s ability to understand and interact with its environment.

98

Chapter 7

Contributions and Future Directions

This thesis describes how a robot can learn an ontology of objects, bootstrapping from ontologies

of its self and space. The Object Perception and Action Learner (OPAL) generates trackers to

represent individual objects, uses perceptual filters to measure object properties, creates perceptual

classes to recognize objects, and learns actions that change object properties. OPAL permits the

robot to succinctly describe its current situation, to generalize from past experience, to have goals

specified using objects, and to plan with learned actions to achieve these goals.

Description of the object ontology

The learned object ontology contains object trackers, perceptual filters, classes, and actions.

This ontology provides counterparts to the individual objects, properties, and actions used in

traditional symbolic planning and inference. Individuals (atoms) are represented by trackers,

object properties are provided by classes, and both continuous and symbolic actions support

planning by backward chaining from goals.

Learning the object ontology

The thesis describes algorithms for the robot to create trackers, perceptual classes and ac-

tions. The thesis defines several perceptual filters for objects, but does not provide an al-

gorithm for automatically generating perceptual filters. Methods for constructive induction,

99

and dimensionality reduction can generate new perceptual filters automatically [85, 87].

Evaluated the learned object ontology

The thesis has evaluated the learned object representations. The robot is able to recognize

several objects from the lab, using the limited sensing ability of a laser rangefinder. The

experiments have shown how a robot can learn perceptual, structural and functional repre-

sentations for objects. These representations permit the robot to specify goals and achieve

them.

OPAL can be extended in many ways. Some fall within the scope of a learned object

ontology, such as learning improvements in perception through statistical inference and extensions

to more complex sensorimotor modalities including vision and articulated robot bodies. Another

extension is to study how a robot can learn integrated ontologies of self, agency, space, and objects

to create a complete developing robot that can learn through its interactions with a teacher that

the robot perceives as a socially contingent agent. A third extension is to study how the learned

ontologies of objects and actions can be used by a robot to learn language through interactions with

people.

Bootstrapping statistical perceptual inference

In the completed work, the robot does not improve its ability to individuate and track objects.

However, the existing system provides labeled data that can be used to train better perceptual

filters for individuation and tracking. One paper [88] has shown that it is possible to learn to

segment people in static images using training data acquired through motion segmentation.

Additional modalities

This thesis describes how a robot with a laser rangefinder can learn about objects. Although

many of the same processes can work for vision, additional perceptual filters will likely be

required to create a useful object ontology. Robot hands allow actions such as grasping to be-

come physically possible and potentially learnable. Using additional modalities, it becomes

easier to study how perceptual filters can be autonomously generated. One exciting avenue

100

is to explore how the perceptual filters for the object ontology (and those of the lower levels)

can be learned automatically using techniques such as SODA [87].

Foundations for cognition

Knowledge of objects is one of the domains of common-sense knowledge, and is of compa-

rable importance to knowledge of self, space, and other agents. Work on how these other

competencies can arise have been developed by other researchers (self [85, 84, 79, 30],

space [106, 62], and agents [77]). Although many studies use robots equipped with range-

sensors, other sensorimotor modalities have also been explored (vision, sound, touch). If

these methods can be integrated in one platform, this should create a rich representation for

the robot’s experience. Using such a representation, the robot might be able to learn tasks

using methods such as supervised learning, reinforcement learning, and programming by

demonstration.

Language learning

Several researchers have proposed methods [10, 97, 100, 51, 115, 101] by which an agent can

learn a language, or at least words in a language. Much of this language learning research

assumes that the learning agent has already discretized its sensory experience into objects,

with continuous or discrete object properties. By providing an object ontology, OPAL can

be used to support language learning on a physical robot.

Adding Relations and Functions to the ontology

Although not discussed in this work, functions and relations play an important role in an

ontology. Spatial relations can be used to represent the relative locations of two objects.

Object properties already provide unary relations for objects. There is also the need for

functions to provide mappings between the object representations and the sensor and map

representations. These functions already exist implicitly in the simulation scans used in

planning. However, methods for the robot to learn relations without supervision is still an

open research question.

101

OPAL provides a foundation for a robot to learn about objects. It provides basic mecha-

nisms for learning, and is extensible to support further developmental learning. This is one step

towards the goal of achieving human level cognition in an autonomous robot.

102

Bibliography

[1] D. Angelov, D. Koller, H.-C. Pang, P. Srinivasan, and S. Thrun. Recovering articulated ob-

ject models from 3D range data. In Proceedings of the Uncertainty in Artificial Intelligence

Conference (UAI), 2004.

[2] D. Arbuckle, A. Howard, and M. J. Matarić. Temporal occupancy grids: a method for clas-

sifying spatio-temporal properties of the environment. In IEEE/RSJ Int. Conf on Intelligent

Robots and Systems, pages 409–414, 2002.

[3] C. G. Atkeson and J. C. Santamaria. A comparison of direct and model-based reinforcement

learning. In International Conference on Robotics and Automation, pages 3557–3564, 1997.

[4] G. P. Baerends and J. P. Kruijt. Stimulus selection. In R. A. Hinde and J. Stevenson-Hinde,

editors, Constraints on Learning: Limitations and Predispositions, pages 23–50. Academic

Press, London, 1973.

[5] R. Baeza-Yates and B. Riebeiro-Neto. Modern Information Retrieval. ACM Press, 1999.

[6] M. Becker, E. Kefalea, E. Maël, C. von der Malsburg, M. Pagel, J. Triesch, J. C. Vorbrüggen,

R. P. Würtz, and S. Zadel. GripSee: A gesture-controlled robot for object perception and

manipulation. Autonomous Robots, 6(2):203–221, 1999.

[7] S. Benson. Inductive learning of reactive action models. In Int. Conf. on Machine Learning,

pages 47–54, 1995.

103

[8] I. Biederman. An Invitation to Cognitive Science, volume Visual Cognition, chapter 4, pages

121–165. MIT Press, second edition, 1995.

[9] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun. Towards object mapping in non-stationary

environments with mobile robots. In IEEE/RSJ Int. Conf on Intelligent Robots and Systems,

pages 1014–1019, 2002.

[10] P. Bloom. How Children learn the meaning of words. The MIT Press, 2000.

[11] P. Bloom. Précis of How Children Learn the Meanings of Words. The Behavioral and Brain

Sciences, 24(6):1095–1103, 2001.

[12] M. Bowling, D. Wilkinson, and A. Ghodsi. Subjective mapping. In Proc. 21st National

Conf. on Artificial Intelligence (AAAI-2006), pages 1569–1572, 2006.

[13] M. J. Brady and D. Kersten. Bootstrapped learning of novel objects. Journal of Vision,

3:413–422, 2003.

[14] J. Braun. Intimate attention. Nature, 408(6809):154–155, Nov 9 2000.

[15] A. S. Bregman. Auditory Scene Analysis: The Perceptual Organization of sound. The MIT

Press, Cambridge, Massachusetts, 1990.

[16] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

[17] R. Campbell and J. Krumm. Object recognition for an intelligent room. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 691–697, July 2000.

[18] S. Carey and F. Xu. Infants’ knowledge of objects: beyond object files and object tracking.

Cognition, 80(1–2):179–213, June 2001.

[19] P. Cavanagh, A. T. Labiancaa, and I. M. Thornton. Attention-based visual routines: sprites.

Cognition, 80(1–2):47–60, June 2001.

104

[20] H. Chaput. The Constructivist Learning Architecture: A Model of Cognitive Development

for Robust Autonomous Robots. PhD thesis, Dept. of Computing Sciences, University of

Texas at Austin, 2004.

[21] A. Chella, M. Frixione, and S. Gaglio. Understanding dynamic scenes. Artificial Intelli-

gence, 123(1–2):89–132, 2000.

[22] G. K. Cheung, S. Baker, and T. Kanade. Visual hull alignment and refinement across time:

A 3D reconstruction algorithm combing shape-from-silhouette with stereo. In Proc. IEEE

Computer Vision and Pattern Recognition, 2003.

[23] Y. Choe and N. H. Smith. Motion-based autonomous grounding: Inferring external world

properties from encoded internal sensory states alone. In Proc. Nat. Conf. Artificial Intelli-

gence (AAAI-2006), 2006.

[24] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver,

N. Enomoto, O. Hasegawa, P. Burt, and L. Wixson. A system for video surveillance and

monitoring. Technical Report CMU-RI-TR-00-12, The Robotics Institute, Carnegie Mellon

University, 2000.

[25] M. Cooke. Modelling auditory processing and organisation. Cambridge University Press,

1994.

[26] S. Coradeschi and A. Saffiotti. Perceptual anchoring of symbols for action. In Proc. 17th

Int. Joint Conf. on Artificial Intelligence (IJCAI-01), pages 407–412, 2001.

[27] B. Curless and M. Levoy. A volumetric method for building complex models from range

images. In Proc. 23rd Annual Conf. on Computer graphics and interactive techniques, 1996.

[28] N. Davies and M. de L. Brooke. An experimental study of coevolution between the cuckoo

cuculus canorus and its hosts. Part I. host egg discrimination. J. of Anim. Ecol., 59:207–224,

1989.

105

[29] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor. 3D statistical

shape models using direct optimisation of description length. In Computer Vision - ECCV

2002 Part III, number 2352 in LNCS, pages 65–81, 2002.

[30] G. L. Drescher. Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT

Press, Cambridge, MA, 1991.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons, Inc.,

New York, second edition, 2001.

[32] P. Duygulu, K. Barnard, J. de Freitas, and D. Forsyth. Object recognition as machine trans-

lation: Learning a lexicon for a fixed image vocabulary. In Computer Vision - ECCV 2002

Part IV, number 2353 in LNCS, pages 97–112, 2002.

[33] S. Edelman. Representation and recognition in vision. MIT Press, Cambridge, MA, 1999.

[34] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping

without predetermined landmarks. In Proc. 18th Int. Joint Conf. on Artificial Intelligence

(IJCAI-03), pages 1135–1142. Morgan Kaufmann, 2003.

[35] C. H. Esteban and F. Schmitt. Silhouette and stereo fusion for 3D object modeling. Computer

Vision and Image Understanding, pages 367–392, 2004.

[36] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press,

Cambridge, MA, 1993.

[37] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-

invariant learning. In Proc. IEEE Computer Vision and Pattern Recognition, 2003.

[38] S. Finney, N. H. Gardiol, L. P. Kaelbling, and T. Oates. The thing that we tried didn’t work

very well: Deictic representation in reinforcement learning. In ICML-2002 Workshop on

Development of Representations, July 2002.

106

[39] J. R. Flanagan, P. Vetter, R. S. Johansson, and D. M. Wolpert. Prediction precedes control

in motor learning. Current Biology, 13:146–150, Jan 2003.

[40] W. S. Geisler and R. L. Diehl. A Bayesian approach to the evolution of perceptual and

cognitive systems. Cognitive Science, 27(3):379–402, May-June 2003.

[41] B. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage project: Tools for multi-robot

and distributed sensor systems. In Proceedings of the 11th International Conference on

Advanced Robotics, pages 317–323, June 2003.

[42] Y. Gil. Acquiring Domain Knowledge for Planning by Experimentation. PhD thesis,

Carnegie Mellon University, 1992.

[43] M. A. Goodale. Visual Cognition, volume 2 of An Invitation to Cognitive Science, chapter 5:

The Cortical Organization of Visual Perception and Visuomotor Control. MIT Press, 1995.

[44] R. Graham. An efficient algorithm for determining the convex hull of a finite planar set.

Information Processing Letters, 1:132–133, 1972.

[45] K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of

features. Journal of Machine Learning Research, 8:725–760, Apr 2007.

[46] J.-S. Gutmann and C. Schlegel. AMOS: comparison of scan matching approaches for self-

localization in indoor environments. In Proceedings of the 1st Euromicro Workshop on

Advanced Mobile Robots, pages 61–67. IEEE Computer Society Press, 1996.

[47] D. Hähnel, S. Thrun, and W. Burgard. An extension of the ICP algorithm for modeling

nonrigid objects with mobile robots. In Proc. 18th Int. Joint Conf. on Artificial Intelligence

(IJCAI-03), pages 915–920, 2003.

[48] K. Hall and G. B. Schaller. Tool-using behavior of the california sea otter. Journal of

Mammalogy, 45(2):287–298, May 1964.

107

[49] S. Hart, R. Grupen, and D. Jensen. A relational representation for procedural task knowl-

edge. In Proc. 20th National Conf. on Artificial Intelligence (AAAI-2005), 2005.

[50] J. J. Hopfield. Olfactory computation and object perception. Proc. Natl. Acad. Sci. USA,

88:6462–6466, 1991.

[51] I. Horswill. Tagged behavior-based architectures: Integrating cognition with embodied ac-

tivity. IEEE Intelligent Systems, 16(5):30–38, September/October 2001.

[52] M. Isard and A. Blake. CONDENSATION – conditional density propagation for visual

tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[53] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing

Surveys, 31(3):264–323, Sep 1999.

[54] O. C. Jenkins and M. J. Matarić. Deriving actions and behavior primitives from human

motion data. In IEEE/RSJ Int. Conf on Intelligent Robots and Systems, pages 2551–2556,

2002.

[55] N. Jojic and B. J. Frey. Learning flexible sprites in video layers. In Proc. IEEE Computer

Vision and Pattern Recognition, volume I, pages 199–206, 2001.

[56] W. Köhler. The mentality of apes. Routledge and Kegan Paul, London, 1925.

[57] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? In

Computer Vision - ECCV 2002 Part III, number 2352 in LNCS, pages 65–81, 2002.

[58] K. P. Körding and D. M. Wolpert. Bayesian integration in sensorimotor learning. Nature,

427:244–247, 2004.

[59] M. Kubovy and D. V. Valkenburg. Auditory and visual objects. Cognition, 80(1–2):97–126,

June 2001.

108

[60] B. Kuipers and P. Beeson. Bootstrap learning for place recognition. In Proc. 18th National

Conf. on Artificial Intelligence (AAAI-2002), pages 174–180. AAAI/MIT Press, 2002.

[61] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local metrical and global

topological maps in the hybrid spatial semantic hierarchy. In IEEE Int. Conf. on Robotics &

Automation (ICRA-04), 2004.

[62] B. J. Kuipers. The Spatial Semantic Hierarchy. Artificial Intelligence, 119:191–233, 2000.

[63] S. M. LaValle and J. J. Kuffner, Jr. Randomized kinodynamic planning. International

Journal of Robotics Research, 20(5):378–400, May 2001.

[64] S. J. Lederman and R. L. Klatzky. The intelligent hand: An experimental approach to human

object recognition and implications for robotics and “AI”. AI Magazine, 15(1), 1994.

[65] J. J. Leonard and H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot Naviga-

tion. Kluwer Academic Publishers, Boston, 1992.

[66] F.-F. Li, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning

of object categories. In Proc. IEEE Int. Conf. on Computer Vision, pages 1134–1141, 2003.

[67] M. Livingstone and D. Hubel. Segregation of form, color, movement and depth: Anatomy,

physiology, and perception. Science, 240(4853):740–749, May 6 1988.

[68] J. Mandler. The Foundations of Mind: Origins of Conceptual Thought. Oxford University

Press, 2004.

[69] D. Mareschal and M. H. Johnson. The “what” and “where” of object representations in

infancy. Cognition, 88(3):259–276, 2003.

[70] D. Marr. Vision. W. H. Freeman, San Francisco, 1982.

[71] D. McFarland. Animal Behaviour. Longman Scientific and Technical, second edition, 1993.

109

[72] T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, 1997.

[73] J. Modayil and B. Kuipers. Bootstrap learning for object discovery. In IEEE/RSJ Int. Conf

on Intelligent Robots and Systems, pages 742–747, 2004.

[74] J. Modayil and B. Kuipers. Autonomous shape model learning for object localization and

recognition. In IEEE International Conference on Robotics and Automation, pages 2991–

2996, 2006.

[75] J. Modayil and B. Kuipers. Autonomous development of a grounded object ontology by a

learning robot. In Proc. 22nd Conf. on Artificial Intelligence (AAAI-2007), 2007.

[76] H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, pages

61–74, Summer 1988.

[77] J. R. Movellan. An Infomax controller for real time detectin fo social contingency. In Proc.

of the 4th IEEE Int. Conf. on Development and Learning, pages 19–24, 2005.

[78] Y. Munakata, L. R. Stantos, E. S. Spelke, M. D. Hauser, and R. C. O’Reilly. Visual represen-

tations in the wild: How rhesus monkeys parse objects. Journal of Cognitive Neuroscience,

13(1):44–58, 2001.

[79] L. Natale. Linking Action to Perception in a Humanoid Robot: A Developmental Approach

to Grasping. PhD thesis, LIRA-Lab, DIST, University of Genoa, Italy, 2004.

[80] M. Nicolescu and G. Medioni. Perceptual grouping from motion cues using tensor voting

in 4-D. In Computer Vision - ECCV 2002 Part III, number 2352 in LNCS, pages 423–437,

2002.

[81] T. Oates and P. Cohen. Searching for planning operators with context-dependent and prob-

abilistic effects. In AAAI96, pages 863–868, 1996.

[82] L. Olsson, C. Nehaniv, and D. Polani. From unknown sensors and actuators to actions

grounded in sensorimotor perceptions. Connection Science, 18(2):121–144, June 2006.

110

[83] I. M. Pepperberg. The Alex studies : cognitive and communicative abilities of grey parrots.

Harvard University Press, 1999.

[84] D. Philipona, J. K. O’Regan, and J.-P. Nadal. Is there something out there? Inferring space

from sensorimotor dependencies. Neural Computation, 15:2029–2049, 2003.

[85] D. M. Pierce and B. J. Kuipers. Map learning with uninterpreted sensors and effectors.

Artificial Intelligence, 92:169–227, 1997.

[86] J. Provost. Reinforcement Learning in High-Diameter Environments (to appear). PhD thesis,

University of Texas at Austin, 2007.

[87] J. Provost, B. Kuipers, and R. Miikkulanien. Developing navigation behavior through self-

organizing distinctive state abstraction. Connection Science, 18(2):159–172, 2006.

[88] M. G. Ross and L. P. Kaelbling. Learning static object segmentation from motion segmen-

tation. In Proc. 20th National Conf. on Artificial Intelligence (AAAI-2005), 2005.

[89] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002.

[90] B. Sanders, R. Nelson, and R. Sukthankar. The OD theory of TOD: The use and limits

of temporal information for object discovery. In Proc. 18th National Conf. on Artificial

Intelligence (AAAI-2002), pages 777–784, 2002.

[91] P. Schiller. Innate constituents of complex responses in primates. Psychol. Rev., 59:177–191,

1952.

[92] B. J. Scholl, Z. W. Pylyshyn, and J. Feldman. What is a visual object? Evidence from target

merging in multiple object tracking. Cognition, 80(1–2):159–177, June 2001.

[93] L. Shams and C. von der Malsburg. Acquisition of visual shape primitives. Vision Research,

42:2105–2122, 2002.

111

[94] W.-M. Shen and H. A. Simon. Rule creation and rule learning through environment explo-

ration. In IJCAI89, pages 675–680, 1989.

[95] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(8):888–905, 2000.

[96] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 593–600, 1994.

[97] J. M. Siskind. Grounding the lexical semantics of verbs in visual perception using force

dynamics and event logic. Journal of Artificial Intelligence Research, 15:31–90, 2001.

[98] W. Smith, S. Johnson, and E. Spelke. Motion and edge sensitivity in perception of object

unity. Cognitive Psychology, 46(1):31–64, 2002.

[99] E. S. Spelke. Principles of object perception. Cognitive Science, 14:29–56, 1990.

[100] M. Steedman. Formalizing affordance. In Proceedings of the 24th Annual Meeting of the

Cognitive Science Society, pages 834–839, Fairfax, VA, August 2002.

[101] L. Steels and F. Kaplan. AIBO’s first words : The social learning of language and meaning.

Evolution of Communication, 4(1), 2001.

[102] A. Stoytchev. Behavior-grounded representation of tool affordances. In IEEE International

Conference on Robotics and Automation (ICRA), pages 3071–3076, 2005.

[103] D. Stronger and P. Stone. Towards autonomous sensor and motor model induction on a

mobile robot. Connection Science, 18(2):97–119, 2006.

[104] Y. Sun and R. Fisher. Object-based visual attention for computer vision. Artificial Intelli-

gence, 146(1):77–123, 2003.

[105] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for non-

linear dimensionality reduction. Science, 290:2319–2323, 2000.

112

[106] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge, MA,

2005.

[107] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and

localization for mobile robots. Machine Learning, 31(1–3):29–53, 1998.

[108] S. Thrun, D. Fox, and W. Burgard. Monte Carlo localization with mixture proposal distri-

bution. In Proc. 17th National Conf. on Artificial Intelligence (AAAI-2000), pages 859–865.

AAAI Press/The MIT Press, 2000.

[109] R. Triebel and W. Burgard. Improving simultaneous localization and mapping in 3D us-

ing global constraints. In Proceedings of the Twentieth National Conference on Artificial

Intelligence (AAAI), 2005.

[110] J. van Lawick-Goodall. Tool-using in primates and other vertebrates. In D. S. Lehrman,

R. Hinde, and E. Shaw, editors, Advances in the Study of Behavior, volume 3. Academic

Press, New York, 1970.

[111] C.-C. Wang, C. Thorpe, and S. Thrun. Online simultaneous localization and mapping with

detection and tracking of moving objects: Theory and results from a ground vehicle in

crowded urban areas. In IEEE International Conference on Robotics and Automation, pages

842–849, 2003.

[112] A. A. S. Weir, J. Chappell, and A. Kacelnik. Shaping of hooks in new Caledonian crows.

Science, 297(5583):981, Aug 9 2002.

[113] Y. Weiss. Bayesian motion estimation and segmentation. PhD thesis, MIT, May 1998.

[114] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In

Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,

pages 189–196, 1995.

113

[115] C. Yu, D. H. Ballard, and R. N. Aslin. The role of embodied intention in early lexical

acquisition. In Proc. 25th Annual Meeting of the Cognitive Science Society, 2003.

[116] L. Zettlemoyer, H. Pasula, and L. P. Kaelbling. Learning planning rules in noisy stochastic

worlds. In Proc. 20th National Conf. on Artificial Intelligence (AAAI-2005), pages 911–918,

2005.

114

Vita

Joseph Modayil was born in Edmonton, Canada. He received a B.Sc. and M.Sc. in Mathematics at

the University of Alberta. He then moved to the warmer climes of Austin to pursue more practical

research on the cognitive development of intelligent robotics under the supervision of Ben Kuipers.

He is currently pursuing snow, which he expects to find in Rochester.

Permanent Address: 4505 Avenue A

Austin, TX, 78751

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the American
Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das, Department of
Computer Sciences, The University of Texas at Austin, and extended by Bert Kay, James A. Bednar, and Ayman El-
Khashab.

115

