
Developing navigation behavior through

self-organizing distinctive state abstraction

Jefferson Provost∗, Benjamin J. Kuipers, and Risto Miikkulainen
Artificial Intelligence Lab

The University of Texas at Austin
1 University Station C0500

Austin, TX 78712 USA
{jp,kuipers,risto}@cs.utexas.edu

Abstract

A major challenge in reinforcement learning research is to extend meth-
ods that have worked well on discrete, short-range, low-dimensional prob-
lems to continuous, high-diameter, high-dimensional problems, such as
robot navigation using high-resolution sensors. Self-Organizing Distinctive-
state Abstraction (SODA) is a new, generic method by which a robot in a
continuous world can better learn to navigate by learning a set of high-level
features and building temporally-extended actions to carry it between dis-
tinctive states based on those features. A SODA agent first uses a self-
organizing feature map to develop a set of high-level perceptual features
while exploring the environment with primitive, local actions. The agent
then builds a set of high-level actions composed of generic trajectory-
following and hill-climbing control laws that carry it between the states
at local maxima of feature activations. In an experiment on a simulated
robot navigation task, the SODA agent learns to perform a task requiring
300 small-scale, local actions using as few as 9 new, temporally-extended
actions, significantly improving learning time over navigating with the
local actions.

Keywords: Developmental Robotics, Self-organization, Reinforcement learn-
ing, Robot navigation.

1 Introduction

Modern robots are endowed with rich, high-dimensional sensory systems, provid-
ing measurements of a continuous environment. In addition, many important
real-world robotic tasks have high diameter, that is, their solutions require a

∗Corresponding author.

1

large number of primitive actions by the robot, for example, navigating to dis-
tant locations using primitive motor control commands. Reinforcement learn-
ing (RL) methods show promise for automatic learning of robot behavior, but
extending these methods to high-dimensional, continuous, high-diameter prob-
lems remains a major challenge. Thus, the success of RL on real-world tasks
still depends on human analysis of the robot, environment, and task to provide
a useful set of perceptual features and an appropriate decomposition of the task
into subtasks. For a learning agent to be truly autonomous, however, the ‘hard
part’ of learning ultimately needs to be performed by the agent, rather than the
human engineer.

Self-Organizing Distinctive-state Abstraction (SODA) is a new method for
automatic discovery of high-level perceptual features and large-scale actions for
learning to navigate in continuous environments. This paper presents a first
implementation of the algorithm in which the features are learned and the high-
level action policies are specified by generic control laws based on those features.
The control laws encode no specific information about the robot’s sensorimotor
system, environment, or task, yet the new actions significantly speed learning on
a high-diameter navigation task. The implementation is therefore a significant
step towards a generic, autonomous learning agent for robot navigation.

Given high-dimensional, continuous-valued sensory input, and continuous
motor output, SODA works as follows:

1. Learn a set of high-level perceptual features that define distinctive states
in the environment by training a Self-organizing Feature Map (Kohonen,
1995) while exploring the environment with primitive actions.

2. Construct a set of high-level actions that carry the robot from one distinc-
tive state to another using generic trajectory-following and hill-climbing
control laws.

3. Learn policies for high-diameter tasks through reinforcement learning in
the abstracted space of high-level features and actions.

In order for the control-laws to work, SODA relies on the assumption that the
world is continuous, i.e. small actions generally induce small changes in sensor
values. This assumption is usually valid in robotic navigation.

Spatial navigation is a foundational domain of common-sense knowledge,
and a specific goal of this work is investigation of how an agent can learn to
navigate. As a common-sense knowledge domain, spatial navigation is involved
in the solution of many day-to-day problems by humans, and animals, and is
essential for mobile robotics, but SODA alone is not intended to learn task
decomposition for complex ‘meta-navigational’ tasks (e.g making a sandwich),
although spatial navigation may be essential to completing such tasks.

This paper is organized as follows: Section 2 describes the foundations of
SODA in self-organizing maps, robot navigation, reinforcement learning and
temporal abstraction. Section 3 describes the SODA method in detail. Section 4
describes a experiment with the method that shows a large reduction in task

2

diameter using the learned high-level actions, and Section 5 discusses the results
of the experiment and describes ongoing and future work on SODA.

2 Background and Related Work

SODA is one of a number of efforts in the field of Developmental Robotics,
several more of which are described in this issue (Blank and Meeden, 2006;
Schlesinger, 2006; Kuipers et al., 2006; Schmidhuber, 2006; Stronger and Stone,
2006; Oudeyer and Kaplan, 2006; Gold and Scassellati, 2006; Olsson et al., 2006).
Developmental robotics comprises a broad class of approaches characterized
by self-organization and autonomous development of robot behavior. SODA
combines Self-Organizing Feature Maps, the action abstraction from the Spatial
Semantic Hierarchy (Kuipers, 2000), and reinforcement learning with temporal
abstraction. These ideas are described in more detail below.

2.1 Self-Organizing Feature Maps

SODA constructs perceptual features by using the sensory input as training
data for an unsupervised self-organizing feature map (SOM) (Kohonen, 1995)
that learns a set of sensory prototypes to represent its sensory experience.

A standard SOM consists of a set of units arranged in a lattice. The SOM
takes a continuous-valued vector x as input and returns one of its units as the
output. Each unit i has a weight vector wi of the same dimension as the input.
On the presentation of an input, each weight vector is compared with the input
using the Euclidean distance and a winner is selected as argmini ‖x−wi‖. The
winner and its lattice neighbors are then adjusted toward x.

The SOM has been used previously for learning perceptual features and state
representations in general robotics (Martinetz et al., 1990; Duckett and Nehm-
zow, 2000; Nehmzow and Smithers, 1991; Provost et al., 2001; Chaput et al.,
2003), as well as for learning state abstraction in RL (Smith, 2002; Toussaint,
2004). All these methods use the SOM as a clustering or vector quantization
method, ignoring the variation between the inputs that produce the same win-
ner. The SOM, however, can provide both a coarse-grained discretization of its
input space, and a set of continuous features (or ‘activations’) defined in terms
of the distance of the input from each unit. These properties divide the contin-
uous state space into a set of neighborhoods defined by their winning unit, each
containing a stable fixed point at the local maximum of the winner’s activation.
SODA uses this feature to construct actions, as described in the next section.

The implementation in this paper uses a variant on the standard SOM algo-
rithm called the Growing Neural Gas (GNG) (Fritzke, 1995), that begins with
a small set of units and inserts new units incrementally to minimize distortion
error. The GNG is able to continue learning indefinitely, adapting to changing
input distributions. This property makes the GNG especially suitable for robot
learning, since a robot experiences its world sequentially, and may experience
entirely new regions of the input space after an indeterminate period of explo-

3

ration. In addition, the GNG is not constrained by the pre-specified topology of
the SOM lattice. It learns its own topology in response to experience with the
domain. An abbreviated description of the GNG algorithm follows. The reader
should refer to the GNG reference (Fritzke, 1995) for details.

• Begin with two units, randomly placed in the input space.

• Upon presentation of an input vector x:

– Select the two closest units to x, denoted as q1 and q2, if these units
are not already connected in the topology, add a connection between
them.

– Move q1 toward x by a fraction of the distance between them. Move
all the topological neighbors of q1 toward x by a smaller fraction of
the respective distances.

– Add the squared error ||x− q1||2 to an accumulator associated with
q1.

– Decay the accumulated error of all nodes by a fraction of their values.

• Periodically, after every λ inputs, add a unit by selecting the existing unit
with the greatest accumulated error and the unit among its topological
neighbors with the most accumuated error; add new unit whose weight
vector is the average of the two selected units. Connect the new unit
to the two selected units, and select the original connection between the
two.1

The original GNG algorithm adds nodes until the network reached some fixed
criterion such as a maximum number of units. SODA uses a slightly modified
algorithm, Equilibrium-GNG, that has no fixed stopping criterion, but rather
only adds nodes if the average accumulated error over the network is greater
than a given threshold. Given a stationary input distribution, an Equilibrium-
GNG will grow until reaching an equilibrium between the rate of accumulation
of error (per unit) and the rate of decay. If the distribution changes to cover
a new part of input space, the error accumulated in the units nearest the new
inputs will increase above the threshold, and the network will grow again.

2.2 Abstract Actions in the Spatial Semantic Hierarchy

To create high-level actions, the agent uses the abstraction from the control level
to the causal level of the Spatial Semantic Hierarchy (SSH), a theory of repre-
sentation of large-scale space (Kuipers, 2000). At the control level, there are
two kinds of control laws: Trajectory-following (TF) control laws carry the robot
from one distinctive state into the neighborhood of another, while Hill-climbing
(HC) control laws carry the robot to a distinctive state within the neighborhood,

1The algorithm also contains provisions for deleting units and connections. For the details
the reader is referred to the original GNG paper.

4

DS1 DS2

Trajectory-following
Hill-
climbing

Figure 1: High-level Actions. The agent travels from one distinctive state
to another using an action with two parts: first a trajectory-following (TF)
controller drives the robot into the neighborhood of a new sensory prototype,
then a hill-climbing (HC) controller takes the robot to the local state that best
matches that prototype.

by climbing the gradient of some ‘distinctiveness measure’ on the sensory input
(See Figure 1). The causal level defines a set of high-level actions each consisting
of a TF/HC control-law pair that carries the robot from one distinctive state
to another. The benefit of these actions is twofold: the TF component gives
the actions extent, allowing the agent to move through its environment in large
steps, while the HC component reduces positional uncertainty by bringing the
robot to a fixed state at the end of each action.

2.3 Reinforcement Learning

SODA uses reinforcement learning to learn a policy over high-level, temporally
abstract actions. The next sections describe the RL algorithm used in the
experiments and the framework SODA uses for temporal abstraction in RL.

2.3.1 The Sarsa(λ) Algorithm

The feature and action construction methods in the proposed work are intended
to be agnostic with respect to the specific reinforcement learning algorithm used.
The experiment in Section 4 uses Sarsa(λ), described by Sutton and Barto
(1998). ‘Sarsa’ is an acronym for State, Action, Reward, State, Action; each
Sarsa update uses the states and actions from time t and the reward, state, and
action from time t+1, usually denoted by the tuple: 〈st, at, rt+1, st+1, at+1〉. In
the simplest form, Sarsa modifies the state-value estimate Q(s, a) as follows:

Q(st, at) ← Q(st, at) + α [rt+1 + γQ(st+1, at+1) − Q(st, at)] (1)

This rule updates the current Q value by a fraction of the reward after action
at plus the temporal difference of the discounted reward predicted from the
next state-action pair, Q(st+1, at+1) and the current estimate of Q(st, at). The
parameter 0 < α < 1 is a learning rate that controls how much of this value is
used. The parameter 0 < γ ≤ 1 is the discount factor. For episodic tasks, that

5

ultimately reach a terminating state, as in Section 4, γ = 1 is used, allowing
Q(s, a) to approach an estimate of the remaining reward for the episode.

The learning rule above only ‘backs-up’ the reward prediction by one time-
step on each step of the agent’s policy. With high-diameter tasks, this can mean
many episodes of interaction are required to propagate the reward prediction
to all states. For faster learning, Sarsa(λ) performs multiple-step backups by
keeping track of how long it has been since a state-action pair 〈s, a〉, has been
visited using an eligibility trace, e(s, a). The higher the value of e(s, a), the
more recently the agent experienced 〈s, a〉. The eligibility trace is then used to
update the value estimate for all recently-visited state-action pairs on each time
step. The updates operate as follows:

Each time a step is taken a step is taken, each eligibility trace is decayed
according to a parameter 0 ≤ λ < 1:

∀s, a : e(s, a) ← λe(s, a) (2)

Then the eligibility trace for the last state and action is updated:

e(st, at) ← 1 (3)

Finally the Q table is updated according to the eligibility trace:

∀s, a : Q(s, a) ← Q(s, a) + e(s, a) α [rt+1 + γQ(st+1, at+1) − Q(st, at)] (4)

Note that when λ = 0 this update rule reduces to the one step update, in
Equation (1).

2.3.2 Temporal Abstraction, SMDPs, and Options

The most widely-used formalism for representing hierarchical task decompo-
sition in reinforcement learning is the semi-Markov decision process (SMDP).
SMDPs extend MDPs by allowing actions with variable temporal extent, that
may themselves be implemented with RL, executed as ‘subroutines.’ Such pro-
cesses are ‘semi-Markov’ because the choice of primitive actions (at the lowest
level of the decomposition) depends not only on the environmental state, but
also on the internal state of the agent, as manifest in the choice of higher-level
actions.

One formalism for describing SMDPs is Options (Precup, 2000; Sutton et al.,
1999). Given an agent operating in an MDP with state set S and action set
A, the Options framework defines temporally-extended actions (‘options’) as
tuples 〈I, π, β〉, where the input set, I ⊆ S, is the set of states where the option
may be executed, the policy, π : S × A → [0, 1], determines the probability of
selecting a particular action in a particular state while the option is executing,
and the termination condition, β : S → [0, 1], indicates the probability that the
option will terminate in any particular state. For uniformity, primitive actions
are formalized as options so each SMDP is defined over options only. Each
primitive action a ∈ A can be seen as an option whose input set I is the set

6

of states where the action is applicable, whose policy π chooses a always, and
whose termination condition β always returns 1.

There has been considerable research into automatically discovering op-
tions or other kinds of high-level actions for reinforcement learning (Digney,
1998; McGovern and Barto, 2001; Ryan, 2002; Hengst, 2002). These methods
all assume that a continuous-to-discrete abstraction already exists, and they
search for higher-level temporal abstractions in the (already abstracted) dis-
crete Markov decision process. SODA assumes a continuous state space and
discovers a continuous-to-discrete abstraction of both perceptual and action
space that results in temporally extended, abstract actions, using the gradients
of continuous features to define the high-level actions. The above methods and
SODA are potentially complementary. In very large problems it is likely that
multiple levels of abstraction will be needed. In principle, one should be able
to use the methods above to perform additional temporal abstraction on top
of the continuous-to-discrete abstraction SODA provides, but this has not been
implemented yet.

3 Learning Method and Representation

The SODA algorithm can be characterized formally as follows. Given

• a robot with a sensory system providing experience as a sequence of N-
dimensional, continuous sensory vectors y1,y2, . . . , where every yt ∈ RN ,

• a continuous, M-dimensional motor system that accepts from the agent a
sequence of motor vectors u1,u2, . . . where every ut ∈ RM ,

• a continuous world that induces an almost-everywhere-continuous sensory
stream, characterized by one or more large regions in which small actions
induce small changes in sensor values, separated by discontinuous ‘thresh-
olds’, across which sensor values may make large jumps.

• and a scalar reward signal, r1, r2, . . ., that defines a high-diameter task
(that is, maximizing the expected value of r requires a long sequence of
motor vectors ut, . . .ut+k).

the algorithm performs these steps:

1. Define a set of discrete, local primitive actions A0: First, using methods
developed by Pierce and Kuipers (1997), learn an abstract motor interface,
a basis set of orthogonal motor vectors U = {u0,u1, ...un−1} spanning the
set of motor vectors ut possible for the robot. Then define A0 to be the
set of 2n discrete actions derived from U by setting the motor signal ut

to the value ui or −ui for a short time period ∆t.

2. Learn a set F of high-level perceptual features: Exploring the environment
with a random sequence of A0 actions, train a SOM with the sensor signal
yt to converge to a set of high-level features of the environment. For each

7

Trajectory-follow on a0
i :

fw ← argmaxf∈F f(y)
while fw = arg maxf∈F f(y):

execute action a0
i

fds ← arg maxf∈F f(y)
Hill-climb on fds:

while maxj ∆jfds > 0:
w ← arg maxj ∆jfds

execute action a0
w

Table 1: Trajectory-following/Hill-climbing Pseudo-code. ∆jfi is the gradient
of feature fi with respect to primitive action a0

j .

weight vector wi in the SOM, there is an activation function fi ∈ F such
that:

fi(y) =
f̂i(y)

∑|F|
j=0

f̂j(y)
where f̂j(y) =

1

‖y − wj‖z
(5)

These equations define an activation for each unit that varies with the
inverse of the Euclidean distance of that unit from the input vector. The
activation across all units is normalized to sum to unity. The response ex-
ponent z is a parameter that controls the ‘width’ or ‘focus’ of the response,
with higher z allocating more activation to the winner.

3. Define a hill-climbing (HC) control law for each fi ∈ F : For each fi in the
context where argmaxf∈F = fi, estimate its gradient with respect to each
primitive action a0

j in A0, denoted ∆jfi. This estimate is currently found
by applying each action, sampling the feature value, and reversing the
action. The HC control-law selects the action with the highest gradient,
terminating when all the gradients are negative (See Table 1). The state
of the agent when hill-climbing terminates is defined to be a distinctive
state (dstate).

4. For each distinctive state defined by fi ∈ F , define trajectory-following
control laws that take the agent to a state where a different feature fj ∈ F
is dominant. Currently, the algorithm proposes one such TF control law
for each primitive action a0

k ∈ A0, consisting of simply repeating a0
k until

the dominant feature fi is replaced by another feature fj (See Table 1).

5. Define a set of higher-level actions A1 where each a1
m ∈ A1 consists of

executing one TF control law, and then hill-climbing on the resulting
dominant feature fj . At this point the agent has abstracted its continu-
ous state and action space into a discrete Semi-Markov Decision Process
(SMDP) with one state for each feature in F , and the large-scale actions
in A1.

8

(a) Abstract Motor Interface
u0 u1

drive 250 mm/sec 0 mm/sec
turn 0◦/sec 90◦/sec

(b) Primitive Actions A0

action u step
a
0
0 u0 25mm

a
0
1 −u0 -25mm

a
0
2 u1 9◦

a
0
3 −u1 −9◦

Table 2: Abstract Motor Interface and Primitive Actions

3.1 Policy Learning with High-level Actions

The new, feature-action space defined by F and A1 forms a semi-Markov deci-
sion process (SMDP). As described in Section 2.3.2, high-level actions can be
described as options. Each action a1

i is an option oi = 〈Ii, πi, βi〉, where the
input set, Ii, is the set of states where that action’s initial trajectory-following
control law is applicable2, πi embodies the combination of trajectory-following
and hill-climbing control-laws described above, and βi returns true in the states
where hill-climbing control-laws terminate, as described in Table 1.

To learn a policy for selecting options to execute, the Sarsa(λ) algorithm
presented in Section 2.3.1 must be slightly modified to accommodate the new
options (Precup, 2000). Assume an option ot is executed at time t, and takes
τ steps to complete. Define ρt+τ as the cumulative, discounted reward over the
duration of the option:

ρt+τ =
τ−1∑

i=0

γirt+i+1 (6)

Using this value, the one-step update rule (Equation 1) is modified as follows:

Q(st, ot) ← Q(st, ot) + α [ρt+τ + γτQ(st+τ , ot+τ) − Q(st, ot)] (7)

For Sarsa(λ), the multi-step update rule (Equation 4) is modified analogously.
The eligibility-trace now tracks state-option pairs, e(s, o), and is updated upon
option selection.

Note that for one-step options, these modifications reduce to the original
Sarsa(λ) equations. Also, obviously, when γ = 1, as is often true in episodic
tasks (and is true in the experiment in Section 4), the reward ρ is simply the total
reward accumulated over the course of executing the option, and the update rule
is again essentially the same as the original, if the reward r in the original rule
is taken to mean the reward accumulated since the last action.

4 Experiment

This section presents an experiment demonstrating that SODA significantly
reduces the task diameter in a robot navigation task.

2In the current case, the trajectory-following control law is open-loop and always applicable,
but this formulation admits more sophisticated control-laws with applicability conditions.

9

Figure 2: Simulated Robot Environment. A screen-shot of the Stage robot
simulator with the simulated robot and experimental environment. The robot
has a drive-and-turn base, and a laser rangefinder. The agent must learn to
travel from the left end of the upper hallway to the end of the lower hallway.
The shading indicates the area swept out by the laser rangefinder.

10

Figure 3: Example Learned Perceptual Prototypes. The agent’s self-
organizing feature map learns a set of perceptual prototypes that are used to
define perceptually distinctive states in the environment. This figure shows
the set of features learned from one run. Each feature is a prototypical laser
rangefinder image plotted radially, with the robot at the origin.

11

In the experiment, a SODA agent is instantiated in a simulated robot using
the Stage simulator (Gerkey et al., 2003). The environment is a T-shaped room
or maze, shown in Figure 2, measuring 10 000 mm × 6000 mm. The robot has
a simple drive/turn motor system, and the agent is assumed to have already
identified the two dimensional abstract motor interface U shown in Table 2(a).
Stage does not simulate acceleration, so velocity changes instantaneously. The
agent’s input y consists of the response from a single simulated SICK LMS
laser rangefinder, providing 180 range readings over the forward semi-circle,
with a maximum range of 8000 mm and a resolution of 10 mm. The simulator
accepts motor commands and provides sensations at 10 Hz (simulator time).
The abstract motor interface is quantized at this rate to provide four A0 actions
consisting of positive and negative steps along each axis of motor control. These
actions are described in Table 2(b).

The agent’s task is to drive from the left end of the upper hallway to the
bottom of the center hallway. The task terminates when the robot reaches
within 500 mm of the goal (a point 500 mm from the end of the lower corridor),
or times out after 10 000 simulator steps. The reward on each non-terminal step
is -1 unless the robot collides with a wall, in which case it is -5. The reward
upon successful termination is 0. This scheme rewards finding the shortest path
to the goal while not bumping into walls.

To learn the initial set of perceptual features, the agent trains a Growing
Neural Gas network with its sensory input over a 500 000 step random walk
through the environment (the equivalent of 50 task learning episodes). The
GNG parameters are λ = 2000, α = 0.05, β = 0.0005, eb = 0.05, en = 0.0006,
amax = 100 (Fritzke, 1995). The GNG was configured to grow only if the
average cumulative distortion error across all units was greater than 37 500.
A typical set of learned features is shown in Figure 3. This set comprises a
wide variety of prototypical views of the environment. Feature activations are
computed according to Equation (5), with response exponent z = 4.

The agent has four simple, open-loop trajectory-following control laws, one
for each A0 action, as described in step 4 of the algorithm. The agent learns
its high-level control policy using episodic, tabular SARSA(λ) reinforcement
learning (Sutton and Barto, 1998), using the SOM winner as the state. SARSA
parameters3 used are λ = 0.9, α = 0.2, γ = 1.0. All Q values are initialized op-
timistically to 0.0, and actions are selected greedily with ties broken randomly.
These parameter values for both the GNG and SARSA were found to be rea-
sonable after some manual experimentation, but, in keeping with the spirit of
autonomous learning, no exhaustive parameter search was performed. Learning
trials consisted of 12 runs of 5000 episodes in each of two experimental condi-
tions, the first with only A0 actions, the second with only A1 actions. This
experiment used 10 different trained SOMs for a total of 240 runs.

12

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ew

ar
d

Episode

Using A0 Actions

-12000

-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ew

ar
d

Episode

Using A1 Actions

Figure 4: Learning Performance These plots show the reward per episode
for a selection of individual agents in the navigation experiment. The top plot
shows performance for the agents using A0 actions, the bottom plot for agents
using A1 actions. Every fifth agent is shown for a total of 24 curves per figure.
The curves are smoothed with a 100 episode moving window.

13

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fr
ac

tio
n

of
 A

ge
nt

s
C

om
pl

et
in

g
Ta

sk

Episode

Task Completion Performance

High-level Actions
Primitive Actions

Figure 5: Average Task Completion Comparison of the fraction of agents
completing the task within each 10 000 time-step episode using primitive (A0)
actions vs. using high-level (A1) actions. Each curve is an average of 12 runs
using each of 10 different learned feature sets. Error bars indicate +/- one
standard error. Agents using the A1 actions learn the task much faster.

14

Figure 6: Navigation using Learned Abstraction. A schematic view of the
environment shown in Figure 2, showing an example episode after the agent
has learned the task using the A1 actions. The triangles indicate the state of
the robot at the start of each A1 action. The sequence of winning features
corresponding to these states is [44, 10, 25, 32, 38, 5, 40, 44, 13] (See Figure 7).
The narrow line indicates the sequence of A0 actions used by the A1 actions.
Note that in two cases the A1 actions essentially abstract the concept, ‘drive
down the hall to the next decision point.’ In the south corridor, the path turns
slightly to the west at the transition from trajectory-following to hill-climbing.
Navigating to the goal requires only 9 A1 actions, instead of hundreds of A0

actions, in other words, task diameter is vastly reduced.

15

Figure 7: Features for Distinctive States The perceptual features for the
distinctive states used in the solution shown in Figure 6, in the order they were
traversed in the solution. (Read left-to-right, top-to-bottom.)

4.1 Results

Figure 4 demonstrates that agents learn more often to complete the task in the
time allotted using A1 actions than using A0 actions4, and those that do finish
generally do so sooner. For readability, Figure 4 shows the performance of only
a fraction of trials. Figure 5 shows average performance over all trials, and
confirms that the trend in Figure 4 holds.

Figure 6 shows a typical task solution learned using high-level actions. Fig-
ure 7 shows the sequence of features that define the distinctive states in that
solution, in the order that they are encountered in the solution. These figures
show that the A1 actions are highly abstracted compared to the A0 actions. In
particular the first and eighth actions can be interpreted as ‘travel down the
hall’ and comprise large numbers of primitive actions, and even the five smaller
actions used to turn in the intersection are considerably larger than single A0

actions.
3SARSA parameters λ and α have different meanings than the GNG parameters with the

same names.
4Because of the -1 reward per step, any agent achieving reward greater than -10 000 in an

episode must have reached the goal.

16

5 Discussion and Future Work

The results of these experiments demonstrate that SODA can dramatically im-
prove reinforcement learning over using the same coarse-coded state represen-
tation and short-range, A0 actions.

The improved task learning in this experiment follows from two sources: re-
duced positional uncertainty and reduced task diameter. First, state abstraction
methods that partition a continuous state space alias the environment, creat-
ing uncertainty about the outcome of actions. For example, if two states in
the same partition differ in orientation by a few degrees, moving forward may
lead to drastically different states. Hill-climbing to the local feature maximum
greatly reduces this uncertainty and thus makes actions more reliable, making
it easier to learn the task.

Second, using the short-range actions, the task has a large diameter: the
agent must make at least 300 actions to get to the goal. Since a critical choice
that must be learned – turning right at the intersection – is approximately
halfway through the action sequence, it takes many trials and much exploration
to back up the reward to the critical decision point and discover the correct
choice. In contrast, traveling between distinctive states using A1 actions, the
agent needs only nine actions to arrive at the goal. This decrease in task diam-
eter makes it much easier to propagate the reward back to the critical choice
point, and thereby discover critical decisions in the task.

One potential drawback of using a coarse-grained perceptual representation
like a SOM is that it may introduce state aliasing. In the task above there
was a small amount of aliasing, but the agent was still able to learn the task
because the optimal action was the same in the aliased states. In tasks with
more significant amounts of aliasing, plain tabular Sarsa(λ) would need to be
replaced with a method that constructs a state memory, like U-Tree (McCallum,
1995) or Temporal Transition Hierarchies (Ring, 1994). Such a change should
not diminish the usefulness of the underlying abstraction.

Finally it must be noted that the learned solutions using the A1 actions take
significantly more steps than the ≈ 300 step optimal solution with A0 actions.
Most of the difference is the extra cost of the sampling steps needed to discover
the gradient direction for hillclimbing. The A1 agents achieve basic competence
at the task so much faster than the A0 agents that it may be desirable to trade
off optimality of the final solution against quick learning of some reasonable
solution. Nevertheless, it should be possible to reduce or eliminate the need for
these sampling steps as the agent learns. The authors’ current work investigates
allowing the agent to learn a hillclimbing policy for each feature as a nested
reinforcement learning problem. The agent uses a separate subordinate, local
GNG for the feature representation for each distinctive state neighborhood,
and the hillclimbing learner has an action set consisting of the A0 actions plus
a special ‘quit’ action, indicating when to finish hillclimbing. It is rewarded for
achieving the highest possible activation quickly.

In addition to the cost of sampling actions for hillclimbing, the shortest path
to the goal via distinctive states may be longer than the absolute optimal path.

17

If truly optimal behavior is desired, it should be possible to use trajectories
generated using the policy of A1 actions to bootstrap a policy over A0 actions
and continue learning to optimize that policy, using methods similar to those
used by Smart and Kaelbling (2000). This is an area for future research.

6 Conclusion

Self-Organizing Distinctive-state Abstraction (SODA) is a method by which a
robot in a continuous world builds complementary perceptual and temporal
abstractions by first self-organizing a feature map into a set of higher-level per-
ceptual features, and then using those features to build a set of high-level actions
that carry it between perceptually distinctive states in the environment. Exper-
iments on a simulated robot navigation task showed that, starting with a robot
with uninterpreted sensors and effectors, SODA was able to learn sets of high-
level perceptual features, distinctive states, and actions that greatly abstracted
and simplified the robot’s model of its environment and its own sensorimotor ac-
cess to it. Applying reinforcement learning to this abstracted model, the robot
was able to learn much more quickly to navigate to its goal.

Acknowledgements

This work was conducted in the Intelligent Robotics Lab and the Neural Net-
works Research Group in the Artificial Intelligence Lab at The University of
Texas at Austin. It was supported in part by the National Science Foundation
(grant IIS-0413257), by NIMH Human Brain Project (grant IR01-MH66991),
and by an IBM Faculty Research Award.

References

Blank, D. and Meeden, L. (2006). Introduction to the special issue on developmental
robotics. Connection Science, 18(2).

Chaput, H. H., Kuipers, B., and Miikkulainen, R. (2003). Constructivist learning: A
neural implementation of the schema mechanism. In Proceedings of the Workshop
on Self-Organizing Maps (WSOM03).

Digney, B. (1998). Learning hierarchical control structure for multiple tasks and chang-
ing environments. In Proceedings of the Fifth Conference on the Simulation of
Adaptive Behavior: SAB 98.

Duckett, T. and Nehmzow, U. (2000). Performance comparison of landmark recog-
nition systems for navigating mobile robots. In Proc. 17th National Conf. on
Artificial Intelligence (AAAI-2000), pages 826–831. AAAI Press/The MIT Press.

Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in
Neural Information Processing Systems 7.

18

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The player/stage project: Tools
for multi-robot and distributed sensor systems. In Proceedings of the 11th Inter-
national Conference on Advanced Robotics, pages 317–323, Coimbra, Portugal.

Gold, K. and Scassellati, B. (2006). Learning acceptable windows of contingency.
Connection Science, 18(2).

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with hexq. In
Sammut, C. and Hoffmann, A., editors, Machine Learning: Proceedings of the
19th Annual Conference, pages 243–250.

Kohonen, T. (1995). Self-Organizing Maps. Springer, Berlin.

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial Intelligence, 119:191–
233.

Kuipers, B., Beeson, P., Modayil, J., and Provost, J. (2006). Bootstrap learning of
foundational representations. Connection Science, 18(2).

Martinetz, T. M., Ritter, H., and Schulten, K. J. (1990). Three-dimensional neural
net for learning visuomotor coordination of a robot arm. IEEE Transactions on
Neural Networks, 1:131–136.

McCallum, A. K. (1995). Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, Rochester, New York.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in reinforce-
ment learning using diverse density. In Machine Learning: Proceedings of the
18th Annual Conference, pages 361–368.

Nehmzow, U. and Smithers, T. (1991). Mapbuilding using self-organizing networks in
really useful robots. In Proceedings SAB ’91.

Olsson, L., Nehaniv, C. L., and Polani, D. (2006). From unknown sensors and actuators
to actions grounded in sensorimotor perceptions. Connection Science, 18(2).

Oudeyer, P.-Y. and Kaplan, F. (2006). The discovery of communication. Connection
Science, 18(2).

Pierce, D. M. and Kuipers, B. J. (1997). Map learning with uninterpreted sensors and
effectors. Artificial Intelligence, 92:169–227.

Precup, D. (2000). Temporal abstraction in reinforcement learning. PhD thesis, The
University of Massachusetts at Amherst.

Provost, J., Beeson, P., and Kuipers, B. J. (2001). Toward learning the causal layer of
the spatial semantic hierarchy using SOMs. AAAI Spring Symposium Workshop
on Learning Grounded Representations.

Ring, M. B. (1994). Continual Learning in Reinforcement Environments. PhD thesis,
Department of Computer Sciences, The University of Texas at Austin, Austin,
Texas 78712.

19

Ryan, M. R. K. (2002). Using abstract models of behaviours to automatically gener-
ate reinforcement learning hierarchies. In Proceedings of The 19th International
Conference on Machine Learning, Sydney, Australia.

Schlesinger, M. (2006). Decomposing infants’ object representations: A dual-route
processing account. Connection Science, 18(2).

Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity,
music, and the fine arts. Connection Science, 18(2).

Smart, W. D. and Kaelbling, L. P. (2000). Practical reinforcement learning in con-
tinuous spaces. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), pages 903–910.

Smith, A. J. (2002). Applications of the self-organizing map to reinforcement learning.
Neural Networks, 15:1107–1124.

Stronger, D. and Stone, P. (2006). Towards autonomous sensor and actuator model
induction on a mobile robot. Connection Science, 18(2).

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and SMDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence,
112:181–211.

Toussaint, M. (2004). Learning a world model and planning with a self-organizing,
dynamic neural system. In Advances in Neural Information Processing Systems
16.

20

