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Abstract— Mobile robots do not adequately represent the
objects in their environment; this weakness hinders a robot’s
ability to utilize past experience. In this paper, we describe a
simple and novel approach to create object shape models from
range sensors. We propose an algorithm that defines angular
constraints between multiple sensor scans of an object. These
constraints are used to align the scans, creating a maximally
coherent object shape model. We demonstrate the utility of this
shape model, consisting of scans and poses, for both object
recognition and localization. The results are accurate to within
sensor precision.

I. INTRODUCTION

Several methods have been developed for mobile robots
equipped with range sensors to learn the shape of the en-
vironment. However, objects inhabiting that environment are
typically not adequately individuated, characterized, or rep-
resented, distinct from the static environment. If an object
moves, methods exist [1], [2] for treating its sensor image as
noise and preventing it from interfering with accurate mapping
of the environment. If an object does not move, it is treated
as part of the environment and included in the map.

Our research goal is to show how a robot agent without prior
knowledge of objects can learn from its own sensorimotor
experience to separate meaningful individual objects from the
surrounding environment, to form useful categories of objects,
and to learn how to perform reliable actions involving these
objects and categories. Once the agent can reliably predict the
results of actions, it can form plans to achieve future goals.

In prior work [3], we showed that individual moving objects
could be separated from the static environment. The occupancy
grid representation for local space can distinguish among cells
that are reliably occupied, reliably empty, and dynamic. Sensor
returns falling in dynamic cells can be clustered in space, then
tracked over time, to yield prototype objects. A preliminary
shape model and categorization of those object instances was
created. Notice that this is a form of bootstrap learning, since
it does not rely on prior knowledge of an object ontology,
object categories, or individual objects in the world.

In this paper, we show how coherent models of the shapes
of objects can be created and used to reliably recognize objects
and to localize the object in the robot’s egocentric reference
frame.

We propose an algorithm that defines angular constraints
between multiple sensor scans of an object. These constraints
are used to align the scans, creating a maximally coherent

object shape model. This shape model, consisting of scans and
poses, is useful for both object recognition and localization.

The problem of aligning scans occurs in different guises.
Most commonly in robotics, scan-alignment is required for
mapping and localization. These localization algorithms typi-
cally use some combination of scan-matching (matching points
in scans to one another [4]), feature matching (Kalman filter
approaches [5]), and grid based approaches (matching the
points in a scan to an occupancy grid [6]). In contrast to these
methods, the approach described in this paper relies on the
angular constraints of a scan that bound the space occupied
by the object.

To clarify the distinction between using this approach and
the point/feature/grid matching algorithms, consider the fol-
lowing thought experiment. Imagine using a range sensor to
observe a leafy bush from several distinct poses in an other-
wise featureless environment. Moreover, assume that no two
scans observe data from the same part of the bush. This type
of data from “porous” objects can cause significant problems
for scan matching and feature based approaches. Probabilistic
occupancy grid mapping approaches may create a fuzzy image
given an appropriate likelihood function. However, the task
should not be difficult to solve since the angle and the distance
to the bush are tightly bounded. This is the underlying intuition
behind the use of angular constraints.

The paper is organized as follows. Section two briefly
describes background motivations to object learning for robots.
The following section describes the process of aligning sensor
scans into a shape model. Section four describes the use of
shape models for recognition and localization. Section five
describes the experimental results. The final sections describe
related work and our conclusions.

II. BACKGROUND ON OBJECT LEARNING FOR MOBILE
ROBOTS

Finding objects in the environment is useful for interacting
with the world. Using objects, it becomes simple to describe
several of the interactions that a robot could learn in its
environment, such as pushing a chair, hiding in a box, or
putting garbage in the trash. Prior to learning these actions,
the robot must learn to perceive and represent these objects.

Research into object representations falls broadly into three
categories. Appearance-based models represent the sensory
impression of the object, storing sense impressions from par-
ticular viewpoints. Appearance-based models are particularly



important in vision [7], [8]. Structural models represent the
geometry of the object. A geometric shape model permits
the robot to reason about space, and to find consistent con-
figurations of objects, namely those where the objects are
non-intersecting. Structural models can also support object
recognition and object localization (estimating the object’s
pose in a robot centered reference frame). Finally, functional
models capture the interactions of the object with a robot or
human agent, thus yielding object affordances [9]. For this
paper we only develop a structural model of the object’s shape.
Developing the other aspects of an object representation is an
ongoing but separate task.

Although work on mapping has created a range of algo-
rithms and data structures for representing the robot’s sur-
roundings, these techniques do not adequately address the
needs of object perception. Range sensors may only receive
a few readings from an object at a distance, and this data
sparsity can cause SLAM techniques to fail. An object may
be moved by external forces while being observed by the
robot, so tight motion models may not be available. Confronted
with these problems, particle based localization methods can
not adequately search the space of poses, and point based
scan matching techniques lack sufficient data. Feature-based
approaches are limited by the nearly non-existent texture in
range sensor data. Faced with these weaknesses, a new scan-
alignment technique is desirable for learning object shape
models.

III. USING ANGULAR CONSTRAINTS FOR
SCAN-ALIGNMENT

Given a set of sensor scans of an object, the task of scan-
alignment is to infer a pose for each scan to create a coherent
shape model. (Figure 1(a)). We assume that the robot has
a range sensor that returns the distance to obstacles along
different angles. Moreover, we assume that the robot is capable
of identifying the distance measurements that are reflected
from an object instead of the environment, for example by
background subtraction [10], [3].

We assume that the sensor takes readings at the angles in
Θ, so the distance readings of a scan S are given by

rS : Θ → <,

and the categorization of each endpoint (of falling on the
object or not) is given by

catS : Θ → {True, False}.

A shape model is defined as a set of scans (indexed in Λ)
with their associated poses:

M = {(S, pS)|S ∈ Λ}.

For a given pose, define xS(pS) to be the Cartesian coordinates
of the scan endpoints that fall on the object, namely

xS(pS) ≡ {T (pS , rS(θ), θ)| θ ∈ Θ, catS(θ) = True}
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Fig. 1. (a) An object being observed from two different poses generates
the sensor scans S and T. Each scan has readings from the object (points)
and readings from the environment (rays). The task of scan-alignment is to
infer poses for the scans when the object is unknown. (b) For each scan, we
define the extreme left and right angles that bound the object. We also define
the extreme left and right angles at which the object is observed. The radial
projection of the object on the observation pose can not extend beyond the
bounding angles, and must extend to the object angles.
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Fig. 2. (a) Exterior constraints: Since all points on the object must lie within
the constraints of T, the pose of S must change by (at least) the vector eL,S,T ,
and is formally defined in Equation 1. (b) Interior constraints: For a convex
object, at least one point from T should come between the boundary and
object rays of S. The right side is chosen here because pT is on the non-
object side of the right bounding angle. The interior error vector is denoted
by eI,S,T and is defined in Equation 2.

where the function T (p, r, θ) is a transformation from polar
coordinates (r, θ) with an origin at the pose p to Cartesian
coordinates, namely

T ((x, y, θ1), r, θ2) ≡ (x+ r cos(θ), y + r sin(θ)),

where θ ≡ θ1 + θ2.
From the sensor scan S, we define the left and right limits

of the object’s extent (shown in Figure 1(b)).

LeftObjectS ≡ max{θ ∈ Θ|catS(θ)}

RightObjectS ≡ min{θ ∈ Θ|catS(θ)}

LeftBoundS ≡ successor(LeftObjectS ,Θ)

RightBoundS ≡ predecessor(RightObjectS ,Θ)

The algorithm ignores scans for which the angles
LeftBoundS or RightBoundS do not exist. A line is defined
from the pose p at each of the above angles. These lines
are denoted by LOS(p), ROS(p), LBS(p), and RBS(p). The



scan endpoint at LeftObjectS(p) is denoted LOS(p) and the
endpoint along RightObjectS(p) is ROS(p).

Given an object O, we want to constrain the space it
occupies. Using a pose p as the origin of a radial coordinate
system, we define the angle from p to a point q ∈ <2 by
ψp(q). The angular projection of each point on the object is
constrained between LeftBoundS and RightBoundS , i.e.

LeftBoundS > ψp(o) > RightBoundS ,

for all points o ∈ O. Thus, the lines LBS(pS) and RBS(pS)
constrain the space occupied by the object. Hence, given two
scans S, T of the object taken from different poses, as shown
in Figure 1(a), the bounding lines LBT (pT ) and RBT (pT )
constrain xS(pS), the scan endpoints of S.

The above formulation is correct when there is no inaccu-
racy in the sensor readings. Real sensors suffer from multiple
limitations including discretization, precision limits, and noise.
Hence, we want to define and minimize the violations of
these constraints. First, define the set of vectors representing
constraint violations of the left bound of T ,

U ≡ {vec(x,LBT (pT )) |x ∈ xS(pS),
ψpT

(x) > LeftBoundT } ∪ {(0, 0)}

where vec(p, L) denotes the shortest length vector connecting
the point p with the line L. Using this, define the left exterior
error vector as the largest in U (see Figure 2(a))

eL,S,T (pS , pT ) ≡ arg max
u∈U

||u||. (1)

The right exterior error vector (eR,S,T ) is defined correspond-
ingly.

Even if all exterior error vectors are zero, the scans may
be significantly misaligned. Figure 2(b) demonstrates how no
point in xT lies between the lines LOS(pS) and LBS(pS).
Although this object shape is not impossible (as demonstrated
in Figure 1(a)), it is improbable. Thus, we want to minimize
the distance of the point set xT from the region between these
two lines (LOS(pS) and LBS(pS)). The exterior constraint
vector handles points on the wrong side of LBS(pS) so only
LOS(pS) remains to be considered.

Therefore we define an interior error vector as the minimum
length translation required by pT so that some point in
xT (pT ) will fall on to the object support ray LOS(pS) (see
Figure 2(b)). Assume that ψpS

(pT ) < RightBoundS . Then,
using

V ≡ {vec(q,ROS) | q ∈ xT , ψpS
(q) > RightObjectS }

and

W ≡ {q | q ∈ xT , ψpS
(q) ≤ RightObjectS},

we define the interior error as

eI,S,T ≡
{

arg minv∈V ||v|| if W = ∅
(0, 0) otherwise. (2)

The above definition is used only when ψpS
(pT ) <

RightBoundS . Otherwise, the interior error vector is defined
similarly using the left boundaries.

(a) (b)
Fig. 3. Scans from an object (a) before and (b) after scan-alignment. Each
triangle represents a pose and the two emanating rays indicate the left and
right bounds. Scans are aligned by minimizing BV in Equation 3.

Given all the error vectors {eL, eR, eI}, scan-alignment
becomes the task of finding poses such that all vectors are
as close to zero as possible. This is accomplished by defining
an objective function for boundary violations

BV (M) ≡
∑
S∈Λ

∑
T∈Λ

||eL,S,T (pS , pT )||2+

||eR,S,T (pS , pT )||2 + ||eI,S,T (pS , pT )||2, (3)

and then using a numerical optimizer to minimize BV by
perturbing the poses. The resulting figures are visually accurate
(Figure 3).

IV. RECOGNITION AND LOCALIZATION

As mentioned in Section II, object recognition and localiza-
tion are important for pragmatic reasons. Object recognition
allows a robot to define a context for its current situation,
and thus generalize from past experience. Object localization
allows the robot to reason about the configuration of the
environment, which is necessary for planning and acting with
objects in continuous worlds.

Fortunately, the tasks of object recognition and localization
may be solved using the same error minimization technique
used for scan-alignment. The tasks can be split up into three
categories: (1) object recognition without model-alignment
using features of an object instance, (2) object recognition by
finding the best shape model-alignment of the instance to the
canonical model, and (3) localizing the pose of the categorical
shape model from a single scan of the object instance (object
localization).

Recognition by features without model-alignment can sig-
nificantly reduce the computational load of object recognition.
Aligning shape models can be computationally expensive,
particularly if model-alignment must be performed for each
object category. Computing coordinate-invariant features of an
object instance and using the features to categorize the object
will significantly simplify the recognition.

First, given a shape model M we define the hull as the
convex hull of the object endpoints.

hull(M) = ConvexHull(∪S∈ΛxS(pS)).



Since the hull is a polygon, computing the area, perimeter and
center of mass are straightforward.

For object recognition without shape model-alignment, we
use the hull features of area and perimeter. These can be used
for learning names for objects (supervised learning) or for
learning to form object categories by clustering (unsupervised
learning). The utility of a feature is inversely proportional to its
variance. Ideally, the measurement varies less between object
instances from the same category than between categories.

For some tasks, merely recognizing the object is insufficient.
The robot may need to find the transformation between the
category model and instance model to apply knowledge from
the object category, for example to identify the “front” of
the object. Aligning the shape models also permits more
discriminating recognition than is available through features
alone.

Model-alignment is performed by minimizing the BV error
between the category shape-model, M and instance shape-
model N , namely

fC(M,N) ≡ min
p
BV (M ∪ t(N, p)) (4)

where t(N, p) translates the pose of each scan in N by p.
To speed convergence of the numerical optimizer, the initial
value for p is selected so the center of mass of the hull of N
coincides with that of M , so only the angle needs optimization.

The final task we consider is object localization. When
an object is moving but not under the robot’s direct control,
the robot may know the approximate position of the object’s
pose based on prior observations, but may need to know the
object’s precise pose or position to act appropriately. We define
this task as object localization. Localization is also solved by
minimizing fC , where N contains the single scan. However,
we assume an initial estimate of the pose is available. Also,
since N is incomplete, the optimization occurs over all three
dimensions of the pose p. Localization accuracy is limited for
objects with rotational symmetries.

V. EVALUATION

The robot autonomously collected observations of selected
objects that can be easily confused for one another. The robot
was a Magellan Pro equipped with a SICK LMS 200. The
sensor returned the distance to obstacles with a one centimeter
precision, over a 180 degree viewing angle, with one reading
per degree. A simplex algorithm from the scipy library for
python was used for numerical optimization.

The robot collected data by circling around an object se-
lected by the experimenter. Five objects were selected from our
lab, and each object was observed five times. The following
subsections describe how this data was used to evaluate model
construction, recognition and localization.

A. Model construction

The quality of the scan-alignment is good both visually
and quantitatively. The scans for one object are shown in
Figure 3, showing both the raw scan-alignment provided by the
robot’s map-localization, and the aligned scans. The aligned
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Fig. 4. Pictures of the objects with labels are given above. Each object is
observed by the range sensor from approximately 40 cm above the ground
plane. Scans of an object are autonomously gathered by the robot. For each
object observation, the endpoints of the aligned scans are shown below the
object’s image.

scan endpoints for all observed object instances are shown
in Figure 4. A comparison of the BV error before and after
scan-alignment is shown in graphs in Figure 5. Notably, the
maximum external error is less than a centimeter, which is the
sensor’s precision.

An explanation is required for the effectiveness of a generic
optimizer for scan-alignment. One caveat is that the starting
poses arrive from robot map-localization in a known en-
vironment. This yields accurate orientations, but can suffer
from visible errors in translation. For fixed orientations, the
objective function is a piecewise smooth quadratic function,
a good property for most optimization techniques. Allowing
the angle to vary implies BV is no longer quadratic in theta,
but the objective function is still differentiable and the starting
values for theta are near the true value.

B. Recognition

Feature reliability for recognition without model-alignment
was measured by computing the area and perimeter of all
objects, then computing variation within and between classes.
The results for feature reliability are shown in Figures 6 and
7. The first figure graphically demonstrates that most of the



fC error (min–max) recycle-bin big-chair garbage-can red-chair dell-box
recycle-bin 0.001–0.004
big-chair 1.412–2.005 0.001–0.005
garbage-can 0.013–0.039 1.662–2.643 0.001–0.005
red-chair 0.479–0.690 0.193–0.376 0.609–0.986 0.001–0.003
dell-box 2.775–4.532 0.239–0.439 3.073–5.632 0.958–1.789 0.002–0.006

Fig. 8. Residual error after shape model-alignment. Models are aligned by mining fC in Equation 4. The performance of model-alignment is measured by
the range of fC error (minimum–maximum). The fC error can successfully discriminate between all tested objects.

Fig. 5. Modeling error measured by constraint violation. The graphs compare
the error in the raw data with the errors after scan-alignment. The errors after
scan-alignment are significantly smaller than the original data. The maximum
length of an exterior error vector is less than a centimeter, indicating that the
scans are aligned to within the sensor precision.

Fig. 6. Perimeter and area are shape features that can discriminate between
many object instances without shape model-alignment. Unsupervised learning
by clustering is even possible to form categories. All categories are well
separated except for recycle-bin and garbage-can. These categories can be
separated after model-alignment (Figure 8) but that is more computationally
expensive.

Feature Reliability Area σ Perimeter σ
recycle-bin 932 39 113.7 2.3
big-chair 3288 42 210.4 1.3
garbage-can 889 27 106.6 1.5
red-chair 2237 44 169.9 1.6
dell-box 4257 80 252.3 1.7

Fig. 7. Feature reliability for object recognition. The area (in cm2) and
perimeter (cm) along with their standard deviations. Note that the standard
deviation in perimeter is small, making it a particularly useful feature for
recognition.

objects are separable on the basis of either perimeter or area,
although the garbage-can and recycle-bin are confusable. The
table demonstrates that the variance in perimeter is largely
independent of object size, but the variance in area is signifi-
cantly larger.

Model-alignment for recognition was measured by compar-
ing all observations of instance of one class with all instance
from a second class (dropping self comparisons if both classes
are the same). The minimum and maximum errors were
measured and are shown in Figure 8. From the table, perfect
classification can be achieved using the fC-error with a single
threshold. Notably, fC-error does a better job than features
for discriminating between garbage-cans and recycling bins.
The use of fC-error for recognition is limited, because fC-
error cannot distinguish between objects that have the same
hull. Still, since minimizing fC-error provides shape model-
alignment, more detailed shape models can then be efficiently
employed if required.

C. Localization

Localization is evaluated in three steps. First, two instances
of the same object are aligned using fC error. Second, a
single scan from the second model is perturbed by a fixed
amount. Finally, the perturbed scan is localized against the
first model and subtracting the resulting pose difference from
the unperturned scan provides a measure of localization error.
The reported error measures the difference between object
pose estimates in the robot’s reference frame. The results
are tabulated in Figure 9. Relocalization error in position is
typically less than 1 cm, and never greater than 3 cm. After
localization, the maximum external error is less than 1 cm,
indicating the final poses are consistent with the shape-model.

VI. RELATED WORK

We have demonstrated the use of angular constraints to
solve the tasks of creating and using object shape models.
Moreover, we have quantified the performance of our ap-
proach, demonstrating that it operates at approximately the
precision of the sensor. Related work on shape modeling
has focused on somewhat different issues. Biswas et al [10]
demonstrate how occupancy grid models of an object’s shape
can be constructed. Angelov et al [11] have demonstrated
how articulated models can be constructed from dense 3D
range data. Neither of these papers evaluate the empirical
error of the resulting models, for recognition and localization.
Shape model algorithms in the graphics community can create



Error Localization fC

position θ BV max(eL, eR)
(m) (rad) (m2) (m)

recycle-bin 0.012 0.003 0.000 0.000
0.003 0.091 0.000 0.008
0.005 0.112 0.000 0.002
0.009 0.036 0.000 0.000

big-chair 0.006 0.043 0.001 0.006
0.005 0.034 0.001 0.006
0.003 0.006 0.001 0.007
0.023 0.137 0.001 0.008

garbage-can 0.005 0.006 0.000 0.005
0.008 0.110 0.000 0.001
0.006 0.159 0.000 0.000
0.009 0.121 0.000 0.000

red-chair 0.009 0.010 0.000 0.000
0.006 0.017 0.000 0.005
0.021 0.017 0.000 0.000
0.015 0.009 0.001 0.006

dell-box 0.011 0.290 0.001 0.006
0.010 0.034 0.001 0.006
0.006 0.087 0.001 0.006
0.006 0.125 0.001 0.006

Fig. 9. Localization error for each object after a perturbation of (0.1 m,
0.1 m , 0.1 rad). One instance of the object is taken as the canonical model.
From the each of the other four model-aligned instances of the object, a single
scan is perturbed by (0.1 m, 0.1 m , 0.1 rad) and then the scan is localized
to the model. The deviation between the pose after localization from the
original pose is used to define a positional and angular error. Note that the
errors in position (xy) and the exterior vectors are small (typically less than
a centimeter).

dense three dimensional models of sculptures when given
more computation and data [12], but do not address object
recognition or localization.

The idea of using geometric constraints in 3D mapping has
been explored for buildings [13]. Similar ideas for inferring
object structure from silhouettes or shadows have been pursued
in vision, typically without the use of range information, but
with notable exceptions. Esteban and Schmitt combine stereo
with silhouettes to model objects in three dimensions [14],
and a similar approach is taken in [15]. Both approaches
provide a solution similar to the one in this paper for three
dimensions but neither empirically quantifies the errors in
model construction, recognition, and localization.

VII. CONCLUSIONS AND FUTURE WORK

The primary idea in this paper is that the underlying task in
object shape model construction, recognition, and localization
can be solved by minimizing violations of angular constraints.
Scans are aligned by constraining the object data in one
scan using bounds from other scans. We have quantified
the effectiveness of this approach by measuring the residual
errors. Moreover, we have shown that these errors are of
approximately the same magnitude as the sensor precision.

In future work, we will examine using the same approach

to 3D stereo vision data. Further work will use object local-
ization to facilitate mining a robot’s experience for interesting
behaviors and control[16].
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