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Qualitative simulation predicts the set of possible behaviors consistent with a qualitative dif-
ferential equation model of the world. Its value comes from the ability to express natural types of
incomplete knowledge of the world, and the ability to derive a provably complete set of possible
behaviors in spite of the incompleteness of the model.

A qualitative di�erential equation model (QDE) is an abstraction of an ordinary di�erential
equation, consisting of a set of real-valued variables and functional, algebraic and di�erential con-
straints among them. A QDE model is qualitative in two senses. First, the values of variables are
described in terms of their ordinal relations with a �nite set of symbolic landmark values, rather
than in terms of real numbers. Second, functional relations may be described as monotonic func-
tions (increasing or decreasing over particular ranges) rather than by specifying a functional form.
These purely qualitative descriptions can be augmented with semi-quantitative knowledge in the
form of real bounding intervals around unknown real values and real-valued bounding envelope
functions around unknown real-valued functions. Qualitative and semi-quantitative models can be
derived by composing model fragments and collecting the associated modeling assumptions.

Qualitative simulation starts with a QDE and a qualitative description of an initial state. Given
a qualitative description of a state (called a qstate), it predicts the qualitative state descriptions
that can possibly be direct successors of the current state description. Repeating this process
produces a graph of qualitative state descriptions, in which the paths starting from the root are
the possible qualitative behaviors. The graph of qualitative states is pruned according to criteria
derived from the theory of ordinary di�erential equations, in order to preserve the guarantee that
all possible behaviors are predicted. Abstraction methods have also been developed to simplify the
resulting qualitative behaviors.

The resulting graph of qualitative states (the behavior graph) can still be quite large, requiring
automated methods based on temporal logic model-checking to determine whether the qualitative
prediction implies a desired conclusion. Conclusions derived in this way can be used in the design
and validation of dynamical systems such as controllers. A set of qualitative models and their
associated predictions can also be uni�ed with a stream of observations to monitor an ongoing
dynamical system or to do system identi�cation on a partial model.

Ongoing research topics include qualitative simulation and abstraction methods, the use of
various types of quantitative knowledge, automated ways to determine the conclusions to draw
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from a predicted behavior graph, design and veri�cation methods, online monitoring frameworks,
and modeling methods suited for particular application domains. The speci�c notations in this
article are those used in the QSIM representation [20, 21], but the concepts covered include the
related ideas from [8, 12, 29, 30].

1 The Qualitative Model Representation

Like an ordinary di�erential equation, a qualitative di�erential equation model consists of a set
of variables related by constraints. (Figure 1 shows an example of the QSIM code for a QDE
describing a simple U-tube system consisting of two tanks, A and B, connected by a thin channel.)
A variable represents a continuously di�erentiable function over the extended real number line,
v : <� ! <�, including �1. However, in a QDE model, the range of each variable, including
the independent variable time, is described qualitatively by a quantity space. A quantity space
is a �nite, totally ordered set of symbolic landmark values representing qualitatively important
values in the real number line (see �gure 1). Every quantity space includes landmarks for zero and
positive and negative in�nity. A purely qualitative model speci�es only the ordinal relations among
landmarks, though as we shall see below, semi-quantitative extensions may provide bounds on the
possible real values corresponding to a landmark.

The algebraic and di�erential constraints in a QDE are simple and familiar equations, universally
quanti�ed over t.

(add x y z) � x(t) + y(t) = z(t)
(mult x y z) � x(t) � y(t) = z(t)
(minus x y) � y(t) = �x(t)

(d/dt x y) � d
dt
x(t) = y(t)

(constant x) � d
dt
x(t) = 0

Since they are asserted as individual constraints, rather than composed as hierarchical expres-
sions in traditional algebra, a QDE must include explicit variables for subexpressions. However, a
QDE may also include constraints representing unknown functions in the set M+ of monotonically
increasing continuously di�erentiable functions (satisfying additional technical conditions discussed
in [21]).

(M+ x y) � y(t) = f(x(t)); f 2M+

(M- x y) � y(t) = �f(x(t)); f 2M+

The M+ and M� constraints make it possible to express a QDE model including functions
whose explicit form is not known, and which are only described in terms of monotonicity. An
algebraic or functional constraint may specify corresponding values, which are tuples of landmark
values known to satisfy the constraint. A QDE may also explicitly describe the boundaries of its
domain of applicability by specifying transition conditions that carry the behavior into a di�erent
model. The U-tube model in Figure 1 illustrates each of these features.

The qualitative magnitude of a variable is described either as a landmark value or as an open
interval between two adjacent landmarks in the quantity space of that variable. The qualitative
value of a variable is described as its qualitative magnitude and the sign of its derivative (its
direction of change: inc, std, or dec). (Note that the antecedents of the transition conditions in
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A B

(define-QDE U-Tube

(quantity-spaces

(amtA (minf 0 AMAX inf))

(pressureA (minf 0 inf))

(amtB (minf 0 BMAX inf))

(pressureB (minf 0 inf))

(pAB (minf 0 inf))

(flowAB (minf 0 inf))

(-flowAB (minf 0 inf))

(total (minf 0 inf)))

(constraints

((M+ amtA pressureA) (0 0) (inf inf))

((M+ amtB pressureB) (0 0) (inf inf))

((add pAB pressureB pressureA))

((M+ pAB flowAB) (minf minf) (0 0) (inf inf))

((minus flowAB -flowAB))

((d/dt amtB flowAB))

((d/dt amtA -flowAB))

((add amtA amtB total))

((constant total)))

(transitions

((amtA (AMAX inc)) -> tank-A-overflow)

((amtB (BMAX inc)) -> tank-B-bursts)))

Figure 1: QSIM code for the U-tube model.
This QDE model can be written in the form of an ODE

d

dt
B = �

d

dt
A = f(p1(A)� p2(B))

except that the functions f; p1; p2 2M+ are only qualitatively described. All three M+ constraints
include tuples of corresponding landmark values. Their signi�cance in this case is to exclude
horizontal and vertical asymptotes.
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Figure 1 are speci�ed by the qualitative values of particular variables.) A qualitative state of a
model is a tuple of associations of qualitative values to each variable in the model.

Time is described in the same way as every other variable. Since its direction of change is always
inc, time progresses through an alternating sequence of landmark values (called time-points) and
open intervals between adjacent time-points. The time-points are de�ned as those points in time
when the qualitative state of the model (i.e., the qualitative value of any variable) changes.

A qualitative behavior is a sequence of qualitative states, where each state is the immediate
successor of the one before it. Because of the qualitative representation, it is possible for a �nite
sequence of qualitative states to represent the behavior of a system from its initial state at t = 0
to a �nal state at t = 1. For example, one possible behavior of the U-tube model in Figure 1,
initialized with Tank A full and Tank B empty, is the following three-state behavior concluding with
a state where both Tank A and Tank B are partly full. We see new landmark values being created
and inserted into quantity spaces when new critical values are de�ned; i.e., when a qualitative
magnitude lies in an open interval, but direction of change is std.

t t0 (t0; t1) t1

amtA hAMAX; deci h(0; AMAX); deci h(0; AMAX); stdi
= hA0; stdi

pressureA h(0;1); deci h(0;1); deci h(0;1); stdi
= hP0; stdi

amtB h0; inci h(0; BMAX); inci h(0; BMAX); stdi
= hA1; stdi

pressureB h0; inci h(0;1); inci h(0;1); stdi
= hP1; stdi

pAB h(0;1); deci h(0;1); deci h0; stdi
flowAB h(0;1); deci h(0;1); deci h0; stdi
total h(0;1); stdi h(0;1); stdi h(0;1); stdi

= hTO0; stdi = hTO0; stdi = hTO0; stdi

Figure 2(a) shows a plot of this qualitative behavior (each qualitative value is plotted at a land-
mark, or midway between two landmarks). Because the tanks have unknown sizes (the landmarks
AMAX and BMAX) and geometries (the monotonic functions linking amount and pressure), the
behavior graph for this model is a tree of three behaviors.

There are extensions to the representation not discussed here, including the region transition
and discontinuous changes shown in Figure 2(b). See [21] for details.

2 Qualitative Simulation

The QSIM algorithm [20, 21] performs qualitative simulation by deriving the immediate successors
of each qualitative state, repeating this step to grow the behavior graph from the initial state at
its root. In order to guarantee that all possible behaviors are predicted, we require �rst that all
possible qualitative value transitions are predicted, and second, that combinations of qualitative
values are only deleted when they are inconsistent.
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Figure 2: Qualitative simulation of the U-tube.
Two of the three qualitatively distinct behaviors predicted by the U-tube model, from an initial
state AmtA(t0) = AMAX, AmtB(t0) = 0.

(a) The system reaches equilibrium with both Tank A and Tank B partially full.

(b) Tank B over
ows and bursts, causing a transition to a new model where there is no backpressure
to impede 
ow out of tank A, so the system drains to empty.

In the third behavior (not shown), Tank B reaches equilibrium at AmtB(t1) = BMAX.
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Table 1 enumerates all transitions from each qualitative value description to its possible suc-
cessors. The validity of this table follows directly from the Intermediate Value and Mean Value
Theorems from elementary calculus.

The successor generation phase of QSIM consists of the following steps, given a QDE and a
current state S.

1. (Value generation.) For each variable in S, generate all possible successor values using Table 1.

2. (Constraint �ltering.) For each constraint in the QDE, which applies to a tuple of variables,
generate all corresponding tuples of successor values. Delete each tuple that violates its
constraint.

3. (Local consistency �ltering.) For each pair of constraints that are adjacent, in the sense that
they share a variable v, and for each tuple of one constraint that assigns a value, say x, to
v, delete that tuple if there is no tuple associated with the other constraint that also assigns
the value x to v.

4. (State generation.) From the remaining tuples of values associated with constraints, exhaus-
tively enumerate all consistent complete assignments of values to variables. Create a successor
state for S from each of these assignments.

Once successor states have been added to the behavior graph, they can be analyzed and the
description augmented in several ways. In some cases inconsistencies can be identi�ed that were
not visible at the successor-generation level, allowing states to be pruned from the graph.

State �lters consider information local to the current state and perhaps its immediate prede-
cessor. Inconsistency can be propagated from a state to its predecessors.

� A quiescent state (�xed point) can be recognized because all directions of change are std. In
some cases, its stability can also be determined.

� Transitions to in�nite values and in�nite times must satisfy additional constraints.

� Higher-order derivative constraints can sometimes be derived algebraically from the QDE and
applied to eliminate certain successor states.

� New landmarks and new corresponding value tuples can be created explicitly to describe
critical values and other uniquely determined values in quantity spaces.

� A region transition is identi�ed when the current state matches the antecedent to a transition
rule. The current state is linked to a new state, created with respect to the QDE for the new
operating region, with values mapped from the current state. The transition may represent a
discontinuous change, or it may represent a re-description of the current state within a new
model.

Behavior �lters derive properties of the entire behavior terminating in the current state, to
augment the behavior description and sometimes determine its inconsistency.

� A periodic behavior can be identi�ed by matching the new state to one of its predecessors in
the behavior graph.
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We can enumerate the possible successor relations from one qualitative value to the next for a
continuously di�erentiable variable v : [a; b]! <�. There are two sets of successor rules, depending
on whether the antecedent state is a time-point or a time-interval. Let lj�1 < lj < lj+1 be three
adjacent landmarks in the quantity space for v.

� P-Successors: point to interval.

QV (v; ti) ) QV (v; ti; ti+1)

hlj ; stdi hlj ; stdi
hlj ; stdi h(lj ; lj+1); inci
hlj ; stdi h(lj�1; lj); deci
hlj ; inci h(lj ; lj+1); inci
hlj ; deci h(lj�1; lj); deci
h(lj ; lj+1); inci h(lj ; lj+1); inci
h(lj ; lj+1); deci h(lj ; lj+1); deci
h(lj ; lj+1); stdi h(lj ; lj+1); stdi
h(lj ; lj+1); stdi h(lj ; lj+1); inci
h(lj ; lj+1); stdi h(lj ; lj+1); deci

� I-Successors: interval to point.

QV (v; ti; ti+1) ) QV (v; ti+1)

hlj ; stdi hlj ; stdi
h(lj ; lj+1); inci hlj+1; stdi
h(lj ; lj+1); inci hlj+1; inci
h(lj ; lj+1); inci h(lj ; lj+1); inci
h(lj ; lj+1); inci h(lj ; lj+1); stdi
h(lj ; lj+1); deci hlj ; stdi
h(lj ; lj+1); deci hlj ; deci
h(lj ; lj+1); deci h(lj ; lj+1); deci
h(lj ; lj+1); deci h(lj ; lj+1); stdi
h(lj ; lj+1); stdi h(lj ; lj+1); stdi

Table 1: The qualitative successor rules
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� The phase space trajectory of a dynamical system can only intersect itself if the behavior is
periodic. Qualitative behaviors that self-intersect without creating a cycle are inconsistent.

� Terms equivalent to potential and kinetic energy, and conservative and non-conservative work,
can be derived from some QDE models, and tested for consistency.

� When semi-quantitative information is associated with the QDE, it can be propagated to
re�ne or refute the behavior description. (Section 3.)

The QSIM Guaranteed Coverage Theorem states that the QSIM behavior graph describes all
real solutions to ODE models consistent with the given QDE and initial qualitative state. This
follows directly from the fact that all possible successor values are generated, and that states and
behaviors are deleted only when proved to be inconsistent.

There is no converse guarantee that every predicted qualitative behavior corresponds to a real
solution to some ODE described by the QDE. While the constraint satisfaction algorithm in QSIM
is sound and complete, there may well be a G�odel-like incompleteness theorem stating that the
properties of real dynamical systems are too rich to be captured by any �nite set of symbolic
constraints.

2.1 Tractability

The set of behaviors generated by qualitative simulation may include many distinctions unimportant
to the model-builder, due to the �xed level of description implied by the qualitative value and
qualitative state representations. There are two classes of such unimportant distinctions. In the
�rst, there is a region of the state space of the QDE where the qualitative behavior is unconstrained.
Recently, methods have been developed for identifying such a \chattering" region and replacing it
with an abstract state whose predecessors and successors describe the trajectories into and out of
that region [4].

In the second class, two or more events (qualitative value transitions) take place, but their
temporal order is not constrained by the QDE. Based on the concept of interacting histories [14, 31]
methods have been developed for qualitative simulation of a QDE decomposed into sub-models [5].
The interactions between the histories of the sub-models are considered only when they are needed
to permit simulation of the sub-model. Events internal to separate sub-models are not explicitly
related, so they do not require explicit branches in the graph of qualitative behaviors.

While the behavior graph predicted for a complex QDE model may still be quite large, these two
methods have, in principle, eliminated the problem of intractable branching in qualitative simulation
by eliminating the two sources of explicit distinctions unimportant to the model-builder.

2.2 Querying the behavior graph

An individual qualitative behavior is a description of the time-evolution of the variables in the QDE,
and is not diÆcult to interpret, whether it is purely qualitative or if it is augmented with bounding
intervals and envelopes. However, a large behavior graph represents a disjunctive prediction with
many disjuncts, and requires automated interpretation tools.

A particularly interesting tool that has been developed recently is temporal logic model-checking,
applied to the behavior graph output by QSIM [28]. The branching-time temporal logic CTL� [11]
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is particularly well suited to expressing statements of interest about the QSIM behavior graph. We
can express:

QSIM predicates on states qvalue, quiescent, cycle, etc.
Logical connectives and, or, not, implies.
Temporal path relations eventually, always, next, until, etc.
Modal quanti�ers necessarily, possibly.

The behavior graph output by QSIM can be interpreted as a branching-time temporal model,
against which a temporal assertion can be checked for validity. There are eÆcient incremental
model-checking algorithms that can be used to check whether a temporal model structure is an
interpretation of a given statement in CTL� [2]. The model-checking algorithm is sound and
complete. However, the QSIM Guaranteed Coverage Theorem provides only a one-sided guarantee
about the relation between the QSIM behavior graph and the set of predicted behaviors: QSIM
predicts every real behavior, but some predictions could be spurious, and not correspond to any
real behavior. Therefore, model-checking can prove a universal statement in temporal logic (one of
the form necessarily(P )), but not an existential statement (one of the form possibly(P )), since the
behavior that is identi�ed as the interpretation for P could be a spurious behavior [28]. Temporal
logic model checking can be used to prove properties of dynamical systems such as non-linear
controllers, even with incomplete knowledge [22].

2.3 Guided Simulation

The relation between temporal logic and qualitative simulation can be carried one step farther, to
allow assertions in temporal logic to be treated as part of the model [3]. The extended qualitative
simulator, TeQSIM, generates only qualitative behaviors that satisfy the temporal logic assertions
as well as the constraints in the QDE and the requirements of continuity.

This approach has two major uses. First, it extends the expressive power available to the model-
builder to state properties of the system that are diÆcult to capture in the constraint language
of the QDE. An example is the ability to describe time-varying behavior of exogenous variables,
including specifying bounds on the time of occurrence of discrete events. The second use is to allow
the model-builder to focus the simulator's attention on a subset of the state space of the model
described by the temporal logic assertions, rather than to explore the larger space of all possible
behaviors.

3 Semi-Quantitative Simulation

Partial knowledge can be quantitative as well as purely qualitative. The QDE and the qualitative
behaviors produced by QSIM can serve as a symbolic and algebraic framework for reasoning with
several representations of incomplete quantitative knowledge.

A landmark value is a symbolic name for an unknown real number, described in terms of its
ordinal relations with other landmark values, and the corresponding value tuples it participates in.
A natural form of partial quantitative knowledge about the unknown real number corresponding to
a landmark is a bounding interval, whose endpoints can be real numbers or �1. Two assertions of
bounding intervals for the same landmark can be combined simply by intersecting the intervals. A
smaller resulting interval corresponds to more precise knowledge about the value of that landmark.
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An empty intersection means that no value can be consistently assigned to that landmark, so the
current qualitative behavior is refuted.

A monotonic function constraint (M+ x y) is a qualitative description of an unknown function
y = f(x), describing the shape of f only as monotonically increasing. A natural form of partial
quantitative information about f is to provide a pair of real-valued \static envelope" functions f
and f that bound f above and below: f(x) � f(x) � f(x) for all x (Figure 3). It can also be useful
to assert bounds on the slope f 0(x) of a monotonic function.

The QDE, augmented with bounds on landmark values and static envelopes on monotonic func-
tion constraints, is referred to as a \semi-quantitative di�erential equation" or SQDE. Qualitative
simulation augmented with semi-quantitative inference is called \semi-quantitative simulation" or
SQSIM. Figure 3 shows a SQDE model of a water tank.

Purely qualitative simulation of the water tank SQDE predicts three qualitative behaviors:
equilibrium partly full, over
ow, and equilibrium exactly at the brim. The following table of qual-
itative values shows the three states of the equilibrium-partly-full behavior, including the creation
of new landmarks for uniquely speci�ed values.

t t0 (t0; t1) t1

amount h0; inci h(0; FULL); inci h(0; FULL); stdi
= ha0; stdi

outflow h0; inci h(0;1); inci h(0;1); stdi
= ho1; stdi

inflow hif�; stdi hif�; stdi hif�; stdi
netflow h(0;1); deci h(0;1); deci h0; stdi

= hn0; deci = h(0; n0); deci h0; stdi

3.1 Propagating Interval Bounds

The simplest semi-quantitative extension to QSIM, called Q2, is based on interval arithmetic [21,
chapter 9]. A qualitative behavior can be interpreted as a set of algebraic and functional constraints
among landmark values. The following constraints, called the \Q2 equations", are derived from
the corresponding landmark value tuples implied by time-point qstates in the qualitative behavior
above, from the bounding envelopes on monotonic function constraints, and from time-interval
states via the Mean Value Theorem.

o1 = f(a0)

if� = n0 + 0

if� = 0 + o1

span(n0; 0) = d(0; a0)=d(t0; t1)

slope(f) = d(0; o1)=d(0; a0)

d(0; a0) = a0 � 0

d(t0; t1) = t1 � t0

d(0; o1) = o1 � 0
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(define-QDE Water-tank

(quantity-spaces

(amount (0 full inf))

(outflow (0 inf))

(inflow (0 if* inf))

(netflow (minf 0 inf)))

(constraints

((M+ amount outflow) (0 0) (inf inf))

((add netflow outflow inflow))

((d/dt amount netflow))

((constant inflow)))

(transitions ((amount (full inc)) -> t))

(envelopes

((M+ amount outflow) (upper ue) ; ue, ui, le, and li

(u-inv ui) ; are the names of the

(lower le) ; envelope functions

(l-inv li)))

(initial-ranges ((amount full) (80 100))

((inflow if*) (4 8))

((time t0) (0 0))))

-2.5
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7.5

10.0

12.5

15.0

-20 0 20 40 60 80 100 120

OUTFLOW

AMOUNT

Figure 3: Semi-quantitative model of a water tank: QDE plus bounds on landmarks and envelopes
around monotonic functions. Envelope functions and their inverses are speci�ed, to allow propaga-
tion in both directions.
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� Where x is a primitive term (landmark, d(p; q), span(p; q), or slope(f)) the bounding interval
range(x) = [x; x] is retrieved from a table and updated by propagation.

� Where x and y are expressions evaluating to intervals, k 2 <, and f 2 M+, the interval
bound on a complex expression is computed from its parts.

range(k) = [k; k]

range(x+ y) = [x+ y; x+ y]

range(x� y) = [x� y; x� y]

range(span(x; y)) = [min(x; y);max(x; y)]

range(jxj) =

8><
>:

[x; x] if x � 0
[�x;�x] if x � 0
[0;max(x;�x)] otherwise

range(x � y) = [x � y; x � y]; if x � 0 and y � 0

range(1=x) = [1=x; 1=x]; if x > 0

range(x=y) = range(x � (1=y))

range(f(x)) = [f(x); f(x)]

range(f�1(y)) = [f
�1
(y); f�1(y)]

The entries for x �y and 1=x describe only the cases where x; y � 0. It is straight-forward to extend
to the full case split on possible combinations of signs, and to handle �1 as bounds.

Table 2: Interval arithmetic

d(p; q) represents the distance between landmarks p and q; span(p; q) is the interval enclosing
both p and q; and slope(f) is the range bound on f 0(x) for a monotonic function f .

The initially given interval values associated with the landmarks FULL, if� and t0 are propa-
gated across the Q2 equations, following the rules in Table 2. Newly derived values are intersected
with old values until a �xed point is reached or until an empty interval is derived. The result
of propagation for the equilibrium-partly-full behavior is the following set of bounds for landmark
values. In the other two behaviors, an empty interval is derived for some landmark, so the behaviors
are refuted.

amount FULL [80; 100]
a0 [5:15; 56:7]

outflow o1 [4; 8]
inflow if� [4; 8]
netflow n0 [4; 8]
time t0 [0; 0]

t1 [0:644;+1]

Semi-quantitative inference is implemented in QSIM as a �lter applied to each partial behavior
whenever a successor state is added to the behavior graph. When a partial behavior is refuted, its
extensions need not be computed, reducing the branching factor of the behavior graph.
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3.2 Order-of-Magnitude Constraints

A di�erent form of partial quantitative knowledge is order-of-magnitude constraints on landmark
values [6, 26]. These relations can also be propagated across the Q2 equations derived from a
behavior. The result is additional predicted order-of-magnitude relations, or contradictions that
refute behaviors from the behavior graph, just as in Q2.

3.3 State Interpolation

The temporal granularity of the qualitative behavior description predicted by QSIM, and hence of
the Q2 equations, is determined by the qualitative value changes that take place in the behavior.
Thus, semi-quantitative inference takes place over time intervals that are quite large and sometimes
in�nite, making it diÆcult to draw strong conclusions.

Q3 [1] addresses this problem by interpolating new landmarks into intervals in quantity spaces,
including new time-points into large time-intervals. This provides smaller intervals of change,
so the derived error bounds are tighter. The e�ect is essentially the same as Euler integration,
approximating a continuous curve above and below by rectangles. It is possible to show that as the
uncertainty in the SQDE approaches zero, and as the size of largest time-interval in the behavior
approaches zero, the resulting semi-quantitative prediction converges to the real-valued solution to
the corresponding ODE [1].

3.4 Dynamic Envelopes

The rectangular bounds on a variable's behavior derived for time-interval states by Q2 and Q3 are
consequences of the Mean Value Theorem and the bounds on the rate of change of the variable
over that time-interval. In many cases, we can derive stronger bounds.

Just as static envelopes de�ne real-valued functions providing upper and lower bounds to par-
tially known monotonic functions, it is possible to infer real-valued functions providing upper and
lower bounds on the values of variables over time. These \dynamic envelope" functions are the
solutions to a real-valued ODE model that can be derived from the bounds and static envelopes in
the SQDE and simulated numerically [19].

For example, consider the water tank model _x = q � f(x) with interval bounds [q; q] on the

landmark value q and static envelopes f and f on the unknown function f 2 M+. The bounding
ODE system, which must have double the order of the original QDE, is:

_x = q � f(x)

_x = q � f(x)

Dynamic envelopes give improved bounds on the behavior over an interval starting at the initial
state, but eventually diverge and provide no constraint farther away (Figure 4). Thus, dynamic
envelopes should be combined with inference using the symbolic Q2 and Q3 methods.

3.5 Research Problem: Soft Bounds

Semi-quantitative inference based on intervals and envelopes preserves the QSIM Guaranteed Cov-
erage Theorem: only behaviors that are provably inconsistent are deleted. An important research
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Figure 4: Dynamic envelopes are trajectories guaranteed to bound the true trajectory. They are
often tighter than the Q2 bounds, which are represented by rectangular boxes.

direction is extending semi-quantitative inference to partial knowledge of quantity in the form of
probability distribution functions: Gaussian distributions and more general pdfs. These represen-
tations seldom support inference of direct contradictions, making it diÆcult to refute a behavior
entirely. Rather, the goal must be to infer a degree of belief in a behavior, and a distribution of
belief over a set of behaviors. In the monitoring context (next section), it will be useful to distribute
belief over a set of alternate hypothesized models as well.

4 Monitoring and System Identi�cation

Monitoring is the process of comparing an observation stream with predictions from a model of
the system being observed. Monitoring is typically used to detect failures by detecting di�erences
between the observation stream and predictions from a model of the healthy system [24]. System
identi�cation is the process of combining a partially-speci�ed model with observations from a
system to converge on a more accurate and precisely speci�ed model [23]. Traditional approaches to
monitoring and system identi�cation deal with incomplete knowledge of the system being observed
by attempting to select precise models that are close approximations to the unknown true system.

In the qualitative framework, by contrast, the attempt is to select SQDE models that cover
sets of precisely-speci�ed models and behaviors. SQUID [17] uses semi-quantitative simulation to
unify the quantitative observation stream with a SQDE model to derive a more precisely speci�ed
model, still guaranteed to cover all ODE models consistent with the SQDE and the observations; or
to derive a contradiction, refuting an entire family of ODE models. MIMIC [10] is an approach to
monitoring that tracks multiple SQDE models in parallel, proposing and doing system identi�cation
with potential fault models even before the nominal model is refuted.
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Figure 5: (a) Classify observation points in monotonic or steady regions. (b) MSQUID infers
monotonic envelopes from data. (c) Re�ne the model by intersecting with the data. (d) Refute the
model when the data fails to match.

4.1 SQUID: Semi-Quantitative System Identi�cation

An SQDE model represents a hypothesis about the qualitative structure of the system being ob-
served. The quantitative uncertainty in a given SQDE model is represented by bounds on landmark
values, static envelopes around monotonic functions, and dynamic envelopes around predicted be-
haviors. Information from the observation stream can be used to shrink each of these types of
uncertainty.

SQUID [17] �rst segments the observation stream into qualitatively distinct regions of monotonic
change, called trends, separated by critical points (Figure 5(a)). Then it uses MSQUID [18], a
specialized neural-net-based method for estimating monotonic functions and bounding envelope
functions covering the observed data points out to a speci�ed con�dence level (Figure 5(b)).

Since the observations and the predictions are now in the same bounds-and-envelopes repre-
sentation, they can be combined to either re�ne (Figure 5(c)) or refute (Figure 5(d)) the current
hypothesized model. Re�nements to the dynamic envelopes predicted by the SQDE model can then
be propagated back to the landmark bounds and the static envelopes around monotonic functions,
so the SQDE model will be able to make more precise predictions for future cases. More precise
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predictions are useful for many purposes, of course, but in particular they make the model easier
to refute, so that more subtle contradictions between observation and prediction can be detected
in the future.

4.2 MIMIC: Monitoring with Semi-Quantitative Models

Starting with an SQDE representing the nominal (\healthy") state of a system, SQUID can be used
to monitor the system by using the information in the observation stream to progressively re�ne
the uncertainty in the model (Figure 6). If the observation stream refutes the nominal model, then
fault diagnosis is required.

However, if the system is complex and there is signi�cant uncertainty in the SQDE, then
indications of possible faults may have appeared in the observation stream well before the nominal
model could actually be refuted. It is well known that operator failure in complex dynamic systems
(e.g. the Three Mile Island nuclear plant failure) often occurs due to operator �xation on a single
hypothesized model of the system that is only refuted after it is too late to �x a developing problem
[25].

The MIMIC approach to monitoring [10, 27] tracks multiple hypotheses in parallel, each ex-
pressed as an SQDE model. Any desired features in the observation stream can be used to trigger
fault hypotheses, launching additional trackers to run in parallel, even before the nominal model
is refuted. Multiple active trackers and their predictions can be analyzed to select observations or
plan experiments for di�erential diagnosis. Since each SQDE model predicts the future behavior
of the system based on its hypothesis, the information is available for a cost-bene�t analysis of the
costs and risks of bad outcomes versus the costs of diagnosis or repair.

4.3 Research Problems: Tractability

The bene�t of the MIMIC approach to monitoring is that the qualitative representation makes it
possible for a �nite set of SQDE models to cover an in�nite set of ODE models and initial conditions.
The tractability of MIMIC monitoring, however, does depend on the tractability of qualitative
simulation (section 2.1) to avoid running multiple trackers for functionally identical models; and
on the ability to do semi-quantitative reasoning with probability distributions (section 3.5), to
make it possible to identify low-probability models even when they are not absolutely refuted.
The tractability of MIMIC also depends on the balance between the process that triggers new
hypotheses based on features in the observation stream and the process that dismisses hypotheses
based on inconsistency or low probability.

5 Building Qualitative Models

A model is created for some purpose, and it includes the assumption that the objects and rela-
tionships included within the model are the only ones that need to be considered for that purpose.
That is, by its very nature, a model embodies a Closed World Assumption: anything not explicitly
included in the model is excluded.

Like ODE models, QDE models are often built by hand. However, there are also several
approaches to the automated creation of ODE and QDE models.
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Figure 6: A tracker embodies a hypothesis, expressed as an SQDE model, and uses SQUID to re�ne
(or refute) the model using information in the observation stream.
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Component-connection models are a common approach to building models of systems that can
be decomposed into modules that interact through well-de�ned interfaces [21, ch. 13]. Electrical
circuits and 
uid-
ow systems are obvious physical domains where component-connection models
are often appropriate, but the same framework can be useful in more abstract settings such as
compartmental modeling in biology [16, 15] and system dynamics in economics [13]. Component-
connection models are also useful for model-based diagnosis [7, 9], where the goal is to account for
the misbehavior of a device by identifying the smallest (or most probable) set of components whose
failure can explain the observations.

Compositional modeling [12, 21, ch. 14] selects a relevant set of model fragments from a knowl-
edge base of mechanisms, decides when the ClosedWorld Assumption is appropriate, and transforms
a set of model fragments into a model. The major research task is to reason e�ectively about the
appropriate use of modeling assumptions to focus the model-building process.

6 Conclusion

Qualitative simulation of partially speci�ed models complements numerical simulation of completely
speci�ed models. Qualitative and semi-quantitative di�erential equation models make it possible
to express natural types of incomplete knowledge, and qualitative and semi-quantitative simulation
make it possible to predict all possible behaviors consistent with the available knowledge. Monitor-
ing, system identi�cation, design and veri�cation can all bene�t from the ability of a �nite set of
qualitative models to cover the predictions of an in�nite set of precise models. Automated model
building methods can utilize libraries of domain-speci�c model fragments to create ODE, QDE and
SQDE models as needed.
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