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Abstract

We present a general theory of topological maps whereby sensory input, topo-
logical and local metrical information are combined to define the topological maps
explaining such information. Topological maps correspond to the minimal models
of an axiomatic theory describing the relationships between the different sources
of information explained by a map. We use a circumscriptive theory to specify the
minimal models associated with this representation.

The theory here proposed is independent of the exploration strategy the agent
follows when building a map. We provide an algorithm to calculate the models of
the theory. This algorithm supports different exploration strategies and facilitates
map disambiguation when perceptual aliasing arises.

1 Introduction

Topological maps are graph-like spatial representations. Nodes in such a graph often
represent states in the agent’s configuration space and edges represent system trajec-
tories that take the agent from one state to another. A hierarchical structure can be
accommodated on top of this “behavior graph”, where nodes at one level of the hier-
archy represent sets of nodes in lower levels. Despite their common use, there is no
consensus about what topological maps are, or how they are built. The meanings of
nodes and edges in a topological map varies according to the application as well as the
algorithms used to build them. Richer structures than the graph-like description above
are sometimes adopted as part of what a topological map is. Nevertheless, there are
common elements to most of the topological map descriptions, namely, the use of sen-
sory input descriptions in order to identify nodes, connectivity relations among nodes
in the map, and local metrical information associated with edges in the map.

*This work has taken place in the Intelligent Robotics Lab at the Atrtificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Intelligent Robotics lab is supported in part by NSF grants
IRI-9504138 and CDA 9617327, and by funding from Tivoli Corporation.



In this paper, we present a general theory of topological maps whereby sensory in-
put, topological and local metrical information are combined to define the topological
maps explaining such information. We take a declarative approach to define what topo-
logical maps are and how they are related to the information used to build them. We
distinguish between theausal graphwhich is a transition graph representation of reg-
ularities in action and sensory experience, andidpelogical map which represents
spatial properties of actions and of places and paths in the environment. We define
topological maps as the minimal models of an axiomatic theory describing the rela-
tionships between the different sources of information explained by a map. We provide
an algorithm to calculate the models of the theory. This algorithm supports differ-
ent exploration strategies and facilitates map disambiguation when perceptual aliasing
arises.

2 Related Work

Causal and topological maps have been mainly studied by cognitives theories of space
and robotics. Cognitive theories of space are interested in the cognitive map, the human
knowledge of large-scale space. Robotics is interested in representations of space that
can be used (and learned) by an autonomous robot.

Computational theories of the cognitive map have been proposdéiipers,
1978, Davis, 1983, McDermott and Davis, 1984, Leiser and Zilbershatz, 1989, Gopal
et al, 1989, O'Neill, 1991, Kortenkamet al, 1999. These theories account for in-
complete knowledge of space, use of multiple frames of reference, qualitative repre-
sentation of metrical information, and connectivity relations among landmarks. The
theories differ on how sensory information is represented, what a place is, and how the
overall spatial knowledge is structured.

The use of topological maps in robotics varies according to the type of information
used when building such mapRivest and Schapire, 1987, Dudekal., 1991, Dean
et al, 1993, Basyeet al, 1995 use the sequence of views and actions generated by
the robot exploration to recover the minimum deterministic automaton consistent with
such information. In these works, actions do not have any spatial properties associated
with them. Metrical information associated with actions is considerelbgnig and
Simmons, 1996, Shatkay and Kaelbling, 1R9ut there sensory information (views)
is not used. The use of both sensory and metrical information is propodédiipers
and Byun, 1988, Engelson and McDermott, 1992, Davis, 1983, Simmons and Koening,
1999. Among these workdKuipers and Byun, 1988, Davis, 198@ropose the use
of multiple metrical frames of reference: the places in the topological map are not
necessarily embedded in a single two dimensional Euclidean frame of reference, nor
it is necessary to do so in order to create the topological rii&piperset al, 1993,
Kuipers, 2000 propose the existence of topological objects (i.e. paths, regions) that
can explain the agent’s experiences without relying on metrical information but rather
qualitative spatial properties (i.e. travel, turnRight, turnLeft, turnAround) associated
with actions.

The building of topological maps by physical robots has been described in most of
the works above in addition {hee, 1996, Choset and Nagatani, 2Dah these works



effort has been put on describing how the agent solves the problem of “perceptual alias-
ing” (i.e. different places that share the same view). Different exploration strategies as
well as different discrimination procedures are proposed to solve this problem. The de-
scription of topological maps is usually closely tied to the algorithms and exploration
strategy used by the agent. It is difficult then to know what topological maps are and
how they are related to the agent’s experiences. In this paper we propose an axiomatic
theory of topological maps. The task of building the map is then seen as an abduction
task[Shanahan, 1996, Remolina and Kuipers, 198Bere the agent builds the map

that best explains its observations.

Metrical maps are another spatial representation used in the robotics community
[Elfes, 1987, Borenstein and Koren, 1991, Thatral, 1999.> There, the location
of objects in a two dimensional Euclidean space are used to explain the agent’s expe-
riences. Topological maps as described in this paper can use metrical maps but they
are confined to places, paths and local two dimensional frames of reference associated
with regions. Our representation hypothesis is that an agent first builds a network of
places on top of which metrical models are added, rather than to build first a single
metrical map from which a network of places is derived.

This article is organized as follows: in Section 3 we define how the agent represents
its experiences in the environment. Section 4 defines the causal map representation.
The topological theory is presented in three parts: Section 5 introduces the main prop-
erties of paths and places. Section 6 adds boundary relations to this representation, and
Section 7 defines the use of local metrical information. Section 8 presents our algo-
rithms to build the topological maps associated with the agent’s experiences. Finally,
we present our conclusions in Section 9.

3 The agent’s experiences in the environment

We assume that the continuous interaction of the agent and its environment is summa-
rized by a discreteiew-action-viewsequence of the form

U0y AQs ULy Aly ey pn_1,Up - Q)

A view represents a sensory description associated with an environment state. Only the
name and not the internal structure of a view matters. The environment states where
the views in sequence 1 were observed are cdikgihctive states(dstates). The same

view can occur at different distinctive statg®(ceptual aliasinyy It is possible for the

agent to associate different distinctive state names with the same environment state.
This is the case since the agent might not know at which of several environment states
itis currently located. It is the purpose of the causal and topological theories (Sections
4 and 5) to deduce which of these dstates nhames refer to the same environment state. An
action denotes a sequence of one or more control [au®, 1987 that take the agent

1we refer the reader to Borenstein’s bo@orensteinet al, 1994 (Chapter 8) for a review of the ad-
vantages and problems of using metrical maps as well as a description of several systems using this spatial
representation.



from one dstate to the nextThe sequence 1 is transformed into a sesafemasof

the form( (v;, ds;), a;, (viy1,dsit1) ), Whereds; is the dstate name associated with the

environment state where viewy is observed. A schema represents a particular action

execution of the agent in the environment. An action execution is characterized in terms

of the distinctive states the agent was at before and after the action was performed.
Example 1. Consider the environment in Figure 1. In order to go from distinc-

tive statedsl to distinctive statels2, the agent executes the sequence of control laws

( get_into_corridor, follow_middle_line, localize ) whereget_into_corridor is a tra-

jectory following control law that moves the agent fralal to a, follow_middle_line

is a trajectory following control law that takes the agent frano b, andlocalize is a

hill-climbing control law that takes the agent frdmto the distinctive statds2. Envi-

ronment statea andb are not distinctive states. At the distinctive stdt@ the agent

is facing the wall ahead and it is equidistant from this wall and the intersection corners.

dsl a
O> 0

Figure 1. A sequence of control strategies| get_into_corridor, follow_middle_line, localize ),
takes the agent from distinctive stafel to distinctive statals2. This continuous motion is represented
by the schemd (v1, ds1), al, (v2, ds2) ), wherevl andv2 are the views atls1 andds2, and the action
symbolal represents the sequence of control laws.

Distinctive stateds3 is at the same physical location ds2 but with a different
orientation. When the robot is d&3, it is facing the open space (corridor) to the right
of ds2. In order to go from distinctive stat#s2 to distinctive statels3, the agent
executes the sequence of control strategifsce_space_on_right, localize). The
schemasg (v1,dsl),al, (v2,ds2)) and{ (v2,ds2), a2, (v3,ds3) ) are created, where
al anda2 are action symbols representing the respective sequence of control laws.

{end of example

4 Causal graphs

Schemas summarize the continuous interactions of the agent in the environment. This
is done by storing the initial and final distinctive states (and their corresponding views)
for any action execution. By considering only the views associated with the initial and
final distinctive states of a schema, we definettesv graph(Section 4.3.1, page 8),

2[Kuipers and Byun, 1988, Kuipers and Byun, 1991, Kuipers, P@h@trate how to create such a se-
guence. Distinctive states are the result of followtiragectory-followingand therhill-climbing control laws.
The basin of attraction of the hill-climbing control laws absorbs accumulated error from each trajectory-
following control law, along each action. If the basin is large enough, and error accumulates slowly enough,
the action can be treated as absolutigyerministic



which relates different views by actions linking them. By considering sequences of
actions as well as views, the agent can further distinguish distinctive states. In Section
4.4 (Page 8) we define the predicatg which is the case for distinctive states that
are not distinguishable by actions and views. We then defineabsal graphwvhose
nodes are classes of distinctive states (classesceyl.t This representation is akin to

the view graph although it imposes further refinement in the set of environment states
that are consistent with the agent experiences.

4.1 Ontology of the Causal theory

We use a first order sorted language in order to describe causal graphs. The sorts
of such language includgews actions action typesaction qualitative descriptions
distinctive statesind schemas Next we present the predicate symbols and axioms
associated with this ontology.

We use the predicaléiew(ds, v) to represent the fact thais theviewassociated
with distinctive statels. We assume that a distinctive state has a unique ¥few,

v View(ds,v) . (2)

However, we daot assume that views uniquely determine distinctive states (i.e.
View(ds,v) A View(ds',v) / ds = ds'). This is the case since the sensory capabili-
ties of an agent may not be sufficient to distinguish distinctive states.

An action has a unique type, eithgavel or turn, associated with &. These con-
stant symbols define completely the sortamtiontypes(Axiom 3). The predicate
Action_type(a, type) represents the fact that the type of actéis type Formally,

turn # travel, Vatype {atype = turnV atype = travel} , (©)]
Itype Action_type(a,type) . 4)

Turn actionshave associated a unique qualitative description. The sort of qualita-
tive descriptions is completely defined by the constant syntbaid eft, turnRightand
turnAround(Axioms 5 and 6). We use the predic8farn_desc(a, desc) to indicate
thatdesdis the qualitative description of tharn action a Formally®

UN AlturnLeft, turnRight, turnAround] , (5)
Vdesc {desc =turnLeftV desc = turnRight V desc = turnAround} , (6)
Turn_desc(a,desc) — Action_type(a,turn) , )
Action_type(a,turn) — ldesc Turn_desc(a,desc) . (8)

A schemarepresents a particular action execution of the agent in the environment.
We use the following predicates to represent information associated with a schema:
action(s,a)— actiona is the action associated wisthema-s-, context(s,ds)— ds is

3Throughout this paper we assume that free variables in formulas are universally quantified.

4The formula3!v P(v) meansthere exists a unique s.t. P(v)" . Formally,3vVz [P(z) = = = v].

5The type of an action will be important in the topological theory (Section 5). For completeness of the
presentation we introduce this concept here.

6The notationUN A[t1, .. ., t,] represents the uniqueness of names axioms for the grounded terms
t1,...,t,. These axioms require thtyt # ¢; fori # j.



the startinglistinctive statassociated with the action execution representesthgma

s —, andresult(s,ds)— ds is the endinglistinctive stateassociated with the action
execution represented lBghemas—. While we require a unique context and action
associated with a schema, the result of a schema is optional (but unique if it éxists):

Jla action(s,a), Ads context(s,ds) ,result(s,ds) A result(s,ds') = ds=ds" . (9)
Most often we are interested completeschemas: those for whom the resulting
distinctive state exists. We use the predidd®(s, ds, a, ds') defined as
CS(s,ds,a,ds") =4ef context(s,ds) A action(s,a) A result(s,ds’) (10)

to express the fact that schemmaepresents an execution of actiarwhich took the
agent fromdistinctive statels to distinctive statels’.8

An action execution also has metrical information associated with it. This metrical
information represents an estimate of, for example, the distance or the angle between
the distinctive states associated with the action execution. We defer the study of metri-
cal information associated with schemas until Section 7.

4.2 Schema notation

While schemas are explicit objects of our theory, it is convenient to leave them implicit.
We introduce the following convenient notatién:

(ds,a,ds") =qey Is CS(s,ds,a,ds")

(v,a,v") =ges Is,ds,ds’ {CS(s,ds,a,ds") A View(ds,v) A View(ds',v')}

((v,ds),a, (v',ds")) Zger 35 {CS(s,ds,a,ds") A View(ds,v) A View(ds',v")}
(ds,type,ds') =4er 3s,a {CS(s,ds,a,ds") A Action_type(a, type)}

(ds,desc,ds"y =qey Is,a {C'S(s,ds,a,ds") AN Turn_desc(a, desc)}

4.3 The E formulae.

The agent’s experiences in the environmdhtare described in terms @S View,
ActiontypeandTurn.descformulae. Associated witk we have the setS(E) DS(E)

V(E), A(E) of schemas, distinctive states, views and action constant symbols occurring
in E. We require all these symbols to be different (Uaiqueness of namassumption)

and to completely define their corresponding sattenfain closureassumption):

UNA[s1,...,sk], si € S(E), UNA[dsy,...,ds], ds; € DS(E),

UNAlay,...,a,), a; € A(E) , UNA[v,...,vn], v; € V(E), (11)
Vs \/ s =5;, Vds \/ ds = ds; ,
s;i€S(E) ds;€DS(E)
Ya \/ a=a;, You \/ v=v;.
ai€A(E) v EV(E)

“Incomplete schemas allow the representation to account for common states of incomplete knowledge
like “I could take you there, but | can't tell you howKuipers, 2000.

8CS stands for Causal Schema.

9Notice that we have “overloaded” the bracket notation depending on the type of its arguments.



The axioms above are not only required from a logical point of view, but make sense
from the knowledge representation point of view. Domain closure axioms prevent
models from including objects different from those experienced (named) by the agent.
Each of the agent schemas represents a different experience and the agent names them
with a different schema constant symbol. Different view symbols represent different
sensory input. This is the case since the agent decides what view to associate with a
sensory input.Different distinctive state constant symbols might represent the same
environment state Nevertheless, we assume that different distinctive state symbols
are interpreted by different elements of the sort of distinctive states and we use the
predicateceq to indicate whether two distinctive states represent the same environment
state!®

Finally, the type of actions as well as the qualitative description of turn actions have
to be specified as part of the formulae

Action_type(a,type) = V [a = a; A type = typei] (12)
Action_type(a;,type;)EE
Turn_desc(a,desc) = \/ [a = ai A desc = desc;] (13)
Turn_desc(a;,desc;)EE
Definition 1.
Given a sety of CS View, ActiontypeandTurn_typeformulae,

COMPLETION (E)

denotes the union d with Axioms 11 - 13.{end of definitiof

Example 2. Consider the set of experiendegathered by the agent while navigat-
ing the environment in Figure 2. The agent moves among intersections by performing
actionml. The sensory input at the different intersections is very similar, and the agent
associates the views1* with the different distinctive states it found (i.a.b andc).

Figure 2:The agent moves among corridor intersections that have the same view, b andc are the
distinctive states where this view is observed at.

The elements oE are as follows: Action_type(ml, travel), CS(sl,a,ml,b),
CS(s2,b,ml, c), View(a,v+), View(b, v+), andView(c, v+).
The unigueness of names axioms associated vdhesl # s2 anda # bA a #
¢ A'b # c. The domain closure axioms associated viithreVs {s = s1V s = s2},
Vds{ds =aVds=bVds=c},Va {a =ml}andVv {v=v+}.
10ceq stands for Causally Equal. See Section 4.4.
11As with any other symbol name, the view name is arbitrary. The + in the view name is used to indicate

that the view corresponds to a four corridor intersection. Later we use the syltbahdicate that the view
corresponds to an end of corridor.




Finally, we also have the axiom&,desc {Turn_desc(a,desc) = false} and
Va,type {Action_type(a,type) = [a = ml A type = travel]}. {end of example

4.3.1 The view graph

The view graph associated with a set of experiencBsis the labeled graph
(Nodes, Edges, Labels) such that:

e Nodes = V(E), Labels = A(E).
e Edges ={(v,a,v') : COMPLETION(E) = (v,a,v") }.

When the same view occurs at different environment states, the view graph is not
very informative. The agent has to use information other than the views alone in order
to distinguish different environment states (see next section and Section 5). How-
ever, should the agent have enough sensory capabilities as to distinguish distinctive
states by their views, then the view graph becomes a powerful spatial representation
for reliable navigation. Work ifSchslkopf and Mallot, 1995, Franet al, 1998,

Mallot and Gillner, 2000, Steck and Mallot, 2d0¢hows how the view graph is con-
sistent with human navigation abilities.

4.4 The Causal theory

We use the predicaiseq(ds, ds’) to denote the fact thatistinctive statedls andds’
arecausallyindistinguishablé? Informally, ceq(ds, ds') is the case whenever distinc-
tive statesds andds’ are indistinguishable by the actions and views in a given set of
experience®’. The theoryC'T'(E) below defines the extent of the predicate.

The causal theory associated with a set of experieBc&3 (E), is the following
nested abnormality theory (NATH)ifschitz, 1999 (see Appendix A, Page 43):

CT(E) = (14)
COMPLETION(E) ,
Azioms 2 — 10,
(ds,a,ds'y A (ds,a,ds") — ds' = ds", (15)
CEQ_block = (16)
{ maz ceq:

ceq(ds1,ds1),
ceq(ds1,ds2) — ceq(ds2,ds1),
ceq(ds1,ds2) N ceq(dsz2,dss) — ceq(ds1,dss),

ceq(ds1,ds2) = View(ds1,v) = View(dsz,v), @a7)
ceq(ds1,dsz2) A (ds1,a,dsy) A {dsz2,a,dsh) — ceq(ds’,dsh) (18)
}

12)n section 5 we define when distinctive states are topologically indistinguishable.




Axiom 15 states our assumption that actions are deterministic. Axiom 17 states
that indistinguishable distinctive states have the same view. Axiom 18 states that if
distinctive stateds andds’ are indistinguishable, and actiars performed for botlas
andds’, then the resulting distinctive states must also be indistinguishable. Axioms 17
and 18 allow us to prove thatdifs andds’ are two indistinguishable distinctive states,
then any sequence of actions executedsaandds’ will render the same sequence of
views.

Lemma 1 Let A denote a sequence of action symbols.Agls) denote the distinctive
state symbol resulting from executing the sequehstarting at distinctive statés, or
L if Ais not defined fods.*® Then,

ceq(dsi,ds2) N A(ds1) #L NA(ds2) #L— View(A(ds1),v) = View(A(ds2),v) .

There is a special case in whiehg is an equivalence relation without explicitly
stating the axioms requiring so. This is the case when the result of every action at
every distinctive state is known.

Definition 2. A set of experiencef is completewhenever

E [ Va,ds3ds'(ds, a,ds") .

{end of definitioh

Theorem 1 Let E be a complete set of experiences andd&Q block be defined as
follows:

{ maz ceq:
ceq(ds1,ds2) = View(ds1,v) = View(dsz,v),
ceq(ds1,dsz2) A (ds1,a,dsy) A {dsz2,a,dsh) — ceq(dsy,dss)

}

Then, the predicateeq is an equivalence relation.

Proof. See appendix B (page 46).

When a set of experiences is complete the predicagieaptures the idea that two
distinctive states are the same if they render the same views under any sequence of
actions.

Theorem 2 Let E be a complete set of experiences. Then,
ceq(ds1,ds:) =VA,v [View(A(ds1),v) = View(A(dsz),v)] .

Proof. See appendix B (page 48).
Example 3. Consider the set of experiendess in Example 2 (Page 7) (see Figure
3a). Since the same view is experienced, &tandc, the extent okeq is maximized by
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Figure 3: (a) Distinctive states, b andc cannot be causally distinguished. Topological information is
needed in order to distinguish them. (see text)abh andc are distinguished given the new information
(e, travel, d).

declaringceq = true (i.e. Vz,y ceq(z,y)). Notice that axiom (18) is trivially satisfied
since no action has been executed.at

Thougha, b andc were experienced at different environment states, they are de-
clared causally indistinguishable. This happens because neither the actions nor the
views in E provide enough information to distinguish them. By using topological
information (i.e. the concepts @hth andplace in Section 5) we will be able to dis-
tinguish these distinctive states (see Example 5, page 18).

Suppose the agent continues exploring the environment and gets the new informa-
tion View(d,v 1), CS(s3,c,ml,d), as suggested in Figure 3b. In virtue of lemma 1,
it can be seen thakq(ds, ds') = ds = ds’, and consequently the agent concludes that
all distinctive states refer to different environment stafesd of example

Different models ofCT(E) generally arise when the set of experienées in-
complete (i.e. the agent has not completely explore the environment) or when weak
sensors determine the same view at different environment states.

Example 4. Consider the environment depicted in Figure 4. The agent visits the
different distinctive states as suggested by their numbers in the figure. The same travel
actionm! is performed when traveling from a corner to the intersection (i,enl, 2 ))
and viceversa (e.d.4,ml,5)). Aturn around action is performed when reaching a cor-
ner (e.g. (3, change_path_direction,4),( 7, change_path_direction, 8 ), etc.). As-
sume that the different corners have the same views (i.e. view(1) = view(4) = view(8),
view(3)= view(7) = view(11)), and views associated with the other distinctive states
are different.

Three models ofCT(E) can be associated with the explorati@hof the T-
environment:

1. Model 1:ceq(8,12), ceq(12, 8), ceq(z, z).*

2. Model 2:ceq(1,12),ceq(12,1), ceq(z, z).

3. Model 3:ceq(4,12), ceq(12,4), ceq(3,11), ceq(11, 3), ceq(2, 10), ceq(10, 2), ceq(z, x).

In all the models abovenceq(1,4), ~ceq(1,8), ~ceq(4,8). For instance, from
(1,ml,2),(4,ml,5), andview(2) # view(5) we conclude thatceq(1,4). Although

dstatel2 is at the same environment state as dstaieis possible thateq(1, 12) or
ceq(8,12). This is the case since no action has been performed at d3tate

13Given an action symbalt and distinctive statés, A(ds) = ds’ if the schemdds, A, ds') has been
observed, otherwise4(ds) =_L. Moreover,A(_L) =_. The definition is then extended to action sequences
in the standard way. Notice that(ds) is well-defined given our assumption that actions are deterministic
(Axiom 15).

14The extent otegq in model 1 is defined by(8,12), (12,8)} U {(z,z) 1z =1,...,12}.
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Figure 4: The agent visits the different distinctive states in the order suggested by their numbers. The
same view occurs at the different corners (i.e view(1)= view(4) = view (8)). Three different causal models
can be associated with the agent exploration of this T-environment (see text).

Notice that the models ofCT (E) are maximal with respect to the set inclusion
for ceq. The number of elements in the possible extents aéq could vary, and con-
sequently the number of different environment states represented by the models
of CT(E) will also vary. For instance, the three models above represgnt1 and
10 environment states respectively.

Finally, notice that all the models above are possible since at the causal level turn
and travel actions do not bear any spatial meaning. When we consider topological
information, only model 3 above will be possible (see Example 10, Page{2mjl of
examplé

4.5 The causal graph

The causal graph associated with a set of experieficés the labeled graph
(Nodes, Edges, Labels) such that:

e Nodes =DS(E)/ceq, Labels = A(E),
e Edges ={([ds],a,[ds]') : COMPLETION (E) = (ds,a,ds’) }.

where DS(E)/ceq denotes the set of equivalence classeB8{E)moduloceq and
[ds] denotes the equivalence classiefgivenceq

- -
(o] (D) (e

a b C

Figure 5: (a)-(b). Causal graphs associated with the set of experiences in Figures 3a and 3b. (c) view
graph associated with the set of experiences in Figure 3b. Notice that the causal and view graphs associated
with the experiences in Figure 3a are isomorphic.
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The problem of distinguishing environment states by outputs (views) and inputs
(actions) has been studied in the framework of automata tHémgluin, 1978, Gold,
1978, Rivest and Schapire, 1987, Basyal, 1994. In this framework, the problem
we address is the one of finding the minimum automaton (w.r.t. the number of states)
consistent with a given set of input/output pairs. Without any particular assumptions
about the environment or the agent’s perceptual abilities, the problem of finding this
smallest automaton is NP-complel@iigluin, 1978, Gold, 1978.

5 Topological maps

Actions in the causal theory convey patterns of experience but not spatial configura-
tion. Spatial configuration is considered by the topological theory where actions are
categorized into two classefiurnsandtravels Turns and travels are explained by a
new ontology, that oplacesandpaths Turn actions leave the agent at the same place.
Travel actions move the agent to a new place along a path.

Grouping places intoegionsallows an agent to reason efficiently about its spatial
knowledge. Regions themselves can be grouped to form new regions forming a spatial
abstraction hierarch¥?. In Section 6 (Page 26) we defibeundary regionsissociated
with paths. Informally, a path has associated three disjoint regions: the set of places
in the path, the set of places to the left of the path, and the set of places to the right
of the path. Boundary regions allow the agent to distinguish distinctive states, for two
distinctive states can be considered different if they are in different boundary regions
of the same path (see Example 16, Page 29).

Local metrical information derived during action execution is considered in the
topological theory. For instance, the distances among places on a path or the angles
among paths intersecting in a place can be accommodated in the topological map. We
study the use of metrical information in Section 7 (Page 30).

5.1 Ontology of the Topological theory

The main purpose of the topological the@¥' ( E) is to minimize the set of topological
paths and topological places consistent with the given experigic€he concepts of
pathandplaceare used to distinguish environment states that are not distinguishable by
actions and views alone. We use the preditatgds, ds’) to indicate that distinctive
statesds andds’ are topologically indistinguishable. This will be the case, when in
addition to not being distinguishable by views and actiaksandds’ are at the same
place facing the same direction along the same path.

Within the sort of places, we distinguish betweepological placesandregions
A topological place is a set of distinctive states linked by turn actions. A region is a set
of places. We use the predicatpath andis_region to identify these subsorts.

A path defines an order relation among places connected by travel with no turn
actions. They play the role of streets in a city layout. Among patipglogical paths
correspond to those paths whose places are topological places. We use the predicate

15|n this article we do not consider this hierarchy.
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tpath to identify these paths. A path connecting regions is callezlte. A path has
associated two directiongpsandneg A path direction provides a frame of reference
to establish the order in which places in a path are arranged or whether a place is to the
right or left of the path (see boundary regions in Section 6). The sort of path directions
is completely defined bgosandneg'®

The relations among distinctive states, places and paths are characterized in terms
of the following predicateson(pa,p)— placep is onpathpa —,order(pa,dir,p,q) —
placep is beforeplaceq, when facing directiodir on pathpa—, at(ds,p)—distinctive
stateds is atplacep—, andalong(ds,pa,dir)—distinctive statels is alongpathpa in
directiondir—.

We require the sorts gflaces and paths to be infinite. This is not to say that
the topological map has infinite number gifaces or paths. Given a model of the
theory, the topological map corresponds to the submodel obtained by restricting the
different predicates ttopological placesregions topological pathsandroutes Since
topological placesare identified with set of distinctive states atwpological paths
are identified with sequences of distinctive states, the topological map associated with
a finite set of schemas (and so a finite set of distinctive states) has a finite number of
topological placesindtopological pathsOur requirement of infinitelaces andpaths
allow us to compare any two models of the theory. Example 15 (Page 26) illustrates
the use of this requirement.

5.2 The topological theory

The topological theory associated WEh TT(E), is the following nested abnormality
theory (NATs)[Lifschitz, 1995 (see Appendix A, Page 43)*

TT(E) = (29)
there exist infinitely many places ,
there exist infinitely many paths ,
—3p [tplace(p) A is_region(p)],
—3pa [tpath(pa) A route(pa)] ,
COMPLETION(E),
Azioms 2 — 10,
(ds,a,ds'y A (ds,a,ds") — ds' = ds", (Aziom 15)
T block ,
AT block .

The blocKT _block defines the properties of the predicatesn, travel, andtravel.

turn is the equivalence closure of the scherasurn, -); travel andtravel are the
equivalence and transitive closure of the schenasavel, -) respectively:8

18For a directiondir, —dir is defined such thatpos = neg and—neg = pos.

1"The condition that the sorts of places and paths are infinite is formalized by asserting the existence of a
bijection between these sorts and the natural numbers.

183ee Appendix D, Page 52.



14

The blockAT _block is the heart of our theory. It defines how the agent groups
distinctive states intplaces and howplacesare ordered bpaths The purpose of this
block is to define the extent of the predicatieath, tplace at, along, order, onandteq
The block has the associated circumscription pdficy

circ tpath > tplace var SSH}ared

where SSH; pred stands for the tuple of predicates
(at, along, order, on, teq, turn_eq, travel_eq).’°  This circumscription pol-

icy states that a minimum set of topological paths is preferred to a minimum set of
topological places. The blockT _block is defined as follows?

AT block = (20)
{ maz teq :
teq(ds,ds) ,
teq(dsi,ds2) — teq(ds2,ds1) ,
teq(dsi,dsz2) Ateq(dsa,dss) — teq(dsi,dss) , (21)
teq(dsi,ds2) = View(ds1,v) = View(dsz2,v), (22)
teq(dsi,ds2) A {ds1,a,ds) ) A {ds2,a,dsy) = teq(dsy,dss) , (23)
teq(ds1,ds2) — Vplat(dsi,p) = at(dsz,p)] A (24)
Vpa, dir [along(ds1, pa, dir) = along(ds2, pa, dir)] ,

(ds,turn,ds’ ) — —teq(ds,ds’) , (25)
(ds,turnAround,ds’ ) A {ds, turnAround,ds" ) — teq(ds',ds") , (26)
(ds1,turnAround,dsz ) A (dsa,turnAround,dss ) — teq(dsi,dss) , (27)
at(ds,p) — tplace(p), (28)
Alp at(ds, p), (29)
turn_eq(dsy,ds2) = Vp[at(ds1,p) = at(dsz,p)], (30)
{min turn_eq: (31)

teq(dsi,dsz2) A teq(dss,dss) A t%(dsz, dss) — turn_eq(dsi,dss),
turn_eq(dsi,ds2) A turn_eq(dsz, dss) — turn_eq(dsi,dss)

}

along(ds,pa,dir) — tpath(pa), (32)

{ min along : (33)
{ds, travel,ds' y — Ipa, dir [along(ds,pa,dir) A along(ds',pa,dir)] ,  (34)
(ds,turnAround,ds’y — along(ds, pa,dir) = along(ds', pa, —dir), (35)
teq(dsi,ds2) — along(ds1, pa, dir) = along(ds2, pa, dir) (36)

19The symbol- indicates prioritized circumscription (see Appendix A, Page 43).

20The predicatesravel_eq andturn_eq are “auxiliary” predicates used in our topological theory. Al-
though they are completely defined in termsaf, turn andtravel , they need to vary in the circumscription
policy.

21Figure 6, Page 16, summarizes the dependencies among the predicates definedifybibek.
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}
along(ds,pa,dir) A along(ds,pal,dirl) — pa = pal A dir = dirl, (37)
at(ds1,p)Aat(ds2,p) Aalong(ds1, pa,dir) Aalong(ds2, pa, dir) — teq(dsi, ds{B8)

[(ds7 turn_desc,ds') A turn_desc # turnAround A (39)
along(ds, pa,dir) A along(ds', pal, dirl)] — pa # pal,

{ min order : (40)

[( ds,travel,ds") A at(ds,p) A at(ds', q)A (41)
along(ds, pa, dir) A along(ds', pa, dir)] — order(pa,dir,p,q),

order(pa,pos, p,q) = order(pa,neg, q,p), (42)
order(pa,dir,p, q) A order(pa,dir,q,r) — order(pa,dir,p,r) (43)

}

-order(pa,dir, p,p), (44)

{min on : at(ds,p) A along(ds, pa,dir) — on(pa,p) } (45)

on(pa, p) A on(pa, q) A tpath(pa) — (46)

Ads1, diry, dssz, dirs [at(dsi, p) A along(dsi,pa,diri) A at(dsz, ¢)A
along(dsz, pa,dirzs) A travel_eq(ds1,dsz2)],
{min travel_eq: 47)
t;z;el(dsl,dsz) — travel_eq(dsi,ds2),
(ds1,turnAround,dss ) — travel_eq(dsi,ds2) A travel_eq(dsz,ds1)
teq(dsi,dsz2) A teq(dss,dss) A travel_eq(dsz,dss) — travel_eq(dsi, dss),
travel_eq(dsi,dsz2) A travel_eq(dsz2,dss) — travel_eq(dsi,dss)

}

circ tpath = tplace var SSH}W&d (48)

}

We discuss these axioms in turn.

Predicateeq is an equivalence relation. It stands fopologically equal When-
everteq(dsy,dss) is the case, we can consid&r anddss as denoting the same envi-
ronment stateds; anddss cannot be distinguished by views and actions (Axioms 22
and 23), they are at the same place, and they are along the same paths (Axiom 24).

Axiom 25 states that &rn action takes the agent from one distinctive state to a
different one. In particular we assume that a schema of the {dsp¥T'urn, ds) is not
included in the agent’s experiences. Axiom 26 states that there is a unique (nagulo
distinctive state resulting from performing a turn around action. After two turn around
actions the agent is back to the same dstate (Axiom 27). Turn around actions are special
since they link distinctive states along the same path but in opposite directions (Axiom
35).

Axioms 29 and 30 state how the agent groups distinctive states into places. Ev-
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teq(ds,ds’)

/ {20: AT=block} \

tplace(p) on(pa,p) order(pa,dir,p,q) tpath(pa)

A {45,46 {40}
{28} / \ {32, 37-39}

at(di,p along(ds,pa,dir)
{30} (33)

turn_eq(ds,ds’) travel eq(ds,ds’)
A

{31} {47}
—
turn(ds,ds’) “travel(ds,ds’)
<ds,turn,ds’> <ds,travel,ds’>

Figure 6: Dependency among predicatesTt’(E). Labels on the graph’s arrows refer to the axioms
relating the predicates pointed by the arrows.

Distinctive states related by turns moduley (turn_eq) must beat the same topological placeéplace).
Distinctive states related by travels modubgy (travel-eq) arealong the same topological pathpath).
Knowing at which places and along which paths distinctive state are, determines what places\drat

paths. The order of places on a path is derived from travels among distinctive states along a path.

Since the extents afravel_eq andturn_eq must be defined in order to determine places and paths, one has
to know what distinctive states ateq. The arrows pointing téeq on the top of the diagram indicate that
among the possible interpretations feg, the preferred models of the theory select those that lead to a map
where a minimum set of paths and places are needed to explain the schemas at the bottom of the diagram.
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ery distinctive state is at a unique topological place (Axiom 29). Whenever the agent
turns, it stays at the same topological place (Axiom 30). Distinctive states grouped
into a topological place should bern connected (modulteq) (Axiom 30)2?

Travelactions among distinctive states are abstracted to topological paths connect-
ing the places associated with such distinctive states. Travel axioms are explained in
terms of the two related predicategpng andorder. Both of these predicates are
the minimum ones explaining travel actions and satisfying other properties included in
their respective blocks 33 and 40.

Block 33 defines the predicatong. Whenever an agetirns around it stays in
the same path but facing the opposite path’s direction (Axiom 35). Axiom 36 is a trivial
consequence of the definition tfg but it has to be included in the block so that the
interpretation ofzlong has tuples other than the ones explicitly derived from schemas
(see Example 7, Page 19).

There are further restrictions on the propertiealofg. For instance, a distinctive
state is along at most one path (Axiom 37). Since Axiom 37 provides “negative” infor-
mation aboutilong, it does not need to be included in Block 33 (see Proposition 4 in
[Lifschitz, 1994). Axiom 37 prevents the existence of different paths that converge to
the same distinctive state.

Turn actions other thaturnAroundchange the path the initial and final distinctive
states linked by the action are along (Axiom 39). This axiom allows the agent to con-
clude the existence of different paths once it turns right or left at a place (see Example
9, Page 20). This axiom prevents the existence of self-intersecting paths as illustrated
in Figure 14 (Page 24).

Block 40 defines the predicateder. In addition to explaining travel actions,
order defines an order among the places on a path satisfying the following two proper-
ties: i) the order of places in a given path direction is the inverse of the order of places
in the other path direction (Axiom 42), and ii), the order of places in a path is transitive
(Axiom 43).

There are further restrictions on the propertiesiafer: i) the order of places in a
path should be non-reflexive (Axiom 44), and ii) the agent has to have traveled among
the places on the same path (Axiom 46). Since these requirements provide “negative”
information aboubrder, they do not need to be included in Block 40 (see Proposition
4 in [Lifschitz, 1994). Notice that we rule out the existence of circular paths (Axiom
44). In Section 5.3 we will make this axiom a default.

Axiom 46 requires the agent to have traveled among the places on the same path.
traveleq defines when two distinctive states are linked by travel actions without turns
(except forturn Around actions) (see Block 47). Example 8 illustrates how by using
travel_eq the agent can minimize the set of topological paths.

Remark. We will be using the following properties of our theory. Axiom 37 in combi-
nation with Axioms 34, 41, and 44, imply that that whenever the agent has directly trav-
eled between two distinctive states, the places associated with these distinctive states
are different:

Corollary 1. travel(ds, ds') — place(ds) # place(ds')

whereplace(ds) denotes the unique topological place that distinctive states

22BJock 31 states that the predicatern_eq corresponds to the relatidarn modulotegq.
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at (Axiom 29). Moreover, consecutive travels among distinctive states occur along the
same topological path.
Corollary 2.

tra_'vel(ds, ds') — A'pa,dir [order(pa,dir,place(ds),place(ds')) A along(ds, pa,dir)
Aalong(ds, pa, dir)]

In order to prove that distinctive statds; andds, are at different topological
places, one has to prove thaturn_eq(dsi,ds2). The following theorem states a
strong condition for when this is the case.

Theorem 3 Letds; be a distinctive state symbol such tHat

Vd82 Q/ [dsl]/\ [d82]t8q n [dsl]/\ = @ .

turn’ turn

Then, Vdsy & [ds1]—, place(dsz) # place(ds:) .
Proof. See Appendix C, Page50.

Finally, our circumscription policy 48 and the fact that the sorts of paths and places
are infinite implies the following fact*

Theorem 4 Any two models of the SSH topological theory have the same number of
topological paths and the same number of topological places.

Proof. See appendix C (page 51).

However, Theorem 4 does not mean that a unique map is necessarily associated
with a set of schemas. As shown in Example 13 (Page 24) the SSH topological theory
could have more than one non-isomorphic model.

{end of remark
The next examples illustrate the interplay among the axioms itl&€k.
Example 5.

Figure 7:Distinctive statew, b andc cannot be distinguished at the causal level (see Example 3, Page 9).
Using the concepts gfathsandplacesthese dstates are distinguished.

Consider the set of experiendeés

( (ayv-+), travel, (b,v+) ), { (b, v+), travel, (e, v+) )

23Given an equivalence relatiaR, [z]r denotes the equivalence classeadiccording taR.
24Recall that the interpretations fewath andtplace are finite.
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as in Example 3 (Page 9), Figure 7. From Corollary 1 we deducepilhat(a),
place(b) andplace(c) are all different places. From Corollary 2, the topological map
associated witle has one topological path and three topological places. Distinctive
statese andb can be distinguished though they are “causally indistinguishable” (i.e.
ceq(a,b) A —teq(a,b)).

{end of example

Only distinctive states linked by turn actions can be grouped into a topological place
(Axiom 30). Under incomplete information this constraint could imply the existence
of more places than the ones needed in a map.

Example 6. Consider the set of experiencEBsndicated by the formulae

(a,travel,b), (b,turnAround,c), (c,travel,d) ,

in addition to the views associated with the distinctive states. Moreover, assume that
views uniquely distinguish the different distinctive states. The modelT¢E)is pre-
sented in Figure 8c. The model has three places and one path. Not havingaction
relatingd anda prevents the agent from grouping these distinctive states into the same
place, as suggested in Figure 8b. Next we show why this is the case.

A\Pa’ B A L, B
a b o— ®
-~ - 7
B c S/ Pa
/ C
’
,
@ (b) ©

Figure 8: (a) The agent navigates a rectangle environment getting the experiéngesavel,b),

(b, turnAround, c), and (¢, travel,d). The corresponding topological map has three places and one
path (c) rather than two places and one path (b). Distinctive séadesid cannot be grouped into the same
topological place since they are not linked by turn actions. Notice that the order of places in the path is not
total. Should the agent turn around and experience the schénprarn Around, a ), it will consider (b) as

the topological map and disregard (c).

Since views uniquely distinguish distinctive states, ther{z,y) = z = y. From
the definition ofturn_eq (Block 31), it follows then thaturn_eq = turn. Since the
only turn action mentioned it is the one in schemgb, turn Around, ¢ ), we deduce
thatturn(ds,ds') = [ds = ds' V {ds = bA ds' = c} V {ds = ¢ Ads' = b}]. In
particular,~turn_eq(a, d). In virtue of Axiom 30 we cannot conclude thaandd are
at the same topological place.

{end of example

The next example shows the interplay betwégnandalong as well as the effect
of maximizingteq.

Example 7.

Consider the set of schemés, turnRight,b), (b, travel,c), {c, turnAround, d),
{(d,travel,e), (e, turnRight,a’), (a',turnRight,b' Yconsistent with an agent going
from one four-way intersection to another (Figure 9). Let's consider the models of
these schemas. From our axioms, at least one path and three places must exist:
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Figure 9:The agent moves back and forth from one intersection to the other. The second time the agent
visits distinctive states andb, it gives the names’ andd’. From the topological theory it follows that these
names correspond to the previously visitedndb.

Places Paths Along teq

P ={ab} Pa: b-cd-e along(b,Pa,dir) along(c,Pa,dir) —teq(a,b), =teq(c, d)
Q ={c,d} along(d,Pa,-dir) along(e,Pa,-dir) ~teq(e,a'), —teq(a’,d")
R={ea.b}

We know thatP # @ and@ # R. By havingteq(a,a’), we can complete the
model such thatP = R. The maximization ofteq will force the model to have
teq(b,b’). By including Axiom 36 in the Block 33 we are allowed to have a model
in which teq(b, ') is the case. Notice that a travel action has not been perforntéd at
and so the schemas do not support a tuple of the édemg (', o, o). {end of example

Example 8. Consider the extension of the previous example where the schema
(b, travel, ') is obtained. Axiom 46 requires the agent to have traveled among places
on the same path. As for places, we check this requirement “modego’sinceteq
plays the role of equality in our theory. In this example, the agent concludes that
teq(c,c'). Notice that-travel (b, ¢') andtravel_eq(b, c') are the case{end of exam-
ple}

By requiring the agent to have traveled among the places on a same path (Axiom
46), different paths can be identified. The next example illustrates the case.

Example 9. Suppose the agent explores the environment depicted in Figure 10a

A B
dl [
ds3
pal
ds5 dsfl pa2
ds4 c D

(@ (b)

Figure 10:By requiring the agent to have traveled among the places on a same path (Axiom 46), different
paths can be identified. (a) The agent visits the different distinctive states in thedoidets2, . . ., ds6.

(b) depicts the topological map associated with (a). Three paths instead of only two are required to explain
the agent experiences (see text).

obtaining the following schemas:

(dsl,travel,ds2){ds2, turnRight,ds3 )(ds3, travel,ds4 )
(ds4,turnLeft,ds5 )( dsb, travel, ds6 )
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We assume that the agent associates different views with the different distinctive states
in the example. Axiom 29 implies that there exist pladesB, C' and D (see Figure
10b) such that

at(dsl, A), at(ds2,B), at(ds3,B), at(ds4,C), at(ds5,C), at(ds6,D) .

Moreover, Corollary 1 impliesthat # B , B # C , C # D . Under our
assumption that all distinctive states in the example have different views, it follows
thatteq(dsy,ds2) = ds; = dse and thusturn = turn_eq. Sinceﬂtﬂﬁz(dsl,dsii),
~turn(ds1, d5) and—turn(ds2, ds6) are the cased, B, C and D are all different.
Axiom 34 implies that there exist patli&, Pal, Pa2, and directiondir, dirl, dir2,

such that:

order(Pa,dir, A, B), along(dsl, Pa,dir), along(ds2, Pa,dir),

order(Pal,dirl, B,C), along(ds3, Pal,dirl), along(ds4, Pal,dirl),
order(Pa2,dir2,C, D), along(dsb, Pa2,dir2), along(ds6,Pa2,dir2) .

Schemasdds2, turnRight, ds3) and(ds4, turnLeft, ds5), and Axiom 39 implies that
Pa # Pal, Pal # Pa2. Sinceteq(ds;,ds2) = ds; = dss and there is not
turn Around schemas i, thentravel = travel_eq. Consequentlyﬁtrﬁel(dsl, ds4)
andﬂtr/a;el(dsl,dSS) are the case, and in virtue of Axiom 46 it follows that #
Pa2 . {end of example

Example 10.Consider the same T-environment exploration presented in Example
4 (Page 10) (see Figure 11). When using only causal information, three possible models
are associated with the exploration. When using topological information, only one of
these models is possible as illustrated next.

—1 '5—§—‘{2,10) 12, a1

6

8

L

Figure 11: The agent visits the different distinctive states in the order suggested by their num-
bers. The same travel actiom! is performed when traveling from a corner to the intersection (i.e
(1,ml,2)) and viceversa (i.e{4,ml,5)). A turn around action is performed when reaching a corner

(i.e. (3,turnAround,4),(7,turnAround,8), etc.). Assume that the different corners have the same
views (i.e. view(1) = view(4) = view(8), view(3)= view(7) = view(11)), and views associated with the other
distinctive states are different. Three different causal models can be associated with the agent exploration of
this T-environment but only one of them is consistent with topological information (see text).

The three causal models associated with T-environment are:
1. Model 1:ceq(8,12), ceq(12, 8), ceq(z, ).
25The extent oteq in model 1 is defined by(8,12), (12,8)} U {(z,z) : =z =1,...,12}.
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2. Model 2:ceq(1,12), ceq(12,1), ceq(z, ).
3. Model 3:ceq(4,12), ceq(12,4), ceq(3,11), ceq(11, 3), ceq(2, 10), ceq(10, 2), ceq(z, x).

We are to show that only mod&labove is consistent with topological information.
For this we show the following three facts: (i) any model must have at efsiths
and5 tplaces?® (i) there is a model witl2 tpaths and tplaces (this is the intended
model), (iii) a model of-teq(2, 10) must have at leadt tplaces. This last statement
implies that modeld and2 above are not consistent with topological information.

From (1, ¢ravel,2) and( 2, travel, 3 ), Corollary 2 implies that there exist a path
Pal and directiondir1 such that

along(1, Pal,dirl), along(2, Pal, dirl), along(3, Pal,dirl) .
Moreover, Corollary 1 implies that

place(1) # place(2), place(2) # place(3), place(1) # place(3) .

From (3, turnAround,4), (4,travel,5), Axiom 35 and Corollary 2, it is the case
thatalong(4, Pal, —dirl), along(5, Pal, —dir1) . Similarly, from (5, turnLeft,6 ),
(6, travel,7), (7, turnAround, 8), (8, travel,9 ) we conclude that there exist a path
Pa2 and directiondir2 such thatPal # Pa2 (Axiom 39) and

place(5) # place(8), along(6, Pa2,dir2), along(7, Pa2,dir2),

along(8, Pa2, —dir2), along(9, Pa2, —dir2) .

From (9, turnRight, 10}, (10, travel, 11), (11, turnAround, 12}, there exist path
Pa3 and directiondir3 such thatPa2 # Pa3 and

along(10, Pa3, dir3), along(11, Pa3, dir3), along(12, Pa3, —dir3) .

Theorem 3 allow us to conclude thauce(5) ¢ {place(1), place(2), place(3)}. The
same argument shows thdtice(8) & {place(1), place(2), place(3), place(5)}. Con-
sequently, a miminal model of the theory must have at least two tpaths and five tplaces

Notice that in the intended model of the T-environméti] = Pa3, dirl = dir3,
teq(2,10), teg(3,11) andteq(4,12). This model is indeed a model @T'(E) since
at least two topological paths and five topological places are needed to ekplan
consequently any model must have two topological paths and five topological places
(Theorem 4).

If —teq(2,10) were the case, then Theorem 3 allows to concludephai(9) ¢
{place(1), place(2), place(3), place(5), place(8)} and so the model will have at least
six tplaces. Consequenttyq(2,10) has to be the case in a minimal model of the
theory.{end of example

Example 11. Consider an extension of the previous example where we have the
additional schema&9, turnLeft,5'), (5', turnRight,9). In this case, the intended
model hasfour places and two paths. Notice that now the agent can conclude that
place(5) = place(2) by makingteq(5', 5) and scturn_eq(5, 2). {end of example

26Since there is not a turn action between dstéte$} and dstate§2, 9, 10}, these dstates are not at the
same topological place, as suggested by Figure 11.



23

/@b ds7 Paneg q
+~o— dsl ds:‘%a;isa L» ds6 D’—»

ds2

@ (b)

Figure 12: The environment in (a) illustrates a case where different paths intersect at more than one
place. Suppose the agent explores the environment by visiting the different distinctive states in the order
dsl,ds2,dsl,ds3,ds4,ds3,ds6,ds7,ds4,ds5,ds2. (b) depicts the topological map associated with this
environment

The theory does not assume a “rectilinear” environment where paths intersect
at most in one place Consider the next example.

Example 12. Suppose the agent explores the environment depicted in Figure 12
obtaining the following schemas:

(dsl,turnAround,ds2) (ds2,turnAround,dsl) (dsl,travel,ds3)
(ds3,turnRight, ds4) (ds4,turnLeft, ds3) (ds3, travel, ds6)
(ds6,turnLe ft,dsT) (ds7,travel, ds4)
(ds4,turnRight, ds5) (ds5, travel, ds2)

We assume that views uniquely distinguish the different distinctive states. From
Corollary 1 there exist the different placdsB, andC suggested in the figure. In ad-
dition, Corollary 2 implies the existence of a pathg, and direction, sayos, such
that order(Pa, pos, A, B), order(Pa,pos,B,C), order(Pa,pos,A,C). More-
over, from schema§(ds7, travel, ds4), (ds5, travel, ds2)} and Axiom 34, there exist
pathsPal, Pa2, and directionglirl, dir2, such that

order(Pal,dirl,C, B) A along(ds7, Pal,dirl) A along(ds4, Pal,dirl) ,

order(Pa2,dir2, B, A) A along(ds5, Pa2,dir2) A along(ds2, Pa2,dir2) .

Sincealong(ds6, Pa, pos), from Axiom 39 and schem@ls6, turnLeft, ds7) we
conclude thaPa # Pal . Since we are minimizing paths, by settifg2 = Pa and
dir2 = neg, we obtain a minimal model faE. Notice that in this model, placd® and
C belong to two different pathg?a and Pal. {end of example

There are some patterns of experience in which our theory is not applicable. In
particular, Axiom 44 rules out circular paths and Axiom 37 rules out experiences where
different paths merge into the same distinctive state. In Section 5.3 we extend the
topological theory to deal with these type of paths.

There are patterns of experience that can be explained by more than one topological
map. This happens because the experiences are incomplete, or the agent’s sensors are
weak?’

27Since the positive and negative direction of a path are chosen arbitrarily (Axiom 34), there is not a
unique minimal model fof"T'(E'). Given any modelM of T'T'(E) one could define another modef’ of
TT(F) by choosing a patpa in M and reversing the roles of the directignes andneg for pa. We will
consider these “up to path direction isomorphic” models to be the same.
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Figure 13:(a) The agent goes around the block visiting pladeB,. . .,F,C in the order suggested in the
figure. IntersectiondB andC' look alike to the agent. (b) and (c) represent two possible representations for
the environment in (a). Topological information is not enough to decide whether the agent is ik to

C

Example 13. Assume that the agent visits placdsB,C,D,E,F,C in the order
suggested by Figure 13. Assume also that intersections look alike. In particular, places
B and(C look alike. Given this information, the agent is not able to decide whether it
is back toB or C' and consequently two minimal models can be associated with the set
of experiences in this environment (Figures 13b,c).

Notice that if the agent accumulates more information, by turnidgad traveling
to D, then it can deduce that the topology of the environment is the one in Figure 13b.
This is the case since the views@andD are differen£® {end of example

5.3 Coping with self intersecting paths

The topological theory presented in the previous section is adequate for representing
environments where “complex” paths configurations do not occur. In particular, we

assume that self-intersecting and convergent paths do not exist (see Figure 14). In this
section we extend our theory to deal with these types of paths. Converging paths are

—

a b
Figure 14:(a) Self intersecting paths. (b) Convergent paths.

the standard counterexample for the axiom stating that distinctive states are along a
unique path (Axiom 37). We replace Axiom 37 by the block

{ min convergent_paths :
[along(ds, pa, dir) A along(ds,pal,dirl)
A= [pa = pal A dir = dirl]] — convergent_paths(pa,pal)

}

28Metrical information can be used to deduce the correct topology. See Example 17 (Page 35).
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Self-intersecting paths are the standard counterexample for the axioms stating that turn-
ing changes the path (Axiom 39), at a place there is at most one distinctive state along
a path direction (Axiom 38), and the order of places in a path is not reflexive (Axiom
44). We replace these axioms by the block

{min self_intersecting :
order(pa,dir,p,p) — sel f_intersecting(pa) ,
[(ds, turn_desc,ds') A turn_desc # TurnAround A along(ds,pa, dir)

/\along(ds',pa,dirl)] — sel f_intersecting(pa) ,
[at(ds1,p) A at(dsz, p) A along(dsi,pa,dir) A along(dsz, pa, dir)
N—teq(dsy,dsz)] — self_intersecting(pa)

}

While we have definedonvergenandself-intersectingaths, we still need to state
that by default these kind of paths do not exist. This is accomplished by giving pri-
ority to the minimization of these two predicates over any other predicate. The new
circumscription policy associated with our theory becomes

circ sel f_intersecting > convergent_paths > tpath = tplace var SSprred. (49)

The new theory is aonservativextension of our previous theory, sinary topo-
logical map with respect to our previous theory is a topological map according to the
new theory In particular, the maps associated with examples 5 through 12 are still
valid maps for the new theory. Next we study some cases we could not handle before.

Example 14.Suppose the agent has experienced the following schemas (see Figure
15):

(b,travel,d) (d,turnAround,c) (c,turnRight,e)
(e,travel,a) {a,turnAround,b)

Figure 15:Distinctive states is along two different paths. These two paths are declared convergent paths
in the model of our theory.

From Axiom 34 we know that exist pathBa, Pal and directionsdir, dirl
such that along(b, Pa,dir), along(d, Pa,dir), along(e,Pal,dirl) and
along(a, Pal,dirl) are the case. Moreover, from Axiom 35 it follows that
along(b, Pal, —dirl). We have two possible models for these schemas:

e Model 1. In this modelPa # Pal. Consequentlysel f_intersecting = false
andconvergent_paths(Pa, Pal) are the case.



26

e Model 2. In this modelPa = Pal. Consequentlysel f _intersecting(Pa) and
convergent_paths = false are the case.

We prefer model 1 over model 2 according to the circumscription policy{é4fd
of examplé

In order to compare any two possible maps, these maps must have a common sort of
places and paths. Since a map can be arbitrarily large, no finite domain can be adequate
and so we require the sorts of places and paths to be infinite (seelodK), Page
13). Consider the following example (see also Theorem 4, Page 18).

Example 15.Consider the schema, travel, b) wherea andb have the same view.
The intended model has one topological path and two topological places. One expects
that the path is not circular (self-intersecting), and so the existence of two places. How-
ever, without requiring the existence of enough places, the following model is also
possible:

places ={A}, tplace ={A} paths={Pa}, tpaths {Pa}

teq(a,b) sel f _intersecting(Pa)

at(a,A) at(b,A) along(a,Pa,pos), along(b,Pa,pos)
order(Pa,pos,A,A)

In this model, sel f_intersecting(Pa) must be the case, since the universe of
places only has one place. Notice that when comparing two models according to the
circumscription policy 49, the universe pdths andplaces in the models has to be the
same. One can vary the interpretationmfth, tplace, and so on, bubot the universe
of paths andplaces. The model above is ruled out by requiring the universgl efes
to have enough placegend of example

6 Boundary Regions

Topological paths play the role sfreetsin a city layout map. Streets are often used
as a reference for specifying the location of a given place: a place will be either on the
given street or in one of the “two sides” —left or right— of the street.

Mathematically, the concept of left and right of a topological path is related to the
topological one of the interior and exterior of a curve. While not all curves have a well
defined interior and exterior (for example, consider a spiral, or a fractal curve), closed
not self-intersecting curveslerdan curves do have associated interior and exterior
sets[Beardon, 197P?° Moreover, in order to go from the interior to the exterior (or
vice versa) of the curve, one has to cross. Our analogy of topological paths and
mathematical curves breaks down because in general the agent might be able to travel
from one side of the path to the other without crossing the path. This can happen
because of the agent’s inability to detect that it has crossed the path, or (more often)
because paths are not long enough to divide the environment into two regions (for
example, consider a dead-end street).

2%When the curve is removed, the plane is divided into two disjoint connected sets.
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In order to determine boundary relations -the location of a place with respect to
a path- we formally state the following heuristic. Suppose the agent is at an inter-
section on a given path, and it then turns right. If the agent now travels, any place it
finds while traveling with no turns will be on the right of the starting path. While this
heuristic draws the correct conclusion in a rectilinear environment, it may draw incor-
rect conclusions when paths are not straight. Consequently, we state our heuristic as a
‘defeasible” rule so as not to conclude a boundary relation when inconsistent sources
of information exist (see Figure 16).

Figure 16:Different environments illustrating how our default to determine boundary relations work. In
(a) we conclude by default that place C is to the left of the path from A to B. In (b) we conclude nothing
about the location of place D with respect to this path. In (c) we conclude that place C is to the left of the
path from A to B. This is the case since there is no information to conclude otherwise.

TurnRightandturnLeftactions are used to define the relative orientation between
paths at a given place (Section 6.1), relations that are then used to infer whether a
place is on the left or the right of a given path (Section 6.2). The boundary relations
inferred by an agent may not be complete: the agent does not necessarily know the
location of each place with respect to each path. Nevertheless, the boundary relations
inferred by the agent are useful to distinguish places otherwise not distinguishable by
the topological maps as described so far (see Example 16, page 29).

6.1 Qualitative orientation of paths at a place

We extend the topological level in order to represent the relative orientation among
paths that intersect at a given place. We use the predicates

totheLeftOf(p, pa, dir, pal,dirl) , totheRightOf(p,pa,dir,pal,dirl)

to represent the facts that ()is aplaceon both pathspaandpal, and (ii), when the
agent is aplace pfacing on the directionlir of pa, after executing a turn left (right)
action, the agent will be facing on the directiginl of pal(see Figure 17, Page 29).

The predicatesothe Le ftO f andtothe RightO f are derived from the actions per-
formed by the agent at a place:
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{min totheRightOf, min totheLeftOf : (50)
[(ds,turnRight,dsl) A at(ds,p) A along(ds, pa,dir) A along(dsl, pal, dirl)]
— totheRightOf(p,pa, dir,pal,dirl),
[(ds,turnLeft,dsl) A at(ds,p) A along(ds,pa,dir) A along(dsl,pal,dirl)]
— totheLe ftOf(p, pa, dir,pal, dirl).

6.2 Left and Right of a path

A path has associated two regions: the places to the left of the path and the places to the
right of the path. We use the predicateft Of (pa, dir, Ir) andright Of (pa, dir, rr)

to denote thategionir (rr) is the left (right) region of patpawith respect to the path’s
directiondir. The properties of these predicate are as follows:

AMir {leftOf(pa,dir,lr)}, Alrr {rightOf(pa,dir,rr)} (51)
leftOf(pa,dir,r) = rightO f (pa, —dir, ) (52)
{min is_region : LeftOf(pa,dir,lr) — is_region(ir)} (53)
leftOf(pa,dir,lr) AleftOf(pal,dirl,lr) — pa = pal (54)

Axiom 51 states the existence and uniqueness of a path’s left/right regions. The domain
of leftOf is restricted by Block 53 and Axiom 54. Since left/right regions of a path
interchange when changing the path direction (Axiom 52), constraining the domain of
leftO f imposes similar constraints on the domairrofhtO f.

We use the predicate_region(p,r) to indicate thaplacep is inregionr. The
domain ofin_regionis constrained by Axiom 55. The propertiesiaf region are
defined in Block 56. A path has associated three disjoint set of places: the places on
the path, and the places to the left/right of the path (Axioms 58 and®sBpundary
relations are derived according to Axiom 60 and 61 (see Figure 17):

in_region(p,r) — is_region(r), (55)
{ min in_region : (56)
{ in_region : (57)
on(pa,p) A leftO f(pa,dir,lr) — —in_region(p,lr), (58)
[leftOf(pa,dir,lr) A rightO f(pa,dir,rr)A (59)
in_region(p,lr)] — —in_region(p,rr),
[totheRightO f(pl,pa,dir,pal, dirl) A order(pal,dirl,pl, p)A (60)
rightO f (pa,dir,rr) A =Ab(pa,p)] — in_region(p,rr),
[toTheLeftOf(pl,pa,dir,dirl,pal) A order(pal,dirl,pl,p)A (61)
leftOf(pa,dir,lr) A ~Ab(pa,p)] — in_region(p,lr)
}
}

30The symmetry betweeke ftO f andrightO f defined by Axiom 52 let us write our axioms in terms of
only one of these predicates.
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Pa, dir
Pal, dirl

pl

Figure 17:PathPalis to the right of patiPaat placepl. Placepis after placepl on pathpal By default,
we conclude that plageis to the right of pattpa.

The outer block 56 states that normally boundary relations are false. This is the
case since by default the agent does not know the location of a place with respect to
a given path. The inner block 57 states under what conditions the agent can derive a
boundary relation. For instance, according to Axiom 60, if at plateathpalis to
the right of pattpa, and place is afterplon pathpal, then normally it is the case that
p is on the right ofpa(see Figure 17).

6.3 Adding boundary relations to the topological map

While Block 56 defines the extent of the predicateregion, it does not express our
preference for models wheie_region is maximal. We update the topological theory
by including Axioms 50-61 inside the blo&kT _block (see Section 5.2, Page 14), and
the new circumscription policy becomes

circ tpath = —in_region > tplace var nengHpred

wherenewngpred stands for the tuple of predicates

( at, along, order, on, teq, turn_eq, travel_eq,
totheRightOf, totheLeftOf, leftOf, rightOf, is_region

).

The circumscription policy states that Axioms 60 and 61 should be used to draw con-
clusions even at the expense of having more places on the map. This is achieved by
maximizingin_region overtplace in the circumscription policy. By maximizing the
extent ofin_region at the expense of having possibly more places, boundary relations
determine distinctions among environment states that could not be derived from the
connectivity of places alone. The next example illustrates the case.

Example 16. Consider an agent visiting the different corners of a square room in
the order suggested by Figure 18a. In addition, suppose the agent’s sensory appara-
tus allows it to defineviewsby characterizing the direction of walls and open space.
Accordingly, the agent experienciesir different views v1-v4 in this environment.

The agent’s experiences, in this environment are:

View(dsl,vl), View(ds2,v2), View(ds3,vl), View(ds4,v2), View(ds5,vl),
(dsl,turnRight,ds2), {ds2,travel,ds3), (ds3,turnRight,ds4 ), { ds4,travel,dsb ).
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Figure 18: (a) Sequence of actions followed by an agent while navigating a square room. Starting at
distinctive state ds1, distinctive states are visited in the order suggested by their number. (b) and (c) depict
the resulting topological map without and using boundary regions, respectively.

Suppose that the agent does not use boundary regions when building the topological
map. Then the minimal topological model associated &itras two path® and two
places. In this modelieq(dsl,ds5) is the case. The environment looks perfectly
symmetric to the agent (Figure 18b).!!

Suppose now that the agent relies on boundary regionsP @t R, be the topo-
logical places associated witti, d3 andd5 respectively. From Axiom 34, |d?a, Pb,
dir, anddir, be such that

order(Pa,dir,, P,Q), along(ds2, Pa, dir,), along(ds3, Pa,dir,),

order(Pb, diry, @, R), along(ds4, Pb,diry), along(ds5, Pb,diry) ,

are the case. From Block 50 we conclude tabe RightO f (Q, Pa, dir,, Pb, diry).
In the proposed model, the extent @f_region is maximized by declaring
Ab = false inside Block 57 and consequently from Axiom 60 we conclude
in-region(R,right(Pa,dir,)) where right(Pa,dir,) denotes the right region of
Pa when facingdir,.3> Moreover, from Block 56 we deduca_region(p,r) =
[p=R A r =right(Pa,dir,)]. Finally, from Axiom 58 we conclud® # R since
on(Pa, P) is the case. The resulting topological map is depicted in Figure 18c.

{end of example

Boundary relations are in general not enough to distinguish different environment
states. This is the case when the agent has weak sensors, the environmentis symmetric,
or the agent’s experiences are incomplete. The use of local metrical information could
help on those cases although metrical uncertainty could render this extra information
useless. We discuss this issues in the next section.

7 Using local metrical information

Action executions have associated metrical information representing the observed mag-
nitude of the action. For instance, after traveling the agent may have an estimate of the

31From (ds3, turnRight, ds4) and Axiom 39 we can deduce thBu # Pb in Figure 18b.
32Axiom 51 guarantees that there exists a unique such region.
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distance between the “end places” of the travel action, and after turning, the agent may
have an estimate of the angle turédThis local metrical information is integrated
into frames of reference associated with topological objects:

e Each path has associated a one dimensional frame of reference which assigns a
position to each place in the path.

e Each place has associated a radial frame of reference which assigns a heading
(angle) to each path the place belongs to.

e Regions or places might have associated two dimensional frames of reference
which assign real valued tuples to certain plates.

As positionsandheadingsare derived from noisy data, there is uncertainty associ-
ated with their real values. Different representations for this uncertainty are possible:
intervals probability distribution functionsetc. As the agent repeatedly navigates
among the same places and paths, new measure estimates are taken into account to up-
date the uncertainty associated with positions and headtnigsour current work we
useintervalsto represent uncertainty in position and headitfgé/e use the predicate
action_execution(s, Int) to state that thenterval Int represents an estimate of the
metrical information about the execution of the action associated with scheWia
use the notatiofds, (type Int),ds’ ), wheretypeis travelor turn, as an abbreviation
for the formula

Js,a {CS(s,ds,a,ds’) A action_type(a,type) A action_execution(s, Int)} .

How the estimates are to be interpreted depends on the type of action (turn or travel)
the schema refers to. In the next sections we will describe how to do so.

7.1 One dimensional frames of reference

A path has associated a one dimensional frame of reference which assigns a location
to each place on the path. This location is a real nurib@presenting the “distance”

with respect to an arbitrary but fixed place on the path. The distance among places on
a path are derived from estimates acquired when traveling among places on the path.
These estimates have to bensistenso that positions can be associated with places.
Next we formalize these ideas.

33Notice that different kind of metrical estimates could be associated with a travel or turn action. For
example, the agent could measure the arc length associated with a travel action. In addition, it could measure
the minimum distance to an object on the left and the right sides at each point along the trajectory associated
with a travel actior{Kuipers, 2000.

34 ocal analog mapEElfes, 1987, Borenstein and Koren, 1991, Thrun, 199 also be associated with
placed Kuipers, 2000.

35For example, Kuipers and ByulKuipers and Byun, 1988, Kuipers and Byun, 193fe a scalar
Kalman-filter in order to update the distance between two places in a path.

36However, the discussion in this section applies to other forms of representing uncertainty.

37This real value represents a quantity whose magnitude is derived by the robot while navigating the
environment. The units of this quantity can lmeters feet or number of wheel rotationsHereafter, we
assume that all quantities are given in the same units.
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The position of a place on a path is represented by the predicate
positionl(path, place, position). Positions along a path are unique and only as-
signed to places belonging to the path:

positionl(pa,p, pos) A positionl(pa,p,pos’) — pos = pos’ , (62)
positionl(pa,p, pos) — on(pa,p) . (63)

The distance between two places in a path is defined as the absolute value of
the difference between their corresponding positions on the path. The predicate
path_distance(pa, p, q,d) represents the fact that the distance between places
andq on pathpais d. The predicat@ath_distance is defined as follows:

path_distance(pa,p,q,d) = (64)

posp, posq {positionl(pa,p,posy) A positionl(pa,q,posq) A d = |posp — posq|} .

Estimates of the distance between places on a path are gathered while the agent
navigates the environment. The predicateah_distance™(pa, p, q,1aq) represents
the fact that the closed intervdl), is an estimate of the distance between plgzes
and g on pathpa. Distance estimates are derived from experiences of the robot in

the environment. Distance estimates aterfipounde€tito derive new estimates from
known ones. Formally,

{ min path_distance™ :
[( ds, (travel I),ds") A at(ds,p) A at(ds', q) A along(ds,pa,dir)A (65)
along(ds',pa,dir)] — path_distance”™ (pa,p,q,14) ,
[order(pa, dir,p, q) A order(pa,dir,q,r) A path_distance”™ (pa,p, q, Inq)A (66)
path_distance™ (pa, q,r, IqT)] — path_distance™ (pa,p,r, Ipq + I;)

}

where the addition of intervals is defined in the usual Wayb] +[c, d] = [a+c, b+d].
Finally, distance estimates amnmérged in order to have the “best” estimate associated
with a distance. The predicateith_distance®(pa,p,r, I;) denotes the merging of
distance estimates:

path_distance® (pa,p,r,I) Zdef I = N{Iest : path_distance™(pa,p,q, Lest)} . (67)

The distance between places on a path musoi@patiblewith all of its estimates.
Formally,

path_distance® (pa,p,q, Is) — 3d € I; path_distance(pa,p,q,d) . (68)

When the agent has distance estimates availghld, distance® (pa,p, q, I;) is al-
ways the case for some intervA). If these estimates are consistent thgn#£ 0.
Moreover, when the topological map is consistent with metrical information, it should
be possible to assign locations to places on a path as specified by Axiom 64.

38The operations of compounding and merging are standard operations in order to propagate uncertainty
about the real value of a variabl&mith and Cheeseman, 1986They take different forms depending on
how one represents uncertainty as well as on the dimensionality of the variables’ domains. In our case, these
operations take the form of adding and intersecting intervals, respectively.
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7.2 Radial frames of reference

Each place has a local frame of reference w.r.t. which path headings are associated.
This information is represented by the predicaselial(p, pa, dir, h) denoting the

fact thatwhen the agent is located at plapgpath pa could be followed in direction

dir by facing the heading w.r.t. the radial frame of reference local o Headings

take values if0, 27). The formalization of radial frames of reference follows the same
steps as for one dimensional frames of reference and will not be presenté&d here.

7.3 Two dimensional frames of reference

A topological map does not explicitly represent the distance or direction between
two arbitrary places. In order to do so, distances between places on a path as well
as the angles between paths at a place must be combined. We use the predicate
location2(p, q,1) to indicate that the location of plagewith respect to the two di-
mensional frame of reference associated with pjace! (a real valued pair). We do
not restrict what places are assigned locations with respect to a given two dimensional
frame of reference.

When restricted to environments with “straight” paths, it is possible to state when
a two dimensional frame of referencecismpatiblewith the actual experiences of the
robot. The next axioms state this requirem&ht:

location2(p, p1,1p1) A location2(p, p2, lp2) A path_distance® (pa, pl,p2, I ) (69)
— |lp1 — lp2| cly.

[location2(p, pl,lp1) A location2(p, p2,lp2) A location2(p, p3, lps)A (70)
order(pa,dir, p1,p2) A order(pa’, dir', p2, p3) A angle® (p2, pa, dir, pa’, dir', ng)]

— angle(—lpz_ip1, lpZ_ipS) € Iang ,

whereangle(v, W) denotes the angle {6, 27) from vectord to vectord.

Axioms 69 and 70 assume that paths are straight. In order to deal with more general
paths, one should include some parameters describing the shape of the path, or at least
an estimate of the change in heading while traveling.For instanciuipers and
Levitt, 1989 travel actions were represented(ds, (travel dist /A#),ds'), where
dist corresponds to the distance between the places associatedsvdtitds’, and
A@ corresponds to the change of orientation while traveling. However, there is not
a statement of how this extra information is used or whether it suffices to describe
appropriate metrical constraints for two dimensional frames of reference. While a more
detailed account of the use of metrical information is desirable, including representing

39Estimates of the angle between paths at a place are gatheredtdroractions. Angle estimates
are compounded and merged as we did for distances among places in a path. We use the predicates
angle(p, pa, dir, pal, dirl, ang) -angis the angle the agent will have to turn to face pp#lin di-
rectiondirl when it is at place facing pathpain directiondir-, angle™ (p, pa, dir, pal, dirl,Iang) -
I.ng is an estimate of the angle at plgebetween patipain directiondir and pathpalin directiondirl.

40When curved paths are possible, the predigatth_distance represents distanadong the pathnot
straight-line distance between end point. To handle curved paths, we have to separate those two concepts, or
have estimates of both types of “distances”.
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and reasoning about a path’s shape, we have left this description outside the scope of
this work.

7.4 Combining topological and metrical information

While radial and one dimensional frames of reference are associated with any place and
path, respectively, there is not a general topological theory asserting when to create a
two dimensional frame of reference, what places should be included in a such frame of
reference, or how to assign place locations consistent with the estimates of distances
and angles gathered by the agént?

In this section we formally state what it means for the topological map to be con-
sistent with a given set of frames of reference. In order to do so, given distinctive
statesds, dsy, . .., ds,, we introduce the notatiofds : dss,...,ds,) to state that
the places associated with the differelat have a location in the two dimensional
frame of reference associated with's place,

Definition 3. Letds, dsy, - . ., ds, be a set of distinctive states. By definition,

(ds : dsi,...,dsn) =def (71)

dp {at(ds,p) A /\ Ipi, l; [at(dsi, pi) A location2(p,pi,li)]}

i=1

{end of definitioh

By 2D _Frames we denote the formula specifying any two dimensional frames of
reference used by the agent. Without loss of generality, we require two dimensional
frames of reference to be specified as in Definition 3. We require any model of the
SSH to have only the two dimensional frames of reference specifig@ it'rames.

In addition, the places belonging to a frame of reference should be only those explicitly
stated in 71. These last two requirements can be stated as follows:

{ min location2 : 2D_Frames } (72)

The topological theory includes local metrical information by adding Axioms 62
to 72 inside the bloclAT _block (see Page 14). The priority of predicates in the cir-

4IHaving a global frame of reference including all places in the map is usually inappropriate since the
uncertainty associated with some places’ locations in such a frame of reference may not allow the agent to
draw useful conclusions. Instead, the agent can have multiple frames of reference as well as relations among
the different frames of referend&cDermott and Davis, 1984, Kuipers, 2400As the agent explores the
environment, new frames of reference are created when the current’s location uncertainty with respect to
the current frame of reference is larger than a given threshatiitarlier and Chatila, 1989, Engelson and
McDermott, 1992.

42The problem of assigning locations to places given some metrical constraints can be solved by borrow-
ing methods from different fields. For example, estimation theory tells us how to estimate the true value
of a given set of variables given noisy observations of the relations between those vdiGeiles1974,
Smith and Cheeseman, 1986 he robotics community has developed algorithms to solve a network of spa-
tial relations[Durrant-Whyte, 1987, Durrant-Whyte, 1988a, Durrant-Whyte, 1988b, Moutarlier and Chatila,
1989. Techniques from multidimensional scalif@org and Groenen, 199&nd nonlinear programming
[Peressinet al, 1984 can also be used.
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Figure 19:(a) The robot goes around the block visiting distinctive stateisto ds11 in the order sug-

gested by the figure. Distinctive sta#®11 is observed at the same environment statedss Assume
distinctive stateds1 andds4 look alike to the agent. (b) and (c) represent two possible topological maps for
the environment in (a) (see Example 13, Page 24). The model in (c) can be discarded as it is not consistent
with the available metrical information. (d) With10° noise associated with turn actions, the agent cannot
use metrical information to discard the environment depicted in (c).

cumscription policy associated withiT"_block remains the same. The predicates var-
ied in the circumscription policy now include those predicates use to describe met-
rical information: radial, positionl, position2, path_distance, path_distance™,
path_distance®, angle, angle™ andangle®.

The next examples illustrate how metrical information is used to disambiguate the
topological map.

Example 17. Consider Example 13 (Page 24) where two topological maps are
consistent with the agent’s experiences (see Figure 19). Suppose that “perfect” metrical
information is available to the agent.

How does the agent figure out that it is backitd rather than tals1?. As claimed
in Example 13 (Page 24) both optioteg(ds4, ds11) andteq(dsl, ds11) are topolog-
ically possible (Figures 19b,c). However, given the metrical information above, only
the assumptioneq(ds4, ds11) is a consistent one. To deduce this fact, the agent in-
cludes the frame of referen¢és4 : dsl,...,ds11) in E, which renders impossible
teq(ds4,ds1l).

Should the metrical information have been less precise, the agent might not benefit
from this extra metrical information. For example, suppose that instead of 8harp
turn angles, there existsdal 0° uncertainty associated with the turn actions above (i.e.
consider replacingds1, (turn — 90°),ds2) by (ds1, (turn [-110°, —80°], ds2)).*3
In this case the agent cannot use metrical information to deduce that it is bdgk to
and it will have two topological maps consistent with its information.

{end of example

The example above may suggest that metrical information is used to check whether
an already built topological map is consistent with metrical information. However, by
including Axioms 62-72 inside Alblock, metrical information is used while building
the topological map. As the next example illustrates, this may imply that the agent
identifies more places than it does when not using metrical information.

“3Whenever we use a numheiinstead of an interval, it is an abbreviation far, z].
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Example 18. Consider an agent visiting the different corners of a square room in
the order suggested by Figure 20a. In addition, suppose the agent’s sensory apparatus
allows it to defineviewsby characterizing the direction of walls and open space so that
all corners look alike to the agent (see Example 16, Page 29). Suppose the agent has
access to perfect metrical information and uses it while building the metrical map.

P ld
ler_ :

Pc Pb Pb
g s
N ds6 ~ Pc
s Jas R QR R

a b Cc

Figure 20:(a) The agent visits distinctive statdsl to ds7 by the order suggested in the figure. Suppose

all corners look alike to the agent. In particuldgl andds7 share the same view. (b) Topological map
associated with (a) when metrical information is not available. (c) Topological map associated with (a) when
metrical information is available. In this case, the places associatediwlitandds7 are different £ # S).

In order to decide whether the agent is back4bd, the frameldsl : dsl,...,ds7)
is created. Given the available metrical estimates it is not possible tadgvs 1, ds7)
while satisfying the metrical constraints. Consequently, the topological map will have
four places instead dhree as illustrated in Figure 20¢end of example

While in the examples above all visited distinctive states were included in a two
dimensional frame of reference, this is in general not the case. In the presence of
metrical uncertainty, a global frame of reference may not provide useful information
to determine whether two places are the same, or to estimate the distance between two
arbitrary places.

8 Algorithms

In this section we present an algorithm for calculating the topological maps associated
with a set of experienc&. The models associated with the causal theory (Section 4)
can be calculated as the answer $&slfond and Lifschitz, 1991of a logic program.
This logic program is implemented in Smodf@Miemek and Simons, 1997as illus-
trated in[Remolina and Kuipers, 2001t is possible to calculate the topological maps
by a similar logic program. However, the number of grounding rules associated with
such a program turns out to be prohibitive for practical applications.

The algorithm for calculating topological maps (the model#'®f E)) is stated as
a“best first” search. The states of the search correspond to partial mode¥s(dt).**
At each step of the search a schefda, a, ds' ) has to be explained. Either the identity

44 partial model of 'T'(E) is a model of'T'(E"), for someE’ C E.
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of ds' can be proved or a search branch is created for every previously known distinc-
tive stateds’ that cannot be proven to be different frafg’.*> In the branch where
teq(ds;, ds') is the casenteq(ds}, ds'), i # j are also asserted. An additional branch

is created whereteq(ds’, ds’;) are asserted. This branch represents the possibility that
ds' is indeed different from previously known dstates. The next state to explore is the
one that is minimal according to the order associated with the circumscription policy
for TT(E). This search algorithm is described in Figures 21 antf22.

Find-Models (S)
{
S =80,...,8,; Sequence of schemas such thatuli(s;) = context(s;+1)
queue #;  models = ;
pmodel = create-new-pmodel(S);  insert(pmodel,queue);
while queue# 0 do
begin
pmodel = get-next-pmodel(queue);
s = get-next-schema(pmodel);
Explain(pmodel,s) ;
if (inconsistent(pmodely has-extensions(pmodel)) then skip;
else if total-model(pmodel) then insert(pmodel, models);
else insert(pmodel,queue);
end
return models;

}

Figure 21: Best first search algorithm used to calculate the models of TT(E)The queue contains
consistenpartial models (pmodels) to be expanded. At each step of the search, a minimal partial model is
picked and the next schema from its list of associated schemas is explained. A pmodel has extensions when a
branch has been created while explaining a schema. A pmodgital-enodelwhen it has no more schemas

to explain. Figure 22 defines how a pmodel explains a schema and when extensions are created.

The three key steps in the search are (Figure 22): creating a set of possible candi-
dates to branchppssible-equal-dstatgsgenerating a set of extensions when needed
(create-possible-extensignand explaining a schema in a given partial modsbkgert-
schema Another important issue is to detect when a partial model becomes inconsis-
tent. We use the predicateconsistent(pmodel) to denote this fact and the rules

del pmodel . .
" yANe #  y — inconsistent(pmodel),

teq(z,y) € pmodel A —teq(z,y) € pmodel — inconsistent(pmodel) .

In the next sections we will show how to rewrite the axioms in the topological theory so
they can be fed to a theorem prover to deduce equality and inequality relations. We use

45The identity of the schema’s context (ids in ( ds, a, ds' )) is known at each step in the search.

46A search state is implemented by a partial mogetodel Branches in the search are represented by
creatingextensiongor the current search state (pmodel). Thatodel’ is an extension gpmodel implies
thatpmodel’ inherits frompmodel all known objects and facts. Partial models are described in Page 39.
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Explain (pmodel, s)

{;; sisascheméds,a,ds’)
candidates };
if known-result(pmodel,s)
then Assert-schema(pmodel,s);

else begin
candidates = possible-equal-dstates(pmodel,s);
if candidates# {}

then create-possible-extensions(pmodel,s,candidates)
else Assert-schema(pmodel,s)
end
}
Known-result(pmodel, s)
{;; sisascheméds,a,ds’)
;; The notatiorvbj € pmodel indicates that objeetb; is
;; known in the partial modeimodel.
returnds’ € pmodel V 3ds*,ds'’* € pmodel [{ds*,a,ds'* ) € pmodel A teq(ds*,ds)];
}
Assert-schema (pmodel, s)
{:; sisaschemads,a,ds’). ds is known inpmodel
assert € pmodel,
if = known-result(pmodel,s)
then begin
assertls’ € pmodel;
Create places and paths needed to explain
end
else begin
pick ds"™ s.t. Ads* € pmodel [teq(ds*,ds) A (ds*,a,ds"™ ) € pmodel] ;
asserids’ """ 45" in pmodel:
end

Figure 22:Explaining a schema known-result(pmodel,s #ds, a, ds’ }) is the case when the equality
class fords' can be deduced in the partial mogehodel. Possible-equal-dstates(cntx,®turns dstates
known inpmodel, having the same view a&’ and that cannot be proven different fral¥l in pmodel. For
eachds” € candidates, create-possible-extensions(pmodel,s,candidatesjtes an extension pfnodel
whereteg(ds’, ds'") is the case. If the identity afs’ can be established, theris asserted ipmodel. This
declaresds’ to be known inpmodel and creates the places and paths that explaiccording to the axioms
of the topological theor{"T'(E).
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the rule-based system Algernp@rawford and Kuipers, 199hs our theorem prover.
In Section 8.2 (Page 40) we present an illustrative trace of the algorithm.

8.1 Partial Models

In addition to a list of schemas to explain, a partial model has associated a set of objects
(i.e. distinctive states, schemas, places, paths) that are known in the model. The basic
relation among pmodels is the one @ftensions That pmodel’ is an extension of
pmodel implies that all known objects and facts jgmodel are known objects and

facts inpmodel’ (i.e. pmodel’ inherits frompmodel all known objects and facts). This
inheritance property of extensions can be implemented in Algernon by rules like the
next one?’

at(ds,place, pmodel) A extension(pmodel, pmodell) — at(ds,place, pmodell)

Create candidates.Possible-equal-dstates(pmodel{sts, a, ds’)) returns a list of
states that are possible equaldd. These are dstates knownmodel, having the
same view ags’ and that cannot be proven different frafsl in pmodel. Givens, we
filter outds” as equal tals’ using rules including?®

s = (ds,turn,ds’) A at(ds,p) A at(ds",q) Ap # q — —teq(ds’,ds")  (73)
[s = (ds,travel,ds' ) A along(ds, pa,dir) A along(ds", pal, dir1)A
- [pa = pal A dir = dirl]] — —teq(ds',ds")
[s = (ds,travel,ds' ) A along(ds, pa,dir) A at(ds,p) A at(ds”, q)A
order(pa,dir,q,p)] — —teq(ds', ds")

The rules above are derived from the axioms in our theory. For instance, rule 73
is derived from the fact that each distinctive state is at a unique place, and distinctive
states that are related by turn actions are at the same place.

Equality relations among topological objects (i.e. dstates, places, paths) are proved
using rules derived by rewriting topological axioms. These rules include:

view(ds1,v1) A view(ds2,v2) A vi # va — —teq(ds1,ds2) (74)
(ds,turn,ds’ ) — —teq(ds,ds") (75)
order(pa,dir,p,q) =+ p #q (76)
radial(p,dsl, hl) A radial(p,ds2,h2) A hl # h2 — dsl # ds2 77)
positionl(pa,dir, pl, posl) A positionl(pa,dir,p2, pos2) Aposl #pos2 — pl#p2 (78)
leftOf(pa,dir,p) A on(pa,q) = p #q (79)
leftO f(pa, dir,p) A on(pal,p) — pa # pal (80)
at(ds,p) A at(ds,q) > p=gq (81)
along(ds, pa,dir) A along(ds,pal,dirl) — pa = pal A dir = dirl (82)

470ur logic for partial models takes the basic ideas developed in the area of formally reasoning about
contexts[McCarthy and Buva, 1999.

48Rules areelativizedto a particular model. In the implementation, all the topological predicates have a
last extra argument for a pmdodel. For instance, instead of wiitlds, p) we write at(ds, p, pmodel).
at(ds, p,pmodel) is the case whemit(ds,p) is true in the partial modepmodel (i.e. pmodel =
at(ds, p)).
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Rules 74 and 75 rely on the fact that dstates have a unique view and turn actions
link different distinctive states (Axioms 22 and 39). Rule 76 uses the fact that paths
are not circular in order to conclude thapifs beforeg thenp andg must be different
(Axiom 44). Rules 77 and 78 use radial and one dimensional frames of reference to
conclude inequality of dstates and places, respectively (Axiom 62). Rules 79 and 80
use boundary relations in order to distinguish places and paths respectively (Axiom 58).
Rules 81 and 82 state that each distinctive state is at a unique place, along a unique path
direction (Axioms 29 and 37).

Assert schema. Assert-schema(pmodel, s)eates the places and paths needed
to explains. Instead of asserting = (ds, a,ds’) in pmodel, the algorithm asserts
s* = (ds*,a,ds™ ) whereds* andds'* are the representativesimodel for theteq
equivalence classes @ andds’. Asserting a schema in Algernon corresponds to cre-
ating the frame (object) representing the schema. Forward and backward chaining rules
derived from the topological theory are then evaluated, and places and paths needed to
explains are created.

8.2 Trace example

We illustrate the topological map building algorithm with the environment of Figure
23a. Distinctive states are visited in the order suggested by the figure. Distinctive state
9 is at the same environment location as dstatélowever, two topological map are
possible: either the agent is back to dstate dstated (this is Example 13, Page 24).

After traveling from dstaté to dstatel 0, only one topological map is possible (Figure
23b). Figure 24 illustrates the use of the topological rules to distinguish distinctive
states that share the same view. Figure 25 shows when branches in the search are
created and how they can be refuted as more information becomes available to the
agent®®

dp?th—S
8.v4 PO PI=P5 2
— 0V Y 1,0y fnd 2N ® -~ dpath-0
3,V
7v3
6.V J 5,v2<—l dpath—2<fp4<f? P3
4vi dpath-1
(@ (b)

Figure 23:(a) Numbers identify the dstates created by the map building algorithm. Views associated with
dstates are also shown. Dstateand9 are at the same environment location. (b) Places and dpaths created
by the map building algorithm. Notice th&tl and P5 are two names for the same place.

49In the implementationdpathsrepresent ordered dstates linked by travel actions. Dpaths correspond to
paths that only have one direction associated with them. Paths are created when the agent has traveled in
both direction of a path. At that time, two dpaths are associated with the path, one for each path’s direction.
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Figure 24:(a) When the agent reaches dstat¢he same view1 has been observed at dstateSince
dstate2 is along dpath-0 and dstatewill be along dpath-1 (the agent just traveled from dstatelong
dpath-1), dstatd and2 are proven different. Dpattisand1 are different since there istarn Right action
relating them (Axiom 39). Plac®3 is created to be the place dstdtes at (Axiom 29). PlaceP3 is proven
different from placeP2 since P2 is before P3 along dpath-1 (Corollary 1). Consequently, dstdtesd3
are proven different. (b) The agent travels to dséasdong dpath-2. BecausR3 is to the right of dpath-0,
dpath-2 cannot be the same as dpath-0. Consequently, dssgpeoven different from dstatésand1.
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Figure 25:By the time the agent reaches dstétsix places (not five) are part of the map. Plag#sand

P1 are not equal since the dstates are these places are not yet turn related (Axiom 30). Turning from dstate
8 to 9 leaves the agent with the three possibilities: (pmodel-3) dstedesl1 are equal (and s®#1 = P5,

or (pmodel-4) dstate® and0 are equal (and s&0 = P1), or (pmodel-6) dstaté is a new different dstate.

That dstate® and6 are different follows from the fact that plac#st and P5 are different. Pmodel8 and

4 are minimal according to the topological theory circumscription policy. Pmodel-6 is not, but is left as a
possible state in the search should new information render the other models inconsistent. The new schema
(9, ML,10) will render pmodel-4 inconsistent. Since actions are deterministic and détaied9 are

equal in this model, so should dstateand10. However, these dstates have different views so they cannot

be equal. Pmodel-3 will then be the only map associated with the set of experiences.
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9 Conclusions

What have we accomplished?. We have taken an informal description of the theory of
topological maps and provided a formal account of the theory. In addition, we have
extended the theory to handle perceptual aliasing, to describe environments with self
intersecting and convergent paths, and to deal with local metrical information including
uncertainty. The topological theory is independent of the agent’s exploration strategy
and of the algorithms used to build topological maps. We have taken the theory as
a specification for a program able to keep track of different topological maps consis-
tent with the agent’s experiences in the environment. This program supports different
exploration strategies as well as facilitates map disambiguation when the case arises.

A logical account of the causal, topological and local metrical theories was given
using Nested Abnormality Theories. The minimality conditions embedded in the for-
malization define the preferred models associated with the theories. In Sections 4
through 7 we illustrated the main properties of the theories. In particular we showed
how the minimal models associated with these theories are adequate models for the
spatial knowledge an agent has about its environment. We also demonstrated how the
causal, topological, and local metrical levels of the representation assume different
spatial properties of the actions performed by the agent. This provides an increasingly
refined ability to infer or refute equality relationse¢ andteq) among experienced
environment states. By clarifying the ontology of causal and topological maps, and
determining the dependency structure of the non-monotonic theory, we provide a solid
foundation for general-purpose strategies for exploring unknown environments, or for
disambiguating cases of perceptual aliasing.

Acknowledgments

A Nested Abnormality theories

In this appendix we define circumscription and nested abnormalities theories follow-
ing [Lifschitz, 1994, Lifschitz, 1995 The main idea of circumscription is to consider,
instead of arbitrary models of an axiom set, only the models that satisfy a certain min-
imality condition (usually set inclusion).

Definition 4.[Circumscription] LetA(P, Z,, ..., Z,,) be a sentence containing a
predicate constard® and object, function and/or predicate constafits. . ., Z,, (and
possibly other object, function and predicate constants).cirbemscription of P in A
with varied 74, . . ., Z,, is the sentence

A(Pvzlv"'vzm) /\_Elpvzla"'azm [A(pazla"'azm) /\p < P] (83)
wherep < P denotes the formula
Vz {p(z) — P(z)} A3z {-p(z)AP(z)} .

We denote Formula 83 b§¥ TRC [A; P; Z]. {end of definitiof
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Intuitively, the models o€ IRC [A; P; Z] are the models ofl in which the extent
of P cannot be smaller without losing the propedtyeven at the price of changing the
interpretations of the constants

It is often convenient to arrange different defaults by assigning priorities to them.
Next we define two extensions to the basic definition of circumscription: parallel and
prioritized circumscription.

Definition 5.[Parallel Circumscription] Thearallel circumscription

CIRC [4;P,...,P™; Z]

is the sentencel(P, Z) A —3p, z [A(p, z) A p < P], whereP stands for the tuple of
predicates”?, ..., P" andp < P standsfortheformuld1 <i<np' < PP A1 <
i <np' < P {end of definition

Definition 6.[Prioritized Circumscription] Therioritized circumscription
CIRC [A4;P' ~ ...~ P Z]

is the sentencel(P, Z) A —3p, z [A(p, z) A p < P], whereP stands for the tuple of

predicatesP!, ..., P" andp < P stands for the formula
n i—1 ] ] ) )
V[ A@ =P)A@p <P
i=1 \j=1

{end of definitioh

The formulap < P defines dexicographicorder among the predicates pnand
P. Proposition 15 ifLifschitz, 1994 shows that prioritized circumscription can be
reduced to parallel circumscription as follows:

Theorem 5 The circumscriptiolCIRC [A; P! > ... = P™; Z] is equivalent to
/\ CIRC [4; P}, P*, ... P" 7]
i=1
Notation 1. CIRC [A; P! »~ ...=P;... = P™; Z] stands for the formula
CIRC [AAnot_P; = —~P; P' = ...not_P;... = P"; Z, P}

wherenot_P; is a new constant predicate not occurringlin{end of notatiof

A.1 Nested Abnormality theories (NAT'S)

Nested abnormality theories allows one to apply the circumscription operator to a sub-
set of axioms, by structuring the knowledge base (the theory) into blocks. Each block
can be viewed as a group of axioms that describes a certain collection of predicates and
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functions, and the nesting of blocks reflects the dependence of these descriptions on
each other.

Definition 7.[NAT’s] Consider a second-order languaf¢hat doesiotinclude Ab
among its symbols. For every natural numbkdny L; we denote the language obtained
from L by addingAb as a k-ary predicate constamlocksare defined recursively as
follows: For anyk and any list of function and/or predicate constagits. . ., C,,, of L,
if each ofA4, ..., A, is aformula ofL; or ablock then{C,...,C,, : Ai1,..., A}
is ablock The last expression read§,...,C,, are such thatd;,..., A,. About
Cy,...,Cy we say that they ardescribedyy this block.

The semantics of NAT’s is characterized by a maphat translates blocks into
sentences oL. It is convenient to make defined also on formulas of the languages
L. If Ais such aformula, thep(A) stands for the universal closure 4f For blocks
we define, recursively:

e{C1,...,Cm : A1,...,A,} =3ab CIRC [pA1,...,0A, : ab : C,...,Cp] .
{end of definitioh

Most often, it is desirable not to mention the predicdteat all. We will adopt the
following notations:

e {C1,...,Cp,min P : Aq,...,A,} stands for

{Ch,...,Cons P+ P(z) — Ab(z), Ar,...,An}

e {C1,...,Cp,maz P : Ay,...,A,} stands for

{C1,...,Cp, P : 2Ab(z) = P(z), A1,...,Ap}

Definition 8. We extend the definition dflocksas follows: if A is a block, so is
CIRC[A; P! = ... = P™; Z]. The semantics of NATs is extended such that

¢CIRC[A; Pt » ... = P" Z] = CIRC[¢A; P' ... = P Z] .
{end of definitiof

As the next theorem shows, in some cases prioritized circumscription can be ex-
pressed using NAT’s. In these cases however, the notation for prioritized circumscrip-
tion is more compact than its equivalent NAT’s. This motivates our previous definition.

Theorem 6 Let A be a sentence such thdb does not occur id. Then,

CIRC[A;P = @Q;Z)={Z,minQ: {Z,Q,minP: A}}.
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B ceq properties

In this appendix we provide proofs for the different properties of the predicated

defined in Section 4 (Page 8).
Theorem 1 Let E be a complete set of experiences andJEQ blockbe defined as
follows:

{ maz ceq:
ceq(dsi,dsz) — View(ds1,v) = View(dsz,v),
ceq(ds1,dsz2) A (dsi,a,dsy ) A (ds2,a,dsy) — ceq(dsh, dsh)

}

Then the predicateeq is an equivalence relation.
Proof. Let M; be a model for the axioms inside tlEQ_block as well as the other
axioms of CT'(E). Let M, be a structure identical thf; except that

ceq™? (ds,ds') = ceq™* (ds,ds') vV ds = ds' .

We are to prove thal/, is a model for the axioms inside t&EQ_blockand conse-
quentlyC EQ block |= ceq(ds, ds).>° Indeed,

e M |= ceq(ds,ds') — ceq(ds',ds). In fact,
ceqM2(ds,ds") = ceq™* (ds,ds') V ds = ds'

—  ceqgM(ds',ds) v ds' = ds
= ceq™2(ds', ds)

o M = ceq(ds,ds') A ceq(ds’,ds") — ceq(ds, ds"). In fact,

ceq™? (ds,ds") A ceq™?(ds’, ds")
= (ceq™(ds,ds') v ds = ds') A (ceqg™ (ds',ds") v ds' = ds")
(ceq™* (ds,ds") A ceq™*(ds',ds")) V (ds = ds' A ceg™(ds',ds")) v
(ceg™ (ds,ds’) Ads' = ds") V (ds = ds' Ads' = ds")
—  ceqMi(ds,ds") V (ds = ds' Ads' = ds")
= ceq™2(ds,ds")

o M |= ceq(ds,ds’) — View(ds,v) = View(ds',v). In fact,

ceqM2(ds, ds') = ceq™* (ds,ds') V ds = ds’
— Yo [View(ds,v) = View(ds',v)] V ds = ds'
— Yo [View(ds,v) = View(ds',v)] V Vv [View(ds,v) = View(ds',v)]
= View(ds,v) = View(ds',v)

50, satisfies the other axioms @GT'( E) sinceceq does not occur in them.
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o M, = ceq(dsy,dss) A (ds1,a,dst) A (ds2,a,dsh) — ceq(ds],dsy). Infact,
ceq™?(dsy,dss) A (ds1,a,ds)) A (dsz,a,dsh)
= (ceq™(ds1,ds2) A (ds1,a,ds)) A (dsa, a,dsh)) V
(ds1 = dsa A {ds1,a,ds)) A (dsz2,a,dsy))

—  ceqM(ds},dsh) v ((ds1,a,ds)) A (ds1,a,dsh))
1 ceq™ (ds}, dsh) V ds} = dsb,
= ceqM2(ds}, dsh)

Let’s prove thatC EQ _block |= ceq(ds,ds’) — ceq(ds’, ds). Let M be a model

identical toM; except that

ceq™?(ds, ds") = ceq™* (ds,ds") V ceq™* (ds', ds) .
By definition,ceq™? is symmetric. We need to prove thiaf, satisfy the axioms inside
CEQ block:
o M |= ceq(ds,ds’) — View(ds,v) = View(ds',v). In fact,
ceq™2(ds, ds') = ceq™* (ds, ds') V ceq™ (ds', ds)
— Yo [View(ds,v) = View(ds',v)] V Vv [View(ds',v) = View(ds,v)]
= View(ds,v) = View(ds',v)
o M |= ceq(dsy,dss) A (ds1,a,ds)) A {dsa,a,dsh) — ceq(dst,dsh). In fact,
ceq™2(dsy, dsy) A (ds1,a,ds}) A (dsa, a, dsh)
= [ceq™ (ds1,ds2) A (ds1,a,ds}) A (dss,a,dsh)] V
[cequ (d527 dsl) A <d517 a, d5l1> A <d527 a, dSI2>]
- ceqMr(dsy, dsh) V ceqM (dsh, ds})
= ceq™2(ds),dsh)
Finally, let's prove thaC EQ _block |= ceq(ds, ds')Aceq(ds’,ds") — ceq(ds,ds").

Let M> be a model identical td7; except that

ceq™? = transitive_closure(ceqg™) .

By definition, ceq™2 is transitive. Ifceq™ is reflexive and symmetric, so igq™>.
We need to prove thal/, satisfies the axioms insideéFEQ _block:

o M |= ceq(ds,ds') — View(ds,v) = View(ds',v). In fact,
ceq™?(ds, ds")
= 3ds°,ds',...,ds" [ds =ds®, ds' = ds™, ceq™ (ds',ds'), 0 < i < n]
—  3ds°,ds',...,ds"
[ds =ds°, ds' =ds™, View(dsi,v) = View(dsiﬂ,v), 0<i< n]
—  3ds®,ds" [ds =ds°, ds' = ds", View(ds®,v) = View(ds",v)]
= View(ds,v) = View(ds',v)
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o M, |= ceq(dsy,dss) A (ds1,a,ds)) A {(ds2,a,dsh) — ceq(ds’,dsh). In fact,
ceq™?(dsy,ds2) A (ds1,a,ds)) A (ds2,a,dsh)
= 3ds'(1<i<n) [dsl =ds', dsy = ds™, ceq" (ds',ds'™), 1 <i < n]
A{ds1,a,dsy) A (ds2, a,dsh)
"E 3ds'3(ds’, a, ds” )
[dsl =dsl, dsy = ds™,ds}| = dsl’,ds’2 = ds"’,cequ (dst,dsit!), 1 <i< n]
- 3ds' {ds'l = dsll, dsy = ds"’, ceq™ (dsi’7 ds(iﬂ)’)7 1<i< n]

ceq""? (ds}, ds})

When a set of experiences is complete the predicatecaptures the idea that
two distinctive states are the same if they render the same views under any sequence
of actions. Assume that is complete and led = aq,...,a, denote a sequence
of actions. The termA(ds) denotes the distinctive state resulting from executing
starting atds. By definition, A(ds) = ds if n = 0, A(ds) = ds’ such thatE |=
({(a1,...,an_1)(ds),an,ds’). Notice that the definition ofi(ds) makes sense since
E is complete and actions are deterministic.
Theorem 2 Let E be a complete set of experiences. Then,

ceq(ds,ds') =VA,v [View(A(ds),v) = View(A(ds'),v)] .

Proof. Let M; be a model for the axioms inside tkEQ_block as well as the other
axioms of CT'(E). Let M, be a model identical td/; except that

ceq™? (ds,ds') = VA,v [View(A(ds),v) = View(A(ds'), v)]

By induction in the length of action sequences on can provectgdf: C ceq.
Our proof is complete by showing thad, satisfies the axioms insidé EQ _block:

e M, |= ceq(ds,ds') — View(ds,v) = View(ds',v). In fact, supposé/s |=
ceq(ds, ds") and consider the empty sequence of actiohs; {}, A(ds) = ds.
Then

View(ds,V) = View(A(ds),v) = View(A(ds'),v) = View(ds',v) .

o M |= ceq(dsy,dss) A (ds1,a,dst) A (ds2,a,dsh) — ceq(dst,dsh). In fact,
ceq™?(ds'y, dsb)
= VA [View(A(ds'l),v) = view(A(ds'z),v)]
+— (ds1,a,ds}) A (ds2,a,dsh) A
VA,v [View(aA(ds1),v) = View(aA(dsz2),v)]
—  ceq™2(ds1,dss) A (ds1,a,ds}) A (ds2,a, dsb)
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C teq properties

In this appendix we prove some properties of the SSH topological theory. Recall the
SSH topological theory is defined as follows:
TT(E) =
there exist infinitely many places ,
there exist infinitely many paths ,
—dp [tplace(p) A is_region(p)],
—3pa [tpath(pa) A route(pa)] ,
COMPLETION(E) ,
Azioms 2 — 10,
(ds,a,ds'y A (ds,a,ds") — ds' = ds", (Aziom 15)
T block ,
AT block = (84)
{ maz teq :
r
circ tpath = tplace var SSﬁpred (85)

}

wherel is the set of axioms defined in Page 14, &KiH pred stands for the tuple of
predicategat, along, order, on, teq, turn_eq, travel_eq).

Proposition 1 Let M be a model of T'(E). Then,
e M |=Vpa, [tpath(pa) = 3ds, dir along(ds, pa, dir)].
e M |=Vp, [tplace(p) = Ads at(ds, p)].
Proof.
CIRCIT; tpath = tplace; SS Hpred)
= {Proposition 15 in [Li fschitz,1994] }
CIRC|T;tpath;tplace, SSHpred| A CIRC[T; tpath, tplace; SS Hpred)

— {def. of circumscription}
CIRCIT; tpath]

Sincel’ = I(tpath) A [along(ds, pa,dir) — tpath(pa)] wherel”(tpath) is
negative, then

CIRC[T;tpath)

CIRC|[I' (tpath) A [along(ds, pa, dir) — tpath(pa)]; tpath]
= {Proposition 4 in [Lifschitz,1994] }
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[ (tpath) A CIRC[along(ds, pa, dir) — tpath(pa); tpath]
- {Proposition 1 in [Lifschitz,1994] }
[3ds, dir along(ds, pa, dir)] = tpath(pa)
Similarly, T' = I A [at(ds,p) — tplace(p)] wheretpath does not occur if”.
Then,
CIRC[T;tpath = tplace; SS Hpred)
— {see above}
CIRCIT; tpath, tplace; SS Hpred)
- {def. parallel circumscription}
CIRC|[T;tpath, tplace]
— {def. parallel circumscription}
CIRC[T' A [at(ds,p) — tplace(p)]; tplace]
{Propositions 1 and 4 in [Li fschitz,1994] }
[ A [3ds, at(ds,p)] = tplace(p)

O

Proposition 2 The topological map associated with a finite set of experieBdess a
finite number of topological paths and a finite number of topological places.

Proof. Since a distinctive state is along at most one topological path (Axiom 37,
Page 15), Proposition 1 implies that for any modélof TT(E) there is an injec-
tion from tpath™ into distinctive-states™. Sincedistinctive-states™ is finite so
is tpath™.

Similarly, since distinctive states are at a unique topological place (Axiom 29, Page
14), from Proposition 1 we conclude that the set of topological places in a model of
TT(E) is finite. O

Theorem 3 Letds; be a distinctive state symbol such that

VdSQ ¢ [dsl]t/u-ﬁz’ [dSQ]teq N [dsl]t/uﬁz = (b . (86)

Then
Vdsy ¢ [ds1]—, place(dsz) # place(ds1) .

Proof. The hypothesis of the theorem implies that
Vdss & [dsl]%, —turn_eq(dss, ds1) .
Indeed,
turn_eq(dsy,ds2) = Jbo,...,bn,boy..., by s.t.
e by = dssy, by =dsy,
e teq(b;,by), i =0,...,n

Ot%(bil,bzq_l), iZO,...,n—l.
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Letl < j < nsuchthatlVj <k <n, by € [dsi]—] andbg;_1) & [ds1]—.

-1
Notice that such @ exists sincels; = by & [ds1]—— andds; = b, € [ds

Consequently,

turn

1.
turn turn

turn_eq(dsy, dsz)

N
bjr € [dsl]m

- {teq(bj, bjr)}
[bj]teq N [ds1] = # 0

— {86}

bj € [dsl]%

- {turn(bij_1y,b;)}
b(j_l): S [dsl]@

-

false

Thus—turn_eq(dss, ds;) should be the casél

Theorem 4. Any two models of the SSH topological theory have the same number
of topological paths and the same number of topological places.

Proof. In order to prove that two modeM; andM, of TT(E) have the same num-
ber of topological paths (tpaths) and the same number of topological places (tplaces),
it is enough to show that this is the case for models ofdfieblock (Block 84). Sup-
pose thattpath™: has less elements thapath™?, and so there exists an injection
¢ : tpath™ — tpath™=. One can extend to define an isomorphism froM; into
M3, such thatM} < M-, where< is the order defined by the circumscription policy

8551 |n fact,

o Let ¢ : tplace™r — places™2 be an injection. Such an injection exists since
tplace™ is finite andplaces™> is infinite.

e Lety: SM1 — SM2 pethe identity over the sorts (S)of distinctive states, actions,
views, schemas, path types and path directions. Recall we assuretrand
interpretation for these sorts, where the corresponding universes are defined by
the constant symbols if.

The functiong above defines an isomorphic embedding frdfp into Ms in the
standard way. In factp(M;) = M} is defined as follows:

o tpath™2 = o (tpath™Mr), tplace™2 = o(tplace™).
° teqMé = p(teqg™) = {teq(dsi,ds2) : My = teq(dsi,ds2)} = teq™:.
o at™ = Bat™) = {at(ds, #(p) : M = at(ds,p)}.

51This proves thaff; and M» have the same number of topological paths.
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e along™> = dlalong™) = {along(ds, p(pa),dir) : Mi |= along(ds,pa,dir)}.

e order™> = ¢(order™) ={order(¢(pa),dir, p(p), ¢(q)) : M1 |= order(pa, dir,p,q)}.
o onMt = g(on™) = {on(¢(pa),6(p) : Mi = on(pa,p)}.

. turn_eqMé = ¢(turn_eq™) = turn_eq™™.

. travel_eqMé = ¢(travel_eq™) = travel_eq™*.

Notice that the language @f is defined by{tpath, tplace} U SSHpred. Thus
M, |= T implies¢(M;) |= T.52 Sinceg(tpath™r) C tpath™z, theng(M;) < Mo,
and solM; is not minimal, and is therefore not a model®T'(E). It follows thatM;
and M, have the same number of topological paths.

Similar argument shows thd/; and M> have the same number of topological
places. If not, there would exisis : tpath™r — tpath™> a bijection andy :
tplace™r — tplace™? an injection that allows us to apply the same argument as above.
|

D Theory axioms

This section presents some of the axioms not explicitly mentioned before.

D.1 T_block

The blockT _block (see Page 13)defines the properties of the predi¢ates travel,
andtravel. turn is the equivalence closure of the schenjasurn, -); travel and
travel are the equivalence and transitive closure of the schémaswel, -) respec-

tively.:>3
T block = (87)
{ min tﬁz, min trﬁel,min travel :
(ds,turn,ds') — turn(ds,ds'),

(ds, travel,ds’) — t@el(ds, ds') A travel(ds,ds'),

turn(ds, ds),
turn(ds,ds') — turn(ds', ds),
turn(ds,ds') A turn(ds',ds") — turn(ds,ds"),

52Notice that the circumscription policy varies all predicates in the languadg ahd¢ is the identity
over all constant symbols in the theory, for otherwigéM;) |= I' is not necessarily the case. In general
the interpretations of an unary predicate (set) under a circumscriptive theory do not have the same number of
elements. For example, consider the model§'6RC[(P(0) A P(1)) V P(2); P], where the interpretation
of P could have one or two elements (this example is due to Vladimir Lifschitz).

53A block of the form{C1,...,Cpn, min P1,...,min Py : Ai1,...,An} denotes the set of blocks
{C1,...,Cnymin Py : A1,...,An},...{C1,...,Cn, min Py : Ay,...,An}.
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tr?z?el(ds, ds),
t@el(ds, ds') — t@el(ds', ds),

travel(ds,ds') A travel(ds', dr) — travel(ds, dr),

travel(ds,ds') A travel(ds',ds") — travel(ds,ds")
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