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Abstract

The Spatial Semantic Hierarchy (SSH) is a multi-level repre-
sentation of the cognitive map used for navigation in large-
scale space. We propose a method for learning a portion of
this representation, specifically, the representation ofviewsin
the causal level of the SSH using self-organizing neural net-
works (SOMs). We describe the criteria that a good view rep-
resentation should meet, and why SOMs are a promising view
representation. Our preliminary experimental results indicate
that SOMs show promise as a view representation, though
there are still some problems to be resolved.

Introduction
For a mobile robot to be able to navigate, it must know where
it is. More specifically, if a robot is to be able to navigate an
environment larger than the robot’s sensory horizon, it must
store some representation of its large-scale environment, i.e.
a cognitive map. Given some sensor input, the robot must
be able to identify its position in the cognitive map in order
to plan routes or monitor the progress of navigation.

Our model of the cognitive map is the Spatial Semantic
Hierarchy (SSH) (Kuipers, 2000). The SSH is a system of
layered representations, each abstracting the details of the
layers below it. From the bottom up, the layers are: thecon-
trol layer, dealing with raw sensor input and direct motor
control of the robot; thecausal layer, consisting of control
actions and the effects they have on sensor views, thetopo-
logical layer consisting of places connected by paths, and
finally the metrical layerin which the places and paths of
the topological layer are annotated with metrical informa-
tion, to form a “patchwork metrical map.”

People and animals learn to navigate using data gathered
from interacting with the world. We feel that a robot should
be able to do the same. To this end, we and other members of
our lab are working on systems which can learn all the levels
of the SSH. This paper describes preliminary investigations
into using self-organizing neural networks to represent sen-
sor views in the causal layer of the SSH.

�This work has taken place in the Intelligent Robotics Lab at
the Artificial Intelligence Laboratory, The University of Texas at
Austin. Research of the Intelligent Robotics lab is supported in part
by NSF grants IRI-9504138 and CDA 9617327, and by funding
from Tivoli Corporation.

The SSH Causal Layer

The causal layerof the SSH deals with sensor views and
control actions. It consists of a graph whose nodes are
distinct sensor views, and whose edges are control actions
which cause a transition from one sensor view to the next.
The edges of the graph form causal triples of the form
hV;A; V 0i, indicating that actionA, taken in the context of
sensor viewV , can produce viewV 0.

In order for a robot to use the SSH causal layer, the view
representation must have these qualities:

� Views must beindexablein some fashion using current
sensor data. A robot must be able to recognize its current
sensor input as one of its set of known views, or a new
view.

� Views mustcluster sensory images. Sensory images are
affected by sensor noise and reasonably large amounts of
positional noise from the execution of imprecise and un-
certain control laws. Matching sensory images for equal-
ity provides no useful information because of this noise.
Thus,

� Views shouldmaximize the prediction accuracyof the
causalhV;A; V 0i relations. To navigate reliably, the robot
must be able to predict with confidence the view it will see
after executing an action at the current view. Of course,
the highest confidence representation would be to clus-
ter every sensory image into a single view; then all the
hV;A; V 0i relations would have 100% confidence. Such
a degenerate causal layer, however, would be useless for
navigation. Thus,

� Views shouldmaximizethe amount ofinformation about
locationencoded in the causal representation. In order to
build a topological map using the causal layer, the causal
representation should distinguish between the views of
different places in the environment as much as possible
for the given levels of sensor noise and positional error.

Self-organizing Maps

We are investigating using a self-organizing map (SOM)
(Kohonen, 1995) as a representation of the SSH view set. A
standard SOM consists of a set of units or cells arranged in



Figure 1: 5x5 Self-organizing Map. In training, each sensor
image is compared with the weight vector of each cell, and the
weights are adapted so that over time each cell responds to a dif-
ferent portion of the input space.

a lattice.1 The SOM takes a continuous-valued vectorX as
input and returns one of its units as the output. Each unit has
a weight vectorWi of the same dimension as the input. On
the presentation of an input, each weight vector is compared
with the input using the Euclidean distance and awinner is
selected asargmini kWi �Xk.

In training, the weight vectors in the SOM are initialized
to random values. When an input vector is presented, the
winning unit’s weights are adjusted to move it closer to the
input vector by some fraction of the distance between the
input and the weights (the learning rate). In addition, the
units in the neighborhood of the lattice near the winner are
adjusted toward the input by a lesser amount.

Training begins with initially large values for both the
learning rate and the neighborhood size. As training pro-
ceeds through numerous cycles, orepochs. In each epoch,
the full set of training vectors is presented in a new random
order, as the learning rate and neighborhood are gradually
annealed to very small values. As a result, early training ori-
ents the map to cover the gross topology of the input space,
and as the parameters are annealed, finer grained structure
of the input space emerges.

In our implementation, the trained SOM is used as the
view matcher: it takes a sensory image as input and the win-
ning unit is taken to be the view at the current state.

Self-organizing maps have several properties which sug-
gest that they will lend themselves well to representing
views:

� Clustering with topology preservation– SOMs partition
the input space into a set of clusters that preserves the
topology of the original input space in reduced dimen-
sions2. Thus similar views will be placed near one another
in the SOM.
1The lattice is usually, but not necessarily, a 2D rectangular

grid.
2In this context, topology refers to the topology of the space

of sensor images, not the topology of places and paths in the SSH
topological layer.

� Data- and sensor- generality– Because they operate on
any input that can be expressed in the form of a vector,
they are not specific to range-sensors or office environ-
ments as occupancy grids and segment/wall feature repre-
sentations are.

� Good intuitive fit to task– As our results show below,
a SOM generates views that look to the human eye like
the sensor images they represent. Furthermore, the repre-
sentation distinguishes between views of places that look
different, while aggregating views from places that look
similar.

Figure 2: Development of a SOM unit. Plot of six snapshots
in the development of a single unit in the SOM over the course of
training.

Related work
Many researchers have tried a number of unsupervised
learning methods in robot localization, including SOMs
(Nehmzow & Smithers, 1991), growing cell structures
(Duckett & Nehmzow, 2000), nearest neighbor (Duckett &
Nehmzow, 1998), and local occupancy grids (Yamauchi &
Langley, 1997). Duckett & Nehmzow tested these methods
in the same localization task, and compared localization ac-
curacy against computational cost for all the algorithms.

The major differences between these efforts and ours is
that they all use their respective methods to identifyloca-
tions, while we are attempting only to distinguish and clas-
sify views. This frees us from the need to eliminate per-
ceptual aliasing3 entirely at the view-recognition level. The
SSH model anticipates that some places may be indistin-
guishable at the view level, and mechanisms are built into
the topological level to deal with this. (Kuipers & Byun,
1988, 1991)

Nevertheless, these works, particularly that of Duckett &
Nehmzow, contain many good ideas which bear further in-
vestigation in the context of the SSH. For further discussion,
see the future work section, below.

Experiment
We tested SOMs as a view-representation on a hand-selected
set of 10 “distinctive states,” chosen to represent possible

3The term for the situation when two or more distinct states
in the environment are indistinguishable to the robot’s perceptual
apparatus.



termination points of control laws in the SSH. The states are
shown in Figure 4. Each state is a pose in the environment
defined by the robot’s position and orientation(x; y; �). To
model positional uncertainty, several samples were taken
from each state in which the canonical pose for that state
was randomly perturbed in these ranges:

-500mm��x,�y � 500mm
�10Æ � �� � 10Æ

All data were generated with the Flat robot simulator
(Hewettet al., 1999) designed to simulate Vulcan, one of
the physical robots in our lab. The simulated robot is con-
figured with two range-finders sampling 180 ranges at1Æ

intervals around a semi-circle. The range-finders are ori-
ented at�45Æ and+45Æ from the robot’s centerline, so that
they cover a270Æ arc around the robot, with90Æ of overlap
directly in front. The maximum range of the range-finders
is 25m. The environment is a simulated layout of the fourth
floor of Taylor Hall at the University of Texas at Austin, with
walls, doorways, doors, etc. The noise model gives each
point a 40% probability of a�4cm error (20% +4, 20% -4)4.
The resolution is sufficient to make out features as small as
100mm.5

We trained a 5x5 SOM for 5000 epochs on 10 images
from each distinctive state. The sensory images were 360-
dimensional vectors constructed by concatenating the output
of the two range-finders.

Results and Discussion
Learned Views
We can see from the following figures that the trained map
learned a view representation with a strong qualitative match
to the sensor images. Figure 2 plots a single cell at six steps
in the training.6 The unit begins with random weights, and
gradually grows to closely match the view of one of the
states in the training data. Figure 5 plots the weight vector of
each cell in the trained SOM as a range-finder image. Each
cell’s weight vector can be thought of as the sensor image
to which that cell responds the most strongly. Many of the
cells very closely resemble typical range scans that would
be seen in the states in Figure 4, others resemble averages
of many noisy scans from one state, or combinations of the
scans of distinct but similar states.

Despite this visible similarity, the learned representation
is not perfect. In particular, notice that many of the cells
on the left side in Figure 5 are very similar to one another.
These cells represent views learned from images of states
2, 3, 4, and 6. As you can see from Figure 4 these states
are all in the long central corridor of the environment, fac-
ing walls or doorways with long open reaches of corridor to

4This is a more realistic noise model for the SICK laser range
scanners used on the physical robot than either Gaussian or uni-
formly distributed noise.

5The depth of the “dent” formed by a doorway with a closed
door in our environment.

6In all the plots, the ranges from the two overlapping range find-
ers, or the corresponding SOM weights, are plotted on a single po-
lar graph with the centerline of the robot oriented vertically.

Figure 3:Histograms of SOM output for each state.Each grid
is a histogram of the winning cell output of the 5x5 SOM for each
sensor image from each of the 10 distinctive states. Darker shading
means more images were mapped to that cell. States 1, 5, 7, 8, and
9 show strongly focused responses. While 2, 3, 4 and 6 show un-
focused responses. The states correspond to the states in Figure 4.
The weight vectors of the map cells are shown in Figure 5.

either side. One feature of the standard SOM learning algo-
rithm is that it automatically assigns the cells to cover areas
of the input space in proportion to their representation in the
training data. Because scans 2, 3, 4, and 6 are close to one
another in the input space, a large amount of the SOM repre-
sentation is devoted to covering this space, posing problems
for view representation which we address below.

View Response to Distinctive States
To measure how well the trained SOM functions as a view
representation, we presented the trained SOM with all the
images from all 10 distinctive states, and created histograms
of the winning cells for each state (Figure 3). The results are
mixed. States 1, 5, 7, 8, 9, and, to a lesser degree, 10, show
strongly focused responses, with all or nearly all images for
a view activating the same cell, with the few “misses” acti-
vating nearby cells in the map. States 2, 3, 4, and 6, on the
other hand, have broad unfocused responses. These are the
states from the central corridor mentioned above. Because
the images of these states are so much alike, the SOM has
over-fit the data and created more views than are needed to
represent the input data. This is a potential problem for use
of the SOM as a view representation. We are investigating a
number of possible solutions, which are discussed below.

Figures 6 and 7 illustrate the difference in SOM response



Figure 4:Distinctive states in the environment.The simulated robot environment used in our experiment, with the 10 distinctive states
used for training marked.

Figure 5:SOM Weight Vectors as Views.Here the weight vector of each cell in the 5x5 SOM is plotted as a range-finder image. Each
cell’s weight vector can be thought of as the sensor image, or view, to which that cell responds most strongly. These images correspond to the
grid cells in Figures 1, 3, 6, and 7. Note the similar views represented along the left side of the map, contributing to the poor map responses
in states 2, 3, 4, and 6 .



Figure 6: SOM activation response for state 7.The response
activations of the SOM for all 10 sensory images of state 7, a state
with a strongly focused histogram in Figure 3. Note that all the re-
sponses are nearly identical. (Darker shading means a closer match
to the input.)

between the states that have been over-fit and those that have
not. They plot the activation of the SOM to each individual
view from states 7 and 2 respectively. State 7 had the most
strongly focused response in the histograms, while state 2
had a very poorly focused response. Figure 6 clearly shows
that the map response for state 7 is nearly identical for all
sensor images. In Figure 7 the responses to the views of
state 2 differ greatly, not only in the winning cell, but in the
general pattern of activation. Matching the activated cells
from the histograms of states 2 and 7 in Figure 3 with the
view images in Figure 5, we see that the single view acti-
vated for state 7 is unlike any of the other views represented
in the map. The five views activated for state 2, on the other
hand, are all very similar to one another.

Perceptual Aliasing
The histograms of states 1 and 9 in Figure 3 display a classic
case of perceptual aliasing. These two states have identical
response histograms in the SOM. This is expected if the met-
rical differences between the images of the two rooms are
within the bounds of the positional error and sensor noise
in the data. Figure 8 shows two typical sensor images from
these two states, along with the view of the most common
matching cell for each. In these two, the robot was posi-
tioned inside a room facing the doorway, with similar geom-
etry of walls and corners on all sides. These states are both
represented by the same view in our SOM.

Figure 7: SOM activation response for state 2.The response
activations of the SOM for all 10 sensory images of state 2, one of
the least focused states in Figure 3. Note the difference in responses
for different images. (Darker shading means a closer match to the
input.

Figure 8: Perceptual aliasing. The the left and center images
are scans from two different distinctive states in the environment
(places 1 and 9). Both scans’ best match is the view on the right.

Continuing and Future work
We are continuing to investigate using SOMs for view rep-
resentation on several fronts:

Eliminating over-fitting
The most obvious area for continuing development is the
elimination of the over-fitting problems mentioned above.
We see several possible ways of doing this.

One simple means of eliminating over-fitting is to use
a smaller SOM. Fewer total cells means fewer cells to al-
locate to any one area of the search space. The problem



with this method is that it brings up the question of how to
choose a good map size for an environment. Too small a map
will cause unnecessary perceptual aliasing. Furthermore, we
would like for our robots to be able to explore and map an
environment with little or no prior knowledge of the number
of distinct views that they will need.

Two methods,active trainingand growing SOMs, may
lend themselves to this problem. In active learning, the
learning rate of the SOM is dynamic, rather than on a fixed
schedule. For example, if the learning rate is proportional
to the distance of the training vector from the winning cell,
then areas of the space that are already strongly represented
by one cell will not receive a large allocation of cells from
the map. Growing SOMs (Fritzke, 1996) are variants on
ordinary SOMs that add cells to the network incrementally
based on criteria such as the cumulative error in the win-
ning nodes. This would allow the network to add cells only
in areas of the input space where the coverage is poor. In
addition, growing SOMs eliminate the need to guess in ad-
vance the size of the network needed to adequately represent
the views, making growing SOMs more suitable for lifelong
learning.

Quantitative evaluation
So far, our evaluation of the SOM as a view representation
has been primarily qualitative. Some quantitative measure
of the fitness of a particular view representation is needed
to rigorously evaluate this and other representations. One
possibility is to use the prediction accuracy of thehV;A; V 0i
as the metric. This will be possible when we have integrated
the SOM view representation into an SSH-based exploration
routine on a real or simulated robot.

Another possible metric is the Uncertainty CoefficientU ,
used by Duckett & Nehmzow (2000). It is an entropy-based
metric for measuring the quality of landmark-based recogni-
tion systems, and is suitable for measuring systems learned
through unsupervised methods such as SOMs or discrete
clustering algorithms.

One exciting possibility, once a good metric has been dis-
covered, is to implement on-line, adaptive learning by eval-
uating the quality of the view representation continually as
the robot explores, and feed the results back to the active
training, or growing SOM, to modify its learning as it ex-
plores.

Conclusion
Self-organizing maps show promise as a method for learning
to recognize sensor views in the Spatial Semantic Hierarchy.
On our test data, a SOM develops a strong, focused repre-
sentation for views of several states in the environment. The
remaining states’ representations suffer because the SOM
over-fit the data, encoding positional noise in the views.
Modifying the SOM learning algorithm either through the
use of active training or growing SOMs should allow learn-
ing a strong representation of the views of all states without
over-fitting.

In our continuing work we hope to establish a quantitative
measure of the goodness of a learned view representation,

and integrate a learned causal layer into a working naviga-
tion system based on the SSH, with the ultimate goal of a
system that learns all the levels of the SSH.
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