
Self-Organizing Distinctive State Abstraction
Using Options

Jefferson Provost1 Benjamin J. Kuipers2 Risto Miikkulainen2

1Center for the Neural Basis of Cognition
and Department of Neuroscience

University of Pittsburgh
Pittsburgh, PA 15260, USA

jp@cnbc.cmu.edu

2Artificial Intelligence Lab
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712, USA

{kuipers,risto}@cs.utexas.edu

Abstract

An important problem in developmental
robotics is the automatic learning of motor rou-
tines or behaviors without human guidance. This
paper presents Self-Organizing Distinctive-State
Abstraction (SODA), a method by which a robot
can learn a set of sensory features and reusable
motor routines from raw sensorimotor experi-
ence. Experiments show that the learned versions
of the motor routines outperform hard-coded
alternatives, and that robots using the learned
routines can learn tasks much more quickly than
when using primitive actions. The features and
motor routines are learned autonomously, and
reflect only the environment and the agent’s
sensorimotor capabilities, without external
direction.

1. Introduction

An important problem in developmental robotics is the
autonomous learning of behaviors without external guid-
ance. Modern robots operate in high-dimensional, con-
tinuous sensorimotor spaces defined by rich sensors
such as laser rangefinders, and high-resolution motor
control that is updated many times per second. Au-
tonomous learning of effective robotic behaviors re-
quires autonomous learning of useful perceptual and mo-
tor abstractions for these spaces. This paper presents
the Self-Organizing Distinctive-state Abstraction method
(SODA) that builds on the concept of the distinctive state
from topological mapping literature to define abstrac-
tions that can be learned from the agent’s own experi-
ence, without prior knowledge provided by an external
designer.

A robot using SODA develops its abstraction in two
stages. First, it learns a set of perceptual prototypes dur-
ing an initial “motor babbling” phase. At the end of this
perceptual learning phase, distinctive states are defined
as states that provid a local best match to one of these
prototypes. Then, in the second phase the robot learns

two types of behaviors that together allow the robot to
move between distinctive states: hill-climbing (HC) op-
tions, and trajectory-following (TF) options. Once the
robot can move reliably between distinctive states, it has
developed a new, abstracted state space in which learning
long-distance navigation tasks is much easier than in its
original raw sensorimotor space.

A preliminary version of SODA was presented by
Provost et al. (2006). The current paper grounds SODA
rigorously in hierarchical reinforcement learning (Sec-
tions 2. and 3.) and provides a detailed evaluation of
the approach (Section 4.). Although, the experiments are
conducted in the setting of mobile robot navigation, there
is nothing in the method that specifically assumes a navi-
gation task, and the basic principles of the method should
apply equally well to other configuration spaces, such as
the joint-angle space of articulated robots.

2. Background

The sections below explain SODA and the options for-
malism in detail. Section 2.1 briefly describes SODA.
Section 2.2 provides a brief overview of the options for-
malism for hierarchical RL.

2.1 SODA

SODA’s learning method assumes that the learning agent
is instantiated in a robot with a continuous sensory input
vector y, and a continuous output space spanned by a set
of orthogonal basis vectors U = {u1, ...,um}. A prim-
itive action, a, is a vector in this space that is converted
to a motor command by multiplying with the motor ba-
sis: u = [u1, ...,um]T a. SODA defines a default set of
primitive actionsA0, each consisting of positive and neg-
ative unit vectors along each axis of the motor space. For
example, in the environment in Section 4., the motor ba-
sis consists of one vector to translate the robot and one to
rotate, and the primitive actions move the robot forward,
backward, left and right. The members ofA0 are referred
to as a1, ...,a2m.

Learning in SODA operates in two phases. First, the

agent explores the environment for a period of time us-
ing a random walk over the primitive actions A0. Dur-
ing this period, it trains a Growing Neural Gas network
(GNG) (Fritzke, 1995) with the input vectors y sampled
on the random walk. The GNG is an incremental self-
organizing vector-quantizing network that learns a set of
prototype vectors to represent the input space. Each pro-
totype wi defines a perceptual neighborhood, i.e. the re-
gion of input space closest to it. The current perceptual
neighborhood is defined as the neighborhood of the pro-
totype closest to y at any particular time (called the GNG
winner). Using the GNG, SODA defines a set of feature
activation functions F , where each fi(y) in F measures
the nearness of y to wi.

The set of learned prototypes, along with their activa-
tion functions, allow the agent to define a set of distinc-
tive states (Kuipers, 2000) in the environment. The agent
can travel between the states using a combination of two
types of abstract actions or behaviors, hill-climbing (HC)
actions and trajectory-following (TF) actions. HC actions
carry the robot up the gradient of the current perceptual
feature f∗(y) to a distinctive state from within the state’s
perceptual neighborhood. TF actions begin at one dis-
tinctive state and carry the robot into the neighborhood of
another. Using sequences of one TF and one HC action,
the agent can move from one distinctive state to another.

In the second phase of learning, the preliminary imple-
mentation constructed the TF actions as simple macros
that repeated a single action (e.g. move forward) until the
agent reached a new perceptual neighborhood. In addi-
tion, the HC actions consisted of a hard coded and ex-
pensive routine of sampling the feature gradient on each
step in order to determine which way to move. This pa-
per redefines both types of actions as options with learned
action policies. This improvement creates more reliable,
closed-loop TF actions and more efficient HC actions.

2.2 Behavioral Routines as Options

SODA defines its TF and HC actions using a formalism
from hierarchical reinforcement learning known as op-
tions. An option is a formal specification of a behav-
ioral routine that can itself be used as an action or oper-
ator in a higher-level behavior. Often options are used to
define sub-goal behaviors. For example a mobile robot
might define an option for reaching the doorway from
any point within a room, and a legged robot might have
an option for achieving a standing position from sitting
or lying down. SODA’s hill-climbing options are sub-
goal options. Options need not only specify sub-goals,
however. Options can also specify behaviors to main-
tain some current condition or set of conditions for as
long as possible, for example a bipedal robot could have
an option for remaining standing and balanced. SODA’s
trajectory-following options are examples of such “con-
dition maintaining” options.

The options formalism (Sutton et al., 1999) is a frame-
work for hierarchical RL in which an agent learns a pol-

icy over a set of options O. In a Markov decision pro-
cess (MDP) with set of states S, a set of actions A, and
a reward function R : S × A → R, each option oi in
O is a tuple 〈Ii, πi, βi〉 where Ii ⊆ S is the initiation
set, that is, the set of states in which oi may be executed,
πi : S×A → [0, 1] is the action policy of the option, giv-
ing the probability of selecting a given action in a given
state, and βi : S → [0, 1] is the termination function, giv-
ing the probability of the option terminating in a given
state. Although there is a wide variety of prior work
on automatically discovering options (Şimşek and Barto,
2004; McGovern and Barto, 2001; Hengst, 2002), that
work has focused on discrete, atomic or low dimensional
domains. This paper develops a method for automatically
constructing options in a realistic robotic domain.

When option policies are learned using RL, it is of-
ten useful to augment the option with a pseudo-reward
function Ri, different from the MDP’s reward function,
to specify the subtask that the option is to accomplish.
Further, although, in the original definition of options, the
domain of action for each option is the full set of other op-
tions, allowing arbitrary hierarchy (primitive actions are
defined as one-step options), in cases with very large ac-
tion sets (such as with continuous actions) it is useful to
be able to constrain the actions available to an option to a
specific action set Ai. The next section defines Ii,πi, βi,
Ri, and Ai for SODA’s TF and HC options.

3. Method

This section describes in detail how to implement SODA
using options. Section 3.1 describes a small but important
change in SODA’s perceptual abstraction. Section 3.2 de-
scribes the Top-N state representation used by SODA’s
option controllers. Sections 3.3 – 3.5 formally describe
how to define SODA’s actions as options.

3.1 Feature Activation Functions

SODA defines the feature functions as Gaussian kernels
centered on each prototype, with a width defined by the
mean distance between adjacent prototypes in the GNG
adjacency graph. This feature function provides cov-
ers the input space well and increases monotonically as
the distance between the input and the respective proto-
type decreases. These kernels replace the previous design
where each feature function returned the normalized in-
verse distance to the prototype vector, which led to insta-
bility and interdependence among feature values.

3.2 Top-N State Representation

Trajectory following and hill-climbing are options that
operate within an individual perceptual neighborhood. In
order to learn policies for them, the learner needs a state
representation that provides more resolution than simply
using the winning GNG unit as the state. The options de-
scribed below are based on a simple new state abstraction

derived from the GNG, called the Top-N representation.
If i1, i2, ..., i|F| are the indices of the feature functions
in F , sorted in decreasing order of the value of fi(y),
then Topn(y) = 〈i1, ..., in〉. This representation uses the
GNG prototypes to create a hierarchical tessellation of
the input space starting with the Voronoi tessellation in-
duced by the GNG prototypes. Each Voronoi cell is then
subdivided according to the next closest prototype, and
those cells by the next, etc. This tuple of integers can
be easily hashed into an index into a Q-table for use as a
state representation.

3.3 Trajectory Following

Intuitively, TF options are intended to make progress in
some direction while maintaining as closely as possible
the match with the current prototype. For example, if
the prototype is a view looking straight down a corridor,
and the progress direction is forward, the TF option is
expected to move down the hallway, correcting for devi-
ations to maintain the view looking forward as much as
possible.

To this end, SODA defines a new TF option for
each combination of primitive actions and prototypes:
{TFij |〈ai, fj〉 ∈ A0 × F}. The initiation set of each
TF option is the set of states1 where its prototype is the
winner: ITF

ij = {y|j = arg maxk fk(y)}. The option
terminates if it leaves its prototype’s perceptual neighbor-
hood:

βTF
ij (y) =

{
0 if y ∈ ITF

ij

1 otherwise.
(1)

Each TF option’s pseudo-reward function is designed to
reward the agent for keeping the current feature value as
high as possible for as long as possible, thus:

RTF
ij (y) =

{
fi(y) if not terminal,

0 if terminal. (2)

In order to force the TF options to make progress in some
direction (instead of just oscillating in some region of
high reward), each option is given a limited action set
consisting of a progress action selected from A0, plus a
set of corrective actions formed by adding a small com-
ponent of each orthogonal action in A0:

ATF
ij = {ai} ∪ {ai + cTFak|ak ∈ A0,aT

k ai = 0}. (3)

Lastly, the option policy πTF
ij is learned using tabu-

lar Sarsa(λ), using the Topn(y) state representation de-
scribed in Section 3.2, and the actions ATF

ij .

3.4 Hill-climbing

With the hard-coded macros in the earlier implementa-
tion, SODA had only a single hill-climbing controller
that worked in all perceptual neighborhoods. In contrast,

1To simplify the terminology, these descriptions refer to the input
vector y as if it were the state s. Since y is a function of s, this termi-
nology is sufficient to specify the options.

when hill-climbing is learned, each feature presents a dif-
ferent pseudo-reward function, and thus requires a sepa-
rate HC option, HCi, for each fi in F .

As with the TF options, the initiation set of each
HC option is the perceptual neighborhood of that
option’s corresponding GNG prototype: IHC

i =
{y| arg maxj fj(y) = i}. Termination, however, is more
complicated for hill-climbing. The perceptual input is un-
likely to ever match any prototype exactly, so the maxi-
mum feature value attainable in any neighborhood will be
some value less than 1. Because it is difficult or impossi-
ble to know this value in advance, the stopping criterion is
not easily expressed as a function of the single-step input.
Instead, the options use a k-Markov termination function,
in which the option terminates if the average step-to-step
change in the feature value over a finite moving window
falls below a small fixed threshold:

βHC
i (yt−cw , ...,yt) =

⌈
cstop −

∑k−1
i=0 |∆t−kfi(y)|

cw

⌉
,

(4)
where cw is the window size, cstop is a constant threshold
and ∆tfi(y) = fi(yt) − fi(yt−1) computes the change
in feature value at time t. The task of the HC option is
to climb the gradient of its feature as quickly as possible,
and terminate at the local maximum of the feature value.
On nonterminal steps the pseudo-reward for each HC op-
tion is a shaping function (Ng et al., 1999) consisting of
a multiple of the one-step change in fi, minus a small
penalty for taking a step; on terminal steps, the reward is
simply fi:

RHC
i =

{
cR1∆fi(y)− cR2 if not terminal,
fi(y) if terminal. (5)

Finally, the action set for HC options is just the set of
primitive actions: AHC

i = A0.

3.5 TF+HC Actions

As in the previous SODA implementation, the agent’s
high-level navigation policy chooses from a set A1 of
TF+HC pair options. There is one such option for each
TF option. When selected, each A1 option executes its
corresponding TF option, and when trajectory-following
terminates, immediately executes whatever HC option is
applicable. Each A1 option’s initiation set is identical to
that of its corresponding TF option.

4. Experiments and Results

Below are the results of four experiments showing that
the new TF and HC options improve SODA’s perfor-
mance in an environment with realistic sensor and mo-
tor noise. The first two experiments examine the per-
formance of the new TF and HC options in isolation,
comparing them to the hard-coded macros used in the
previous implementation. The third and fourth experi-
ments show that the new options improve performance

Figure 1: Simulated Robot Environment. A screen-shot of
the Stage robot simulator with the simulated robot and exper-
imental environment. The robot is in the intersection, facing
Southeast, and the shaded region indicates the area swept by its
laser-rangefinder. The robot simulates sensor and motor noise
by perturbing the input signals from the laser and the output
signals to the motors.

Figure 2: Example Learned Prototypes. These plots show
three prototypical sensor images learned from the environment
shown in Figure 1. Each plot represents a range image from
the laser rangefinder, plotted in polar coordinates with the robot
at the origin, facing up the Y-axis. The semi-circular bound-
ary indicates the maximum range of the rangefinder (8 meters).
Feature 8 represents the view seen when facing down the long
upper hallway from either end. Feature 35 represents the view
seen when turned 90◦to the right from Feature 8. Feature 65
represents a view seen in the middle of the intersection.

on robot navigation tasks as compared to primitive ac-
tions and macros.

4.1 Experimental Setup

The simulated robot and environment for these experi-
ments replicates the robot and environment used in the
original SODA experiments, plus sensor and motor noise.
The simulations were performed in the Stage robot sim-
ulator (Gerkey et al., 2003). The environment is a 10 m
× 6 m T-shaped room, called the T-Maze, shown in Fig-
ure 1.

The robot was equipped with a laser range finder read-
ing 180 readings at 1◦ intervals over the forward semicir-
cle around the robot, with a maximum range of 8000 mm.
The Stage laser rangefinder model returns ranges with an
accuracy of 1 mm, with no noise. Sensor noise was sim-
ulated through a two-stage process of alternately adding
Gaussian error and rounding, applied individually to each
range reading. This model provides a good characteriza-

TF Trajectory Length

0

20

40

60

80

100

120

140

Top Left Top Right Lower

TF Position

S
te

p
s

Open-Loop
Learned

TF Inter-Point Distance (mm)

0

200

400

600

800

1000

1200

Top Left Top Right Lower

Open-Loop
Learned

Figure 3: Trajectory lengths and endpoint clustering. Top:
The average trajectory lengths for open loop vs. learned
trajectory-following. Learned TF options produce longer trajec-
tories. Bottom: Average inter-point distance for the trajectory
end points, the learned trajectory endpoints are better clustered
(see Figure 4). (Error bars indicate +/- one standard error.)

tion of the error on a SICK LMS laser rangefinder.
The robot was also equipped with a differential-drive

base that takes two continuous control values, linear ve-
locity v and angular velocity ω. The Stage simulator does
not model positional error internally, so motor noise was
simulated by perturbing the motor commands by

v̂ = N (v, kvvv + kvωω) , ω̂ = N (ω, kωvv + kωωω),
(6)

where v̂ and ω̂ are the noisy motor command and the
constants used were kvv = 0.1, kvω = 0.1, kωv =
0.2, kωω = 0.1. Equation (6) is a simplified motor
noise model, inspired by realistic models used in robot
localization and mapping (Roy and Thrun, 1999; Bee-
son et al., 2006). The agent’s motor basis set (Sec-
tion 2.1) U consisted of two motor basis vectors, u1 =
[250 mm/sec, 0◦/ sec] and u2 = [0 mm/sec, 20◦/sec].

The robot accepts motor commands from the agent 10
times per second. In all the experiments below, the agent
had already explored the environment and trained a proto-
type set. Examples of three learned prototypes are shown
in Figure 2.

4.2 Trajectory-Following Experiment

The trajectory-following experiments compared the re-
liability of open-loop TF macros and learned TF op-

Trajectory Endpoints for OpenLoop TF

Trajectory Endpoints for Learned TF

Figure 4: Trajectory Following Improves with Learning. The
experiment in Section 4.2 trained the “trajectory-follow for-
ward” option starting from each of the three locations marked
with circles above and compared the results with open-loop TF
from the same locations. Top: The endpoints of 100 open-loop
TF runs from each location. Bottom: The endpoints of the last
100 runs of the learned options. The TF learned using RL are
much better clustered, indicating much more reliable travel.

tions, by testing the agent’s ability to learn to follow a
trajectory forward down each of the three corridors of
the T-Maze. The option’s action set (see Equation 3)
consisted of the progress action (moving straight for-
ward), [1, 0]T , and two corrective actions (moving for-
ward while turning left or right) [1, 0.1]T and [1,−0.1]T .
The option was trained for 2000 episodes from each start-
ing point, although in each case the behavior converged
within 100–400 episodes. The Sarsa(λ) parameters were:
λ = 0.9, α = 0.1, γ = 1.0, the option used ε-greedy
action selection with ε0 = 1.0 and annealing down to
ε∞ = 0.001 with a half-life of 400 steps. All Q values
were initialized to 0, and the state representation used the
top three winners from the GNG.

Figure 4 shows the ending points of the last 100 runs
from each starting point, compared with the ending points
for 100 runs using the open-loop TF macro. For each of
the three starting points, the endpoints are more tightly
clustered when using the learned option. This is because
there are many fewer episodes where the trajectory ter-
minates part of the way down the hall due to motor noise
pushing the robot off of its trajectory and into a new per-
ceptual neighborhood. As a result, the learned option pro-
duces longer trajectories more reliably, and the endpoints
tend to be near one another.

The top panel of Figure 3 shows the average lengths (in

steps) of the last 100 runs of the learned TF option, com-
pared with 100 runs from the open-loop macro. From all
three starting points, the learned option produces longer
runs; from the two starting points in the top corridor, the
average is dramatically longer. The bottom panel shows
the average inter-point distance between trajectory end-
points for each corridor; in all cases the trajectory end-
points are significantly closer together.

4.3 Hill-Climbing Experiment

The hill-climbing experiments compared the speed and
effectiveness of the learned HC options with the hard-
coded HC routine described in Section 2.1. Each exper-
iment tested the agent’s ability to hill-climb on the gra-
dient one of three feature from the GNG (shown in Fig-
ure 2). The goal of hill-climbing is for the option to in-
crease the feature value as much as possible as quickly as
possible.

Each experiment consisted of 2000 episodes in which
the robot was placed at a randomly selected pose in the
perceptual neighborhood of the given feature and the hill-
climbing option (or macro) was initiated from that point.
The option’s Sarsa(λ) parameters were λ = 0.9, α = 0.1,
γ = 0.997. The agent did not use ε-greedy action selec-
tion, but all Q-values were initialized optimistically to 1.0
to encourage exploration. The HC option parameters (see
Section 3.4) were cstop = 0.005, cw = 10, cR1 = 10,
cR2 = 0.001.

Figure 5 compares the episode length and final feature
value achieved for each option. Runs were performed us-
ing the top 3, 4, and 5 GNG features as the state represen-
tation. There was no significant difference in their perfor-
mance, so only the n = 4 runs are shown. The learned
HC options were able to achieve as high or higher acti-
vation than the hard-coded HC macro, using many fewer
steps per episode.

4.4 Navigation Experiments

The final two experiments examined the effect of the new
learned options on the agent’s learning performance in
large-scale navigation.

The first of these experiments replicated the original
SODA experiment, in which the agent must learn to nav-
igate from a point in the upper left corner of the T-Maze
environment to a 1-meter-wide area at the bottom of the
central corridor. In the previous SODA paper, Provost
et al. (2006) noted that SODA abstraction induces per-
ceptual aliasing in the environment, and that such alias-
ing may make it difficult to learn to navigate. Because
the focus of the current work is specifically on learning
the TF and HC options, the agents were given more sen-
sory information to help reduce aliasing without resorting
to more complicated representations for partially observ-
able environments. The two new sensors are a stall warn-
ing to indicate collisions, and an eight-point compass.

The learning agent’s state representation is the tuple

Hill-Climbing Length

0

10

20

30

40

50

60

8 35 65

Feature

S
te

p
s

Sampling
Learned

Hill-Climbing Final Activation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8 35 65

Feature

F
e
a
tu

re
 A

ct
iv

a
ti

o
n

Sampling
Learned

Figure 5: Effect of learning on hill-climbing. Using learned
options makes hill-climbing achieve the same feature values
faster. Top: The average lengths of hill-climbing episodes in
the neighborhoods of the three different features shown in Fig-
ure 2. Bottom The average maximum feature value achieved for
each prototype per episode. The plots compare the last 100 HC
episodes for each feature with 100 hard-coded HC runs. For
each feature, the maximum value achieved is comparable, but
the number of actions needed is much smaller. (Error bars indi-
cate +/- one standard error.)

〈stall,compass,(argmaxjfj ∈ F)〉. As with the Top-
N representation, this tuple is hashed into an index into
the Q-table. The reward function for the task gives a re-
ward of 0 for reaching the goal, -1 for taking a step, -6
for stalling. Each episode times out after 10,000 steps.
The experiment ran 150 total trials of 1000 episodes: five
trials using each of 10 different trained GNG networks
using primitive actions, hard-coded macros, and using
learned options. The Sarsa(λ) parameters were λ = 0.9,
α = 0.1, γ = 1.0. All Q values were initialized optimisti-
cally to 0. The agent also used ε-greedy action selection
with ε0 = 0.1 annealing to ε∞ = 0.01 with a half-life of
100,000 (primitive) steps. The experiment began with all
options untrained, and option policy learning proceeded
concurrently with high-level policy learning. Figure 6
shows the learning curves comparing the performance of
the agents using macros to the agents using learned op-
tions. Both the agents using macros and the agents us-
ing options learn dramatically faster than the agents using
primitive actions. In addition, the behavior of the agents
using the learned options converges faster than that of the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

L
e

n
g

th

Episode

Length per Episode

Primitive Actions
Macros
Options

Figure 6: Navigation Learning with Learned Options. This
learning curve shows the number of steps taken per episode
while learning to navigate from the upper left to the bottom of
the environment in Figure 1. The upper curve represents SODA
agents using open-loop trajectory-following and sample-based
hill-climbing, the lower curve represents agents using learned
TF and HC options. (Error bars represent +/- one standard
error.) The agents using learned options learn the task faster
and converge to a shorter solution than those using macros, and
vastly outperform the agents using primitive actions.

Figure 7: Navigation using SODA. This trace shows the path
of a robot navigating in the T-maze environment using SODA.
The triangles show the starting points of the learned high-level
actions. The narrow line shows the path of the robot using low-
level motor commands. A path that required hundreds of ac-
tions in the lower, pixel-level representation requires only ten in
the high-level action-based representation.

agents using macros, and to a lower asymptote.
The second navigation experiment tested the ability

of SODA using options to scale up to larger environ-
ments. This experiment was performed in the environ-
ment shown in Figure 8, a simulation of the fourth floor of
the ACES building at the University of Texas, constructed
using simultaneous localization and mapping with a robot
similar in configuration to the simulated robot in these
experiments. With a length and width of approximately
40 m, this environment is several times the size of the T-
maze. Furthermore, the outer hallways are too long and
narrow to traverse using open-loop trajectory following
under motor noise. The navigation task in the ACES en-
vironment was to navigate from the center-right intersec-
tion to the lower-left corner of the environment.

The experimental set-up and agent parameters were

Figure 8: Larger Robot Environment – ACES. A screen-shot
of the Stage robot simulator with the simulated robot and ACES
experimental environment used for the larger navigation exper-
iment. The small circle represents the robot and the shaded
region indicates the area swept by its laser rangefinder. This
environment is approximately 40 m × 40 m. The larger size
and richer set of perceptual situations allows testing of SODA’s
ability to scale to realistic environments.

identical to those in the T-Maze experiments, with the
following exceptions. Because of the larger size of the
environment, the agent was allowed to explore the en-
vironment with a random walk over trajectory-following
options, allowing the agent to cover a larger area than
a random walk over primitive actions. In this case, the
GNG was trained concurrently with the training of the
TF option policies. However, for experimental clarity, the
learned TF policies were discarded after the feature sets
were learned, then the TF options were trained anew dur-
ing the navigation experiment. In addition, the forward
speed in the abstract motor interface (see Section 4.1) was
increased from 250 mm/sec to 500 mm/sec, and the time-
out for each episode was increased to 30,000 time-steps.
Finally, because the horizon of the robot’s rangefinder
is much less than the length of a typical corridor, many
corridors and intersections are perceptually indistinguish-
able. To deal with problem, this the agent was given ex-
tra state variables consisting of the eight-point compass
and bump sensor used in the T-Maze experiment, plus a
coarse tiling of the robot’s x/y position into 10 m × 10 m
squares. This tiling can be seen as roughly equivalent to
having large sections of the building marked with differ-
ent colors that are visible to the robot.

Figure 9 shows the learning curves for the ACES en-
vironment. Each curve averages the performance of 50
agents — 5 runs using each of 10 trained GNGs — for
agents using SODA’s TF+HC options and agents using
primitive actions only. The curves show that the SODA
agents are able to learn the navigation task within the al-
loted time-out period, while the agents using primitive
actions are not.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000

L
e

n
g

th

Episode

Length per Episode

Primitive Actions
SODA Options

Figure 9: ACES Navigation Learning Curve This learning
curve shows the number of steps taken per episode while learn-
ing to navigate from the center-right intersection to the bottom-
left corner of the ACES environment in Figure 8. The upper
curve represents agents using primitive actions only, the lower
curve represents agents using learned TF and HC options. (Er-
ror bars represent +/- one standard error.) SODA agents are able
to learn the task while the agents using primitive actions are un-
able to make reasonable progress on the task in the allotted time.

5. Discussion and Related Work

These experiments show that SODA’s abstraction allows
robotic agents to learn to perform navigation tasks that
are difficult or impossible to learn without the abstrac-
tion. The abstraction makes it possible to learn to nav-
igate in noisy, high-diameter environments from high-
dimensional sensor data with little prior knowledge added
by engineers.

SODA’s learned TF and HC options each contribute to
the power of the abstraction. The TF options allow the
agent to traverse long, uniform segments of the environ-
ment reliably in a single action, even when perturbed by
motor noise. The HC options allow the agent to localize
itself at a distinctive state efficiently and autonomously
without the need to manually sample the feature gradi-
ent to determine which way to go. In this case, each HC
option policy can be thought of as a learned model of its
respective feature gradient.

This work makes an important contribution to rein-
forcement learning, by showing how options can be
extended to realistic continuous domains in robotics,
through both the formalization of TF and HC macros as
options, and through the Top-N state representation. Al-
though there are a variety of other methods for RL in
continuous state spaces (Santamaria et al., 1998; Atkeson
et al., 1997; Fernández and Borrajo, 2000), these meth-
ods each require their own state representations, entailing
special data structures and procedures and often includ-
ing search in large instance databases, and it is not clear
how these methods can be scaled to the high-dimensional
sensory data for which SODA is designed. The Top-N
state representation on the other hand, is simple to com-
pute from SODA’s perceptual features and, through hash-
ing, just “plugs in” to existing table-based RL methods. It

is interesting to note that, as used here, the Top-N repre-
sentation does not exploit the hierarchical way in which it
divides the state space. It seems likely that this hierarchy
could be utilized to generalize better to nearby places in
the state space.

Another contribution of SODA as a hierarchical RL
method is the introduction of trajectory-following op-
tions. Previous work on discovering options focuses on
finding sub-goals, i.e., discovering useful states and con-
structing options that achieve those states as quickly as
possible. TF options are essentially the dual of sub-goal
options: They try to maintain the current state for as long
as possible, while their progress is constrained in some
way. TF options are subtasks that do not not fit cleanly
into the category of sub-goal discovery, but that are use-
ful to have in the repertoire of an intelligent agent. Gen-
eralizing such actions beyond navigation is an interesting
direction for future work.

Finally, the agents’ use of extra state information to
disambiguate percepually aliased states while navigating
(Section 4.4) may seem to run counter to the stated goal
of removing the need for human-engineered perceptual
features. Resolving perceptual aliasing is a well-studied
problem for which many methods have been developed
(see the survey by Shani (2004)). SODA’s philosophy is
to focus on learning a perceptual-motor abstraction that is
suitable for use with existing methods for disambiguating
aliased states. Removing the extra state information and
replacing Sarsa(λ) with a learning method that handles
hidden state is future work.

6. Conclusion

This paper has shown how SODA can be used to learn
a useful perceptual and action abstraction in robot nav-
igation problems with rich, high-dimensional sensors.
SODA’s trajectory-following and hill-climbing macros
are formalized as learnable options. Part of this for-
malization includes a new state abstraction, the Top-N
representation, that is based on SODA’s learned set of
perceptual prototypes, but provides the higher resolu-
tion necessary for local closed-loop control. These new
learned options make navigation using SODA more re-
liable and efficient, reducing learning times and improv-
ing learned performance, and allowing robots to learn to
navigate in large spaces entirely autonomously, without a
pre-engineered model of the environment or the robot’s
sensorimotor system.

References
Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally

weighted learning for control. Artificial Intelligence Re-
view, 11(1/5):75–113.

Beeson, P., Murarka, A., and Kuipers, B. (2006). Adapting pro-
posal distributions for accurate, efficient mobile robot lo-
calization. In IEEE International Conference on Robotics
and Automation.

Fernández, F. and Borrajo, D. (2000). VQQL: Applying vec-
tor quantization to reinforcement learning. In Veloso, M.,
Pagello, E., and Kitano, H., (Eds.), In Lecture Notes in
Artificial Intelligence 1856. Springer.

Fritzke, B. (1995). A growing neural gas network learns topolo-
gies. In Tesauro, G., Touretzky, D. S., and Leen, T. K.,
(Eds.), Advances in Neural Information Processing Sys-
tems 7, pages 625–632. MIT Press.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The
player/stage project: Tools for multi-robot and distributed
sensor systems. In Proceedings of the 11th International
Conference on Advanced Robotics, pages 317–323, Coim-
bra, Portugal.

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with hexq. In Sammut, C. and Hoffmann, A.,
(Eds.), Machine Learning: Proceedings of the 19th An-
nual Conference, pages 243–250.

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial
Intelligence, 119:191–233.

McGovern, A. and Barto, A. G. (2001). Automatic discovery
of subgoals in reinforcement learning using diverse den-
sity. In Machine Learning: Proceedings of the 18th An-
nual Conference, pages 361–368.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance
under reward transformations: theory and application to
reward shaping. In Proc. 16th International Conf. on Ma-
chine Learning, pages 278–287. Morgan Kaufmann, San
Francisco, CA.

Provost, J., Kuipers, B. J., and Miikkulainen, R. (2006).
Developing navigation behavior through self-organizing
distinctive-state abstraction. Connection Science, 18.2. In
press.

Roy, N. and Thrun, S. (1999). Online self calibration for mobile
robots. In IEEE International Conference on Robotics and
Automation.

Santamaria, J., Sutton, R., and Ram, A. (1998). Experiments
with reinforcement learning in problems with continuous
state and action spaces. Adaptive Behavior, 6(2).

Shani, G. (2004). A survey of model-based and model-free
methods for resolving perceptual aliasing. Technical Re-
port 05-02, Department of Computer Science at the Ben-
Gurion University in the Negev.

Şimşek, Ö. and Barto, A. G. (2004). Using relative novelty
to identify useful temporal abstractions in reinforcement
learning. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 751–758. ACM
Press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs
and SMDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181–
211.

	Introduction
	Background
	SODA
	Behavioral Routines as Options

	Method
	Feature Activation Functions
	Top-N State Representation
	Trajectory Following
	Hill-climbing
	TF+HC Actions

	Experiments and Results
	Experimental Setup
	Trajectory-Following Experiment
	Hill-Climbing Experiment
	Navigation Experiments

	Discussion and Related Work
	Conclusion

