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Abstract

Many engineering systems require the synthesis of global
behaviors in nonlinear dynamical systems. Multiple
model approaches to control design make it possible to
synthesize robust and optimal versions of such global
behaviors. We propose a methodology called Quali-
tative Heterogeneous Control that enables this type of
control design. This methodology is based on a sepa-
ration of concerns between qualitative correctness and
quantitative optimization. Qualitative sufficient condi-
tions are derived, that define a space of quantitative
control strategies. These sufficient conditions are used
in conjunction with a numerical optimization procedure
to synthesize nonlinear optimal controllers that are ro-
bust in practical implementations. We demonstrate this
process of controller synthesis for the global control of
an inverted pendulum system.

1. Introduction

One of the key requirements in the design of many com-
plex controlled systems, such as robots, is the achieve-
ment of dynamical properties in the face of large, un-
structured and a priori unknown, disturbances. The dy-
namical properties of interest may be as simple as sta-
bilization of a single state variable at a fixed point or
as complex as synchronized orbits in some subset of the
state variables. Our approach to this design task factors
the problem into two components. First, we develop a
qualitative solution to the problem including weak condi-
tions sufficient to guarantee the desired qualitative prop-
erties of the controlled system. Second, we use the re-
maining degrees of freedom of the design (within the
space defined by the weak conditions) to optimize the
design quantitatively according to any task-specific ob-
jective function. This factoring of qualitative correctness
from quantitative optimization can also be applied in a
machine learning context, to improve performance in an
unknown environment while guaranteeing safe operation
(Perkins & Barto, 2002).

In practical problems involving large disturbances and
uncertainties, a single control strategy seldom provides
the required guarantees across the entire state space of
interest. This is especially so in robotics where differ-
ent regions of the state space may require incompati-
ble forms of dynamics from the same physical system,
in which case the control strategy must admit multi-
ple forms. For these types of problems, it is possible to
design multiple local control strategies and to design a

global strategy as the composition of these local strate-
gies. The problem of characterizing the sufficient condi-
tions becomes a two-part problem of first characterizing
the local strategies and then characterizing the interac-
tion of these local models according to the rules of the
composition. If the conditions that characterize these
local models and composition are sufficiently weak, it
leaves the designer with many degrees of freedom to op-
timize the quantitative aspects of the global strategy.

The literature on qualitative reasoning contains a rich
collection of techniques for making these weak charac-
terizations. For our purposes, the appropriate represen-
tation is based on the phase space of dynamical system
theory. This representation has been explored by many
researchers in the context of analysis (Sacks, 1990; Sacks,
1991; Nishida, 1997), simulation (Kuipers, 1994; Sacks,
1990; Yip, 1990) and control (Bradley & Zhao, 1993;
Zhao, Loh & May, 1999). We base our work on Qualita-
tive Differential Equations (QDE) (Kuipers, 1994) that
represent sets of ordinary differential equations (ODE)
and have well defined behaviors as orbits in phase space.
This representation allows us to take advantage of many
results in control theory and the qualitative theory of
differential equations (Guckenheimer & Holmes, 1983;
Jordan & Smith, 1999) while also being able to make
connections with symbolic reasoning techniques, such as
using QSIM (Shults & Kuipers, 1997; Kuipers & Astrom,
1994).

Independent of this connection with qualitative rea-
soning, multiple model control design has been studied
actively in the control systems community. The book
by Murray-Smith & Johansen (1997) is a good intro-
duction to this work. A related effort is the study of
hybrid systems, i.e., systems involving nontrivial inter-
actions between continuous and logical dynamics. This
community is especially interested in powerful methods
for abstracting continuous dynamics to symbolic finite
state dynamics, to enable formal analysis.

In the context of robotics, there has been recent work
involving the synthesis of multiple model controllers. In
(Pratt, et. al., 2001), a controller for a bipedal robot is
designed as a finite state machine based composition of
simple and ‘intuitive’ local controllers. In (Burridge, et.
al., 1999), a multiple model controller is designed as a
sequential composition of multiple stabilizing controllers.
In (Klavins & Koditschek, 2002), this work is extended
to address several types of periodic orbits. In (Frazzoli,



et. al., 2003), a hybrid controller for an aerial vehicle is
designed as a maneuver automaton based on transitions
between multiple stable trajectories.

In prior work (Kuipers & Ramamoorthy, 2002; Ra-
mamoorthy & Kuipers, 2003) we proposed the Quali-
tative Heterogeneous Control framework that makes it
possible to design control systems as a composition of
qualitative local models. A key feature of this frame-
work that makes it complementary to prior work such
as (Burridge, et. al., 1999; Frazzoli, et. al., 2003) is
the fact that we make a connection between classical
techniques in control theory and powerful techniques for
the analysis and representation of imprecise qualitative
knowledge about dynamics. As noted in (McClamroch
& Kolmanovsky, 2000), an outstanding research issue
in the theory of multiple model control systems is that
“there is little guidance in the published literature on how
the family of feedback functions should be selected” for
the local control strategies. This problem is exacerbated
by the fact that this choice is intimately related to the
tractability of the verification and design of the global
strategy. By using an incompletely specified functional
form as the basic unit of our design process, we are able
to overcome this problem in a principled and intuitive
manner. Our framework allows us to define a variety of
types of local dynamics such as fixed points, limit cycles
and even chaotic orbits using properties of QDEs. Many
of our behavior guarantees are based on functionally
specified constraints in the abstract QDE that translate
to differential-algebraic constraints on concrete functions
in the ODE. This enables us to optimize our quantita-
tive controllers by systematically searching a well defined
functional space. Also, use of the QDE representation
makes it possible for a designer to utilize symbolic tech-
niques for analysis and simulation as a part of the design
process. In this sense, we hope to be able to design con-
trollers that share the simplicity and intuitive appeal of
Virtual Model Control (Pratt, et. al., 2001) but also
entail rigorous robustness and optimality guarantees re-
quired in practical applications of autonomous systems.

In this paper, we use a familiar example from the con-
trol theory literature, the inverted pendulum, to demon-
strate this approach to control design. We begin by us-
ing the QHC framework to derive sufficient conditions
for the existence of a global swing-up behavior in an
inverted pendulum system. Using these sufficient con-
ditions, we demonstrate that we are able to synthesize
linear controllers that achieve the same optimal perfor-
mance as conventional control design techniques, e.g.,
Linear Quadratic Regulators (LQR) (Stengel, 1994).
Techniques such as LQR are applicable only to single
(local) controllers and do not address the optimality of a
hybrid solution involving multiple local controllers. We
demonstrate the use of QHC in the design of an optimal
controller that optimizes performance across multiple re-
gions with linear local controllers. This type of optimal
control design is a nontrivial problem in control theory,
see, e.g., (Barton & Lee, 2002). We are presenting a
unique approach to the solution of this problem. We
then extend this result by using nonlinear functions, i.e.,

sigmoids, as local controllers. This allows us to design
nonlinear optimal controllers that provide better perfor-
mance with less control effort. These results should make
it evident that the use of qualitative models has resulted
in a clear and useful separation between correctness and
optimization concerns, thus enabling clear and better
performing controller designs.

2. Synthesis of Global Behaviors using

Qualitative Models

Qualitative Heterogeneous Control works by defining a
hybrid system consisting of a set of qualitatively de-
scribed control laws, each with its own operating region.
Each control law is selected so as to enforce a well de-
fined qualitative behavior in that local region of phase
space. These behaviors are well defined in the sense that
the controlled dynamical system executes a specific form
of an attractor or orbit in phase space. The global be-
havior of the controller is then understood in terms of
attractors and transitions between them.

The QHC design methodology can be summarized as
follows.

1. Define a transition graph of local regions (based on
topological definition of orbits) that guarantees the
desired global behavior. This step defines the topo-
logical structure of the controller. For instance, if the
desired behavior in phase space is to go from one point
to another, one might design a strategy based on mak-
ing the first point a repellor and the second point an
attracting fixed point.

2. For each local region, select a qualitative behavior
model that has the desired qualitative behavior over a
region including the intended local region. The behav-
ior model is typically a specific type of attractor (e.g.,
fixed points, limit cycles, chaotic attractors) or type of
phase space orbit that can be defined for a nonlinear
qualitative differential equation.

3. Select a control policy for each local region that trans-
forms the uncontrolled plant into an instance of the
qualitative behavior model over some region contain-
ing the intended model.

4. Define region boundaries with simple reliable descrip-
tions (e.g., energy level curves, conservation laws, etc.)
such that the local behaviors are guaranteed to cross
the region boundaries exactly in the desired ways.
These last two steps result in a set of qualitative con-
straints on the functions appearing in the qualitative
differential equations.

5. Using the imprecisely specified functions and qualita-
tive constraints, define quantitative control strategies.
In this paper, we approach the process of quantitative
design as a parametric optimization problem following
the selection of specific functional forms for the control
functions. An alternative approach would be to syn-
thesize control functions directly in a nonparametric
fashion, as in (Gazi, et. al., 1997; Say, 2000).



This algorithm is non-deterministic in the sense that
earlier choices must be made correctly for later choices
to be possible, so backtracking may be necessary. How-
ever, if the algorithm terminates, the resulting design is
guaranteed to have the desired properties. Another as-
pect of this algorithm is that it represents a sequence of
choices made by the control designer, not all of which are
explicitly available in traditional techniques. In step 1,
the designer makes choices at a very high level by select-
ing the topology of the orbits. At this level, the problem
may be modeled in many different ways. For instance,
the task of swinging up a pendulum may be achieved via
the use of either a repellor or a chaotic attractor, depend-
ing on the goals of the problem. This is an area where
the QHC approach differs from many traditional control
design techniques, whose emphasis is almost exclusively
on stabilization and tracking problems. QHC allows the
designer to use any orbit that can be generated via the
evolution of a nonlinear differential equation. In steps 2
- 4, since the models are qualitative, the resulting design
describes an entire family of control laws, all of which
are guaranteed to have the desired properties. In step
5, after the qualitative design is complete, one would
need to optimize the model with respect to specific cost
criteria so as to obtain an optimal and provably correct
controller for the nonlinear, multivariable, hybrid control
problem.

3. Some Results Concerning the

Qualitative Behavior of Second Order

Systems

In this paper, we demonstrate our control design
methodology by using the example of a second order
system. Before we discuss the detailed design, we state
some results that enable it. We consider a second order
QDE of the form,

ẍ + f(ẋ) + g(x) = 0 (1)

To make qualitative modeling, simulation and design
possible, we restrict our attention to “reasonable” func-
tions, which are continuously differentiable functions
with a few additional constraints that make qualita-
tive reasoning possible (Kuipers, 1994; Kuipers & Ra-
mamoorthy, 2002). M+

0 is the set f ∈ M+ of monotonic
functions such that f(0) = 0. The sign function is de-
noted [x]0 = sign(x) ∈ {+, 0,−}. P+

0 is defined as the
set of reasonable functions f : [a, b] → <∗ such that
[f(x)]0 = [x]0 over (a, b).

The results presented in this section may be proved
by hand as in (Kuipers & Ramamoorthy, 2002). Alter-
natively, these results may be proved in an automated
manner by the use of QSIM and a temporal logic model
checker, as in (Shults & Kuipers, 1997). While both
approaches produce the same result, we anticipate that
advances in qualitative reasoning algorithms would en-
able the derivation of similar results for larger, higher
dimensional QDEs, enabling the QHC methodology to
be used in a scalable way.

Lemma 1. Qualitative damped spring model.
Let S be a dynamical system described by the QDE

ẍ + f(ẋ) + g(x) = 0 (2)

where f, g ∈ P+

0 . Then S has a Lyapunov function

V (x, ẋ) =
1

2
ẋ2 +

x
∫

0

g(x)dx

such that V (0, 0) = 0, V > 0 elsewhere, and dV /dt < 0
everywhere except that dV /dt = 0 where ẋ = 0. There-
fore, S is asymptotically stable at (0, 0).

Lemma 2. Qualitative anti-damped spring
model. Let S be a dynamical system described by the
QDE

ẍ − f(ẋ) + g(x) = 0 (3)

where f, g ∈ P+

0
. Then (0, 0) is the only fixed point of

S, it is unstable, and there are no limit cycles.

4. Qualitative Control Design for a

Pivot-Torque Actuated Pendulum

By appealing to the qualitative properties of solutions to
the general models in section 3, we can give a simple and
natural derivation for a controller for the pendulum, able
to pump it up and stabilize it in the inverted position.
The goal is to design a global controller that can respond
to arbitrarily large disturbances and still recover to the
stable fixed point.

The first step in the design process is the selection of
the various orbits that will be used to define the local be-
haviors. We wish to stabilize the pendulum at the point
φ = 0 with no velocity (We use the variable φ to refer
to the counter-clockwise angular position of the pole, see
figure 1). So, the region around the point (φ, φ̇) = (0, 0)
needs to be a basin of attraction of a fixed point. We
define a mode, Balance, that has this behavior. We
wish to move the pendulum away from the point θ = 0
(θ also refers to angular position, but it takes the value
θ = 0 when the pole is hanging straight down, see fig-
ure 1). Therefore, the point (θ, θ̇) = (0, 0) needs to be
made into an unstable (repelling) fixed point. We define
a mode, Pump, with this behavior. Both these behav-
iors are defined in the vicinity of the stable and unstable
fixed points of the uncontrolled pendulum. We define a
third mode, Spin, whose qualitative behavior is identi-
cal to Balance but whose region of applicability covers
the remaining phase space not covered by Balance and
Pump. The utility of Spin is to accelerate convergence
towards the desired fixed point by adding to the natural
damping of the system. The three modes are depicted
in the discrete transition graph in figure 2.

This transition graph encodes the desired global be-
havior by requiring the following properties to be true,

1. Any trajectory that enters the Balance region stays
within that region and terminates at a desired fixed
point.



2. Any trajectory beginning inside the region of applica-
bility of Pump moves towards and terminates inside
the region of applicability of Balance.

3. Any trajectory beginning inside the region of appli-
cability of Spin moves towards and terminates inside
the region of applicability of Balance.

4. No trajectory begins inside the region of applicabil-
ity of Spin to enter and remain inside region of ap-
plicability of Pump. Correspondingly, no trajectory
begins inside the region of applicability of Pump to
enter and remain inside the region of applicability of
Spin. What this implies is that trajectories beginning
inside these regions must either terminate inside Bal-
ance or move along a one dimensional manifold that
defines the boundaries of these two regions. We will
explain this aspect of the behavior in more detail in
section 4.4.

In the following sections, we demonstrate by hand
that these requirements are satisfied. It is also possi-
ble to express these statements in a logic such as CTL∗,
enabling automatic verification using a temporal logic
model checker (Shults & Kuipers, 1997).

4.1 Stabilization in the Balance Region

The dynamics of the pendulum are derived from three
main terms. The angular acceleration due to gravity
is k sin φ (k is used here to collect multiple terms that
appear in the detailed physical model). There is a small

amount of damping friction f(φ̇), where f ∈ M+

0 . A

control action u(φ, φ̇) exerts angular acceleration at the
pivot. The resulting model of the pendulum is:

φ̈ + f(φ̇) − k sin φ + u(φ, φ̇) = 0 (4)

Our goal is to design u(φ, φ̇) so that the system is asymp-

totically stable at (φ, φ̇) = (0, 0).
In this section, we consider only φ ∈ (−π/2,

π/2) 1.
Lemma 1 provides a simple sufficient condition: make

the pendulum behave like a monotonic damped spring.
We define the controller for the Balance region to be:

u(φ, φ̇) = gb(φ) (5)

such that [gb(φ) − k sin φ]0 = [φ]0.
Since k sin φ increases monotonically with φ over

(−π/2, π/2), gb(φ) must increase at least as fast in order
to ensure that [gb(φ) − k sinφ]0 = [φ]0.

We can get faster convergence by augmenting the nat-
ural damping f(φ̇) with a damping term hb(φ̇) included
in the control law, giving us

u(φ, φ̇) = gb(φ) + hb(φ̇) (6)

1The derivation here applies over the larger interval
(−π, π), but the maximum control force is required at φ =
±π/2. The controller design problem is less interesting if the
controller is powerful enough to lift the pendulum directly to
φ = 0 from any value of φ.

where[gb(φ) − k sinφ]0 = [φ]0; [hb(φ̇)]0 = [φ]0.
If there is a bound umax on the control action u, then

the limiting angle φmax beyond which the controller can-
not restore the pendulum to φ = 0 is given by the con-
straint,

umax = k sin φmax (7)

The maximum velocity φ̇max that the Balance con-
troller can tolerate at φ = 0 is then determined by the
constraint

1

2
φ̇2

max =

∫ φmax

0

gb(ϕ) − k sinϕdϕ (8)

which represents the conversion of the kinetic energy
of the system (4) at (0, φ̇max) into potential energy at
(φmax, 0).

We would like to define the boundary of the Balance
region as a level curve of the Lyapunov function for the
controlled system (4), from Lemma 1.

V (φ, φ̇) =
1

2
φ̇2 +

∫ φ

0

gb(ϕ) − k sin ϕdϕ (9)

It is easy to check that V (φmax, 0) = V (0, φ̇max), so these
intercepts lie on the same level curve of V . When a
trajectory intersects this level curve, V (φ, φ̇) = 1

2
φ̇2

max.

Expanding and dividing by 1

2
φ̇2

max, we get

φ̇2

φ̇2
max

+

∫ φ

0
gb(ϕ) − k sin ϕdϕ

1

2
φ̇2

max

= 1 (10)

Substituting the definition of φ̇2
max (8) into the second

term gives,

φ̇2

φ̇2
max

+

∫ φ

0
gb(ϕ) − k sin ϕdϕ

∫ φmax

0
gb(ϕ) − k sin ϕdϕ

= 1 (11)

Because [gb(φ) − k sin φ]0 = [φ]0, we know that both
the integrals are non-negative, so equation (11) de-
fines an “ellipse-like” curve that intersects the axes at
±φmax& ±φ̇max. Furthermore, the curve changes mono-
tonically between the intercepts.

In the special case where gb(φ) − k sin φ ∼= φ, we can
evaluate the integrals and show that the level curve of V
is an ellipse:

φ̇2

φ̇2
max

+
φ2

φ2
max

= 1 (12)

Note that the shapes of the non-linear functions gb

and hb are only very weakly constrained. The qualita-
tive constraints in (6) provide weak sufficient conditions
guaranteeing the stability of the inverted pendulum con-
troller. However, there is plenty of freedom available to
the designer to select the properties of gb and hb to op-
timize any desired criterion.



4.2 Pumping up the Hanging Pendulum

With no input, the stable state of the pendulum is hang-
ing straight down. We use the variable θ to measure the
angular position counter-clockwise from straight down
(figure 1). The goal is to pump energy into the pen-
dulum, swinging it progressively higher, until it reaches
the region where the inverted pendulum controller can
balance it in the upright position.

Angular acceleration due to gravity is −k sin θ. As
before, damping friction is −f(θ̇), where f ∈ M+

0 , and

the control action exerts an angular acceleration u(θ, θ̇)
at the pivot. The resulting model of our system is:

θ̈ + f(θ̇) + k sin θ + u(θ, θ̇) = 0 (13)

Without control action, since [sin θ]0 = [θ]0 over −π <
θ < π, the model exactly matches the monotonic damped
spring model of Lemma 1, so we know that it is asymp-
totically stable at (θ, θ̇) = (0, 0). Unfortunately, this is
not where we want it.

Fortunately, Lemma 2 gives us a sufficient condition to
transform the stable attractor at (0,0) into an unstable
repellor. We define the controller for the Pump region
so that the system is modeled by a spring with nega-
tive damping, pumping energy into the system. That is,
define

u(θ, θ̇) = −hp(θ̇) (14)

such that hp − f ∈ P+

0

Starting with any perturbation from (0, 0), this con-
troller will pump the pendulum to higher and higher
swings. Lemma 2 is sufficient to assure us that there
are no limit cycles in the region −π < θ < π to prevent
the trajectory from approaching θ = π so the Balance
control law can stabilize it in the inverted position.

4.3 The Spinning Pendulum

The Spin region represents the behavioral mode of the
pendulum when it is spinning freely at high speed. In the
Spin region, a simple qualitative controller augments the
natural friction of the system with additional damping,
to slow the system down toward the two other regions.

u(θ, θ̇) = hs(θ̇) (15)

such that hs ∈ P+

0 .

4.4 Bounding the Pump and Spin Regions

One of our specifications is to ensure that no trajectories
oscillate between Pump and Spin or terminate inside
these regions without reaching Balance. We ensure this
by defining a suitable boundary between the Pump and
Spin regions, and showing that the Pump and Spin
controllers together define a sliding mode controller (Slo-
tine & Li, 1991), forcing nearby trajectories to converge
to the boundary.

A boundary with the desired properties is the separa-
trix of the same pendulum,

θ̈ + k sin θ = 0 (16)

without damping friction or control action. It turns out
that this boundary will lead straight into the heart of
the Balance region.

A separatrix is a trajectory that starts at an unsta-
ble fixed-point of the system and ends at another fixed-
point. In the case of the pendulum, the separatrices are
the trajectories where the pendulum starts upright and
at rest, then swings around once and returns to the up-
right position, at rest. It is the locus of points (θ, θ̇) such
that the total energy of the system is exactly equal to
the potential energy of the motionless pendulum in the
upright position.

KE + PE =
1

2
θ̇2 +

∫ θ

0

k sin ϕdϕ = 2k (17)

Evaluating the integral and simplifying, we get an
equation s(θ, θ̇) = 0 that defines the separatrix, i.e., the
boundary between Spin (s > 0) and Pump (s < 0).

s(θ, θ̇) =
1

2
θ̇2 − k(1 + cos θ) = 0 (18)

We use the method for defining a sliding mode con-
troller from (Slotine & Li, 1991) to ensure that trajecto-
ries always approach s = 0.

Differentiating (18) and substituting for θ̈, we get:

ṡ = θ̇θ̈ + k sin θθ̇

ṡ = θ̇(−f(θ̇) − k sin θ − u(θ, θ̇)) + k sin θθ̇

ṡ = −θ̇f(θ̇) − θ̇u(θ, θ̇) (19)

Now, examine the Pump region, inside the separatrix
where s < 0, and substitute the Pump control law (14)

for u(θ, θ̇). ṡpump = −θ̇f(θ̇)+ θ̇hp(θ̇) where hp − f ∈ P+

0

ṡpump = θ̇(hp − f)(θ̇) ≥ 0 (20)

Similarly, for the Spin region where s > 0, substitut-
ing its control law (15). ṡspin = −θ̇f(θ̇) − θ̇hs(θ̇) where
hs ∈ P+

0

ṡspin = −θ̇(f + hs)(θ̇) ≤ 0 (21)

This shows that the Pump control law moves the
system toward the separatrix from the inside, and the
Spin control law approaches the separatrix from the
outside: the existing control laws define a sliding mode
controller with the separatrix s = 0 as the attractor (a
one-dimensional manifold). Once the system gets suffi-
ciently close to the boundary, it will follow the separa-
trix, directly into the Balance region. In particular, it
is impossible for an aggressive Pump controller to over-
shoot the Balance region.

4.5 The Heterogeneous Control Strategy

In the foregoing discussion, we have derived qualitative
constraints on local control laws along with their regions
of applicability. The global controller is defined in its
entirety by these constraints and the region of applica-
bility of each mode, i.e., any quantitative controller that



satisfies all these requirements is guaranteed to possess
the desired qualitative global behavior. These qualita-
tive constraints and the switching rules are summarized
in figure 3.

5. Quantitative Optimization of

Controllers

In section 4, we derived a set of sign equality and mono-
tonicity constraints that guarantee the correctness of a
qualitatively defined control strategy for the global con-
trol of the inverted pendulum system. There are nu-
merous concrete functions that could satisfy these qual-
itative constraints. Correspondingly, given a concrete
instance of a pendulum, each of these functions would
result in varying levels of performance. In this section we
demonstrate this process of quantitative design by con-
sidering specific examples of concrete functional forms.
We select parameterized functions that satisfy the qual-
itative constraints and then optimize the parameters ac-
cording to a cost function. This procedure is fairly gen-
eral and many other nonlinear functions, including ar-
chitectures such as neural networks, could be designed
in this way.

5.1 Optimization of a Single Linear
Controller

When we talk about optimality and performance of a
control system, there are a wide variety of concerns that
could be addressed. Performance specifications could
range from simple parameterized measurements such as
rise time and settling time to more complex definitions
such as norms of a frequency domain description of a lin-
earized system. In optimal control theory, the emphasis
is on minimizing some cost function by appropriate selec-
tion of a control strategy. For the purpose of this paper,
this is the measure of performance we will use. Specifi-
cally, we will define performance as a time integral of the
control effort and state variables, with the goal of tak-
ing the state variables to the desired values as quickly as
possible using as little control effort as possible.

In order to understand the basic optimal control prob-
lem in a concrete setting, we consider how a controller is
designed within the optimal control theory framework.
We design a Linear Quadratic Regulator (LQR) which
is an optimal linear controller for a linear time invariant
plant (Stengel, 1994).

LQR design begins with a linear time invariant plant
in the state space form,

ẋ = Ax + Bu
y = Cx + Du

(22)

where x is a vector of states, u is a vector of control
inputs and y is the vector of outputs. The goal of LQR
design is to find a control function u(t) that minimize a
cost function of the form,

J = xT (Tf )QTf
x(Tf )

∫ Tf

0

(xT (t)Qx(t) + uT (t)Ru(t))dt

(23)

where QTf
and Q are symmetric positive semidefinite

matrices and R is a symmetric positive definite matrix.
It can be shown that the optimal control action that
minimizes this cost is,

u = −R−1BT K(t)x (24)

where K(t) must satisfy a continuous time matrix dif-
ferential equation (the Riccati equation),

K̇(t) = −K(t)A − AT K(t) + K(t)BR−1BT K(t) − Q

K(Tf) = QTf
(25)

In practice, one designs a steady state controller with
Tf = ∞ in which case one calculates a gain K by taking
the steady state solution of the Riccati equation. When
the necessary assumptions on the matrices are satisfied,
this equation can be solved numerically. Many computer
aided control design packages provide canned routines
for performing this computation.

Consider a concrete version of the pendulum equation,

φ̈ + cφ̇ − k sin φ + u(φ, φ̇) = 0

This equation can be linearized near the origin to
yield,

[

φ̈

φ̇

]

=

[

−c k
1 0

] [

φ̇
φ

]

+

[

1
0

]

u (26)

Further, we define the cost matrices,

Q =

[

5 0
0 2

]

, [R] = [1] (27)

This allows us to compute the gains for an optimal
controller that will stabilize the pendulum at the origin,
minimizing control effort and state deviation. For this
numerical computation, we utilized the LQR function
from the LabVIEW Control Design Toolkit (National
Instruments, 2004). The resulting control function is,

u =
[

14.07 100.02
]

[

φ̇
φ

]

We note that, in essence, we have designed a linear
control function that can optimally stabilize a linearized
version of the plant. We then ask the question: Is it
possible to arrive at the same result starting from the
qualitative constraints derived in section 3?

The qualitative controller, in the Balance region, is
defined by the equation,

u(φ, φ̇) = gb(φ) + hb(φ̇)

[gb(φ) − k sinφ]0 = [φ]0

[hb(φ̇)]0 = [φ̇]0

Consider a linear control function,

u(φ, φ̇) = (c11 + k)φ + c12φ̇ (28)



These qualitative constraints imply that this function
can be a Balance controller if c11, c12 > 0. What is
required is an optimization procedure that can determine
the optimal values of these parameters.

We perform this optimization numerically. The basic
operation in the optimization procedure is the evalua-
tion of the cost function. We evaluate this cost by per-
forming a dynamic simulation of the controlled system
over a finite time horizon, for a given set of control pa-
rameters, and using the resultant trajectory to compute
cost. The dynamic simulation is implemented as a 4th

order Runge-Kutta numerical integration scheme that is
coded using the LabVIEW Simulation Module (National
Instruments, 2004). The time step for integration is set
at 1ms and the horizon is set at 10 seconds. In order to
enable comparisons with LQR, we use the cost function
J from (23, 27).

The parameters are selected by a nonlinear program-
ming procedure that is implemented using the Optimize
function in the XMath Optimization Module (National
Instruments, 2004). This function solves the optimiza-
tion problem,

min F (p)
G(p) = 0
hl ≤ H(p) ≤ hu

pl ≤ p ≤ pu

(29)

where F (p) is the objective function, G(p) is an equal-
ity constraint, H(p) defines an inequality constraint and
p is bounded within a parameter range. F, G, H repre-
sent nonlinear functions that are representable using the
LabVIEW Simulation Module.

The procedure for computation of the optimum is
summarized below:

1. Construct a linearly constrained optimization problem
with an augmented Lagrangian objective function.

2. Use an iterative algorithm to compute the linearized
constraints.

3. Solve the resulting problem using a sequential
quadratic programming algorithm based on Broyden
- Fletcher - Goldfarb - Shanno weight updates.

4. Use multiple restarts to escape local optima.

For the purposes of our current problem, F (p) = J ;
p = [ c11 c12 ]. Using this procedure, we obtain the
control function,

u =
[

13.1427 95.9079
]

[

φ̇
φ

]

We simulated the action of both the LQR and the
QHC versions of the Balance controller, using the same
initial conditions and constraints. The results are shown
in figure 4. The LQR controller achieves a cost of J =
39.5602 with a maximum control effort of 23.5215 while
the QHC based controller achieves the cost J = 39.5983
with a maximum control effort of 22.4673. The difference
between the two sets of results is sufficiently small for us
to conclude that we have been able to reproduce the LQR
optimum using our qualitative control methodology.

5.2 Optimization of Global Behavior:
Multiple Linear Controllers

Our original goal was to design a controller that is ca-
pable of achieving a global behavior specification, that
the pendulum should be stabilized from all points in the
state space. The LQR controller is only valid in a small
region of state space defined by the local linearization.
The QHC based Balance controller is also applicable
only in a limited region, constrained by the strength of
the actuator. We seek a controller that can deliver the
global behavior, including optimal performance, over the
entire state space. This is a nontrivial task when solved
by many traditional methods, see e.g., (Barton & Lee,
2002).

We now demonstrate our approach to the synthesis of
such an optimal global controller. We begin with the
linear Balance controller,

u(φ, φ̇) = (c11 + k)φ + c12φ̇ (30)

As derived in section 4, the extent of Balance is de-
fined as φmax = umax/k. This relationship is derived
from energy considerations as the maximum angle from
which a finite strength actuator could counteract grav-
itational force and stabilize the pendulum. In practice,
in order to avoid saturation of the actuator, one might
also want to determine a point where the maximum com-
manded control action is within this limit. For the linear
Balance controller, this point is φmax = umax/(c11 +k).

Equation 8 is then used to determine φ̇max.
In addition, we need Pump and Spin controllers. The

qualitative constraints for these functions are,

[(hp − f)(φ̇)]0 = [φ̇]0

[hs(φ̇)]0 = [φ̇]0

We could implement these with the concrete functions,

u(φ̇) = (c + c2)(φ̇) (31)

u(φ̇) = (c3)(φ̇) (32)

where c2 > 0, c3 > 0.
If we implement these three functions in the multiple

model strategy outlined in section 4, we are again able
to use the procedure to numerically solve a differential
equation, compute the cost and to minimize this cost.
Our experiments yielded the optimal parameters,

c11 = 5.66897, c12 = 7.01115
c2 = 1.87099, c3 = 0.886154

This results in a cost of J=513.743 with a maximum
control effort of 23.3069. The results of a simulation
using this parameter set are shown in figure 5. What
we have been able to demonstrate here is that we can
begin with a set of qualitative constraints that guarantee
correctness of the global controller and use it to define a
parameter optimization problem to design a quantitative
controller to minimize a specified cost function.



5.3 Optimization of Global Behavior:
Multiple Nonlinear Controllers

Having designed a linear multiple model controller to op-
timize a cost function, we ask whether this is the most
optimal performance we might be able to obtain. The
answer is no. This optimality result assumes a linear
structure for the control functions. Our original qual-
itative constraints did not require this. So, there may
be room for better functional forms that deliver better
performance.

To explore this idea, we investigate the use of sigmoids.
The sigmoid function is defined as,

σ(a, m, φ) = a

(

1 − e−mφ

1 + e−mφ

)

(33)

The sigmoids based controller is defined as,

u(φ, φ̇) =







kφ + σ(abp, mbp, φ) + σ(abv , mbv, φ̇),Balance

−cφ̇ − σ(ap, mp, φ̇),Pump

σ(as, ms, φ̇),Spin
(34)

As we did in section 5.2, we define the boundary of
Balance by solving the following equation for φmax,

umax = kφmax + σ(abp, mbp, φmax) (35)

Once we have this value of φmax, we determine the
maximum allowable velocity in the Balance region as,

1

2
φ̇2

max =

∫ φmax

0

σ(abp, mbp, φ) + kφ − k sin φdφ (36)

This gives the desired values to implement the QHC
control strategy. The result of the parameter optimiza-
tion for this structure is,

abp = 11.6213, mbp = 11.5874
abv = 11.5401, mbv = 6.17449
ap = 12.1986, mp = 0.75895
as = 2.81266, ms = 1.64864

This yields a cost of J = 480.572 and a maximum
control effort of 12.424. This shows that we are able to
achieve a lower cost than the linear control strategy (J
= 513.743) with a maximum control effort that is half
that for the linear strategy (23.3069). The results of the
dynamic simulation with this parameter set are shown
in figure 6.

5.4 Robustness of global behaviors obtained
using QHC

One of the primary objectives of the QHC methodology
is to enable the design of robust control strategies for
real world problems in domains such as robotics. We
have demonstrated how this methodology can be used
to ensure coverage of the entire operational state space
of the system so as to assign suitable strategies to each
point in this space. This makes the global behavior ro-
bust and makes it possible to derive guarantees regarding

this behavior. What happens to these guarantees when
the measurements are noisy and the implementation is
based on discrete time control updates? It turns out
that due to the inherently physical nature of the models
and constraints, the controller designed using the QHC
methodology is tolerant towards such disturbances. We
present results from an experiment to demonstrate this
aspect of the controller.

In order to understand the effect of discrete imple-
mentation, we implemented a simulation at a step size
of 0.05 seconds, which is coarser than the time step used
in the parameter optimization experiments. In addition,
we simulated stochasticity in the period of operation of
the control loop by defining the effective control action
as follows,

u =

{

uQHC ; r > 0.5
0; r ≤ 0.5

(37)

where r is a uniform random variable r ∈ [0, 1] and
uQHC is the control action as defined in figure 3 and
section 5.3.

The result of this simulation is shown in figure 7. Note
that the topology of the desired global behavior is pre-
served although the actual trajectory looks slightly dif-
ferent. We also found that the addition of sensor noise
(implemented in our simulation as Gaussian white noise
with amplitude ±12.5% of signal amplitude) did not
have any appreciable detrimental effect on the controller
operation.

6. Conclusions

QHC is a methodology for hybrid nonlinear control de-
sign. This methodology enables a control designer to
systematically derive constraints based on increasingly
more concrete specifications. At the highest level, the
specifications take the form of a transition graph between
orbits that are defined by their topological properties in
phase space. The topological properties are used to de-
rive functional constraints using a QDE representation,
based on insights from the qualitative theory of differ-
ential equations. This imprecise representation of the
controller is sufficient to ensure correctness of the de-
sired behaviors. Once we have proved correctness, the
designer has many degrees of freedom to design quantita-
tive controllers that optimize various performance met-
rics. In this way, we have demonstrated the use of the
step by step methodology outlined in section 2. Using
this methodology, we have demonstrated that we are able
to match the performance of traditional methods like lin-
ear quadratic regulators. We extend this result by op-
timizing a hybrid controller consisting of multiple linear
controllers. Further, we demonstrate that the same set
of qualitative constraints allow us to synthesize a non-
linear optimal controller with better global performance
than the linear optimal controller. Lastly, we demon-
strate that the resulting optimal controllers are robust
in the face of noise and stochasticity in sampling time.
We have implemented a controller designed using this
methodology on physical apparatus in our laboratory.
This has also been achieved at the Technische Universi-
tat Graz in Austria, by Florian & Hofbaur (2004).
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Figure 1: Local models of the pendulum: (a) φ = 0 at the unstable and (b) θ = 0 at the stable fixed-point.

Figure 2: A discrete transition graph that encodes the structure of the desired global behavior.



Figure 3: A summary of the qualitative control laws, qualitative constraints and regions of applicability. Any
quantitative controller that has this structure and that satisfies these constraints is guaranteed to possess the desired
global behavior.



Figure 4: Results of dynamic simulation of system in the Balance region with a controller designed using QHC
constraints and parameter optimization. The system reaches equilibrium within the Balance region within 1 second.
The LQR controller yields results that are visually identical to this.



Figure 5: Results of dynamic simulation of system with the multiple model controller designed using QHC constraints
and parameter optimization. The system enters the Balance region at approximately 4 seconds.



Figure 6: Results of dynamic simulation of system with the multiple model nonlinear controller designed using QHC
constraints and parameter optimization. This system is briefly in the Pump-Spin sliding mode near 3 seconds
before entering the Balance region shortly thereafter.



Figure 7: Results of dynamic simulation of system with the multiple model nonlinear controller designed using QHC
constraints and parameter optimization. This simulation is based on a step size of 0.05 seconds and the stochastic
control action of equation (37). Although the qualitative behavior is exactly as before, convergence of global behavior
is slower due to the stochastic nature of the control action that pumps in less energy per unit time.


