Results of an Experiment in Domain Knowledge Base Construction: A
Comparison of the Classic and Algernon Knowledge Representation
Systems

Raman Rajagopalan
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

raman@cs.utexas.edu

Abstract

Jon Doyle and Ramesh Patil have recently ar-
gued that classification languages that obtain
polynomial worst case response times by elim-
inating inefficient constructs are in fact too re-
strictive to represent many forms of knowledge.
They suggest that some of these restrictions
could be avoided by incorporating and constrain-
ing the use of problematic constructs rather than
eliminating them. We extend the observations
of Doyle and Patil by reporting our experience
in using the CLASSIC and Algernon knowledge
representation languages to model the domain of
magnetic field induced emf problems. We found
that both languages had representational advan-
tages not found in the other. We discuss the im-
pact that the lack of a given feature has on the
model builder and examine ways to add addi-
tional features to the languages while minimiz-
ing changes to each language.

1 Introduction

Doyle and Patil [Doyle and Patil 1991] argue that cer-
tain classification languages are representationally impov-
erished because of the design decision which eliminates
problematic representational features to achieve efficient
response times. They advocate the retention of represen-
tational features with limitations on their use as an alter-
native to totally eliminating such features. We compare
the knowledge representation languages CLASSIC [Brach-
man et al. 1991] and Algernon [Crawford and Kuipers
1991A] with this suggestion in mind.

We present the results of an experiment in which CLAS-
SIC and Algernon were used to model the domain of mag-
netic field induced emf problems. The goal for the models
was to recognize the spatial property of overlap between a
pair of objects. Our objective was to determine the unique
representational features of the languages, to determine
how the lack of a feature affected the expressive power of a

*This paper was presented at the AAAI Workshop on
Tractable Reasoning, AAAI-92, San Jose, CA. This work has
taken place in the Qualitative Reasoning Group at the Artificial
Intelligence Laboratory, The University of Texas at Austin. Re-
search of the Qualitative Reasoning Group is supported in part
by NSF grants IRI-8905494 and 1RI-8904454, by NASA grant
NAG 2-507, by the Texas Advanced Research Program under
grant no. 003658175, and by the Jet Propulsion Laboratory.

language, and to study means of incorporating missing fea-
tures. In the remainder of this section, we provide a brief
introduction to the knowledge representation features of

CLASSIC and Algernon. Readers who are familiar with

the two languages may proceed to Section 2.

1.1 Descriptions of CLASSIC and
Algernon

CLASSIC is a classification language with many restric-
tions on expressive power, as noted by the language de-
signers themselves [Brachman et al. 1991]. Algernon is a
general purpose language for defining classes of concepts
and for expressing and proving relations between concepts.
The user is free to define any number of inference rules in
access-limited logic [Crawford and Kuipers 1989] to per-
form a desired reasoning task. At the highest level, both
are frame-based languages which provide constructs for
defining concept classes, relations on classes, and prop-
erties of individuals. Classes are organized in taxonomic
hierarchies. Both languages are, in general, monotonic and
operate with an open-world assumption. Algernon does
provide a limited set of non-monotonic operators to al-
low reasoning with assumptions and to allow negation-by-
failure.

The languages differ most in the way in which concepts
are defined and the methods by which relations may be
inferred. The CLASSIC user defines concepts through
specifying membership criteria. CLASSIC then derives the
taxonomic hierarchy from these definitions. The Algernon
user typically provides a taxonomic hierarchy of classes,
and writes inference rules to prove relations on classes.

CLASSIC 1s designed for a specific purpose, classifica-
tion and contains an intrinsic inference method to prove
set membership (isa) relations between concepts and indi-
viduals. CLASSIC provides only a weak treatment of other
types of relations, in that the user has little flexibility to
define additional inference rules. The CLASSIC user may
define if-added rules and attach these to class definitions,
but the power of these rules is limited as only ground sen-
tences may be asserted. In contrast, Algernon is a system
designed to describe and prove any user defined relation,
where ISA is only one such relation. The Algernon user
may write both if-added and if-needed types of inference
rules using universally quantified variables.

1.1.1 A CLASSIC Example

Figure 1 shows a partial CLASSIC knowledge for de-
scribing magnetic fields. We describe a three tier hierar-

chy, with objects at the top, magnetic fields as a subset
of objects, and steady-uniform-magnetic-fields as a subset
of magnetic fields. The ‘primitive’ statement declares ob-
jects to be a primitive concept to be named as objects.
CLASSIC also allows one to define disjoint sets, where an
individual which is found to belong to one such set may
not belong to any of the other sets in the disjoint grouping.

The description of magnetic-fields includes conditions
that state that a candidate must first belong to the set ob-
jects, and must satisfy the object-type relation with the
filler magnetic-fields. The definition of steady-uniform-
magnetic-fields includes an if-added rule that states all in-
dividuals found to be a member of this set have a field
direction along the Z-axis.

The create-ind description creates field, an object which
satisfies the conditions of the sets magnetic-fields and
steady-uniform-magnetic-fields. While the if-added rule
for steady-uniform-magnetic-fields states that the field di-
rection is one of the positive or negative Z-axis, in our
individual description, we state explicitly that the field di-
rection is along the positive Z-axis.

1.1.2 An Algernon Example

Figure 2 shows a simple Algernon description of mag-
netic fields. The Taxonomy defines the hierarchy of
concepts objects, magnetic-fields, and steady-uniform-
magnetic-fields. We also define the set, object-properties,
with field-types being a subset. Field-types is defined to
have at least two individual members, Steady and Un:iform.

Field-type-of is then declared to be a relation between
the set of magnetic-fields and the set of field-types. A for-
ward chaining rule is included to infer that certain mag-
netic fields can belong to the set steady-uniform-magnetic-
fields. Finally, an individual called field is created. Alger-
non discovers that field is a member of the set magnetic-
fields when a field-type-of relation is defined for it. The
typing on the field-type-of relation states that the first ar-
gument must be a magnetic field. The forward chaining
rule can then fire to conclude that field is also a steady-
uniform-magnetic-field.

2 Results

This section describes our experiences in building domain
models in CLASSIC and Algernon. Both models contain
definitions of concepts and relations, and operate on de-
scriptions of individuals. For the Algernon model, a taxo-
nomic hierarchy of object classes (concepts) was provided
explicitly, and many inference rules were written to prove
relations between these concepts. The CLASSIC model
builder gains an intrinsic inference mechanism for proving
subsumption relations [Resnick et al. 1991], but has little
freedom to define additional inference rules. We there-
fore organized the domain knowledge into a hierarchy of
concepts, and considered the CLASSIC model to be suc-
cessful if the individuals in a given world description were
properly classified. Therefore, some definitions which were
expressed as relations in Algernon, such as overlap between
two objects, were defined as concepts in CLASSIC.

We were able to recognize overlap with each of the mod-
els, but the Algernon model was far easier to create and

use. In particular, we found that CLASSIC is limited most
by the fact that it is designed to operate on one individ-
ual at a time. We found that we often had to resort to
CLASSIC’s TEST-C mechanism [Resnick et al. 1991] to
access more than one object at once, and to prove that cer-
tain relationships were true in the domain. The TEST-C
mechanism allows the user to use an external LISP func-
tion to determine a truth value for an expression. The
LISP function cannot have side effects, and may return
only three possible values: T if the expression is provable,
F if the expression proven false, and 7 if T or F cannot
be returned. Although the CLASSIC designers may in-
tend that the TEST-C mechanism is to be used only for
simple tests, our LISP functions were fairly complex, and
involved such potentially inefficient operations as searches
of the knowledge base.

We found that both CLASSIC and Algernon had rep-
resentational advantages not found in the other. Our re-
sults are summarized in Table 1. The first column lists
several methods of defining concepts that Doyle and Patil
[Doyle and Patil 1991] have found to be inexpressible in
CLASSIC-like languages. Under the columns CLASSIC
and Algernon, we note whether a given definitional form
could be represented in each language, and if not, whether
a simple change could be sufficient to capture that knowl-

edge.

2.1 Explanation of the Tabulated Results

This section provides an explanation of the results given in
Table 1. We discuss if each of the following forms of knowl-
edge could be represented in CLASSIC and Algernon, and
if not, whether a simple addition to the language could im-
prove matters. Other than negation by failure, Algernon
already provides the ability to express and reason about
all the definitional forms discussed below. Therefore, we
concentrate primarily on describing the difficulties encoun-

tered in using CLASSSIC.

Disjunction Disjunctive definitions for a concept can be
expressed in Algernon by writing a unique inference
rule to cover each case of a disjunctive definition.
CLASSIC allows only one definition for a concept,
so the model builder cannot capture disjunction by
providing multiple definitions. Alternate definitions
can be captured by defining multiple subclasses of
a common parent concept, but these are treated by
CLASSIC as descriptions of distinct concepts, rather
than alternate definitions for the same concept.

Both CLASSIC and Algernon allow the definition of
a disjunctive set of values for a relation. In gen-
eral, the value set is defined implicitly by specifying a
class whose individual members are to be legal values.
CLASSIC also allows the model builder to provide an
enumerated list of possible values through its ONE-
OF roles restriction operator [Brachman et al. 1991].

Explicit lists of values are more difficult to include in
an Algernon model. Lists may be asserted as values
directly, but this strategy requires external LISP calls
to operate on the list. Alternatively, since Algernon
allows the model-builder to modify the taxonomy hi-

(cl-define-concept ’objects
’(and (primitive classic-thing objects)))

(cl-define-role ’object-type)
(cl-define-concept ’magnetic-fields
’(and objects (fills object-type magnetic-field)))

(cl-define-role ’field-type)
(cl-define-role ’field-direction-of)
(cl-define-concept ’steady-uniform-mag-fields
’(and magnetic-fields (fills field-type steady)
(fills field-type uniform))
’(all field-direction-of (and coordinate-axes
(one-of z-axis neg-z-axis))))

(cl-create-ind ’field ’(AND OBJECTS
(£fills object-type magnetic-field)
(£fills field-type steady)
(fills field-type uniform)
(fills field-direction-of z-axis)))

Figure 1: Examples of CLASSIC Definitions

(a-assert "Taxonomy"
> ((:taxonomy
(objects (magnetic-fields (steady-uniform-magnetic-fields)))
(things (object-properties (field-types steady uniform))))))

(a-assert "New slots"
’((:slot field-type-of (magnetic-fields field-types))
(:rules magnetic-fields
((field-type-of ?field steady)
(field-type-of 7field uniform)
->
(isa 7field steady-uniform-magnetic-fields)))))

(a-assert "defining a field"
>((:create Tobjl field)
(field-type-of field steady)
(field-type-of field uniform)))

Figure 2: Examples of Algernon Definitions

| Category Algernon CLASSIC |
Disjunction Allows disjunctive definitions Allows enumerated sets
Negation No Negation by Failure / Improvement Possible Limited
Equivalence YES NO / With Limited Use of Variables
Particularization YES YES, Provided by FILLS
Transitive Relations YES NO / NO
Functions Over Indirectly Handles Some Cases via TEST-C /
Ordered Sets Allow TEST-C to return values
Mapping Between Indirectly Handles Limited Cases via TEST-C /
Ordered Sets Requires Greater Use of Variables
N-ary Relations YES NO

| Typed-Slots YES NO / Simple Extensions Possible |

Table 1: The items in the first column, except typed-slots, are categories of definitional forms as given by Doyle and Patil.
The CLASSIC and Algernon columns list whether a given definition can be expressed in the language, and after the bar,
indicate if the limited use of a new construct will be beneficial.

erarchy of classes, a new class can be created whose
members are the values given in the enumerated set.
An additional inference rule is then required to en-
force the condition that membership in the new class
is closed. Otherwise, given an assertion (relation in-
dividual value), where value is not in the enumerated
set, Algernon would simply add the value to the set
as a newly discovered piece of knowledge instead of
outputting an error message.

Negation Algernon supports classical negation, and pro-

vides limited support for negation-by-failure through
the non-monotonic :unp operator [Crawford and
Kuipers 1991C]. That is, Algernon can conclude that
an assertion is not true of the knowledge base through
proof by contradiction, but because of its open-world
assumption, Algernon will not conclude NOT A from
the observation that A is currently not true in the
knowledge base, unless explicitly directed to do so.

In general, neither Algernon nor CLASSIC support
negation-by-failure since they operate with an open-
world. Algernon’s :unp operator allows negation-by-
failure under the assumption of a closed world [Craw-
ford and Kuipers 1991B], and the Algernon user can
write a rule (NOT A) <- (cunp A) to conclude NOT
A if A is currently unprovable. The problem is that
A could later become true.

CLASSIC allows negation-by-failure to be a sound in-
ference method by allowing the user to explicitly close
the world regarding the fillers of a role (relation). The
model builder can state the number of fillers that a
role can have, and once all the role fillers have been
found for an object of interest, CLASSIC will auto-
matically close the world [Resnick et al. 1991], thus
allowing inferences involving negation-by-failure. The
actual inference has to be done in LISP through the
TEST-C mechanism since CLASSIC does not provide
a NOT operator.

Algernon currently provides the :cardinality keyword
argument in definitions of relations [Crawford and
Kuipers 1991B] to define the maximum number of
fillers. This mechanism could be used in a manner
similar to CLASSIC to explicitly close the world when
all the fillers for a relation have been found. Then,
Algernon could use negation-by-failure to infer NOT
A from the fact that A is currently unprovable.

Equivalence Under the category of equivalence, we place

the need to express that the value of one role is equal
to the value of another role. CLASSIC’s SAME-AS
restriction [Resnick et al. 1991] allows one to express
the condition that the value returned by two different
access paths must be the same. However, there isn’t a
means to infer a value for a role filler. This presented
many difficulties. Consider the following:

A physical support exerts a force on the objects it sup-
ports. We defined two different concepts, supporting-
object and supported-object, with roles force-exerted-
by and force-on, respectively. The concept supported-
object also had a role, supported-by, to identify the
supporting object. The same individual (a force) fills

both force-exerted-by and force-on, but we could not
find a method to allow CLASSIC to infer the filler of
one role from knowledge of the filler of the other.

This problem could be solved by allowing a call to an
external function such as TEST-C to return a value
for the FILLS restriction. Alternatively, variables can
be used to hold values returned by following a re-
stricted access path, and the variables could then be
used to bind roles in a FILLS restriction. The effi-
ciency of the system will not be greatly affected if the
search space for determining the binding of a variable
is constrained.

Transitive Relations Another consequence of the lack

of variables in CLASSIC is the inability to write in-
ference rules to derive new knowledge from the facts
already 1n the knowledge base. We needed to express
ordinal relationships between the positions of vertices
of objects, and had to enter all such relationships by
hand since we could not write inference rules (e.g.,
transitivity) to do the job. In general, the inability to
define inference rules to conclude new facts forces the
model builder to enter complete knowledge about the
world. We are not able to suggest methods other than
adding a preprocessor to CLASSIC for eliminating
this problem. The ability to add arbitrary inference
rules appears to require drastic changes in the CLAS-
SIC implementation - on the order of transforming

CLASSIC into Algernon.

Functions Over Ordered Sets Algernon and CLAS-

SIC both operate on individual objects rather than
sets of objects, with the exception of CLASSIC’s abil-
ity to handle enumerated sets. Neither language pro-
vides a mechanism to define a sequence, for example.
As with enumerated sets, the Algernon model builder
may explicitly provide a sequence as the value of a slot
(relation) and operate on this ordered set through ex-
ternal LISP calls. The CLASSIC user may similarly
access LISP through the TEST-C mechanism. A set
of all bindings of a role may be created and operated
on, allowing such operations as greatest and least to
be performed. However, in the current implementa-
tion, the TEST-C function cannot return any values
to be stored in the knowledge base. The previously
suggested solution of allowing the TEST-C function
to return a value for a FILLS restriction applies here
as well.

As with simple enumerated sets, ordered sets may be
represented indirectly in Algernon by creating a new
class to hold the set of legal values and by adding an
inference rule to close membership in the class. The
ordering between values can be captured by adding a
new relation which pairs each value with an integer to
represent its place in the ordered list. For example,
given the ordered list (first second third), we could
add additional relations such as (first 1) and (second
2) to capture the rank of each entry in the list. Any
functions over ordered sets could be applied to the
numerical rank of each of the values, and the results
could be mapped back to the actual value set.

Note that this method could be used in a CLASSIC
knowledge base as well to express the order of a list,
although it would not be possible to operate on such
a list directly within CLASSIC. An alternate method
for implementing ordered sets in Algernon is to explic-
itly store order relations between the values in the set.
This method is used by the qualitative process com-
piler, QPC [Crawford, Farquhar, and Kuipers 1990].

Mapping Between Ordered Sets Although we did
not encounter the need to map between ordered sets,
we feel that the methods used to represent and oper-
ate on individual ordered sets in Algernon could be
easily extended to deal with multiple ordered sets.
Whereas Algernon allows one to write inference rules
to simultaneously examine the properties of multiple
objects, CLASSIC is designed to examine one indi-
vidual at a time and compare its properties against
concept definitions to determine its place in the taxo-
nomic hierarchy. It is particularly difficult, for exam-
ple, to compare properties of objects which belong to
the same class. In general, we found that we had to es-
cape to the TEST-C mechanism whenever we wanted
to examine the properties of two different objects at
once.

For example, consider a concept such as OVER-
LAPPED-OBJECTS, which, in our model, is a prop-
erty of two polygons. CLASSIC can only examine
a single polygon and compare its properties against
the restrictions of concept definitions to determine if
it is an OVERLAPPED-OBJECT. We therefore in-
cluded a TEST-C restriction in the definition for the
OVERLAPPED-OBJECT concept which attempts to
find another polygon which is overlapped with the
one being examined. Unfortunately, when this test
is successful, only one of the polygons is classified as
an overlapped-object! We could not find a means to
store the identity of both polygons.

Again, since CLASSIC already allows the user to per-
form searches of the knowledge base through LISP
functions, it would be beneficial to allow limited
searches through the built-in mechanisms of CLAS-
SIC. For example, properties of multiple objects could
be defined if a RETRIEVE restriction is added to ac-
cess properties of another object to compare against
properties of the one being examined.

2-place vs. n-ary relations CLASSIC allows only 2-
place relations. Algernon allows n-ary relations.
Whereas it may be possible to build up n-ary rela-
tions from 2-place relations, the process is tedious at
best, and involves the explicit creation of intermedi-
ate concepts that the user does not care about.

2.2 Other Observations

We wish to make a final point, based on our experiment,
that is outside the scope of Doyle and Patil. This is the ob-
servation that unlike Algernon, the fillers of roles in CLAS-
SIC can only be partially typed - by using an ALL role re-
striction inside a concept or individual definition. For ex-
ample, the Algernon user can define the relation ‘father-of’

as (:slot father-of (people people)), to state explicitly that
father-of is a relation between members of the set people.
The CLASSIC definition would be (cl-define-role *father-
of). Inside the concept definition for people, we could add
a restriction that all the fillers of the father-of role must
be people. However, this does not prevent the concept
COORDINATE-AXES from having a father-of role!

In general, typed relations allow the user to express
clearly the intent of each role; and allow the system to flag
type errors. CLASSIC roles have little semantic meaning
attached to them, and the user may attach any role to any
object. A CLASSIC user must be very careful about the
names chosen for roles, as the name of the role is the only
clue the user has regarding the purpose of a particular role.
This situation makes a knowledge base much more difficult
to debug and maintain. Since concepts are well defined in
CLASSIC, roles could easily be typed by concepts to be
related without much effect on efficiency.

3 Conclusions

We have described the results of an experiment in which
the knowledge representation languages, CLASSIC [Brach-
man et al. 1991] and Algernon [Crawford and Kuipers
1991B] were used to model the domain of magnetic field
induced emf problems, and have used our experimental re-
sults to extend the observations of Doyle and Patil [Doyle
and Patil 1991] regarding the features of the CLASSIC-like
languages. We found that both languages had features not
found in the other,

For example, CLASSIC can handle some cases of
negation-by-failure through its ability to partially close
the world, while Algernon only allows negation-by-failure
through the non-monotonic :unp operator. CLASSIC al-
lows enumerated lists to be represented directly, while the
Algernon user can represent enumerated and ordered lists
only in an indirect manner. However, we also found that
Algernon knowledge bases are easier to create and main-
tain since definitions of relations are fully typed. CLASSIC
roles are not typed, and therefore provide little informa-
tion about their intended use. Since concepts in CLASSIC
are well-defined, we feel the language could be modified
without great difficultly to enforce typing of roles by the
concepts to be related.

Doyle and Patil conclude that users of CLASSIC-like
systems will often resort to ad-hoc methods to overcome
the limitations in the language. We found that we made
ad-hoc use of the TEST-C mechanism to overcome the lack
of expressive power in the remaining constructs of CLAS-
SIC. We needed the TEST-C mechanism to examine mul-
tiple objects at once and to search for and store temporary
information necessary to draw additional inferences. Ad-
ditional difficulties in using CLASSIC arose from the fact
that, in general, CLASSIC constructs do not allow the
fillers of roles to be computed. Since TEST-C functions
often do the necessary work to compute a value of inter-
est, at the very least, CLASSIC should allow the value to
be returned to be stored in the knowledge base.

A better solution is to allow the limited use of variables
in CLASSIC functions. This will reduce the dependency

of the user on the TEST-C mechanism. We have found
that our use of variables falls into three classes. The first
use is to store a value obtained by following a narrowly
constrained access path, and to later compare this value
against other values or to bind the value as the filler of
another role. The second use of variables is in examining
multiple objects at once. A variable can be used to store
the 1dentity of each object, and can be used to retrieve
additional properties of these objects. Search will be re-
quired to find the additional objects, and will be based
on a description of the objects. The form of the descrip-
tions could be heavily constrained to reduce the search
space. The third use of variables is in general purpose infer-
ence rules such as a rule for expressing transitive relations.
We feel that this feature cannot be added to CLASSIC
through simple changes alone, as methods for constrain-
ing the search space will be complicated. Adding the last
feature will effectively convert CLASSIC into Algernon.

In general, the problem with introducing variables in
CLASSIC is that determining the bindings for variables in-
volves search, and this could adversely affect the run-time
efficiency of the system. We argue that the LISP func-
tions used to prove TEST-C restrictions simply transfer
the inefficiency from CLASSIC constructs to user-defined
external functions. We feel that constraining mechanisms
could be introduced to reduce the search space and to im-
prove efficiency, rather than eliminating the use of variables
altogether.

4 Acknowledgements

I would like to thank Benjamin Kuipers, Bert Kay, and
Adam Farquhar of the qualitative reasoning group, Jimi
Crawford of AT&T Bell Laboratories and Neil Iscoe of
EDS Austin for providing valuable comments.

5 References

[Brachman et al. 1991] R. Brachman, D.
McGuinness, P. Patel-Schneider, L. Resnick.
LIVING WITH CLASSIC: When and How to
Use a KL-ONE-Like Language, In J. Sowa, Ed.
Principles of Semantic Networks: Ezplorations
wn the representation of knowledge San Mateo,
CA.: Morgon-Kaufmann.

[Borgida et al. 1989] A. Borgida, R. Brachman,
D. McGuinness, L. Resnick. CLASSIC: A struc-
tured data model for objects. In Proceedings of
the 1989 ACM SIGMOD International Confer-

ence on Management of Data, 59-67.

[Crawford and Kuipers 89] J. Crawford and B.
Kuipers. Towards a Theory of Access-Limited
Logics for Knowledge Representation. In Pro-
ceedings of the First International Conference
on Principles of Knowledge Representation and
Reasoning.

[Crawford, Farquhar, and Kuipers 90] J. Craw-
ford, A. Farquhar, and B. Kuipers. QPC: A
Compiler from Physical Models into Qualitative

Differential Equations. In Proceedings of the
Eigth National Conference on Artificial Intelli-
gence. Boston, MA, 1990.

[Crawford and Kuipers 1991A] J. Crawford and
B. Kuipers. Algernon - A Tractable System for
Knowledge-Representation. In Proceedings of
the AAAT Spring Symposium on Implemented
Knowledge Representation and Reasoning Sys-

tems, Palo Alto, CA.

[Crawford and Kuipers 1991B] J. Crawford and
B. Kuipers. Algernon User’s Manual for Alger-
non Version 1.2, Technical Report, AT 91-166.
Department of Computer Sciences, University of
Texas at Austin.

[Crawford and Kuipers 1991C] J. Crawford and
B. Kuipers. Negation and Proof by Contradic-
tion in Access-Limited Logic. In Proceedings of
the Ninth National Conference on Artificial In-
telligence, 897-903.

[Devanbu et al. 1991] Devanbu, P.; et. al.,
LaSSIE: A Knowledge Based Software Informa-
tion System. CACM 34 (5): 35-48.

[Doyle and Patil 1991] J. Doyle and R. Patil.
Two theses of knowledge representation: lan-
guage restrictions, taxonomic classification, and
the utility of representation services. Artificial

Intelligence 48 (3): 261-297.

[Resnick et al. 1991] L. Resnick, A. Borgida, R.
Brachman, D. McGuinness, P. Patel-Schneider,
K. Zalondek. CLASSIC Description and Ref-
erence Manual For the COMMON LISP Imple-
mentation, Version 1.1. Technical Report. ATT
Bell Laboratories, Murray Hill, NJ.

