Towards a general theory of topological maps

Emilio Remolina Benjamin Kuipers*
Computer Science Department
The University of Texas at Austin
Austin, TX 78712, USA
e-mail: \{eremolin,kuipers \} @cs.utexas.edu

April 27, 2003

Abstract

We present a general theory of topological maps whereby sensory input, topological and local metrical information are combined to define the topological maps explaining such information. Topological maps correspond to the minimal models of an axiomatic theory describing the relationships between the different sources of information explained by a map. We use a circumscriptive theory to specify the minimal models associated with this representation.

The theory here proposed is independent of the exploration strategy the agent follows when building a map. We provide an algorithm to calculate the models of the theory. This algorithm supports different exploration strategies and facilitates map disambiguation when perceptual aliasing arises.

1 Introduction

Topological maps are graph-like spatial representations. Nodes in such a graph often represent states in the agent's configuration space and edges represent system trajectories that take the agent from one state to another. A hierarchical structure can be accommodated on top of this "behavior graph", where nodes at one level of the hierarchy represent sets of nodes in lower levels. Despite their common use, there is no consensus about what topological maps are, or how they are built. The meanings of nodes and edges in a topological map varies according to the application as well as the algorithms used to build them. Richer structures than the graph-like description above are sometimes adopted as part of what a topological map is. Nevertheless, there are common elements to most of the topological map descriptions, namely, the use of sensory input descriptions in order to identify nodes, connectivity relations among nodes in the map, and local metrical information associated with edges in the map.

[^0]In this paper, we present a general theory of topological maps whereby sensory input, topological and local metrical information are combined to define the topological maps explaining such information. We take a declarative approach to define what topological maps are and how they are related to the information used to build them. We distinguish between the causal graph, which is a transition graph representation of regularities in action and sensory experience, and the topological map, which represents spatial properties of actions and of places and paths in the environment. We define topological maps as the minimal models of an axiomatic theory describing the relationships between the different sources of information explained by a map. We provide an algorithm to calculate the models of the theory. This algorithm supports different exploration strategies and facilitates map disambiguation when perceptual aliasing arises.

The major assumption underlying the topological approach to mapping is that there is a level of abstraction of the underlying environment at which actions are deterministic. In the Spatial Semantic Hierarchy [Kuipers, 2000], this is achieved by defining distinctive states and actions composed of trajectory-following and hill-climbing control laws such that actions are functionally deterministic when applied between distinctive states (see Figure 1). There are two other assumptions that, when true, allow us to state the axiomatic theory in simpler terms. These are the assumptions that (a) a path does not intersect itself, and (b) a distinctive state corresponds to at most one path and one direction on that path. Section 5.3 describes the more elaborate default theory required to handle environments that violate these assumptions.

2 Related Work

Causal and topological maps have been mainly studied by cognitive theories of space and robotics. Cognitive theories of space are interested in the cognitive map, the human knowledge of large-scale space. Robotics is interested in representations of space that can be used (and learned) by an autonomous robot.

Computational theories of the cognitive map have been proposed by [Kuipers, 1978, Davis, 1983, McDermott and Davis, 1984, Leiser and Zilbershatz, 1989, Gopal et al., 1989, O'Neill, 1991, Kortenkamp et al., 1995]. These theories account for incomplete knowledge of space, use of multiple frames of reference, qualitative representation of metrical information, and connectivity relations among landmarks. The theories differ on how sensory information is represented, what a place is, and how the overall spatial knowledge is structured.

The use of topological maps in robotics varies according to the type of information used when building such map. [Rivest and Schapire, 1987, Dudek et al., 1991, Dean et al., 1993, Basye et al., 1995] use the sequence of views and actions generated by the robot exploration to recover the minimum deterministic automaton consistent with such information. In these works, actions do not have any spatial properties associated with them. Metrical information associated with actions is considered by [Koenig and Simmons, 1996, Shatkay and Kaelbling, 1997], but there sensory information (views) is not used. The use of both sensory and metrical information is proposed by [Kuipers and Byun, 1988, Engelson and McDermott, 1992, Davis, 1983, Simmons and Koenig, 1995]. Among these works, [Kuipers and Byun, 1988, Davis, 1983] propose the use
of multiple metrical frames of reference: the places in the topological map are not necessarily embedded in a single two dimensional Euclidean frame of reference, nor it is necessary to do so in order to create the topological map. [Kuipers et al., 1993, Kuipers, 2000] propose the existence of topological objects (i.e. paths, regions) that can explain the agent's experiences without relying on metrical information but rather qualitative spatial properties (i.e. travel, turnRight, turnLeft, turnAround) associated with actions.

In research on physical robots by [Lee, 1996, Choset and Nagatani, 2001], effort has been put on describing how the agent solves the problem of "perceptual aliasing" (i.e. different places that share the same view). Different exploration strategies as well as different discrimination procedures are proposed to solve this problem. The description of topological maps is usually closely tied to the algorithms and exploration strategy used by the agent. It is difficult then to know what topological maps are and how they are related to the agent's experiences. The work by [Choset and Nagatani, 2001] exploits the topology of the robot's free space to localize the robot on a partially constructed map. The map used in this work is the generalized Voronoi graph (GVG) which is a topological map that also encodes some metric information about the robot's environment. Our definition of topological maps includes but is not limited to GVGs. We propose an axiomatic theory of topological maps. The task of building the map is stated as an abduction task [Shanahan, 1996, Remolina and Kuipers, 1998] where the agent's map correspond to the minimal models among those that explains its observations. Stating the minimality conditions as well as the ontology of the spatial representation is the content of this paper.

Metrical grid-based maps are another spatial representation used in the robotics community [Elfes, 1987, Borenstein and Koren, 1991, Thrun et al., 1998]. In these approaches the location of objects in a two dimensional Euclidean space are used to explain the agent's experiences. Topological maps as described in this paper can use metrical maps but they are confined to places, paths and local two dimensional frames of reference associated with regions.

The Spatial Semantic Hierarchy [Kuipers, 2000] assumes that an agent first builds a network of places and paths on top of which metrical models are added, rather than to build first a single metrical map from which a network of places and paths is derived. This assumption is motivated by research on human cognitive maps [Lynch, 1960, Piaget and Inhelder, 1967, Siegel and White, 1975]. For the engineering tasks of robot exploration, mapping, and navigation, we believe that the "topology-first" approach is more efficient and robust. For example, [Thrun et al., 1998] propose a method for integrating topological and metrical paradigms to solve the concurrent mapping and localization problem studied in the mobile robotics community. The method has two phases. In the first phase, the topological mapping solves a global position alignment problem between potentially indistinguishable, significant places. The subsequent metric mapping phase produces a fine-grained metric map of the environment in high resolution. "This work illustrates that topological approaches indeed scale up to large and highly ambiguous environments. The environments tested here are difficult in that they possess large cycles, and in that local sensor information is insufficient to disambiguate locations" [Thrun et al., 1998].

Finally, there are also feature-based spatial representations [Tardos et al., 2002]
where the map is a graph whose nodes represent observed features and whose edges represent geometric relationships between these features. Under these approaches the locations of geometric features in the environment and the position of the vehicle is jointly estimated in a stochastic framework. Like grid-based methods, feature-based methods are subject to cumulative metrical error and the difficulty of properly closing large loops. A major benefit of topological maps is that the problem of correctly closing large loops is separated from the problem of metrical mapping of local environments. We refer the reader to Borenstein's book [Borenstein et al., 1996] (Chapter 8) for a review of different approaches to map building.

This article is organized as follows: in Section 3 we define how the agent represents its experiences in the environment. Section 4 defines the causal map representation. The topological theory is presented in three parts: Section 5 introduces the main properties of paths and places. Section 6 adds boundary relations to this representation, and Section 7 defines the use of local metrical information. Section 8 presents our algorithms to build the topological maps associated with the agent's experiences. Finally, we present our conclusions in Section 9.

3 The agent's experiences in the environment

We assume that the continuous interaction of the agent and its environment is summarized by a discrete view-action-view sequence of the form

$$
\begin{equation*}
v_{0}, a_{0}, v_{1}, a_{1}, \ldots, a_{n-1}, v_{n} \tag{1}
\end{equation*}
$$

A view represents a sensory description associated with an environment state. Only the name and not the internal structure of a view matters. The environment states where the views in sequence 1 were observed are called distinctive states (dstates). Note that distinctive states represent not only location, but also the agent's orientation in the environment. The same view can occur at different distinctive states (perceptual aliasing). It is possible for the agent to associate different distinctive state names with the same environment state. This is the case since the agent might not know at which of several environment states it is currently located. It is the purpose of the causal and topological theories (Sections 4 and 5) to deduce which of these dstates names refer to the same environment state.

An action denotes a sequence of one or more control laws [Kuo, 1987] that take the agent from one dstate to the next. For example, in [Kuipers and Byun, 1988, Kuipers and Byun, 1991, Kuipers, 2000] distinctive states are the result of following trajectory-following and then hill-climbing control laws. The basin of attraction of the hill-climbing control laws absorbs accumulated error from each trajectory-following control law, along each action. Even with realistic levels of accuracy in the control laws, if the initial basin of attraction is large enough, and the hill-climbing control law is effective enough, the action become functionally deterministic (Figure 1).

The sequence (1) is transformed into a set of schemas of the form $\left\langle\left(v_{i}, d s_{i}\right), a_{i},\left(v_{i+1}, d s_{i+1}\right)\right\rangle$, where $d s_{i}$ is the dstate name associated with the environment state where view v_{i} is observed. A schema represents a particular action execution of the agent in the environment. An action execution is characterized in terms of the distinctive states the agent was at before and after the action was performed.

Figure 1: Actions between distinctive states are functionally deterministic. The control laws making up an action have a basin of attraction surrounding the initial distinctive state (ds1). Any trajectory starting in that basin moves toward the fixed-point of the hill-climbing control law. Since any implementation has finite precision, the action terminates in a small region around the destination distinctive state (ds2). As long as the final region is small enough to be contained within the initial basin of attraction of every subsequent action departing from that state, then actions are functionally deterministic.

Example 1. Consider the environment in Figure 2. In order to go from distinctive state $d s 1$ to distinctive state $d s 2$, the agent executes the sequence of control laws〈get_into_corridor, follow_middle_line, localize〉 where get_into_corridor is a trajectory following control law that moves the agent from $d s 1$ to a, follow_middle_line is a trajectory following control law that takes the agent from a to b , and localize is a hill-climbing control law that takes the agent from b to the distinctive state $d s 2$. Environment states a and b are not distinctive states. At the distinctive state $d s 2$ the agent is facing the wall ahead and it is equidistant from this wall and the intersection corners.

Figure 2: A sequence of control strategies , \langle get_into_corridor, follow_middle_line, localize \rangle, takes the agent from distinctive state $d s 1$ to distinctive state $d s 2$. This continuous motion is represented by the schema $\langle(v 1, d s 1), a 1,(v 2, d s 2)\rangle$, where $v 1$ and $v 2$ are the views at $d s 1$ and $d s 2$, and the action symbol $a 1$ represents the sequence of control laws.

Distinctive state $d s 3$ is at the same physical location as $d s 2$ but with a different orientation. When the robot is at $d s 3$, it is facing the open space (corridor) to the right of $d s 2$. In order to go from distinctive state $d s 2$ to distinctive state $d s 3$, the agent executes the sequence of control strategies \langle face_space_on_right, localize \rangle. The schemas $\langle(v 1, d s 1), a 1,(v 2, d s 2)\rangle$ and $\langle(v 2, d s 2), a 2,(v 3, d s 3)\rangle$ are created, where $a 1$ and $a 2$ are action symbols representing the respective sequence of control laws. \square

4 Causal graphs

Schemas summarize the continuous interactions of the agent in the environment. This is done by storing the initial and final distinctive states (and their corresponding views)
for any action execution. By considering only the views associated with the initial and final distinctive states of a schema, we define the view graph (Section 4.2.1), which relates different views by actions linking them. By considering sequences of actions as well as views, the agent can further distinguish distinctive states. In Section 4.3 we define the predicate $c e q$ which is the case for distinctive states that are not distinguishable by actions and views. We then define the causal graph whose nodes are classes of distinctive states (classes w.r.t. ceq). This representation is akin to the view graph although it imposes further refinement in the set of environment states that are consistent with the agent experiences.

4.1 Ontology of the Causal theory

We use a first order sorted language in order to describe causal graphs. The sorts of such language include views, actions, action types, action qualitative descriptions, distinctive states and schemas. Next we present the predicate symbols and axioms associated with this ontology.

We use the predicate View $(\mathbf{d s}, \mathbf{v})$ to represent the fact that v is the view associated with distinctive state $d s$. We assume that a distinctive state has a unique view, ${ }^{12}$

$$
\begin{equation*}
\exists!v \operatorname{View}(d s, v) \tag{2}
\end{equation*}
$$

However, we do not assume that views uniquely determine distinctive states (i.e. $\left.\operatorname{View}(d s, v) \wedge \operatorname{View}\left(d s^{\prime}, v\right) \nrightarrow d s=d s^{\prime}\right)$. This is the case since the sensory capabilities of an agent may not be sufficient to distinguish distinctive states.

An action has a unique type, either travel or turn, associated with it. ${ }^{3}$ These constant symbols define completely the sort of action_types (Axiom 3). The predicate Action_type(a, type) represents the fact that the type of action a is type. Formally,

$$
\begin{align*}
& \text { turn } \neq \text { travel, } \forall \text { atype }\{\text { atype }=\text { turn } \vee \text { atype }=\text { travel }\}, \tag{3}\\
& \exists!\text { type Action_type }(a, \text { type }) . \tag{4}
\end{align*}
$$

Turn actions have associated a unique qualitative description. The sort of qualitative descriptions is completely defined by the constant symbols turnLeft, turnRight and turnAround (Axioms 5 and 6). We use the predicate Turn_desc(a, desc) to indicate that desc is the qualitative description of the turn action a. Formally, ${ }^{4}$

$$
\begin{align*}
& \text { UNA[turnLeft,turnRight,turnAround }] \tag{5}\\
& \forall \text { desc }\{\text { desc }=\text { turnLeft } \vee \text { desc }=\text { turnRight } \vee \text { desc }=\text { turnAround }\}, \tag{6}\\
& \text { Turn_desc }(a, \text { desc }) \rightarrow \text { Action_type }(a, \text { turn }), \tag{7}\\
& \text { Action_type }(a, \text { turn }) \rightarrow \exists!\text { desc Turn_desc }(a, \text { desc }) \tag{8}
\end{align*}
$$

A schema represents a particular action execution of the agent in the environment. We use the following predicates to represent information associated with a schema:

[^1]$\operatorname{action}(\mathbf{s}, \mathbf{a})$ - action a is the action associated with schema $s-$, context($\mathbf{s}, \mathbf{d s})$ - ds is the starting distinctive state associated with the action execution represented by schema s -, and result(\mathbf{s}, ds) - ds is the ending distinctive state associated with the action execution represented by schema s-. While we require a unique context and action associated with a schema, the result of a schema is optional (but unique if it exists):
\[

$$
\begin{equation*}
\exists!a \operatorname{action}(s, a), \exists!d s \text { context }(s, d s), \operatorname{result}(s, d s) \wedge \operatorname{result}\left(s, d s^{\prime}\right) \rightarrow d s=d s^{\prime} \tag{9}
\end{equation*}
$$

\]

Most often we are interested in complete schemas: those for whom the resulting distinctive state exists. Nevertheless, incomplete schemas allow the representation to account for common states of incomplete knowledge like "I could take you there, but I can't tell you how" [Kuipers, 2000]. We use the (Causal Schema) predicate $C S\left(s, d s, a, d s^{\prime}\right)$ defined as

$$
\begin{equation*}
C S\left(s, d s, a, d s^{\prime}\right) \equiv_{\text {def }} \operatorname{context}(s, d s) \wedge \operatorname{action}(s, a) \wedge \operatorname{result}\left(s, d s^{\prime}\right) \tag{10}
\end{equation*}
$$

to express the fact that schema s represents an execution of action a which took the agent from distinctive state $d s$ to distinctive state $d s^{\prime}$.

An action execution also has metrical information associated with it. This metrical information represents an estimate of, for example, the distance or the angle between the distinctive states associated with the action execution. We defer the study of metrical information associated with schemas until Section 7.

While schemas are explicit objects of our theory, it is convenient to leave them implicit. We introduce the following convenient notation: ${ }^{5}$

$$
\begin{aligned}
& \left\langle d s, a, d s^{\prime}\right\rangle \equiv_{\text {def }} \exists s C S\left(s, d s, a, d s^{\prime}\right) \\
& \left\langle v, a, v^{\prime}\right\rangle \equiv_{\text {def }} \exists s, d s, d s^{\prime}\left\{C S\left(s, d s, a, d s^{\prime}\right) \wedge \operatorname{View}(d s, v) \wedge \operatorname{View}\left(d s^{\prime}, v^{\prime}\right)\right\} \\
& \left\langle(v, d s), a,\left(v^{\prime}, d s^{\prime}\right)\right\rangle \equiv_{\text {def }} \exists s\left\{C S\left(s, d s, a, d s^{\prime}\right) \wedge \operatorname{View}(d s, v) \wedge V i e w\left(d s^{\prime}, v^{\prime}\right)\right\} \\
& \left\langle d s, t y p e, d s^{\prime}\right\rangle \equiv_{\text {def }} \exists s, a\left\{C S\left(s, d s, a, d s^{\prime}\right) \wedge \text { Action_type }(a, t y p e)\right\} \\
& \left\langle d s, d e s c, d s^{\prime}\right\rangle \equiv_{\text {def }} \exists s, a\left\{C S\left(s, d s, a, d s^{\prime}\right) \wedge \text { Turn_desc }(a, \operatorname{des})\right\}
\end{aligned}
$$

4.2 The E formulae.

The agent's experiences in the environment, E, are described in terms of $C S$, View, Action_type and Turn_desc formulae. Associated with E we have the sets $S(E), D S(E)$, $V(E), A(E)$ of schemas, distinctive states, views and action constant symbols occurring in E. We require all these symbols to be different (i.e. uniqueness of names assumption) and to completely define their corresponding sorts (domain closure assumption):

$$
\begin{aligned}
U N A\left[s_{1}, \ldots, s_{k}\right], s_{i} \in S(E), & U N A\left[d s_{1}, \ldots, d s_{l}\right], d s_{i} \in D S(E), \\
U N A\left[a_{1}, \ldots, a_{n}\right], a_{i} \in A(E), & U N A\left[v_{1}, \ldots, v_{m}\right], v_{i} \in V(E), \\
\forall s \bigvee_{s_{i} \in S(E)} s=s_{i}, & \forall d s \bigvee_{d s_{i} \in D S(E)} d s=d s_{i}, \\
\forall a \bigvee_{a_{i} \in A(E)} a=a_{i}, & \forall v \bigvee_{v_{i} \in V(E)} v=v_{i} .
\end{aligned}
$$

[^2]The axioms above are not only required from a logical point of view, but make sense from the knowledge representation point of view. Domain closure axioms prevent models from including objects different from those experienced (named) by the agent. Each of the agent schemas represents a different experience and the agent names them with a different schema constant symbol. Different view symbols represent different sensory input. This is the case since the agent decides what view to associate with a sensory input. Different distinctive state constant symbols might represent the same environment state. Nevertheless, we assume that different distinctive state symbols are interpreted by different elements of the sort of distinctive states and we use the predicate $c e q$ (Causally Equal) to indicate whether two distinctive states represent the same environment state (Section 4.3).

Finally, the type of actions as well as the qualitative description of turn actions have to be specified as part of the formulae E :

$$
\begin{align*}
& \text { Action_type }(a, \text { type }) \equiv \bigvee_{\text {Action_type }\left(a_{i}, t y p e_{i}\right) \in E}\left[a=a_{i} \wedge \text { type }=\text { type }_{i}\right] \tag{12}\\
& \text { Turn_desc }(a, d e s c) \equiv \bigvee_{T u r n_{_} \operatorname{desc}\left(a_{i}, \text { desc }_{i}\right) \in E}\left[a=a_{i} \wedge \text { desc }=\text { desc } c_{i}\right] \tag{13}
\end{align*}
$$

Definition 1. Given a set E of CS, View, Action_type and Turn_type formulae,
COMPLETION(E)
denotes the union of E with Axioms 11-13.
Example 2. Consider the set of experiences E gathered by the agent while navigating the environment in Figure 3. The agent moves among intersections by performing action ml . The sensory input at the different intersections is very similar, and the agent associates the view $v+{ }^{6}$ with the different distinctive states it found (i.e. a, b and c).

Figure 3: The agent moves among corridor intersections that have the same view $v+. a, b$ and c are the distinctive states where this view is observed at.

The elements of E are as follows: Action_type $(m l$, travel $), C S(s 1, a, m l, b)$, $C S(s 2, b, m l, c)$, View $(a, v+)$, View $(b, v+)$, and $\operatorname{View}(c, v+)$.

The uniqueness of names axioms associated with E are $s 1 \neq s 2$ and $a \neq b \wedge a \neq$ $c \wedge b \neq c$. The domain closure axioms associated with E are $\forall s\{s=s 1 \vee s=s 2\}$, $\forall d s\{d s=a \vee d s=b \vee d s=c\}, \forall a\{a=m l\}$ and $\forall v\{v=v+\}$.

Finally, we also have the axioms $\forall a$, desc $\left\{T u r n _d e s c(a, d e s c) \equiv\right.$ false $\}$ and $\forall a$, type $\{$ Action_type $(a$, type $) \equiv[a=m l \wedge$ type $=$ travel $]\}$.

[^3]
4.2.1 The view graph

The view graph associated with a set of experiences E is the labeled graph \langle Nodes, Edges, Labels \rangle such that:

- Nodes $=\mathrm{V}(\mathrm{E})$, Labels $=\mathrm{A}(\mathrm{E})$.
- Edges $=\left\{\left(v, a, v^{\prime}\right): \operatorname{COMPLETION}(E) \mid=\left\langle v, a, v^{\prime}\right\rangle\right\}$.

When the same view occurs at different environment states, the view graph is not very informative. The agent has to use information other than the views alone in order to distinguish different environment states (see next section and Section 5). However, should the agent have enough sensory capabilities as to distinguish distinctive states by their views, then the view graph becomes a powerful spatial representation for reliable navigation. Work in [Schölkopf and Mallot, 1995, Franz et al., 1998, Mallot and Gillner, 2000, Steck and Mallot, 2000] shows how the view graph is consistent with human navigation abilities.

4.3 The Causal theory

We use the predicate $\mathbf{c e q}\left(\mathbf{d s}, \mathbf{d s}^{\prime}\right)$ to denote the fact that distinctive states $d s$ and $d s^{\prime}$ are causally indistinguishable. (In Section 5 we define when distinctive states are topologically indistinguishable.) Informally, $c e q\left(d s, d s^{\prime}\right)$ is the case whenever distinctive states $d s$ and $d s^{\prime}$ are indistinguishable by the actions and views in a given set of experiences E. The theory $C T(E)$ below defines the extent of the predicate ceq.

The causal theory associated with a set of experiences $E, C T(E)$, is the following nested abnormality theory (NATs) [Lifschitz, 1995] (see Appendix A):

$$
\begin{align*}
& C T(E)= \tag{14}\\
& \quad \text { COMPLETION }(E), \\
& \text { Axioms } 2-10, \\
& \left\langle d s, a, d s^{\prime}\right\rangle \wedge\left\langle d s, a, d s^{\prime \prime}\right\rangle \rightarrow d s^{\prime}=d s^{\prime \prime}, \tag{15}\\
& \text { CEQ_block }= \tag{16}\\
& \{\text { max ceq: } \\
& \quad \text { ceq }\left(d s_{1}, d s_{1}\right), \\
& \quad \operatorname{ceq}\left(d s_{1}, d s_{2}\right) \rightarrow \operatorname{ceq}\left(d s_{2}, d s_{1}\right), \\
& \quad \operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge \operatorname{ceq}\left(d s_{2}, d s_{3}\right) \rightarrow \operatorname{ceq}\left(d s_{1}, d s_{3}\right), \\
& \quad \operatorname{ceq}\left(d s_{1}, d s_{2}\right) \rightarrow V i e w\left(d s_{1}, v\right) \equiv V i e w\left(d s_{2}, v\right), \tag{17}\\
& \quad \operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \rightarrow \operatorname{ceq}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right) \tag{18}\\
& \}
\end{align*}
$$

Axiom 15 states our assumption that actions are deterministic. Axiom 17 states that indistinguishable distinctive states have the same view. Axiom 18 states that if distinctive states $d s$ and $d s^{\prime}$ are indistinguishable, and action a is performed for both $d s$ and $d s^{\prime}$, then the resulting distinctive states must also be indistinguishable. Axioms 17
and 18 allow us to prove that if $d s$ and $d s^{\prime}$ are two indistinguishable distinctive states, then any sequence of actions executed at $d s$ and $d s^{\prime}$ will render the same sequence of views.

Given an action symbol A and distinctive state $d s, A(d s)=d s^{\prime}$ if the schema $\left\langle d s, A, d s^{\prime}\right\rangle$ has been observed, otherwise, $A(d s)=\perp$. Moreover, $A(\perp)=\perp$. The definition is then extended to action sequences in the standard way. Notice that $A(d s)$ is well-defined given our assumption that actions are deterministic (Axiom 15).

Lemma 1 Let A denote a sequence of action symbols. Let $A(d s)$ denote the distinctive state symbol resulting from executing the sequence A starting at distinctive state $d s$, or \perp if A is not defined for $d s$. Then,

$$
\operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge A\left(d s_{1}\right) \neq \perp \wedge A\left(d s_{2}\right) \neq \perp \rightarrow \operatorname{View}\left(A\left(d s_{1}\right), v\right) \equiv \operatorname{View}\left(A\left(d s_{2}\right), v\right)
$$

There is a special case in which ceq is an equivalence relation without explicitly stating the axioms requiring so. This is the case when the result of every action at every distinctive state is known.

Definition 2. A set of experiences E is complete whenever

$$
E \models \forall a, d s \exists d s^{\prime}\left\langle d s, a, d s^{\prime}\right\rangle
$$

Theorem 1 Let E be a complete set of experiences and let CEQ_block be defined as follows:

```
{ max ceq:
```



```
    ceq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})\wedge\langled\mp@subsup{s}{1}{},a,d\mp@subsup{s}{1}{\prime}\rangle\wedge\langled\mp@subsup{s}{2}{},a,d\mp@subsup{s}{2}{\prime}\rangle->ceq(d\mp@subsup{s}{1}{\prime},d\mp@subsup{s}{2}{\prime})
}
```

Then, the predicate ceq is an equivalence relation.
Proof. See Appendix B.
When a set of experiences is complete the predicate ceq captures the idea that two distinctive states are the same if they render the same views under any sequence of actions.

Theorem 2 Let E be a complete set of experiences. Then,

$$
\operatorname{ceq}\left(d s_{1}, d s_{2}\right) \equiv \forall A, v\left[\operatorname{View}\left(A\left(d s_{1}\right), v\right) \equiv \operatorname{View}\left(A\left(d s_{2}\right), v\right)\right]
$$

Proof. See Appendix B.
Example 3. Consider the set of experiences E as in Example 2 (see Figure 4a). Since the same view is experienced at a, b and c, the extent of $c e q$ is maximized by declaring $c e q=$ true (i.e. $\forall x, y c e q(x, y)$). Notice that axiom (18) is trivially satisfied since no action has been executed at c.

Although a, b and c were experienced at different environment states, they are declared causally indistinguishable. This happens because neither the actions nor the

Figure 4: (a) Distinctive states a, b and c cannot be causally distinguished. Topological information is needed in order to distinguish them. (see text) (b) a, b and c are distinguished given the new information $\langle c$, travel, $d\rangle$.
views in E provide enough information to distinguish them. By using topological information (i.e. the concepts of path and place, see Section 5) we will be able to distinguish these distinctive states (see Example 5).

Suppose the agent continues exploring the environment and gets the new information $\operatorname{View}(d, v \sqsupset), C S(s 3, c, m l, d)$, as suggested in Figure 4b. In virtue of lemma 1, it can be seen that $\operatorname{ceq}\left(d s, d s^{\prime}\right) \equiv d s=d s^{\prime}$, and consequently the agent concludes that all distinctive states refer to different environment states.

Different models of $C T(E)$ generally arise when the set of experiences E is incomplete (i.e. the agent has not completely explored the environment) or when weak sensors determine the same view at different environment states.

Example 4. Consider the environment depicted in Figure 5. The agent visits the different distinctive states as suggested by their numbers in the figure. The same travel action $m l$ is performed when traveling from a corner to the intersection (i.e $\langle 1, m l, 2\rangle$) and viceversa (e.g. $\langle 4, m l, 5\rangle$). A turn around action is performed when reaching a corner (e.g. $\langle 3$, change_path_direction, 4$\rangle,\langle 7$, change_path_direction, 8\rangle, etc.). Assume that the different corners have the same views (i.e. $\operatorname{view}(1)=\operatorname{view}(4)=\operatorname{view}(8)$, $\operatorname{view}(3)=\operatorname{view}(7)=\operatorname{view}(11))$, and views associated with the other distinctive states are different.

Figure 5: The agent visits the different distinctive states in the order suggested by their numbers. The same view occurs at the different corners (i.e view $(1)=$ view $(4)=$ view (8)). Three different causal models can be associated with the agent exploration of this T-environment (see text).

Three models of $C T(E)$ can be associated with the exploration E of the Tenvironment:

1. Model 1: $\operatorname{ceq}(8,12), \operatorname{ceq}(12,8), \operatorname{ceq}(x, x) .^{7}$
2. Model 2: $\operatorname{ceq}(1,12), \operatorname{ceq}(12,1), \operatorname{ceq}(x, x)$.

[^4]3. Model 3: $\operatorname{ceq}(4,12), \operatorname{ceq}(12,4), \operatorname{ceq}(3,11), \operatorname{ceq}(11,3), \operatorname{ceq}(2,10), \operatorname{ceq}(10,2), \operatorname{ceq}(x, x)$.

In all the models above, $\neg c e q(1,4), \neg c e q(1,8), \neg c e q(4,8)$. For instance, from $\langle 1, m l, 2\rangle,\langle 4, m l, 5\rangle$, and $\operatorname{view}(2) \neq \operatorname{view}(5)$ we conclude that $\neg c e q(1,4)$. Although dstate 12 is at the same environment state as dstate 4 , it is possible that $\operatorname{ceq}(1,12)$ or $c e q(8,12)$. This is the case since no action has been performed at dstate 12 .

Notice that the models of $C T(E)$ are maximal with respect to the set inclusion for $c e q$. The number of elements in the possible extents of $c e q$ could vary, and consequently the number of different environment states represented by the models of $C T(E)$ will also vary. For instance, the three models above represent 11,11 and 9 environment states respectively.

Finally, notice that all the models above are possible since at the causal level turn and travel actions do not bear any spatial meaning. When we consider topological information, only model 3 above will be possible (see Example 10).

4.4 The causal graph

The causal graph associated with a set of experiences E is the labeled graph \langle Nodes, Edges, Labels \rangle such that:

- Nodes $=D S(E) / c e q$, Labels $=\mathrm{A}(\mathrm{E})$,
- Edges $=\left\{\left([d s], a,[d s]^{\prime}\right): C O M P L E T I O N(E) \mid=\left\langle d s, a, d s^{\prime}\right\rangle\right\}$.
where $D S(E) /$ ceq denotes the set of equivalence classes of $D S(E)$ modulo ceq, and [$d s$] denotes the equivalence class of $d s$ given ceq.

Figure 6: (a)-(b). Causal graphs associated with the set of experiences in Figures 4a and 4b. (c) view graph associated with the set of experiences in Figure 4b. Notice that the causal and view graphs associated with the experiences in Figure 4a are isomorphic.

The problem of distinguishing environment states by outputs (views) and inputs (actions) has been studied in the framework of automata theory [Angluin, 1978, Gold, 1978, Rivest and Schapire, 1987, Basye et al., 1995]. In this framework, the problem we address is the one of finding the minimum automaton (w.r.t. the number of states) consistent with a given set of input/output pairs. Without any particular assumptions about the environment or the agent's perceptual abilities, the problem of finding this smallest automaton is NP-complete ([Angluin, 1978, Gold, 1978]).

5 Topological maps

Actions in the causal theory convey patterns of experience but not spatial configuration. Spatial configuration is considered by the topological theory where actions are categorized into two classes: turns and travels. Turns and travels are explained by a new ontology, that of places and paths. Turn actions leave the agent at the same place. Travel actions move the agent to a new place along a path.

Grouping places into regions allows an agent to reason efficiently about its spatial knowledge. Regions themselves can be grouped to form new regions forming a spatial abstraction hierarchy. (In this article we do not consider this hierarchy.) In Section 6 we define boundary regions associated with paths. Informally, a path has associated three disjoint regions: the set of places in the path, the set of places to the left of the path, and the set of places to the right of the path. Boundary regions allow the agent to distinguish distinctive states, for two distinctive states can be considered different if they are in different boundary regions of the same path (see Example 17).

Local metrical information derived during action execution is considered in the topological theory. For instance, the distances among places on a path or the angles among paths intersecting in a place can be accommodated in the topological map. We study the use of metrical information in Section 7.

5.1 Ontology of the Topological theory

The main purpose of the topological theory $T T(E)$ is to minimize the set of topological paths and topological places consistent with the given experiences E. The concepts of path and place are used to distinguish environment states that are not distinguishable by actions and views alone. We use the predicate teq($\left.\mathbf{d s}, \mathbf{d s} \mathbf{s}^{\prime}\right)$ to indicate that distinctive states $d s$ and $d s^{\prime}$ are topologically indistinguishable. This will be the case, when in addition to not being distinguishable by views and actions, $d s$ and $d s^{\prime}$ are at the same place facing the same direction along the same path.

Within the sort of places, we distinguish between topological places and regions. A topological place is a set of distinctive states linked by turn actions. A region is a set of places. We use the predicates tplace and is_region to identify these subsorts.

A path defines an order relation among places connected by travel with no turn actions. They play the role of streets in a city layout. Among paths, topological paths correspond to those paths whose places are topological places. We use the predicate tpath to identify these paths. A path connecting regions is called a route. A path has two directions, pos and neg, which can be thought of as referring to "upstream" and "downstream" in the order of places on the path. The path direction also serves as a frame of reference for specifying the boundary regions describing places to the left and right of the path (see Section 6). The sort of path directions is completely defined by pos and neg. For a direction dir, -dir is defined such that $-p o s=n e g$ and $-n e g=p o s$.

The relations among distinctive states, places and paths are characterized in terms of the following predicates: $\mathbf{o n}(\mathbf{p a , p})$ - place p is on path $\mathrm{pa}-$, $\boldsymbol{\operatorname { o r d e r }}(\mathbf{p a , d i r}, \mathbf{p}, \mathbf{q})$ place p is before place q , when facing direction dir on path $p a-$, at $(\mathbf{d s}, \mathbf{p})$ - distinctive state ds is at place p -, and along(ds,pa,dir) -distinctive state ds is along path pa in
direction dir-. Figure 7 summarizes the dependencies among the above predicates. Section 5.2 formalizes these relationships.

Figure 7: Dependency among predicates in $T T(E)$. Labels on the graph's arrows refer to the axioms relating the predicates pointed by the arrows.
Distinctive states related by turns modulo teq (turn_eq) must be at the same topological place (tplace). Distinctive states related by travels modulo teq (travel_eq) are along the same topological path (tpath). Knowing at which places and along which paths distinctive state are, determines what places are on what paths. The order of places on a path is derived from travels among distinctive states along a path.
Since the extents of travel_eq and turn_eq must be defined in order to determine places and paths, one has to know what distinctive states are teq. The arrows pointing to teq on the top of the diagram indicate that among the possible interpretations for teq, the preferred models of the theory select those that lead to a map where a minimum set of paths and places are needed to explain the schemas at the bottom of the diagram.

Since a map can be arbitrarily large, no finite domain can be adequate and so we require the sorts of places and paths to be contably infinite. This is not to say that the topological map has infinite number of places or paths. Given a model of the theory, the topological map corresponds to the submodel obtained by restricting the different
predicates to topological places, regions, topological paths and routes. Since topological places are identified with finite sets of distinctive states and topological paths are identified with finite sequences of distinctive states, the topological map associated with a finite set of schemas (and so a finite set of distinctive states) has a finite number of topological places and topological paths. We require infinite sorts of places and paths to avoid models being non-comparable due to a mismatch in the cardinalities of the sorts, as illustrated in Example 16.

5.2 The topological theory

The topological theory associated with E, $\mathbf{T T}(\mathbf{E})$, is the following nested abnormality theory (NATs) [Lifschitz, 1995] (see Appendix A): (The condition that the sorts of places and paths are countably infinite is formalized by asserting the existence of a bijection between these sorts and the natural numbers.)

$$
\begin{aligned}
& T T(E)= \\
& \text { there exist countably infinitely many places, } \\
& \text { there exist countably infinitely many paths, } \\
& \neg \exists p[\text { tplace }(p) \wedge \text { is_region }(p)], \\
& \neg \exists p a[\text { tpath }(p a) \wedge \text { route }(p a)], \\
& \text { COMPLETION }(E), \\
& \text { Axioms } 2-10, \\
& \left\langle d s, a, d s^{\prime}\right\rangle \wedge\left\langle d s, a, d s^{\prime \prime}\right\rangle \rightarrow d s^{\prime}=d s^{\prime \prime}, \quad(\text { Axiom } 15) \\
& T _b l o c k, \\
& \text { AT_block. }
\end{aligned}
$$

The block T_block defines the properties of the predicates $\widehat{t u r n}, \widehat{\text { travel }}$, and travel. $\widehat{\text { turn }}$ is the equivalence closure of the schemas $\langle\cdot$, turn, $\cdot\rangle$; travel and travel are the equivalence and transitive closure of the schemas $\langle\cdot$, travel, $\cdot\rangle$ respectively (Appendix D).

The block AT_block is the heart of our theory. It defines how the agent groups distinctive states into places, and how places are ordered by paths. The purpose of this block is to define the extent of the predicates tpath, tplace, at, along, order, on and teq. The block has the associated circumscription policy

$$
\text { circ } \text { tpath } \succ \text { tplace var } S S \overrightarrow{H p r e d}
$$

stating that a minimum set of topological paths is preferred to a minimum set of topological places. The symbol \succ indicates prioritized circumscription (see Appendix A). SSHPred stands for the tuple of predicates $\langle\mathbf{a t}$, along, order, on, teq, turn_eq,travel_eq〉. The predicates travel_eq and turn_eq are "auxiliary" predicates used in our topological theory. Although they are completely defined in terms of teq, $\widehat{\text { turn }}$ and travel, they need to vary in the circumscription policy. The block $A T$ _block is defined as follows:

```
AT_block =
    {max teq :
        teq(ds,ds),
        teq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})->teq(d\mp@subsup{s}{2}{},d\mp@subsup{s}{1}{}),
        teq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})\wedgeteq(d\mp@subsup{s}{2}{},d\mp@subsup{s}{3}{})->teq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{3}{}),
        teq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})->\operatorname{View}(d\mp@subsup{s}{1}{},v)\equivView(d\mp@subsup{s}{2}{},v),
        teq(ds\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})\wedge\langled\mp@subsup{s}{1}{},a,d\mp@subsup{s}{1}{\prime}\rangle\wedge\langled\mp@subsup{s}{2}{},a,d\mp@subsup{s}{2}{\prime}\rangle->teq(d\mp@subsup{s}{1}{\prime},d\mp@subsup{s}{2}{\prime}),
        teq}(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})->\forallp[at(d\mp@subsup{s}{1}{},p)\equivat(d\mp@subsup{s}{2}{},p)]
            \foralla, dir [along(ds 
        \langleds,turn,ds'}\rangle->\negteq(ds,ds')
```



```
        \langleds
        at (ds,p) ->tplace(p),
        \exists!pat(ds,p),
        turn_eq(ds 
        {min turn_eq:
            teq}(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})\wedgeteq(d\mp@subsup{s}{3}{},d\mp@subsup{s}{4}{})\wedge\widehat{turn}(d\mp@subsup{s}{2}{},d\mp@subsup{s}{3}{})->tur\mp@subsup{n}{_}{\prime}eq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{4}{})
            turn_eq(ds 
        }
        along(ds,pa,dir) ->tpath(pa),
        { min along:
            \langleds,travel,ds'}\rangle->\existspa,\operatorname{dir}[\operatorname{along}(ds,pa,\operatorname{dir})\wedge\operatorname{along}(d\mp@subsup{s}{}{\prime},pa,\operatorname{dir})]
        \langleds,turnAround,ds'\rangle ->along(ds,pa,dir) \equivalong(ds',pa,-dir),
        teq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})->along(d\mp@subsup{s}{1}{},pa,dir) \equivalong(d\mp@subsup{s}{2}{},pa,dir)
    }
    along(ds,pa,dir ) ^along(ds,pa1,dir 1) ->pa=pa1^dir = dir 1,
```



```
        [\langleds,turn_desc,ds'\rangle}^\mathrm{ turn_desc }\not=\mathrm{ turnAround }
            along(ds,pa,dir ) ^along(ds',pa1, dir 1)] -> pa \not=pa1,
        { min order:
            [\langleds,travel,ds'}\rangle\wedgeat(ds,p)\wedgeat(d\mp@subsup{s}{}{\prime},q)
            along(ds,pa,dir )^along(ds',pa,dir )] ->order (pa,dir,p,q),
        order (pa,pos, p,q) \equivorder (pa,neg,q,p),
        order (pa,dir, p,q)^order(pa,dir,q,r) ->order(pa,dir,p,r)
    }
```

We discuss these axioms in turn.
Predicate teq is an equivalence relation. It stands for topologically equal. Whenever $\operatorname{teq}\left(d s_{1}, d s_{2}\right)$ is the case, we can consider $d s_{1}$ and $d s_{2}$ as denoting the same environment state: $d s_{1}$ and $d s_{2}$ cannot be distinguished by views and actions (Axioms 22 and 23), they are at the same place, and they are along the same paths (Axiom 24).

Axiom 25 states that a turn action takes the agent from one distinctive state to a different one. In particular we assume that a schema of the form $\langle d s$, Turn,$d s\rangle$ is not included in the agent's experiences. Axiom 26 states that there is a unique (modulo teq) distinctive state resulting from performing a turn around action. After two turn around actions the agent is back to the same dstate (Axiom 27). Turn around actions are special since they link distinctive states along the same path but in opposite directions (Axiom 35).

Axioms 29 and 30 state how the agent groups distinctive states into places. Every distinctive state is at a unique topological place (Axiom 29). Whenever the agent turns, it stays at the same topological place (Axiom 30). Distinctive states grouped into a topological place should be turn connected (modulo teq) (Axiom 30). Block 31 states that the predicate turn $e q$ corresponds to the relation $\widehat{\text { turn }}$ modulo teq.

Travel actions among distinctive states are abstracted to topological paths connecting the places associated with such distinctive states. Travel axioms are explained in terms of the two related predicates, along and order. Both of these predicates are the minimum ones explaining travel actions and satisfying other properties included in Blocks 33 and 40, respectively.

Block 33 defines the predicate along. Whenever an agent turns around, it stays in the same path but facing the opposite path's direction (Axiom 35). Axiom 36 is a trivial consequence of the definition of teq but it has to be included in the block so that the interpretation of along has tuples other than the ones explicitly derived from schemas (see Example 7).

There are further restrictions on the properties of along. For instance, a distinctive state is along at most one path (Axiom 37). Since Axiom 37 provides "negative" in-
formation about along, it does not need to be included in Block 33 (see Proposition 4 in [Lifschitz, 1994]). Axiom 37 prevents the existence of different paths that converge to the same distinctive state (in Section 5.3 we will make this axiom a default). Finally, Axiom 38 states that there exist at most one distinctive state indicating a path's direction at a given place on the path.

Turn actions other than turnAround change the path the initial and final distinctive states linked by the action are along (Axiom 39). This axiom allows the agent to conclude the existence of different paths once it turns right or left at a place (see Example 9). This axiom prevents the existence of self-intersecting paths (Figure 15).

Block 40 defines the predicate order. In addition to explaining travel actions, order defines an order among the places on a path satisfying the following two properties: i) the order of places in a given path direction is the inverse of the order of places in the other path direction (Axiom 42), and ii), the order of places in a path is transitive (Axiom 43).

There are further restrictions on the properties of order: i) the order of places in a path should be non-reflexive (Axiom 44), and ii) the agent has to have traveled among the places on the same path (Axiom 46). Since these requirements provide "negative" information about order, they do not need to be included in Block 40 (see Proposition 4 in [Lifschitz, 1994]). Notice that we rule out the existence of circular paths (Axiom 44). In Section 5.3 we will make this axiom a default.

Axiom 46 requires the agent to have traveled among the places on the same path. travel_eq defines when two distinctive states are linked by travel actions without turns (except for turnAround actions) (see Block 47). Example 8 illustrates how by using travel_eq the agent can minimize the set of topological paths.
Remark. We will be using the following properties of our theory. Axiom 37 in combination with Axioms 34, 41, and 44, imply that that whenever the agent has directly traveled between two distinctive states, the places associated with these distinctive states are different:

Corollary 1. $\operatorname{travel}\left(d s, d s^{\prime}\right) \rightarrow \operatorname{place}(d s) \neq \operatorname{place}\left(d s^{\prime}\right)$,
where place(ds) denotes the unique topological place that distinctive state $d s$ is at (Axiom 29). Moreover, consecutive travels among distinctive states occur along the same topological path.

Corollary 2.

$$
\begin{aligned}
\operatorname{travel}\left(d s, d s^{\prime}\right) \rightarrow \exists!p a, \operatorname{dir} & {\left[\operatorname{order}\left(p a, \operatorname{dir}, \operatorname{place}(d s), \text { place }\left(d s^{\prime}\right)\right) \wedge \operatorname{along}(d s, p a, \operatorname{dir})\right.} \\
& \wedge a \operatorname{long}(d s, p a, \operatorname{dir})] .
\end{aligned}
$$

In order to prove that distinctive states $d s_{1}$ and $d s_{2}$ are at different topological places, one has to prove that $\neg t u r n_{-} e q\left(d s_{1}, d s_{2}\right)$. The following theorem states a strong condition for when this is the case. Given an equivalence relation $R,[x]_{R}$ denotes the equivalence class of x according to R.

Theorem 3 Let $d s_{1}$ be a distinctive state symbol such that

Then,

$$
\begin{aligned}
\forall d s_{2} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}},\left[d s_{2}\right]_{\text {teq }} \cap\left[d s_{1}\right]_{\widehat{\text { turn }}}=\emptyset . \\
\forall d s_{2} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}}, \operatorname{place}\left(d s_{2}\right) \neq \operatorname{place}\left(d s_{1}\right) .
\end{aligned}
$$

Proof. See Appendix C.

Recall that the interpretations for tpath and tplace are finite. Our circumscription policy 48 and the fact that the sorts of paths and places are infinite implies the following fact:

Theorem 4 Any two models of the SSH topological theory have the same number of topological paths and the same number of topological places.

Proof. See Appendix C.
However, Theorem 4 does not mean that a unique map is necessarily associated with a set of schemas. As shown in Example 13 the SSH topological theory could have more than one non-isomorphic model.
\{end of remark\}
The next examples illustrate the interplay among the axioms in AT_block.
Example 5.

Figure 8: Distinctive states a, b and c cannot be distinguished at the causal level (see Example 3). Using the concepts of paths and places these dstates are distinguished.

Consider the set of experiences E

$$
\langle(a, v+), \text { travel },(b, v+)\rangle,\langle(b, v+), \text { travel },(c, v+)\rangle
$$

as in Example 3, Figure 8. From Corollary 1 we deduce that place (a), place(b) and place(c) are all different places. From Corollary 2, the topological map associated with E has one topological path and three topological places. Distinctive states a and b can be distinguished though they are "causally indistinguishable" (i.e. ceq $(a, b) \wedge$ $\neg t e q(a, b))$.

Only distinctive states linked by turn actions can be grouped into a topological place (Axiom 30). Under incomplete information this constraint could imply the existence of more places than the ones needed in a map.

Example 6. Consider the set of experiences E indicated by the formulae

$$
\langle a, \text { travel }, b\rangle,\langle b, \text { turnAround }, c\rangle,\langle c, \text { travel }, d\rangle,
$$

in addition to the views associated with the distinctive states. Moreover, assume that views uniquely distinguish the different distinctive states. The model for $T T(E)$ is presented in Figure 9c. The model has three places and one path. Not having a turn action relating a and d prevents the agent from grouping these distinctive states into the same place, as suggested in Figure 9b. Next we show why this is the case.

Figure 9: (a) The agent navigates a rectangle environment getting the experiences $\langle\boldsymbol{a}$, travel, $b\rangle$, $\langle b$, turnAround, $c\rangle$, and $\langle c$, travel, $d\rangle$. The corresponding topological map has three places and one path (c) rather than two places and one path (b). Distinctive states a and d cannot be grouped into the same topological place since they are not linked by turn actions. Notice that the order of places in the path is not total. Should the agent turn around and experience the schema $\langle d, \operatorname{turn}$ Around, $a\rangle$, it will consider (b) as the topological map and disregard (c).

Since views uniquely distinguish distinctive states, then $\operatorname{teq}(x, y) \equiv x=y$. From the definition of turn_eq (Block 31), it follows then that turn_eq $=\widehat{\text { turn }}$. Since the only turn action mentioned in E is the one in schema $\langle b$, turnAround, $c\rangle$, we deduce that $\widehat{\operatorname{turn}}\left(d s, d s^{\prime}\right) \equiv\left[d s=d s^{\prime} \vee\left\{d s=b \wedge d s^{\prime}=c\right\} \vee\left\{d s=c \wedge d s^{\prime}=b\right\}\right]$. In particular, \neg turn_eq (a, d). In virtue of Axiom 30 we cannot conclude that a and d are at the same topological place.

The next example shows the interplay between teq and along as well as the effect of maximizing teq.

Example 7.

Figure 10: The agent moves back and forth from one intersection to the other. The second time the agent visits distinctive states a and b, it gives the names a^{\prime} and b^{\prime}. From the topological theory it follows that these names correspond to the previously visited a and b.

Consider the set of schemas $\langle a$, turnRight,$b\rangle,\langle b$, travel, $c\rangle,\langle c$, turnAround, $d\rangle$, $\langle d$, travel,$e\rangle,\left\langle e\right.$, turnRight,$\left.a^{\prime}\right\rangle,\left\langle a^{\prime}\right.$, turnRight,$\left.b^{\prime}\right\rangle$ consistent with an agent going from one four-way intersection to another (Figure 10). Let's consider the models of these schemas. From our axioms, at least one path and three places must exist:

Places	Paths	Along	teq
$\mathrm{P}=\{\mathrm{a}, \mathrm{b}\}$	Pa: b-c d-e	along(b,Pa,dir) along(c,Pa,dir)	\neg teq $(a, b), \neg t e q(c, d)$
$\mathrm{Q}=\{\mathrm{c}, \mathrm{d}\}$		along(d,Pa,-dir) along(e,Pa,-dir)	\neg teq $\left(e, a^{\prime}\right), \neg t e q\left(a^{\prime}, b^{\prime}\right)$
$\mathrm{R}=\left\{\mathrm{e}, \mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right\}$			

We know that $P \neq Q$ and $Q \neq R$. By having $\operatorname{teq}\left(a, a^{\prime}\right)$, we can complete the model such that $P=R$. The maximization of teq will force the model to have teq $\left(b, b^{\prime}\right)$. By including Axiom 36 in the Block 33 we are allowed to have a model in which teq $\left(b, b^{\prime}\right)$ is the case. Notice that a travel action has not been performed at b^{\prime} and so the schemas do not support a tuple of the form $\operatorname{along}\left(b^{\prime}, \bullet, \bullet\right)$.

Example 8. Consider the extension of the previous example where the schema $\left\langle b^{\prime}\right.$, travel, $\left.c^{\prime}\right\rangle$ is obtained. Axiom 46 requires the agent to have traveled among places on the same path. As for places, we check this requirement "modulo" teq, since teq plays the role of equality in our theory. In this example, the agent concludes that teq $\left(c, c^{\prime}\right)$. Notice that $\neg \widehat{\operatorname{travel}}\left(b, c^{\prime}\right)$ and travel_eq $\left(b, c^{\prime}\right)$ are the case.

By requiring the agent to have traveled among the places on a same path (Axiom 46), different paths can be identified. The next example illustrates the case.

Example 9. Suppose the agent explores the environment depicted in Figure 11a

(a)

(b)

Figure 11: By requiring the agent to have traveled among the places on a same path (Axiom 46), different paths can be identified. (a) The agent visits the different distinctive states in the order $d s 1, d s 2, \ldots, d s 6$. (b) depicts the topological map associated with (a). Three paths instead of only two are required to explain the agent experiences (see text).
obtaining the following schemas:

$$
\begin{aligned}
& \langle d s 1, \text { travel }, d s 2\rangle\langle d s 2, \text { turnRight }, d s 3\rangle\langle d s 3, \text { travel }, d s 4\rangle \\
& \langle d s 4, \text { turnLeft }, d s 5\rangle\langle d s 5, \text { travel }, d s 6\rangle
\end{aligned}
$$

We assume that the agent associates different views with the different distinctive states in the example. Axiom 29 implies that there exist places A, B, C and D (see Figure 11b) such that

$$
a t(d s 1, A), \quad a t(d s 2, B), \quad a t(d s 3, B), \quad a t(d s 4, C), \quad a t(d s 5, C), a t(d s 6, D)
$$

Moreover, Corollary 1 implies that $A \neq B, B \neq C, C \neq D$. Under our assumption that all distinctive states in the example have different views, it follows that teq $\left(d s_{1}, d s_{2}\right) \equiv d s_{1}=d s_{2}$ and thus $\widehat{\operatorname{turn}}=$ turn_eq. Since $\neg \widehat{\operatorname{turn}}(d s 1, d s 3)$, $\neg \widehat{\operatorname{turn}}(d s 1, d 5)$ and $\neg \widehat{\operatorname{turn}}(d s 2, d s 6)$ are the case, A, B, C and D are all different. Axiom 34 implies that there exist paths $P a, P a 1, P a 2$, and directions $\operatorname{dir}, \operatorname{dir} 1, \operatorname{dir} 2$, such that:

$$
\begin{gathered}
\operatorname{order}(P a, \operatorname{dir}, A, B), \quad \operatorname{along}(d s 1, P a, \operatorname{dir}), \quad \operatorname{along}(d s 2, P a, \operatorname{dir}), \\
\text { order }(P a 1, \operatorname{dir} 1, B, C), \quad \operatorname{along}(d s 3, P a 1, \operatorname{dir} 1), \quad \operatorname{along}(d s 4, P a 1, \operatorname{dir} 1), \\
\text { order }(P a 2, \operatorname{dir} 2, C, D), \quad \operatorname{along}(d s 5, P a 2, \operatorname{dir} 2), \quad \operatorname{along}(d s 6, P a 2, \operatorname{dir} 2) .
\end{gathered}
$$

Schemas $\langle d s 2$, turnRight, $d s 3\rangle$ and $\langle d s 4$, turnLeft, $d s 5\rangle$, and Axiom 39 implies that $P a \neq P a 1, \quad P a 1 \neq P a 2$. Since $t e q\left(d s_{1}, d s_{2}\right) \equiv d s_{1}=d s_{2}$ and there is not
turn Around schemas in E, then travel $=$ travel_eq. Consequently $\neg \widehat{\operatorname{trave} l}(d s 1, d s 4)$ and $\neg \widehat{\operatorname{travel}}(d s 1, d s 5)$ are the case, and in virtue of Axiom 46 it follows that $P a \neq$ Pa2.

Example 10. Consider the same T-environment exploration presented in Example 4 (see Figure 12). When using only causal information, three possible models are associated with the exploration. When using topological information, only one of these models is possible as illustrated next.

Figure 12: The agent visits the different distinctive states in the order suggested by their numbers. The same travel action $m l$ is performed when traveling from a corner to the intersection (i.e $\langle 1, m l, 2\rangle$) and viceversa (i.e. $\langle 4, m l, 5\rangle$). A turn around action is performed when reaching a corner (i.e. $\langle 3$, turnAround, 4$\rangle,\langle 7$, turnAround, 8\rangle, etc.). Assume that the different corners have the same views $($ i.e. $\operatorname{view}(1)=\operatorname{view}(4)=\operatorname{view}(8)$, view $(3)=\operatorname{view}(7)=\operatorname{view}(11))$, and views associated with the other distinctive states are different. Three different causal models can be associated with the agent exploration of this T-environment but only one of them is consistent with topological information (see text).

The three causal models associated with T-environment are:

1. Model 1: $\operatorname{ceq}(8,12), \operatorname{ceq}(12,8), \operatorname{ceq}(x, x)$.
2. Model 2: $\operatorname{ceq}(1,12), \operatorname{ceq}(12,1), \operatorname{ceq}(x, x)$.
3. Model 3: $\operatorname{ceq}(4,12), \operatorname{ceq}(12,4), c e q(3,11), \operatorname{ceq}(11,3), \operatorname{ceq}(2,10), \operatorname{ceq}(10,2), \operatorname{ceq}(x, x)$.

We are to show that only model 3 above is consistent with topological information. For this we show the following three facts: (i) any model must have at least 2 tpaths and 5 tplaces (since there is not a turn action between dstates $\{5,6\}$ and dstates $\{2,9,10\}$, these dstates are not at the same topological place, as suggested by Figure 12) (ii) there is a model with 2 tpaths and 5 tplaces (this is the intended model), (iii) a model of $\neg t e q(2,10)$ must have at least 6 tplaces. This last statement implies that models 1 and 2 above are not consistent with topological information.

From $\langle 1$, travel, 2\rangle and $\langle 2$,travel, 3\rangle, Corollary 2 implies that there exist a path $P a 1$ and direction $\operatorname{dir} 1$ such that

$$
\operatorname{along}(1, \operatorname{Pa} 1, \operatorname{dir} 1), \operatorname{along}(2, \operatorname{Pa} 1, \operatorname{dir} 1), \operatorname{along}(3, \operatorname{Pa} 1, \operatorname{dir} 1) .
$$

Moreover, Corollary 1 implies that

$$
\operatorname{place}(1) \neq \operatorname{place}(2), \operatorname{place}(2) \neq \text { place }(3), \operatorname{place}(1) \neq \text { place }(3) .
$$

From $\langle 3$, turnAround, 4$\rangle,\langle 4$, travel, 5\rangle, Axiom 35 and Corollary 2, it is the case that $\operatorname{along}(4, P a 1,-\operatorname{dir} 1)$, along $(5, P a 1,-\operatorname{dir} 1)$. Similarly, from $\langle 5$, turnLeft, 6\rangle,
$\langle 6$, travel, 7$\rangle,\langle 7$, turn Around, 8$\rangle,\langle 8$, travel, 9\rangle we conclude that there exist a path $P a 2$ and direction $\operatorname{dir} 2$ such that $P a 1 \neq P a 2$ (Axiom 39) and

$$
\begin{gathered}
\operatorname{place}(5) \neq \operatorname{place}(8), \operatorname{along}(6, \operatorname{Pa} 2, \operatorname{dir} 2), \operatorname{along}(7, \operatorname{Pa} 2, \operatorname{dir} 2), \\
\operatorname{along}(8, \operatorname{Pa} 2,-\operatorname{dir} 2), \operatorname{along}(9, \operatorname{Pa} 2,-\operatorname{dir} 2)
\end{gathered}
$$

From $\langle 9$, turnRight, 10$\rangle,\langle 10$, travel, 11$\rangle,\langle 11$, turnAround, 12\rangle, there exist path $P a 3$ and direction $\operatorname{dir} 3$ such that $P a 2 \neq P a 3$ and

$$
\operatorname{along}(10, \operatorname{Pa} 3, \operatorname{dir} 3), \operatorname{along}(11, \operatorname{Pa} 3, \operatorname{dir} 3), \text { along }(12, P a 3,-\operatorname{dir} 3)
$$

Theorem 3 allow us to conclude that place $(5) \notin\{$ place(1), place(2), place(3)\}. The same argument shows that place(8) $\notin\{$ place(1), place(2), place(3), place(5) $\}$. Consequently, a miminal model of the theory must have at least two tpaths and five tplaces.

Notice that in the intended model of the T-environment, $P a 1=P a 3, \operatorname{dir} 1=\operatorname{dir} 3$, $t e q(2,10)$, $t e q(3,11)$ and $t e q(4,12)$. This model is indeed a model of $T T(E)$ since at least two topological paths and five topological places are needed to explain E, and consequently any model must have two topological paths and five topological places (Theorem 4).

If $\neg t e q(2,10)$ were the case, then Theorem 3 allows to conclude that place $(9) \notin$ $\{$ place (1), place(2), place(3), place(5), place(8)\} and so the model will have at least six tplaces. Consequently $\operatorname{teq}(2,10)$ has to be the case in a minimal model of the theory.

Example 11. Consider an extension of the previous example where we have the additional schemas $\left\langle 9\right.$, turnLeft, $\left.5^{\prime}\right\rangle,\left\langle 5^{\prime}\right.$, turnRight, 9$\rangle$. In this case, the intended model has four places and two paths. Notice that now the agent can conclude that place $(5)=$ place (2) by making $t e q\left(5^{\prime}, 5\right)$ and so turn_eq $(5,2)$.

The theory does not assume a "rectilinear" environment where paths intersect at most in one place. Consider the next example.

Example 12. Suppose the agent explores the environment depicted in Figure 13 obtaining the following schemas:

$\langle d s 1$, turnAround, $d s 2\rangle$	$\langle d s 2$, turnAround,ds 1\rangle	$\langle d s 1$, travel,$d s 3\rangle$
$\langle d s 3$, turnRight,$d s 4\rangle$	$\langle d s 4$, turnLeft,$d s 3\rangle$	$\langle d s 3$, travel,$d s 6\rangle$
$\langle d s 6$, turnLeft,$d s 7\rangle$	$\langle d s 7$, travel,$d s 4\rangle$	
$\langle d s 4$, turnRight,$d s 5\rangle$	$\langle d s 5$, travel,$d s 2\rangle$	

We assume that views uniquely distinguish the different distinctive states. From Corollary 1 there exist the different places A, B, and C suggested in the figure. In addition, Corollary 2 implies the existence of a path, $P a$, and direction, say pos, such that $\operatorname{order}(P a, \operatorname{pos}, A, B), \quad \operatorname{order}(P a, p o s, B, C), \quad \operatorname{order}(P a, p o s, A, C)$. Moreover, from schemas $\{\langle d s 7$, travel, $d s 4\rangle,\langle d s 5$, travel, $d s 2\rangle\}$ and Axiom 34, there exist paths $P a 1, P a 2$, and directions $\operatorname{dir} 1, \operatorname{dir} 2$, such that

$$
\operatorname{order}(P a 1, \operatorname{dir} 1, C, B) \wedge \operatorname{along}(d s 7, P a 1, \operatorname{dir} 1) \wedge \operatorname{along}(d s 4, P a 1, \operatorname{dir} 1)
$$

Figure 13: The environment in (a) illustrates a case where different paths intersect at more than one place. Suppose the agent explores the environment by visiting the different distinctive states in the order $d s 1, d s 2, d s 1, d s 3, d s 4, d s 3, d s 6, d s 7, d s 4, d s 5, d s 2$. (b) depicts the topological map associated with this environment.

$$
\operatorname{order}(P a 2, \operatorname{dir} 2, B, A) \wedge \operatorname{along}(\operatorname{ds} 5, P a 2, \operatorname{dir} 2) \wedge \operatorname{along}(d s 2, P a 2, \operatorname{dir} 2) .
$$

Since along (ds6, Pa, pos), from Axiom 39 and schema $\langle d s 6$, turnLeft, $d s 7\rangle$ we conclude that $P a \neq P a 1$. Since we are minimizing paths, by setting $P a 2=P a$ and $\operatorname{dir} 2=n e g$, we obtain a minimal model for E. Notice that in this model, places B and C belong to two different paths, $P a$ and $P a 1$.

There are some patterns of experience in which our theory is not applicable. In particular, Axiom 44 rules out circular paths and Axiom 37 rules out experiences where different paths merge into the same distinctive state. In Section 5.3 we extend the topological theory to deal with these type of paths.

Since the positive and negative direction of a path are chosen arbitrarily (Axiom 34), there is not a unique minimal model for $T T(E)$. Given any model M of $T T(E)$ one could define another model M^{\prime} of $T T(E)$ by choosing a path $p a$ in M and reversing the roles of the directions pos and neg for $p a$. We will consider these "up to path direction isomorphic" models to be the same. However, no "up to path direction isomorphic" topological maps can explain the same pattern of experience. This happens because the experiences are incomplete, or the agent's sensors are weak.

Figure 14: (a) The agent goes around the block visiting places A, B, \ldots, F, C in the order suggested in the figure. Intersections B and C look alike to the agent. (b) and (c) represent two possible representations for the environment in (a). Topological information is not enough to decide whether the agent is back to B or C.

Example 13. Assume that the agent visits places A, B, C, D, E, F, C in the order suggested by Figure 14. Assume also that intersections look alike. In particular, places
B and C look alike. Given this information, the agent is not able to decide whether it is back to B or C and consequently two minimal models can be associated with the set of experiences in this environment (Figures 14b,c).

Metrical information can be used to deduce the correct topology (see Example 18). However, if the agent accumulates more information, by turning at C and traveling to D, then topological information suffices to deduce that the topology of the environment is the one in Figure 14b. This is the case since the views at C and D are different.

5.3 Coping with self intersecting paths

Figure 15: (a) Self intersecting paths. (b) Convergent paths.
The topological theory presented in the previous section is adequate for representing environments where "complex" paths configurations do not occur. In particular, we assume that self-intersecting and convergent paths do not exist (Figure 15). In this section we extend our theory to deal with these types of paths. Converging paths are the standard counterexample for the axiom stating that distinctive states are along a unique path (Axiom 37). We replace Axiom 37 by the block

```
{ min convergent_paths:
    [along(ds,pa,dir )^along(ds,pa1,dir1)
        \wedge\neg[pa=pa1^dir = dir 1]] -> convergent_paths(pa,pa1)
}
```

Self-intersecting paths are the standard counterexample for the axioms stating that turning changes the path (Axiom 39), at a place there is at most one distinctive state along a path direction (Axiom 38), and the order of places in a path is not reflexive (Axiom 44). We replace these axioms by the block

```
{min self_intersecting :
    order (pa,dir, p,p) -> self_intersecting(pa),
    [\langleds,turn_desc,ds'\rangle}\turn_desc = TurnAround ^along(ds,pa,dir)
    \wedgealong(ds',pa,dir 1)] -> self_intersecting(pa),
```



```
    \wedge\negteq(ds (s,ds2)] }->\mathrm{ self_intersecting(pa)
}
```

While we have defined convergent and self-intersecting paths, we still need to state that by default these kind of paths do not exist. This is accomplished by giving priority to the minimization of these two predicates over any other predicate. The new
circumscription policy associated with our theory becomes
circ self_intersecting \succ convergent_paths \succ tpath \succ tplace var $S S \overrightarrow{H p r e d}$. (49)
The new theory is a conservative extension of our previous theory, since any topological map with respect to our previous theory is a topological map according to the new theory. In particular, the maps associated with examples 5 through 12 are still valid maps for the new theory. Next we study some cases we could not handle before.

Example 14. Suppose the agent has experienced the following schemas (Figure 16):

$$
\begin{array}{lll}
\langle b, \text { travel, } d\rangle & \langle d, \text { turnAround, } c\rangle & \langle c, \text { turnRight, } e\rangle \\
\langle e, \text { travel, } a\rangle & \langle a, \text { turnAround }, b\rangle &
\end{array}
$$

Figure 16: Distinctive state a is along two different paths. These two paths are declared convergent paths in the model of our theory.

From Axiom 34 we know that exist paths $P a, P a 1$ and directions dir, dir 1 such that $\operatorname{along}(b, P a, \operatorname{dir}), \quad \operatorname{along}(d, P a, \operatorname{dir}), \quad \operatorname{along}(e, P a 1, \operatorname{dir} 1) \quad$ and along $(a, P a 1, \operatorname{dir} 1)$ are the case. Moreover, from Axiom 35 it follows that along $(b, P a 1,-\operatorname{dir} 1)$. We have two possible models for these schemas:

- Model 1. In this model $P a \neq P a 1$. Consequently, self_intersecting $=$ false and convergent_paths $(P a, P a 1)$ are the case.
- Model 2. In this model $P a=P a 1$. Consequently, self_intersecting $(P a)$ and convergent_paths $=$ false are the case.

We prefer model 1 over model 2 according to the circumscription policy 49 .
Example 15. Consider the set of experiences E

$$
\langle(a, v+), \text { travel },(b, v+)\rangle,\langle(b, v+), \text { travel },(c, v+)\rangle
$$

as in Example 3. In the intended minimal model there are one path and three places. There are however other interpretations for the schemas. For example, the agent travelled from a to b along path $P a$ and then "changed" paths to travel from b back to a along path $P a 1$. In this "model" we have $t e q(a, c), P a \neq P a 1$ and convergent_paths(Pa,Pa1). The model has two paths and two places (less places than the intended model). By prioritizing paths over places we get rid of this model. The prioritization conveys the heuristic that "paths help to determine places". In general if "concept X helps to determine concept Y " then X has higher priority than Y in our circumscription policy.

Our requirement of infinite places and paths allow us to compare any two models of the theory (see Theorem's 4 proof). This requirement also allow us to deal with unexpected models as illustrated in the next example.

Example 16. Consider the schema $\langle a$, travel, $b\rangle$ where a and b have the same view. The intended model has one topological path and two topological places. One expects that the path is not circular (self-intersecting), and so the existence of two places. However, without requiring the existence of enough places, the following model is also possible:

places $=\{\mathrm{A}\}, \quad$ tplace $=\{\mathrm{A}\}$	paths $=\{\mathrm{Pa}\}, \quad$ tpaths $=\{\mathrm{Pa}\}$
teq (a, b)	sel $f_{_}$intersecting $(P a)$
at (a, A) at (b, A)	
	along $(\mathrm{a}, \mathrm{Pa}, \operatorname{pos}), \operatorname{along}(\mathrm{b}, \mathrm{Pa}, \mathrm{pos})$
	order $(\mathrm{Pa}, \mathrm{pos}, \mathrm{A}, \mathrm{A})$

In this model, self_intersecting $(P a)$ must be the case, since the universe of places only has one place. Notice that when comparing two models according to the circumscription policy 49 , the universe of paths and places in the models has to be the same. One can vary the interpretation of tpath, tplace, and so on, but not the universe of paths and places. The model above is ruled out by requiring the universe of places to have enough (infinite) places.

6 Boundary Regions

Topological paths play the role of streets in a city layout map. Streets are often used as a reference for specifying the location of a given place: a place will be either on the given street or in one of the "two sides" -left or right- of the street.

Mathematically, the concept of left and right of a topological path is related to the topological one of the interior and exterior of a curve. While not all curves have a well defined interior and exterior (for example, consider a spiral, or a fractal curve), closed not self-intersecting curves -Jordan curves- do have associated interior and exterior sets: when the curve is removed, the plane is divided into two disjoint connected sets [Beardon, 1979]. Moreover, in order to go from the interior to the exterior (or vice versa) of the curve γ, one has to cross γ. Our analogy of topological paths and mathematical curves breaks down because in general the agent might be able to travel from one side of the path to the other without crossing the path. This can happen because of the agent's inability to detect that it has crossed the path, or (more often) because paths are not long enough to divide the environment into two regions (for example, consider a dead-end street).

In order to determine boundary relations - the location of a place with respect to a path - we formally state the following heuristic. Suppose the agent is at an intersection on a given path, and it then turns right. If the agent now travels, any place it finds while traveling with no turns will be on the right of the starting path. While this heuristic draws the correct conclusion in a rectilinear environment, it may draw incorrect conclusions when paths are not straight. Consequently, we state our heuristic as a 'defeasible" rule so as not to conclude a boundary relation when inconsistent sources of information exist (Figure 17).

Figure 17: Different environments illustrating how our default to determine boundary relations work. In (a) we conclude by default that place C is to the left of the path from A to B. In (b) we conclude nothing about the location of place D with respect to this path. In (c) we conclude that place C is to the left of the path from A to B. This is the case since there is no information to conclude otherwise.

TurnRight and turnLeft actions are used to define the relative orientation between paths at a given place (Section 6.1), relations that are then used to infer whether a place is on the left or the right of a given path (Section 6.2). The boundary relations inferred by an agent may not be complete: the agent does not necessarily know the location of each place with respect to each path. Nevertheless, the boundary relations inferred by the agent are useful to distinguish places otherwise not distinguishable by the topological maps as described so far (see Example 17).

6.1 Qualitative orientation of paths at a place

We extend the topological level in order to represent the relative orientation among paths that intersect at a given place. We use the predicates

```
totheLeftOf(p,pa,dir,pa1,dir1) , totheRightOf(p,pa,dir,pa1,dir1)
```

to represent the facts that (i) p is a place on both paths, $p a$ and $p a 1$, and (ii), when the agent is at place p facing on the direction dir of $p a$, after executing a turn left (right) action, the agent will be facing on the direction dirl of pal (see Figure 18).

The predicates totheLeftOf and totheRightOf are derived from the actions performed by the agent at a place:

```
{min totheRightOf, min totheLeftOf :
    [\langleds,turnRight,ds1\rangle\wedgeat (ds,p)^along (ds,pa,dir ) ^along (ds1, pa1,dir 1)]
            totheRightOf(p,pa,dir,pa1,dir1),
    [\langleds,turnLeft,ds1\rangle}\wedgeat(ds,p)\wedgealong(ds,pa,dir) ^along(ds1,pa1, dir 1)]
            totheLeftOf(p,pa,dir,pa1, dir 1).
}
```


6.2 Left and Right of a path

A path has associated two regions: the places to the left of the path and the places to the right of the path. We use the predicates leftOf(pa, dir, lr) and rightOf (pa, dir, rr)
to denote that region $l r(r r)$ is the left (right) region of path $p a$ with respect to the path's direction dir. The properties of these predicate are as follows:

$$
\begin{align*}
& \exists!l r\{l e f t O f(p a, \operatorname{dir}, l r)\}, \quad \exists!r r\{\text { right } O f(p a, \operatorname{dir}, r r)\} \tag{51}\\
& l e f t O f(p a, \operatorname{dir}, r) \equiv \operatorname{rightOf}(p a,-\operatorname{dir}, r) \tag{52}\\
& \{\text { min is_region : LeftOf }(p a, \operatorname{dir}, l r) \rightarrow \text { is_region }(l r)\} \tag{53}\\
& l e f t O f(p a, \operatorname{dir}, l r) \wedge l e f t O f(p a 1, \operatorname{dir} 1, l r) \rightarrow p a=p a 1 \tag{54}
\end{align*}
$$

Axiom 51 states the existence and uniqueness of a path's left/right regions. The domain of leftOf is restricted by Block 53 and Axiom 54. Since left/right regions of a path interchange when changing the path direction (Axiom 52), constraining the domain of leftOf imposes similar constraints on the domain of right $O f$.

We use the predicate in_region (\mathbf{p}, \mathbf{r}) to indicate that place p is in region r . The domain of in_region is constrained by Axiom 55. The properties of in_region are defined in Block 56. A path has associated three disjoint set of places: the places on the path, and the places to the left/right of the path (Axioms 58 and 59). Boundary relations are derived according to Axiom 60 and 61 (see Figure 18): (the symmetry between leftOf and rightOf defined by Axiom 52 let us write our axioms in terms of only one of these predicates.)

```
in_region( }p,r)->is_region(r)
{ min in_region :
    { in_region:
        on (pa,p)^leftOf(pa,dir,lr) -> \negin_region (p,lr),
        [leftOf(pa,dir,lr)^rightOf(pa,dir,rr)^
                                    in_region(p,lr)] -> ᄀin_region(p,rr),
        [totheRightOf(p1,pa,dir,pa1, dir 1)^order(pa1, dir 1, p1,p)^
            rightOf(pa,dir,rr)^\neg\mathbf{Ab}}\mathbf{(pa, p)] }->\mathrm{ in_region(p,rr),
        [totheLeftOf(p1, pa,dir, dir 1, pa1) ^order(pa1, dir 1, p1,p)^
            leftOf(pa,dir,lr)^\neg\mathbf{Ab}(\mathbf{pa,},\mathbf{p)] }->\mathrm{ in_region(p,lr)}
    }
}
```


Figure 18: Path $P a l$ is to the right of path $P a$ at place $p 1$. Place p is after place $p l$ on path $p a 1$. By default, we conclude that place p is to the right of path $p a$.

Block 56 defines the extent of the predicate in_region. The outer preference minimizes in_region, so its positive instances only reflect actual observations. Normally
boundary relations are false. This is the case since by default the agent does not know the location of a place with respect to a given path. The inner block 57 states under what conditions the agent can derive a boundary relation. For instance, according to Axiom 60, if at place $p l$ path pal is to the right of path $p a$, and place p is after $p l$ on path pal, then normally it is the case that p is on the right of $p a$ (see Figure 18). The predicate Ab inside block 57 is the auxiliary "abnormality" predicate associated with a NAT block (Appendix A). (See [Lifschitz, 1995] for a similar formalization of the standard example: objects normally do not fly; birds normally do.) Some sufficient conditions for when $A b$ is the case can be derived from Block 57 as follows.

Let left $O f^{\prime}$ and right $O f^{\prime}$ denote the following abbreviations:

$$
\begin{aligned}
l e f t O f^{\prime}(p, p a, \operatorname{dir}) & \equiv \exists l r\left\{\operatorname{leftOf}(p a, \operatorname{dir}, l r) \wedge \operatorname{in_ region}(p, l r)\right\}, \\
\text { right } O f^{\prime}(p, p a, \operatorname{dir}) & \equiv \exists r r\left\{\operatorname{right} O f\left(p a, \text { dir,rr)} \wedge \operatorname{in_ region~}(p, r r)\right\},\right.
\end{aligned}
$$

which allow us to implicitly refer to the left and right regions associated with a path (these abreviations make sense given Axiom 51). Axioms inside Block 57 can be rewritten as follows:

$$
\begin{aligned}
& \text { on }(p a, p) \rightarrow \neg l e f t O f^{\prime}(p, p a, \operatorname{dir}) \wedge \neg \operatorname{right} O f^{\prime}(p, p a, \operatorname{dir}), \\
& l e f t O f^{\prime}(p, p a, \operatorname{dir}) \rightarrow \neg \operatorname{rightOf^{\prime }}(p, p a, \operatorname{dir}), \\
& {[\text { totheRightOf }(p 1, p a, \operatorname{dir}, p a 1, \operatorname{dir} 1) \wedge \operatorname{order}(p a 1, \operatorname{dir} 1, p 1, p) \wedge} \\
& \left.\neg r i g h t O f^{\prime}(p, p a, \operatorname{dir})\right] \rightarrow \operatorname{Ab}(p a, p), \\
& {[\text { totheLeftOf }(p 1, p a, \operatorname{dir}, \operatorname{dir} 1, p a 1) \wedge \operatorname{order}(p a 1, \operatorname{dir} 1, p 1, p) \wedge} \\
& \left.\neg l e f t O f^{\prime}(p, p a, \operatorname{dir})\right] \rightarrow \operatorname{Ab}(p a, p) .
\end{aligned}
$$

Using this rewriting of Block 57, one can derive the following (among others) sufficient conditions to deduce $A b$:

$$
\begin{align*}
&\left.\begin{array}{c}
\text { on }(p a, p) \wedge[
\end{array}\right) \tag{62}\\
&\rightarrow \text { heRightOf }(p 1, p a, \operatorname{dir}, p a 1, \operatorname{dir} 1) \wedge \operatorname{order}(p a 1, \operatorname{dir} 1, p 1, p)] \\
& {[\text { totheRight } O f}(p 1, p a, \operatorname{dir}, p a 1, \operatorname{dir} 1) \wedge \operatorname{order}(p a 1, \operatorname{dir} 1, p 1, p) \wedge \tag{63}\\
& \text { totheLeftOf }(p 2, p a, \operatorname{dir}, p a 2, \operatorname{dir} 2) \wedge \operatorname{order}(p a 2, \operatorname{dir} 2, p 2, p)] \\
& \rightarrow A b(p a, p), \\
& {[\text { totheRight } O f}(p 1, p a, \operatorname{dir}, p a 1, \operatorname{dir} 1) \wedge \operatorname{order}(p a 1, \operatorname{dir} 1, p 1, p) \wedge \tag{64}\\
& \text { totheRightO }f(p 2, p a,-\operatorname{dir}, p a 2, \operatorname{dir} 2) \wedge \operatorname{order}(p a 2, \operatorname{dir} 2, p 2, p)] \\
& \rightarrow A b(p a, p) .
\end{align*}
$$

Conditions 62-64 show sufficient conditions for when $A b$ is the case, and consequently when the agent should not deduce boundary relations. (Condition 64 uses the symmetry between leftOff and right $O f^{\prime}$ defined by Axiom 52.) These conditions are in terms of predicates others than in_region, leftOf and right $O f$ whose extent is the purpose of Blocks 56 and 57.

6.3 Adding boundary relations to the topological map

We update the topological theory by including Axioms 50-61 inside the block AT_block (Section 5.2), and the new circumscription policy becomes

$$
\text { circ } \neg \text { in_region } \succ \text { tpath } \succ \text { tplace var newS } \overrightarrow{S H} H \text { pred }
$$

where newS $\overrightarrow{S H}$ pred stands for the tuple of predicates

$$
\begin{aligned}
& \text { < at, along, order, on, teq, turn_eq, travel_eq, } \\
& \text { totheRightOf, totheLeftOf, leftOf, rightOf, is_region } \\
& \text {). }
\end{aligned}
$$

The circumscription policy states that Axioms 60 and 61 should be used to draw conclusions even at the expense of having more paths or more places on the map. This is achieved by maximizing in_region over tpath in the circumscription policy. This policy also prevents the theory from preferring pathological tpaths and tplaces. By maximizing the extent of in_region at the expense of having possibly more paths or more places, boundary relations determine distinctions among environment states that could not be derived from the connectivity of places alone. The next example illustrates the case.

Example 17. Consider an agent visiting the different corners of a square room in the order suggested by Figure 19a. In addition, suppose the agent's sensory apparatus allows it to define views by characterizing the direction of walls and open space. Accordingly, the agent experiences four different views, $v l-v 4$, in this environment.

The agent's experiences, E, in this environment are:
$\operatorname{View}(d s 1, v 1)$, View $(d s 2, v 2)$, View $(d s 3, v 1)$, View $(d s 4, v 2)$, View $(d s 5, v 1)$,
$\langle d s 1$, turnRight,$d s 2\rangle,\langle d s 2$, travel,$d s 3\rangle,\langle d s 3$, turnRight,$d s 4\rangle,\langle d s 4$, travel, $d s 5\rangle$.

a

b

C

Figure 19: (a) Sequence of actions followed by an agent while navigating a square room. Starting at distinctive state ds1, distinctive states are visited in the order suggested by their number. (b) and (c) depict the resulting topological map without and using boundary regions, respectively.

Suppose that the agent does not use boundary regions when building the topological map. From $\langle d s 3$, turnRight, $d s 4\rangle$ and Axiom 39 we can deduce that $P a \neq P b$ in Figure 19b. Then the minimal topological model associated with E has two paths and two places. In this model, teq $(d s 1, d s 5)$ is the case. The environment looks perfectly symmetric to the agent (Figure 19b).!!

Suppose now that the agent relies on boundary regions. Let P, Q, R, be the topological places associated with $d 1, d 3$ and $d 5$ respectively. From Axiom 34, let $P a, P b$, $d i r_{a}$ and $d i r_{b}$ be such that

$$
\operatorname{order}\left(P a, d i r_{a}, P, Q\right), \operatorname{along}\left(d s 2, P a, d i r_{a}\right), \operatorname{along}\left(d s 3, P a, d i r_{a}\right),
$$

$$
\operatorname{order}\left(P b, \operatorname{dir}_{b}, Q, R\right), \text { along }\left(d s 4, P b, \operatorname{dir}_{b}\right), \operatorname{along}\left(d s 5, P b, \operatorname{dir}_{b}\right)
$$

are the case. From Block 50 we conclude that totheRight $O f\left(Q, P a, \operatorname{dir}_{a}, P b, d i r_{b}\right)$. In the proposed model, the extent of in_region is maximized by declaring $A b=$ false inside Block 57 and consequently (Axiom 60) in_region ($R, \operatorname{right}\left(P a, d i r_{a}\right)$) where $\operatorname{right}\left(P a, \operatorname{dir}_{a}\right)$ denotes the right region of $P a$ when facing dir_{a} (Axiom 51). Moreover, from Block 56 we deduce $\operatorname{in_ region~}(p, r) \equiv\left[p=R \wedge r=\operatorname{right}\left(P a, \operatorname{dir}_{a}\right)\right]$. Finally, from Axiom 58 we conclude $P \neq R$ since $o n(P a, P)$ is the case. The resulting topological map is depicted in Figure 19c.

Boundary relations are in general not enough to distinguish different environment states. This is the case when the agent has weak sensors, the environment is symmetric, or the agent's experiences are incomplete (see Example 19). The use of local metrical information could help on those cases although metrical uncertainty could render this extra information useless. We discuss this issues in the next section.

7 Using local metrical information

Action executions have associated metrical information representing the observed magnitude of the action. For instance, after traveling the agent may have an estimate of the distance between the "end places" of the travel action, and after turning, the agent may have an estimate of the angle turned. Different kind of metrical estimates could be associated with a travel or turn action. For example, the agent could measure the arc length associated with a travel action. In addition, it could measure the minimum distance to an object on the left and the right sides at each point along the trajectory associated with a travel action [Kuipers, 2000].

Action's executions local metrical information is integrated into frames of reference associated with topological objects:

- Each path has associated a one dimensional frame of reference which assigns a position to each place in the path.
- Each place has associated a radial frame of reference which assigns a heading (angle) to each path the place belongs to.
- Regions or places might have associated two dimensional frames of reference which assign real valued tuples to certain places. Local analog maps [Elfes, 1987, Borenstein and Koren, 1991, Thrun, 1998] can also be associated with places [Kuipers, 2000].

As positions and headings are derived from noisy data, there is uncertainty associated with their real values. Different representations for this uncertainty are possible: intervals, probability distribution functions, etc. As the agent repeatedly navigates among the same places and paths, new measure estimates are taken into account to update the uncertainty associated with positions and headings. In order to propagate uncertainty about the real value of positions and headings we use the compound and merge operations [Smith and Cheeseman, 1986]. These operations take different forms
depending on how one represents uncertainty as well as on the dimensionality of the variables' domains. In our current work we use intervals to represent uncertainty in position and headings, and the compound and merge operations correspond to add and intersect intervals, respectively. Nevertheless, the discussion in this section applies to other forms of representing uncertainty as long as the the compound and merge operations are provided for that representation.

We use the predicate action_execution(s, Int) to state that the interval Int represents an estimate of the metrical information about the execution of the action associated with schema s. We use the notation $\left\langle\mathbf{d s}\right.$, (type Int), $\left.\mathbf{d s}^{\prime}\right\rangle$, where type is travel or turn, as an abbreviation for the formula

$$
\exists s, a\left\{C S\left(s, d s, a, d s^{\prime}\right) \wedge \text { action_type }(a, \text { type }) \wedge \text { action_execution }(s, \text { Int })\right\} .
$$

How the estimates are to be interpreted depends on the type of action (turn or travel) the schema refers to. In the next sections we will describe how to do so.

7.1 One dimensional frames of reference

A path has associated a one dimensional frame of reference which assigns a location to each place on the path. This location is a real number, representing the "distance" with respect to an arbitrary but fixed place on the path. This real value represents a quantity whose magnitude is derived by the robot while navigating the environment. The units of this quantity can be meters, feet, or number of wheel rotations. Hereafter, we assume that all quantities are given in the same units.

The distance among places on a path are derived from estimates acquired when traveling among places on the path. These estimates have to be consistent so that positions can be associated with places. Next we formalize these ideas.

The position of a place on a path is represented by the predicate position1(path, place, position). Positions along a path are unique and only assigned to places belonging to the path:

$$
\begin{array}{r}
\text { position } 1(p a, p, p o s) \wedge \text { position } 1\left(p a, p, \text { pos }^{\prime}\right) \rightarrow \text { pos }=p o s^{\prime} \\
\text { position } 1(p a, p, \text { pos }) \rightarrow o n(p a, p) \tag{66}
\end{array}
$$

The distance between two places in a path is defined as the absolute value of the difference between their corresponding positions on the path. The predicate path_distance $(\mathbf{p a}, \mathbf{p}, \mathbf{q}, \mathbf{d})$ represents the fact that the distance between places p and q on path $p a$ is d. The predicate path_distance is defined as follows:

$$
\begin{align*}
& \text { path_distance }(p a, p, q, d) \equiv \tag{67}\\
& \quad \exists \operatorname{pos}_{p}, \operatorname{pos}_{q}\left\{\operatorname{position} 1\left(p a, p, \operatorname{pos}_{p}\right) \wedge \operatorname{position~} 1\left(p a, q, \operatorname{pos}_{q}\right) \wedge d=\left|\operatorname{pos}_{p}-\operatorname{pos}_{q}\right|\right\} .
\end{align*}
$$

Estimates of the distance between places on a path are gathered while the agent navigates the environment. The predicate path_distance $\approx\left(\mathbf{p a}, \mathbf{p}, \mathbf{q}, \mathbf{I}_{\mathbf{d}}\right)$ represents the fact that the closed interval I_{d} is an estimate of the distance between places p and q on path $p a$. Distance estimates are derived from experiences of the robot in
the environment. Distance estimates are "compounded" to derive new estimates from known ones. Formally,

```
{ min path_distance\approx:
    [\langleds, (travel I I ),ds'}\rangle\wedgeat(ds,p)\wedgeat(d\mp@subsup{s}{}{\prime},q)\wedgealong(ds,pa,dir)
            along(ds',pa,dir)] -> path_distance}\approx=(pa,p,q,\mp@subsup{I}{d}{})
    [order(pa,dir, p,q)^order (pa,dir,q,r)^ path_distance\approx (pa,p,q, Ipq)^
    path_distance}\approx=(pa,q,r,\mp@subsup{I}{qr}{})]->\mathrm{ path_distance }\approx(pa,p,r, Ipq + Iqr)
}
```

where the addition of intervals is defined in the usual way: $[a, b]+[c, d]=[a+c, b+d]$. Finally, distance estimates are "merged" in order to have the "best" estimate associated with a distance. The predicate path_distance ${ }^{\otimes}\left(p a, p, r, I_{d}\right)$ denotes the merging of distance estimates:

$$
\begin{equation*}
\text { path_distance }{ }^{\otimes}(p a, p, r, I) \equiv_{\text {def }} I=\cap\left\{I_{\text {est }}: \text { path_distance }{ }^{\approx}\left(p a, p, q, I_{e s t}\right)\right\} . \tag{70}
\end{equation*}
$$

The distance between places on a path must be compatible with all of its estimates. Formally,

$$
\begin{equation*}
\text { path_distance }{ }^{\otimes}\left(p a, p, q, I_{d}\right) \rightarrow \exists d \in I_{d} \text { path_distance }(p a, p, q, d) . \tag{71}
\end{equation*}
$$

When the agent has distance estimates available, path_distance ${ }^{\otimes}\left(p a, p, q, I_{d}\right)$ is always the case for some interval I_{d}. In a topological map $I_{d} \neq \emptyset$ (Axiom 71) and it should be possible to assign locations to places on a path as specified by Axiom 67. The actual values of positions are not that important (there could be many ways to satisfy the metrical constraints). Their main use is to rule out possible interpretations of the theory where such positions do not exist given Axiom 71

7.2 Radial frames of reference

Each place has a local frame of reference w.r.t. which path headings are associated. This information is represented by the predicate $\operatorname{radial}(\mathbf{p}, \mathbf{p a}, \operatorname{dir}, \mathbf{h})$ denoting the fact that when the agent is located at place p , path pa could be followed in direction dir by facing the heading h w.r.t. the radial frame of reference local to p . Headings take values in $[0,2 \pi)$. The formalization of radial frames of reference follows the same steps as for one dimensional frames of reference. Estimates of the angle between paths at a place are gathered from turn actions. Angle estimates are compounded and merged as we did for distances among places in a path. We use the predicates angle($\mathbf{p}, \mathbf{p a}, \operatorname{dir}, \mathbf{p a 1}, \operatorname{dir} 1$, ang) -ang is the angle the agent will have to turn to face path pal in direction dirl when it is at place p facing path $p a$ in direction dir-, angle $^{\approx} \approx\left(\mathbf{p}, \mathbf{p a}, \operatorname{dir}, \mathbf{p a 1}, \operatorname{dir} 1, \mathbf{I}_{\mathbf{a n g}}\right)-I_{a n g}$ is an estimate of the angle at place p between path pa in direction dir and path pal in direction dirl.

7.3 Two dimensional frames of reference

While radial and one dimensional frames of reference are associated with any place and path, respectively, there is not a general topological theory asserting when to create a two dimensional frame of reference, what places should be included in a such
frame of reference, or how to assign place locations consistent with the estimates of distances and angles gathered by the agent. Having a global frame of reference including all places in the map is usually inappropriate since the uncertainty associated with some places' locations in such a frame of reference may not allow the agent to draw useful conclusions. Instead, the agent can have multiple frames of reference as well as relations among the different frames of reference [McDermott and Davis, 1984, Kuipers, 2000]. As the agent explores the environment, new frames of reference are created when the current's location uncertainty with respect to the current frame of reference is larger than a given threshold [Moutarlier and Chatila, 1989, Engelson and McDermott, 1992].

The problem of assigning locations to places given some metrical constraints can be solved by borrowing methods from different fields. For example, estimation theory tells us how to estimate the true value of a given set of variables given noisy observations of the relations between those variables [Gelb, 1974, Smith and Cheeseman, 1986]. The robotics community has developed algorithms to solve a network of spatial relations [Durrant-Whyte, 1987, Durrant-Whyte, 1988a, Durrant-Whyte, 1988b, Moutarlier and Chatila, 1989]. Techniques from multidimensional scaling [Borg and Groenen, 1997] and nonlinear programming [Peressini et al., 1988] can also be used.

A topological map does not explicitly represent the distance or direction between two arbitrary places. In order to do so, distances between places on a path as well as the angles between paths at a place must be combined. We use the predicate location2 $(\mathbf{p}, \mathbf{q}, \mathbf{l})$ to indicate that the location of place q with respect to the two dimensional frame of reference associated with place p is l (a real valued pair). We do not restrict what places are assigned locations with respect to a given two dimensional frame of reference.

When restricted to environments with "straight" paths, it is possible to state when a two dimensional frame of reference is compatible with the actual experiences of the robot. The next axioms state this requirement:

$$
\begin{align*}
& \text { location } 2\left(p, p 1, l_{p 1}\right) \wedge \operatorname{location} 2\left(p, p 2, l_{p 2}\right) \wedge p a t h _d i s t a n c e^{\otimes}\left(p a, p 1, p 2, I_{d}\right) \\
& \quad \rightarrow\left|l_{p 1}-l_{p 2}\right| \in I_{d} \\
& \quad\left[\text { location } 2\left(p, p 1, l_{p 1}\right) \wedge \operatorname{location} 2\left(p, p 2, l_{p 2}\right) \wedge \operatorname{location} 2\left(p, p 3, l_{p 3}\right) \wedge\right. \tag{73}\\
& \left.\quad \operatorname{order}(p a, \operatorname{dir}, p 1, p 2) \wedge \operatorname{order}\left(p a^{\prime}, \operatorname{dir}^{\prime}, p 2, p 3\right) \wedge \operatorname{angle}^{\otimes}\left(p 2, p a, \operatorname{dir}, p a^{\prime}, \operatorname{dir}^{\prime}, I_{\text {ang }}\right)\right] \\
& \quad \rightarrow \text { angle }\left(-l_{p 2} \vec{l}_{p 1}, l_{p 2} \vec{l}_{p 3}\right) \in I_{a n g}
\end{align*}
$$

where $\operatorname{angle}(\vec{v}, \vec{w})$ denotes the angle in $[0,2 \pi)$ from vector \vec{v} to vector \vec{w}. When curved paths are possible, the predicate path_distance represents distance along the path, not straight-line distance between end point. To handle curved paths, we have to separate those two concepts, or have estimates of both types of "distances".

Axioms 72 and 73 assume that paths are straight. In order to deal with more general paths, one should include some parameters describing the shape of the path, or at least an estimate of the change in heading while traveling [Kuipers and Levitt, 1988, Musto et al., 1999]. For instance, in [Kuipers and Levitt, 1988] travel actions were represented as $\left\langle d s,(\right.$ travel dist $\left.\triangle \theta), d s^{\prime}\right\rangle$, where dist corresponds to the distance between the places associated with $d s$ and $d s^{\prime}$, and $\triangle \theta$ corresponds to the change of orientation
while traveling. However, there is not a statement of how this extra information is used or whether it suffices to describe appropriate metrical constraints for two dimensional frames of reference. While a more detailed account of the use of metrical information is desirable, including representing and reasoning about a path's shape, we have left this description outside the scope of this work.

Using different metrical estimation approaches requires a reworking of the axioms in this section. In such case, the compound and merge operations (Axioms 68 to 70) should be described differently. It is not difficult to define compound and merge operations for Gaussian representations of metrical uncertainty. More care will be required to update Axiom 71 which is used to refute inconsistent hypotheses, since no combination of Gaussians is logically inconsistent. A greater change will be needed in order to take into account the shape of paths when creating two dimensional frames of reference. Nevertheless, the presented axiomatization defines where in the theory the metrical information comes into place and suggests the type of axioms that need to be added.

7.4 Combining topological and metrical information

In this section we formally state what it means for the topological map to be consistent with a given set of frames of reference. In order to do so, given distinctive states $d s, d s_{1}, \ldots, d s_{n}$, we introduce the notation $\left\langle\mathbf{d s}: \mathbf{d s}_{\mathbf{1}}, \ldots, \mathbf{d s}_{\mathbf{n}}\right\rangle$ to state that the places associated with the different $d s_{i}$ have a location in the two dimensional frame of reference associated with $d s$'s place,

Definition 3. Let $d s, d s_{1}, \ldots, d s_{n}$ be a set of distinctive states. By definition,

$$
\begin{align*}
& \left\langle d s: d s_{1}, \ldots, d s_{n}\right\rangle \equiv_{d e f} \tag{74}\\
& \exists p\left\{a t(d s, p) \wedge \bigwedge_{i=1}^{n} \exists p_{i}, l_{i}\left[a t\left(d s_{i}, p_{i}\right) \wedge \operatorname{location} 2\left(p, p_{i}, l_{i}\right)\right]\right\}
\end{align*}
$$

\{end of definition\}
By 2D_Frames we denote the formula specifying any two dimensional frames of reference used by the agent. Without loss of generality, we require two dimensional frames of reference to be specified as in Definition 74. We require any model of the SSH to have only the two dimensional frames of reference specified in 2D_Frames. In addition, the places belonging to a frame of reference should be only those explicitly stated in 74. These last two requirements can be stated as follows:

$$
\begin{equation*}
\left\{\text { min location } 2: 2 D _F r a m e s ~\right\} \tag{75}
\end{equation*}
$$

The topological theory includes local metrical information by adding Axioms 65 to 75 inside the block AT_block (Block 20). The priority of predicates in the circumscription policy associated with $A T$ _block remains the same. The predicates varied in the circumscription policy now include those predicates use to describe metrical information: radial, position1, position2, path_distance, path_distance \approx, path_distance ${ }^{\otimes}$, angle, angle τ^{\approx} and angle ${ }^{\otimes}$.

Figure 20: (a) The robot goes around the block visiting distinctive states $d s 1$ to $d s 11$ in the order suggested by the figure. Distinctive state $d s 11$ is observed at the same environment state as $d s 4$. Assume distinctive states $d s 1$ and $d s 4$ look alike to the agent. (b) and (c) represent two possible topological maps for the environment in (a) (see Example 13). The model in (c) can be discarded as it is not consistent with the available metrical information. (d) With $\pm 10^{\circ}$ noise associated with turn actions, the agent cannot use metrical information to discard the environment depicted in (c).

The next examples illustrate how metrical information is used to disambiguate the topological map.

Example 18. Consider Example 13 where two topological maps are consistent with the agent's experiences (see Figure 20). Suppose that "perfect" metrical information is available to the agent.

How does the agent figure out that it is back to $d s 4$ rather than to $d s 1$?. As claimed in Example 13 both options $t e q(d s 4, d s 11)$ and $t e q(d s 1, d s 11)$ are topologically possible (Figures 20b,c). However, given the metrical information above, only the assumption $\operatorname{teq}(d s 4, d s 11)$ is a consistent one. To deduce this fact, the agent includes the frame of reference $\langle d s 4: d s 1, \ldots, d s 11\rangle$ in E, which renders impossible $t e q(d s 4, d s 11)$.

Should the metrical information have been less precise, the agent might not benefit from this extra metrical information. For example, suppose that instead of sharp 90° turn angles, there exists $\mathrm{a} \pm 10^{\circ}$ uncertainty associated with the turn actions above (i.e. consider replacing $\left\langle d s 1,\left(\right.\right.$ turn $\left.\left.-90^{\circ}\right), d s 2\right\rangle$ by $\left\langle d s 1,\left(\right.\right.$ turn $\left.\left.\left[-110^{\circ},-80^{\circ}\right], d s 2\right\rangle\right) .{ }^{8}$ In this case the agent cannot use metrical information to deduce that it is back to $d s 4$ and it will have two topological maps consistent with its information.

The example above may suggest that metrical information is used to check whether an already built topological map is consistent with metrical information. However, by including Axioms 65-75 inside AT_block, metrical information is used while building the topological map. As the next example illustrates, this may imply that the agent identifies more places than it does when not using metrical information.

Example 19. Consider an agent visiting the different corners of a square room in the order suggested by Figure 21a. In addition, suppose the agent's sensory apparatus allows it to define views by characterizing the direction of walls and open space so that all corners look alike to the agent (see Example 17). Suppose the agent has access to perfect metrical information and uses it while building the metrical map.

[^5]

Figure 21: (a) The agent visits distinctive states $d s 1$ to $d s 7$ by the order suggested in the figure. Suppose all corners look alike to the agent. In particular, $d s 1$ and $d s 7$ share the same view. (b) Topological map associated with (a) when metrical information is not available. (c) Topological map associated with (a) when metrical information is available. In this case, the places associated with $d s 1$ and $d s 7$ are different $(P \neq S)$.

In order to decide whether the agent is back to $d s 1$, the frame $\langle d s 1: d s 1, \ldots, d s 7\rangle$ is created. Given the available metrical estimates it is not possible to have $t e q(d s 1, d s 7)$ while satisfying the metrical constraints. Consequently, the topological map will have four places instead of three, as illustrated in Figure 21c.

While in the examples above all visited distinctive states were included in a two dimensional frame of reference, this is in general not the case. In the presence of metrical uncertainty, a global frame of reference may not provide useful information to determine whether two places are the same, or to estimate the distance between two arbitrary places.

8 Algorithms

In this section we present an algorithm for calculating the topological maps associated with a set of experience E. The models associated with the causal theory (Section 4) can be calculated as the answer sets [Gelfond and Lifschitz, 1991] of a logic program. This logic program is implemented in Smodels [Niemelä and Simons, 1997] as illustrated in [Remolina and Kuipers, 2001]. It is possible to calculate the topological maps by a similar logic program. However, the number of grounding rules associated with such a program turns out to be prohibitive for practical applications.

The algorithm for calculating topological maps (the models of $T T(E)$) is stated as a "best first" search. A search state is implemented by a partial model, pmodel. A partial model of $T T(E)$ is a model of $T T\left(E^{\prime}\right)$, for some $E^{\prime} \subseteq E$ (Section 8.1). Branches in the search are represented by creating extensions for the current search state (pmodel). That pmodel' is an extension of pmodel implies that pmodel' inherits from pmodel all known objects and facts.

At each step of the search a schema $\left\langle d s, a, d s^{\prime}\right\rangle$ has to be explained. Either the identity of $d s^{\prime}$ can be proved or a search branch is created for every previously known distinctive state $d s_{i}^{\prime}$ that cannot be proven to be different from $d s^{\prime}$. The identity of the schema's context (i.e. $d s$ in $\left\langle d s, a, d s^{\prime}\right\rangle$) is known at each step in the search.

In the branch where $t e q\left(d s_{i}^{\prime}, d s^{\prime}\right)$ is the case, $\neg t e q\left(d s_{j}^{\prime}, d s^{\prime}\right), i \neq j$ are also asserted. An additional branch is created where $\neg t e q\left(d s^{\prime}, d s_{j}^{\prime}\right)$ are asserted. This branch
represents the possibility that $d s^{\prime}$ is indeed different from previously known dstates. The next state to explore is the one that is minimal according to the order associated with the circumscription policy for $T T(E)$. This search algorithm is described in Figures 22 and 23.

```
Find-Models (S)
\(\{\)
    ; \(\mathrm{S}=s_{0}, \ldots, s_{n} ;\) sequence of schemas such that \(\operatorname{result}\left(s_{i}\right)=\operatorname{context}\left(s_{i+1}\right)\)
    queue \(=\emptyset ; \quad\) models \(=\emptyset\);
    pmodel \(=\) create-new-pmodel(S); insert(pmodel,queue);
    while queue \(\neq \emptyset\) do
        begin
            pmodel \(=\) get-next-pmodel(queue);
            \(\mathrm{s}=\) get-next-schema(pmodel);
        Explain(pmodel,s) ;
        if (inconsistent(pmodel) \(\vee\) has-extensions(pmodel)) then skip;
        else if total-model(pmodel) then insert(pmodel, models);
        else insert(pmodel,queue);
        end
    return models;
\}
```

Figure 22: Best first search algorithm used to calculate the models of TT(E). The queue contains consistent partial models (pmodels) to be expanded. At each step of the search, a minimal partial model is picked and the next schema from its list of associated schemas is explained. A pmodel has extensions when a branch has been created while explaining a schema. A pmodel is a total-model when it has no more schemas to explain. Figure 23 defines how a pmodel explains a schema and when extensions are created.

The three key steps in the search are (Figure 23): creating a set of possible candidates to branch (possible-equal-dstates), generating a set of extensions when needed (create-possible-extensions), and explaining a schema in a given partial model (assertschema). Another important issue is to detect when a partial model becomes inconsistent. We use the predicate inconsistent(pmodel) to denote this fact and the rules

$$
\begin{aligned}
& x \stackrel{\text { pmodel }}{=} y \wedge x \stackrel{\text { pmodel }}{\neq} y \rightarrow \text { inconsistent }(\text { pmodel }) \\
& \text { teq }(x, y) \in \text { pmodel } \wedge \neg \text { teq }(x, y) \in \text { pmodel } \rightarrow \text { inconsistent }(p m o d e l) .
\end{aligned}
$$

In the next sections we will show how to rewrite the axioms in the topological theory so they can be fed to a theorem prover to deduce equality and inequality relations. We use the rule-based system Algernon [Crawford and Kuipers, 1991] as our theorem prover. In Section 8.2 we present an illustrative trace of the algorithm.

8.1 Implementation

Our logic for partial models takes the basic ideas developed in the area of formal reasoning about contexts [McCarthy and Buvač, 1998]. In addition to a list of schemas to

```
Explain (pmodel, s)
\(\left\{\because ; \mathrm{s}\right.\) is a schema \(\left\langle d s, a, d s^{\prime}\right\rangle\)
    candidates \(=\{ \}\);
    if known-result(pmodel,s)
    then Assert-schema(pmodel,s);
    else begin
        candidates \(=\) possible-equal-dstates \((\) pmodel,s \()\);
        if candidates \(\neq\{ \}\)
            then create-possible-extensions(pmodel,s,candidates)
            else Assert-schema(pmodel,s)
        end
\}
Known-result(pmodel, s)
\(\left\{; ; \mathrm{s}\right.\) is a schema \(\left\langle d s, a, d s^{\prime}\right\rangle\)
    ;; The notation obj \(\in\) pmodel indicates that object obj is
    ;; known in the partial model pmodel.
    return \(d s^{\prime} \in\) pmodel \(\vee \exists d s^{*}, d s^{\prime *} \in \operatorname{pmodel}\left[\left\langle d s^{*}, a, d s^{\prime *}\right\rangle \in p m o d e l \wedge t e q\left(d s^{*}, d s\right)\right] ;\)
\}
Assert-schema (pmodel, s)
\(\left\{; ; \mathrm{s}\right.\) is a schema \(\left\langle d s, a, d s^{\prime}\right\rangle . d s\) is known in pmodel
        assert \(s \in\) pmodel;
        if \(\neg\) known-result(pmodel,s)
        then begin
            assert \(d s^{\prime} \in\) pmodel;
            Create places and paths needed to explain \(s\).
    end
    else begin
            pick \(d s^{* *}\) s.t. \(\exists d s^{*} \in \operatorname{pmodel}\left[\operatorname{teq}\left(d s^{*}, d s\right) \wedge\left\langle d s^{*}, a, d s^{*}\right\rangle \in\right.\) pmodel \(] ;\)
            assert \(d s^{\prime} \stackrel{p \text { model }}{=} d s^{*}\) in pmodel;
    end
\}
```

Figure 23: Explaining a schema. known-result(pmodel, $\left.s=\left\langle d s, a, d s^{\prime}\right\rangle\right)$ is the case when the equality class for $d s^{\prime}$ can be deduced in the partial model pmodel. Possible-equal-dstates(cntx,s) returns dstates known in pmodel, having the same view as $d s^{\prime}$ and that cannot be proven different from $d s^{\prime}$ in pmodel. For each $d s^{\prime \prime} \in$ candidates, create-possible-extensions(pmodel,s,candidates) creates an extension of pmodel where $t e q\left(d s^{\prime}, d s^{\prime \prime}\right)$ is the case. If the identity of $d s^{\prime}$ can be established, then s is asserted in pmodel. This declares $d s^{\prime}$ to be known in pmodel and creates the places and paths that explain s according to the axioms of the topological theory $T T(E)$.
explain, a partial model has associated a set of objects (i.e. distinctive states, schemas, places, paths) that are known in the model. The basic relation among pmodels is the one of extensions. That pmodel ${ }^{\prime}$ is an extension of pmodel implies that all known objects and facts in pmodel are known objects and facts in pmodel' (i.e. pmodel' inherits from pmodel all known objects and facts). This inheritance property of extensions can be implemented in Algernon by rules like the next one:

$$
\text { at }(d s, \text { place }, p m o d e l) \wedge \text { extension }(\text { pmodel }, \text { pmodel } 1) \rightarrow a t(d s, \text { place }, \text { pmodel } 1)
$$

Create candidates. Possible-equal-dstates(pmodel, $s=\left\langle d s, a, d s^{\prime}\right\rangle$) returns a list of states that are possible equal to $d s^{\prime}$. These are dstates known in pmodel, having the same view as $d s^{\prime}$ and that cannot be proven different from $d s^{\prime}$ in pmodel. Given s, we filter out $d s^{\prime \prime}$ as equal to $d s^{\prime}$ using rules including:

$$
\begin{align*}
& s=\left\langle d s, \text { turn }, d s^{\prime}\right\rangle \wedge a t(d s, p) \wedge a t\left(d s^{\prime \prime}, q\right) \wedge p \neq q \rightarrow \neg \operatorname{teq}\left(d s^{\prime}, d s^{\prime \prime}\right) \tag{76}\\
& {\left[s=\left\langle d s, \text { travel }, d s^{\prime}\right\rangle \wedge \text { along }(d s, p a, \operatorname{dir}) \wedge \operatorname{along}\left(d s^{\prime \prime}, p a 1, \operatorname{dir} 1\right) \wedge\right.} \\
& \quad \neg[p a=p a 1 \wedge \operatorname{dir}=\operatorname{dir} 1]] \rightarrow \neg \operatorname{teq}\left(d s^{\prime}, d s^{\prime \prime}\right) \\
& {\left[s=\left\langle d s, \operatorname{travel}, d s^{\prime}\right\rangle \wedge a \operatorname{long}(d s, p a, \operatorname{dir}) \wedge a t(d s, p) \wedge a t\left(d s^{\prime \prime}, q\right) \wedge\right.} \\
& \quad \quad \text { order }(p a, \operatorname{dir}, q, p)] \rightarrow \neg \operatorname{teq}\left(d s^{\prime}, d s^{\prime \prime}\right)
\end{align*}
$$

The rules above are derived from the axioms in our theory. For instance, rule 76 is derived from the fact that each distinctive state is at a unique place, and distinctive states that are related by turn actions are at the same place. In the implementation, all the topological predicates have a last extra argument for a pmodel. For instance, instead of writing $a t(d s, p)$ we write $a t(d s, p, p m o d e l)$. at $(d s, p, p m o d e l)$ is the case when $a t(d s, p)$ is true in the partial model pmodel (i.e. pmodel $\models a t(d s, p)$).

Equality relations among topological objects (i.e. dstates, places, paths) are proved using rules derived by rewriting topological axioms. These rules include:

$$
\begin{align*}
& \operatorname{view}\left(d s_{1}, v_{1}\right) \wedge \operatorname{view}\left(d s_{2}, v_{2}\right) \wedge v_{1} \neq v_{2} \rightarrow \neg \operatorname{teq}\left(d s_{1}, d s_{2}\right) \tag{77}\\
& \left\langle d s, \operatorname{turn}, d s^{\prime}\right\rangle \rightarrow \neg \operatorname{teq}\left(d s, d s^{\prime}\right) \tag{78}\\
& \operatorname{order}(p a, \operatorname{dir}, p, q) \rightarrow p \neq q \tag{79}\\
& \operatorname{radial}(p, d s 1, h 1) \wedge \operatorname{radial}(p, \operatorname{ds} 2, h 2) \wedge h 1 \neq h 2 \rightarrow d s 1 \neq d s 2 \tag{80}\\
& \operatorname{position} 1(p a, \operatorname{dir}, p 1, \operatorname{pos} 1) \wedge \operatorname{position} 1(p a, \operatorname{dir}, p 2, \operatorname{pos} 2) \wedge \operatorname{pos} 1 \neq p o s 2 \rightarrow p 1 \neq p 2 \tag{81}\\
& \operatorname{leftO}(p a, \operatorname{dir}, p) \wedge \operatorname{on}(p a, q) \rightarrow p \neq q \tag{82}\\
& \operatorname{leftO}(p a, \operatorname{dir}, p) \wedge \operatorname{on}(p a 1, p) \rightarrow p a \neq p a 1 \tag{83}\\
& \operatorname{at}(d s, p) \wedge \operatorname{at}(d s, q) \rightarrow p=q \tag{84}\\
& \operatorname{along}(d s, p a, \operatorname{dir}) \wedge \operatorname{along}(d s, p a 1, \operatorname{dir} 1) \rightarrow p a=p a 1 \wedge \operatorname{dir}=\operatorname{dir} 1 \tag{85}
\end{align*}
$$

Rules 77 and 78 rely on the fact that dstates have a unique view and turn actions link different distinctive states (Axioms 22 and 39). Rule 79 uses the fact that paths are not circular in order to conclude that if p is before q then p and q must be different (Axiom 44). Rules 80 and 81 use radial and one dimensional frames of reference to conclude inequality of dstates and places, respectively (Axiom 65). Rules 82 and 83 use boundary relations in order to distinguish places and paths respectively (Axiom
58). ${ }^{9}$ Rules 84 and 85 state that each distinctive state is at a unique place, along a unique path direction (Axioms 29 and 37).

Assert schema. Assert-schema(pmodel, s) creates the places and paths needed to explain s. Instead of asserting $s=\left\langle d s, a, d s^{\prime}\right\rangle$ in pmodel, the algorithm asserts $s^{*}=\left\langle d s^{*}, a, d s^{\prime *}\right\rangle$ where $d s^{*}$ and $d s^{* *}$ are the representatives in pmodel for the teq equivalence classes of $d s$ and $d s^{\prime}$. Asserting a schema in Algernon corresponds to creating the frame (object) representing the schema. Forward and backward chaining rules derived from the topological theory are then evaluated, and places and paths needed to explain s are created.

8.2 Trace example

Figure 24: (a) Numbers identify the dstates created by the map building algorithm. Views associated with dstates are also shown. Dstates 1 and 9 are at the same environment location. (b) Places and dpaths created by the map building algorithm. Notice that $P 1$ and $P 5$ are two names for the same place.

We illustrate the topological map building algorithm with the environment of Figure 24a. Distinctive states are visited in the order suggested by the figure. Distinctive state 9 is at the same environment location as dstate 1 . However, two topological map are possible: either the agent is back to dstate 1 or dstate 0 (this is Example 13). After traveling from dstate 9 to dstate 10, only one topological map is possible (Figure 24b). Figure 25 illustrates the use of the topological rules to distinguish distinctive states that share the same view. Figure 26 shows when branches in the search are created and how they can be refuted as more information becomes available to the agent. ${ }^{10}$

[^6]

Figure 25: (a) When the agent reaches dstate 4 , the same view $v 1$ has been observed at dstate 2 . Since dstate 2 is along dpath- 0 and dstate 4 will be along dpath- 1 (the agent just traveled from dstate 3 along dpath-1), dstate 4 and 2 are proven different. Dpaths 0 and 1 are different since there is a turnRight action relating them (Axiom 39). Place $P 3$ is created to be the place dstate 4 is at (Axiom 29). Place $P 3$ is proven different from place $P 2$ since $P 2$ is before $P 3$ along dpath-1 (Corollary 1). Consequently, dstates 5 and 3 are proven different.
There are however two possible models depending whether $P 3$ is to the right or not of dpath- 0 . Our boundary regions circumscription policy (Section 6.3) prefers PMODEL-0 in which P3 is to the right of dpath-0 over PMODEL-001 in which no boundary relations exist. In this example, the search will never explore further the branch associated with PMODEL-001 because the branch associated with PMODEL-0 leads to a consistent map for the given experiences.
(b) The agent travels to dstate 6 along dpath-2. Because $P 3$ is to the right of dpath- 0 , dpath-2 cannot be the same as dpath-0, which makes PMODEL-1 and PMODEL-2 inconsistent. The only remaining (and hence minimal) model is PMODEL-0, in which dstate 6 is different from dstates 0 and 1 .

Figure 26: By the time the agent reaches dstate 8 , six places (not five) are part of the map. Places $P 5$ and $P 1$ are not equal since the dstates are these places are not yet turn related (Axiom 30). Turning from dstate 8 to 9 leaves the agent with the three possibilities: (pmodel-3) dstates 9 and 1 are equal (and so $P 1=P 5$, or (pmodel-4) dstates 9 and 0 are equal (and so $P 0=P 1$), or (pmodel-6) dstate 9 is a new different dstate. That dstates 9 and 6 are different follows from the fact that places $P 4$ and $P 5$ are different. Pmodels 3 and 4 are minimal according to the topological theory circumscription policy. Pmodel-6 is not, but is left as a possible state in the search should new information render the other models inconsistent. The new schema $\langle 9, M L, 10\rangle$ will render pmodel-4 inconsistent. Since actions are deterministic and dstates 0 and 9 are equal in this model, so should dstates 1 and 10 . However, these dstates have different views so they cannot be equal. Pmodel- 3 will then be the only map associated with the set of experiences.

9 Conclusions

What have we accomplished?. We have taken an informal description of the theory of topological maps and provided a formal account of the theory. In addition, we have extended the theory to handle perceptual aliasing, to describe environments with self intersecting and convergent paths, and to deal with local metrical information including uncertainty. The topological theory is independent of the agent's exploration strategy and of the algorithms used to build topological maps. We have taken the theory as a specification for a program able to keep track of different topological maps consistent with the agent's experiences in the environment. This program supports different exploration strategies as well as facilitates map disambiguation when the case arises.

A logical account of the causal, topological and local metrical theories was given using Nested Abnormality Theories. The minimality conditions embedded in the formalization define the preferred models associated with the theories. In Sections 4 through 7 we illustrated the main properties of the theories. In particular we showed how the minimal models associated with these theories are adequate models for the spatial knowledge an agent has about its environment. We also demonstrated how the causal, topological, and local metrical levels of the representation assume different spatial properties of the actions performed by the agent. This provides an increasingly refined ability to infer or refute equality relations (ceq and teq) among experienced environment states. By clarifying the ontology of causal and topological maps, and determining the dependency structure of the non-monotonic theory, we provide a solid foundation for general-purpose strategies for exploring unknown environments, or for disambiguating cases of perceptual aliasing.

The circumscription priority ordering embedded in the theory is a result of our research, as we experimented with various orders to determine which ordering defined models that corresponded to what is intuitively the "correct map" of the environment. Because we have no formal definition of what the correct map is, it is impossible to prove mathematically that the circumscription priority ordering is the correct one. Possibly future research can provide such a formal definition, but the difficulties arise from handling partial experience in the environment, or highly symmetrical environments with a great deal of perceptual aliasing.

How useful is this theory? This work defines topological maps independently of the algorithms used to create such maps. The theory is general in that it covers the major ideas in the field of spatial representation using topological maps. The theory is useful in that it specifies the minimal set of objects and relationships any topological map building implementation should have. Although our theory covers most of the known ideas about topological maps, it is not just a union of previous work in a common framework. The theory defines different spatial ontologies (causal, topological, metrical), illustrates what spatial knowledge is captured by each ontology, and then shows the relationships among these ontologies. The theory shows how the combined spatial knowledge associated with the different ontologies results in a different "map" from the one associated with each independent ontology.

The axiomatic theory has practical value. It has been used to build cognitive maps by both physical and simulated robots. [Remolina, 2001, Kuipers and Beeson, 2002, Kuipers et al., 2003] explicitly use the axiomatic theory described in this paper as well
as the implemented algorithms in order to build topological maps. [Remolina, 2001] shows how a wheelchair robot builds the topological map of a building's floor. The major focus of this work was on testing the applicability and correctness of the axioms and algorithms here described.

In [Kuipers and Beeson, 2002] topological maps are built as a mean to disambiguate distinctive states with the same view. The map provides an unambiguous assignment of distinctive states to views, which can then used by the robot to "refine its views" so that it is possible to distinguish distinctive states from sensory information alone. "Lassie (the robot)... collected 240 images from 20 distinctive states. The topological map linking them contained seven places and four paths... By building the causal and topological map the robot is able to disambiguate all twenty distinctive states, even though there are only ten different views..." [Kuipers and Beeson, 2002].

Finally, Figure 9 in [Kuipers et al., 2003] describes experimental results where a simulated agent builds a topological map and learns boundary relations for gridlike environments. This work presents a computational hypothesis that describes how the "skeleton" of major paths emerges from the interaction of three factors: "(i) the topological map is represented as a bipartite graph of places and paths, where a path is a one-dimensional ordered set of places, (ii) a traveler incrementally accumulates topological relationships, including the relation of a place to a path serving as a dividing boundary separating two regions; and (iii) the wayfinding algorithm prefers paths rich in boundary relations so they are likely to acquire more boundary relations. This positive-feedback loop leads to an oligarchy of paths rich in boundary relations (i.e. the skeleton in the cognitive map)" [Kuipers et al., 2003].

Acknowledgments

We are grateful to Vladimir Lifschitz for his valuable feedback during this work. We also thanks the anonymous referees for their helpful questions and suggestions.

A Nested Abnormality theories

In this appendix we define circumscription and nested abnormalities theories following [Lifschitz, 1994, Lifschitz, 1995]. The main idea of circumscription is to consider, instead of arbitrary models of an axiom set, only the models that satisfy a certain minimality condition (usually set inclusion).

Definition 4. [Circumscription] Let $A\left(P, Z_{1}, \ldots, Z_{m}\right)$ be a sentence containing a predicate constant P and object, function and/or predicate constants Z_{1}, \ldots, Z_{m} (and possibly other object, function and predicate constants). The circumscription of P in A with varied Z_{1}, \ldots, Z_{m} is the sentence

$$
\begin{equation*}
A\left(P, Z_{1}, \ldots, Z_{m}\right) \wedge \neg \exists p, z_{1}, \ldots, z_{m}\left[A\left(p, z_{1}, \ldots, z_{m}\right) \wedge p<P\right] \tag{86}
\end{equation*}
$$

where $p<P$ denotes the formula

$$
\forall x\{p(x) \rightarrow P(x)\} \wedge \exists x\{\neg p(x) \wedge P(x)\}
$$

We denote Formula 86 by $C I R C[A ; P ; Z]$. \{end of definition $\}$
Intuitively, the models of $C \operatorname{IRC}[A ; P ; Z]$ are the models of A in which the extent of P cannot be smaller without losing the property A, even at the price of changing the interpretations of the constants Z.

It is often convenient to arrange different defaults by assigning priorities to them. Next we define two extensions to the basic definition of circumscription: parallel and prioritized circumscription.

Definition 5. [Parallel Circumscription] The parallel circumscription

$$
C I R C\left[A ; P^{1}, \ldots, P^{n} ; Z\right]
$$

is the sentence $A(P, Z) \wedge \neg \exists p, z[A(p, z) \wedge p \prec P]$, where P stands for the tuple of predicates P^{1}, \ldots, P^{n} and $p \prec P$ stands for the formula $\forall 1 \leq i \leq n p^{i} \leq P^{i} \wedge \exists 1 \leq$ $i \leq n p^{i}<P^{i} .\{$ end of definition $\}$

Definition 6. [Prioritized Circumscription] The prioritized circumscription

$$
C I R C\left[A ; P^{1} \succ \ldots \succ P^{n} ; Z\right]
$$

is the sentence $A(P, Z) \wedge \neg \exists p, z[A(p, z) \wedge p \prec P]$, where P stands for the tuple of predicates P^{1}, \ldots, P^{n} and $p \prec P$ stands for the formula

$$
\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{i-1}\left(p^{j}=P^{j}\right) \wedge\left(p^{i}<P^{i}\right)\right)
$$

\{end of definition\}

The formula $p \prec P$ defines a lexicographic order among the predicates in p and P. Proposition 15 in [Lifschitz, 1994] shows that prioritized circumscription can be reduced to parallel circumscription as follows:

Theorem 5 The circumscription $C \operatorname{IRC}\left[A ; P^{1} \succ \ldots \succ P^{n} ; Z\right]$ is equivalent to

$$
\bigwedge_{i=1}^{n} C I R C\left[A ; P^{i} ; P^{i+1}, \ldots, P^{n}, Z\right]
$$

Notation 1. $C I R C\left[A ; P^{1} \succ \ldots \neg P_{i} \ldots \succ P^{n} ; Z\right]$ stands for the formula

$$
C I R C\left[A \wedge n_{n} t_{-} P_{i} \equiv \neg P_{i} ; P^{1} \succ \ldots \operatorname{not}_{-} P_{i} \ldots \succ P^{n} ; Z, P_{i}\right]
$$

where not $_{-} P_{i}$ is a new constant predicate not occurring in A. \{end of notation $\}$

A. 1 Nested Abnormality theories (NAT's)

Nested abnormality theories allows one to apply the circumscription operator to a subset of axioms, by structuring the knowledge base (the theory) into blocks. Each block can be viewed as a group of axioms that describes a certain collection of predicates and functions, and the nesting of blocks reflects the dependence of these descriptions on each other.

Definition 7. [NAT's] Consider a second-order language L that does not include $A b$ among its symbols. For every natural number k, by L_{k} we denote the language obtained from L by adding $A b$ as a k-ary predicate constant. Blocks are defined recursively as follows: For any k and any list of function and/or predicate constants C_{1}, \ldots, C_{m} of L, if each of A_{1}, \ldots, A_{n} is a formula of L_{k} or a block, then $\left\{C_{1}, \ldots, C_{m}: A_{1}, \ldots, A_{n}\right\}$ is a block. The last expression reads: C_{1}, \ldots, C_{m} are such that A_{1}, \ldots, A_{n}. About C_{1}, \ldots, C_{m} we say that they are described by this block.

The semantics of NAT's is characterized by a map φ that translates blocks into sentences of L. It is convenient to make φ defined also on formulas of the languages L_{k}. If A is such a formula, then $\varphi(A)$ stands for the universal closure of A. For blocks we define, recursively:
$\varphi\left\{C_{1}, \ldots, C_{m}: A_{1}, \ldots, A_{n}\right\}=\exists a b \operatorname{CIRC}\left[\varphi A_{1}, \ldots, \varphi A_{n}: a b: C_{1}, \ldots, C_{m}\right]$.
\{end of definition\}
Most often, it is desirable not to mention the predicate $A b$ at all. We will adopt the following notations:

- $\left\{C_{1}, \ldots, C_{m}, \min P: A_{1}, \ldots, A_{n}\right\}$ stands for

$$
\left\{C_{1}, \ldots, C_{m}, P: P(x) \rightarrow A b(x), A_{1}, \ldots, A_{n}\right\}
$$

- $\left\{C_{1}, \ldots, C_{m}, \max P: A_{1}, \ldots, A_{n}\right\}$ stands for

$$
\left\{C_{1}, \ldots, C_{m}, P: \neg A b(x) \rightarrow P(x), A_{1}, \ldots, A_{n}\right\}
$$

Definition 8. We extend the definition of blocks as follows: if A is a block, so is $C I R C\left[A ; P^{1} \succ \ldots \succ P^{n} ; Z\right]$. The semantics of NATs is extended such that

$$
\phi C I R C\left[A ; P^{1} \succ \ldots \succ P^{n} ; Z\right]=C I R C\left[\phi A ; P^{1} \succ \ldots \succ P^{n} ; Z\right]
$$

\{end of definition $\}$
As the next theorem shows, in some cases prioritized circumscription can be expressed using NAT's. In these cases however, the notation for prioritized circumscription is more compact than its equivalent NAT's. This motivates our previous definition.

Theorem 6 Let A be a sentence such that $A b$ does not occur in A. Then,

$$
C I R C[A ; P \succ Q ; Z]=\{Z, \min Q:\{Z, Q, \min P: A\}\}
$$

B ceq properties

In this appendix we provide proofs for the different properties of the predicated ceq defined in Section 4.
Theorem 1. Let E be a complete set of experiences and let CEQ_block be defined as follows:

```
{ max ceq:
    ceq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})->\operatorname{View}(d\mp@subsup{s}{1}{},v)\equiv\operatorname{View}(d\mp@subsup{s}{2}{},v),
    ceq(d\mp@subsup{s}{1}{},d\mp@subsup{s}{2}{})\wedge\langled\mp@subsup{s}{1}{},a,d\mp@subsup{s}{1}{\prime}\rangle\wedge\langled\mp@subsup{s}{2}{},a,d\mp@subsup{s}{2}{\prime}\rangle->ceq(d\mp@subsup{s}{1}{\prime},d\mp@subsup{s}{2}{\prime})
}
```

Then the predicate $c e q$ is an equivalence relation.
Proof. Let M_{1} be a model for the axioms inside the CEQ_block as well as the other axioms of $C T(E)$. Let M_{2} be a structure identical to M_{1} except that

$$
c e q^{M_{2}}\left(d s, d s^{\prime}\right) \equiv c e q^{M_{1}}\left(d s, d s^{\prime}\right) \vee d s=d s^{\prime}
$$

We are to prove that M_{2} is a model for the axioms inside the CEQ_block and consequently $C E Q _b l o c k=c e q(d s, d s) .{ }^{11}$ Indeed,

- $M_{2} \models c e q\left(d s, d s^{\prime}\right) \rightarrow c e q\left(d s^{\prime}, d s\right)$. In fact,

$$
\begin{aligned}
& c e q^{M_{2}}\left(d s, d s^{\prime}\right) \equiv c e q^{M_{1}}\left(d s, d s^{\prime}\right) \vee d s=d s^{\prime} \\
& \quad \rightarrow \quad c e q^{M_{1}}\left(d s^{\prime}, d s\right) \vee d s^{\prime}=d s \\
& \quad \equiv c e q^{M_{2}}\left(d s^{\prime}, d s\right)
\end{aligned}
$$

- $M_{2}=c e q\left(d s, d s^{\prime}\right) \wedge c e q\left(d s^{\prime}, d s^{\prime \prime}\right) \rightarrow c e q\left(d s, d s^{\prime \prime}\right)$. In fact,

$$
\begin{aligned}
c e q^{M_{2}} & \left(d s, d s^{\prime}\right) \wedge c e q^{M_{2}}\left(d s^{\prime}, d s^{\prime \prime}\right) \\
\equiv & \left(c e q^{M_{1}}\left(d s, d s^{\prime}\right) \vee d s=d s^{\prime}\right) \wedge\left(c e q^{M_{1}}\left(d s^{\prime}, d s^{\prime \prime}\right) \vee d s^{\prime}=d s^{\prime \prime}\right) \\
\equiv & \left(c e q^{M_{1}}\left(d s, d s^{\prime}\right) \wedge c e q^{M_{1}}\left(d s^{\prime}, d s^{\prime \prime}\right)\right) \vee\left(d s=d s^{\prime} \wedge c e q^{M_{1}}\left(d s^{\prime}, d s^{\prime \prime}\right)\right) \vee \\
& \left(c e q^{M_{1}}\left(d s, d s^{\prime}\right) \wedge d s^{\prime}=d s^{\prime \prime}\right) \vee\left(d s=d s^{\prime} \wedge d s^{\prime}=d s^{\prime \prime}\right) \\
\rightarrow & c e q^{M_{1}}\left(d s, d s^{\prime \prime}\right) \vee\left(d s=d s^{\prime} \wedge d s^{\prime}=d s^{\prime \prime}\right) \\
\equiv & c e q^{M_{2}}\left(d s, d s^{\prime \prime}\right)
\end{aligned}
$$

- $M_{2} \vDash \operatorname{ceq}\left(d s, d s^{\prime}\right) \rightarrow \operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)$. In fact,

$$
\begin{aligned}
& c e q^{M_{2}}\left(d s, d s^{\prime}\right) \equiv c e q^{M_{1}}\left(d s, d s^{\prime}\right) \vee d s=d s^{\prime} \\
& \quad \rightarrow \quad \forall v\left[\operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)\right] \vee d s=d s^{\prime} \\
& \quad \rightarrow \quad \forall v\left[\operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)\right] \vee \forall v\left[\operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)\right] \\
& \quad \equiv \operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)
\end{aligned}
$$

[^7]- $M_{2}=\operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \rightarrow c e q\left(d s_{1}^{\prime}, d s_{2}^{\prime \prime}\right)$. In fact,

$$
\begin{aligned}
& c e q^{M_{2}}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \\
& \equiv\left(c e q^{M_{1}}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle\right) \vee \\
&\left(d s_{1}=d s_{2} \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle\right) \\
& \rightarrow c e q^{M_{1}}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right) \vee\left(\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{1}, a, d s_{2}^{\prime}\right\rangle\right) \\
& \xrightarrow{(15)} c e q^{M_{1}}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right) \vee d s_{1}^{\prime}=d s_{2}^{\prime} \\
& \equiv c e q^{M_{2}}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right)
\end{aligned}
$$

Let's prove that $C E Q _b l o c k=c e q\left(d s, d s^{\prime}\right) \rightarrow c e q\left(d s^{\prime}, d s\right)$. Let M_{2} be a model identical to M_{1} except that

$$
c e q^{M_{2}}\left(d s, d s^{\prime}\right)=c e q^{M_{1}}\left(d s, d s^{\prime}\right) \vee c e q^{M_{1}}\left(d s^{\prime}, d s\right) .
$$

By definition, ceq ${ }^{M_{2}}$ is symmetric. We need to prove that M_{2} satisfy the axioms inside CEQ_block:

- $M_{2}=\operatorname{ceq}\left(d s, d s^{\prime}\right) \rightarrow \operatorname{View}(d s, v) \equiv V i e w\left(d s^{\prime}, v\right)$. In fact,

$$
\begin{aligned}
& c e q^{M_{2}}\left(d s, d s^{\prime}\right) \equiv c e q^{M_{1}}\left(d s, d s^{\prime}\right) \vee c e q^{M_{1}}\left(d s^{\prime}, d s\right) \\
& \quad \rightarrow \quad \forall v\left[\operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)\right] \vee \forall v\left[\operatorname{View}\left(d s^{\prime}, v\right) \equiv \operatorname{View}(d s, v)\right] \\
& \quad \equiv \quad \operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)
\end{aligned}
$$

- $M_{2}=\operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \rightarrow c e q\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right)$. In fact,

$$
\begin{aligned}
& c e q^{M_{2}}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \\
& \equiv {\left[c e q^{M_{1}}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle\right] \vee } \\
& {\left[c e q^{M_{1}}\left(d s_{2}, d s_{1}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle\right] } \\
& \rightarrow c e q^{M_{1}}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right) \vee c e q^{M_{1}}\left(d s_{2}^{\prime}, d s_{1}^{\prime}\right) \\
& \equiv c e q^{M_{2}}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right)
\end{aligned}
$$

Finally, let's prove that $C E Q _b l o c k=c e q\left(d s, d s^{\prime}\right) \wedge c e q\left(d s^{\prime}, d s^{\prime \prime}\right) \rightarrow c e q\left(d s, d s^{\prime \prime}\right)$. Let M_{2} be a model identical to M_{1} except that

$$
c e q^{M_{2}}=\text { transitive_closure }\left(c e q^{M_{1}}\right)
$$

By definition, $c e q^{M_{2}}$ is transitive. If $c e q^{M_{1}}$ is reflexive and symmetric, so is $c e q^{M_{2}}$. We need to prove that M_{2} satisfies the axioms inside $C E Q _$block:

- $M_{2}=c e q\left(d s, d s^{\prime}\right) \rightarrow \operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)$. In fact,

$$
\begin{aligned}
c e q^{M_{2}} & \left(d s, d s^{\prime}\right) \\
\equiv & \exists d s^{0}, d s^{1}, \ldots, d s^{n}\left[d s=d s^{0}, d s^{\prime}=d s^{n}, c e q^{M_{1}}\left(d s^{i}, d s^{i+1}\right), 0 \leq i<n\right] \\
\rightarrow & \exists d s^{0}, d s^{1}, \ldots, d s^{n} \\
& \quad\left[d s=d s^{0}, d s^{\prime}=d s^{n}, \operatorname{View}\left(d s^{i}, v\right) \equiv \operatorname{View}\left(d s^{i+1}, v\right), 0 \leq i<n\right] \\
\rightarrow & \exists d s^{0}, d s^{n}\left[d s=d s^{0}, d s^{\prime}=d s^{n}, \operatorname{View}\left(d s^{0}, v\right) \equiv \operatorname{View}\left(d s^{n}, v\right)\right] \\
\equiv & \operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)
\end{aligned}
$$

- $M_{2}=\operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \rightarrow \operatorname{ceq}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right)$. In fact,

$$
\begin{aligned}
& c e q^{M_{2}}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \\
& \equiv \exists d s^{i}(1 \leq i \leq n)\left[d s_{1}=d s^{1}, d s_{2}=d s^{n}, c e q^{M_{1}}\left(d s^{i}, d s^{i+1}\right), 1 \leq i<n\right] \\
& \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \\
& \stackrel{\text { hyp. }}{\longrightarrow} \quad \exists d s^{i} \exists\left\langle d s^{i}, a, d s^{i^{\prime}}\right\rangle \\
& {\left[d s_{1}=d s^{1}, d s_{2}=d s^{n}, d s_{1}^{\prime}=d s^{1^{\prime}}, d s_{2}^{\prime}=d s^{n^{\prime}}, c e q^{M_{1}}\left(d s^{i}, d s^{i+1}\right), 1 \leq i<n\right] } \\
& \rightarrow \exists d s^{i^{\prime}}\left[d s_{1}^{\prime}=d s^{1^{\prime}}, d s_{2}^{\prime}=d s^{n^{\prime}}, c e q^{M_{1}}\left(d s^{i^{\prime}}, d s^{(i+1)^{\prime}}\right), 1 \leq i<n\right] \\
& \equiv c e q^{M_{2}}\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right) \square
\end{aligned}
$$

When a set of experiences is complete the predicate ceq captures the idea that two distinctive states are the same if they render the same views under any sequence of actions. Assume that E is complete and let $A=a_{1}, \ldots, a_{n}$ denote a sequence of actions. The term $A(d s)$ denotes the distinctive state resulting from executing A starting at $d s$. By definition, $A(d s)=d s$ if $n=0, A(d s)=d s^{\prime}$ such that $E \models$ $\left\langle\left\langle a_{1}, \ldots, a_{n-1}\right\rangle(d s), a_{n}, d s^{\prime}\right\rangle$. Notice that the definition of $A(d s)$ makes sense since E is complete and actions are deterministic.
Theorem 2. Let E be a complete set of experiences. Then,

$$
\operatorname{ceq}\left(d s, d s^{\prime}\right) \equiv \forall A, v\left[\operatorname{View}(A(d s), v) \equiv \operatorname{View}\left(A\left(d s^{\prime}\right), v\right)\right]
$$

Proof. Let M_{1} be a model for the axioms inside the CEQ_block as well as the other axioms of $C T(E)$. Let M_{2} be a model identical to M_{1} except that

$$
c e q^{M_{2}}\left(d s, d s^{\prime}\right) \equiv \forall A, v\left[\operatorname{View}(A(d s), v) \equiv \operatorname{View}\left(A\left(d s^{\prime}\right), v\right)\right]
$$

By induction in the length of action sequences on can prove that $c e q^{M_{1}} \subseteq c e q^{M_{2}}$. Our proof is complete by showing that M_{2} satisfies the axioms inside $C E Q_{_} b l o c k$:

- $M_{2} \mid=\operatorname{ceq}\left(d s, d s^{\prime}\right) \rightarrow \operatorname{View}(d s, v) \equiv \operatorname{View}\left(d s^{\prime}, v\right)$. In fact, suppose $M_{2} \models$ $c e q\left(d s, d s^{\prime}\right)$ and consider the empty sequence of actions, $A=\{ \}, A(d s)=d s$. Then

$$
\operatorname{View}(d s, V) \equiv \operatorname{View}(A(d s), v) \equiv \operatorname{View}\left(A\left(d s^{\prime}\right), v\right) \equiv \operatorname{View}\left(d s^{\prime}, v\right)
$$

- $M_{2}=\operatorname{ceq}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \rightarrow c e q\left(d s_{1}^{\prime}, d s_{2}^{\prime}\right)$. In fact,

$$
\begin{array}{cl}
c e q^{M_{2}} & \left(d s_{1}^{\prime}, d s_{2}^{\prime}\right) \\
\equiv & \forall A, v\left[\operatorname{View}\left(A\left(d s_{1}^{\prime}\right), v\right) \equiv \operatorname{view}\left(A\left(d s_{2}^{\prime}\right), v\right)\right] \\
\leftarrow & \left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle \wedge \\
& \forall A, v\left[\operatorname{View}\left(a A\left(d s_{1}\right), v\right) \equiv \operatorname{View}\left(a A\left(d s_{2}\right), v\right)\right] \\
\leftarrow & c e q^{M_{2}}\left(d s_{1}, d s_{2}\right) \wedge\left\langle d s_{1}, a, d s_{1}^{\prime}\right\rangle \wedge\left\langle d s_{2}, a, d s_{2}^{\prime}\right\rangle
\end{array}
$$

C teq properties

In this appendix we prove some properties of the SSH topological theory. Recall the SSH topological theory is defined as follows:

```
\(T T(E)=\)
    there exist infinitely many places,
    there exist infinitely many paths,
    \(\neg \exists p[\) tplace \((p) \wedge\) is_region \((p)]\),
    \(\neg \exists p a[\operatorname{tpath}(p a) \wedge \operatorname{route}(p a)]\),
    COMPLETION \((E)\),
    Axioms \(2-10\),
    \(\left\langle d s, a, d s^{\prime}\right\rangle \wedge\left\langle d s, a, d s^{\prime \prime}\right\rangle \rightarrow d s^{\prime}=d s^{\prime \prime}, \quad(\) Axiom 15)
    T_block,
        AT_block \(=\)
        \{ max teq:
            \(\Gamma\)
        circ tpath \(\succ\) tplace var \(S S \overrightarrow{H p r e d}\)
        \}
```

where Γ is the set of axioms defined on Block 20 (Section 5.2), and SSHPred stands for the tuple of predicates $\langle\mathbf{a t}$, along, order, on, teq, turn_eq,travel_eq \rangle.

Proposition 1 Let M be a model of $T T(E)$. Then,

- $M=\forall p a,[\operatorname{tpath}(p a) \equiv \exists d s, \operatorname{dir}$ along $(d s, p a, \operatorname{dir})]$.
- $M \models \forall p,[\operatorname{tplace}(p) \equiv \exists d s a t(d s, p)]$.

Proof.

$$
\begin{aligned}
& C I R C[\Gamma ; \text { tpath } \succ \text { tplace } ; \text { SSHpred }] \\
& \equiv \quad\{\text { Proposition } 15 \text { in }[\text { Lif schitz, 1994 }]\} \\
& C I R C[\Gamma ; \text { tpath } ; \text { tplace, } \text { SSH pred }] \wedge \text { CIRC }[\Gamma ; \text { tpath, tplace; SSHpred }] \\
& \rightarrow \quad\{\text { def.of circumscription }\} \\
& C I R C[\Gamma ; \text { tpath }]
\end{aligned}
$$

Since $\Gamma=\Gamma^{\prime}(t p a t h) \wedge[$ along $(d s, p a, \operatorname{dir}) \rightarrow \operatorname{tpath}(p a)]$ where $\Gamma^{\prime}(t p a t h)$ is negative, then

$$
\begin{aligned}
& C I R C[\Gamma ; \text { tpath }] \\
& \equiv \\
& C I R C\left[\Gamma^{\prime}(t p a t h) \wedge[\text { along }(d s, p a, \operatorname{dir}) \rightarrow \operatorname{tpath}(p a)] ; \text { tpath }\right] \\
& \equiv \quad\{\text { Proposition } 4 \text { in }[\text { Lifschitz }, 1994]\}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma^{\prime}(t p a t h) \wedge C I R C[\text { along }(d s, \text { pa, dir }) \rightarrow \operatorname{tpath}(p a) ; \text { tpath }] \\
& \rightarrow \quad\{\text { Proposition } 1 \text { in }[\text { Lifschitz, 1994 }]\} \\
& {[\exists d s, \operatorname{dir} \text { along }(d s, p a, \operatorname{dir})] \equiv \operatorname{tpath}(p a)}
\end{aligned}
$$

Similarly, $\Gamma=\Gamma^{\prime} \wedge[a t(d s, p) \rightarrow \operatorname{tplace}(p)]$ where $t p a t h$ does not occur in Γ^{\prime}. Then,

$$
\begin{aligned}
& C I R C[\Gamma ; \text { tpath } \succ \text { tplace } ; \text { SSHpred }] \\
& \rightarrow \quad \quad \text { see above }\} \\
& \text { CIRC }[\Gamma ; \text { tpath, tplace } ; \text { SSHpred }] \\
& \rightarrow \quad \quad \text { def. parallel circumscription }\} \\
& C I R C[\Gamma ; \text { tpath, tplace }] \\
& \rightarrow \quad\{\text { def. parallel circumscription }\} \\
& C I R C\left[\Gamma^{\prime} \wedge[\text { at }(d s, p) \rightarrow \text { tplace }(p)] ; \text { tplace }\right] \\
& \equiv \quad\{\text { Propositions } 1 \text { and } 4 \text { in }[\text { Lifschitz, 1994] }\} \\
& \Gamma^{\prime} \wedge[\exists d s, \text { at }(d s, p)] \equiv \text { tplace }(p)
\end{aligned}
$$

Proposition 2 The topological map associated with a finite set of experiences E has a finite number of topological paths and a finite number of topological places.

Proof. Since a distinctive state is along at most one topological path (Axiom 37), Proposition 1 implies that for any model M of $T T(E)$ there is an injection from tpath ${ }^{M}$ into distinctive-states ${ }^{M}$. Since distinctive-states ${ }^{M}$ is finite so is $t p a t h^{M}$.

Similarly, since distinctive states are at a unique topological place (Axiom 29), from Proposition 1 we conclude that the set of topological places in a model of $T T(E)$ is finite.

Theorem 3. Let $d s_{1}$ be a distinctive state symbol such that

$$
\begin{equation*}
\forall d s_{2} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}},\left[d s_{2}\right]_{t e q} \cap\left[d s_{1}\right]_{\widehat{\text { turn }}}=\emptyset . \tag{89}
\end{equation*}
$$

Then

$$
\forall d s_{2} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}}, \operatorname{place}\left(d s_{2}\right) \neq \operatorname{place}\left(d s_{1}\right) .
$$

Proof. The hypothesis of the theorem implies that

$$
\forall d s_{2} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}}, \quad \neg \text { turn_eq }\left(d s_{2}, d s_{1}\right) .
$$

Indeed,

$$
\begin{aligned}
& \operatorname{turn} _e q\left(d s_{1}, d s_{2}\right) \equiv \quad \exists b_{0}, \ldots, b_{n}, b_{0^{\prime}}, \ldots, b_{n^{\prime}} \quad \text { s.t. } \\
& \bullet b_{0}=d s_{2}, b_{n^{\prime}}=d s_{1} \\
& \bullet \operatorname{teq}\left(b_{i}, b_{i^{\prime}}\right), i=0, \ldots, n \\
& \bullet \operatorname{turn}\left(b_{i^{\prime}}, b_{i+1}\right), i=0, \ldots, n-1 .
\end{aligned}
$$

Let $1 \leq j \leq n$ such that $\left[\forall j \leq k \leq n, b_{k^{\prime}} \in\left[d s_{1}\right]_{\widehat{\text { turn }}}\right]$ and $b_{(j-1)^{\prime}} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}}$. Notice that such a j exists since $d s_{1}=b_{0^{\prime}} \notin\left[d s_{1}\right]_{\widehat{\text { turn }}}$ and $d s_{1}=b_{n^{\prime}} \in\left[d s_{1}\right]_{\widehat{\text { turn }}}$. Consequently,

$$
\begin{aligned}
& \text { turn_eq }^{\left(d s_{1}, d s_{2}\right)} \\
& \rightarrow \\
& b_{j^{\prime}} \in\left[d s_{1}\right]_{\widehat{\text { turn }}} \\
& \rightarrow \quad\left\{\text { teq }\left(b_{j}, b_{j^{\prime}}\right)\right\} \\
& {\left[b_{j}\right]_{\text {teq }} \cap\left[d s_{1}\right]_{\widehat{\text { turn }}} \neq \emptyset} \\
& \rightarrow \quad\{89\} \\
& b_{j} \in\left[d s_{1}\right]_{\widehat{\text { turn }}} \\
& \rightarrow \quad\left\{\widehat{\text { turn }}\left(b_{(j-1)^{\prime}}, b_{j}\right)\right\} \\
& b_{(j-1)^{\prime}} \in\left[d s_{1}\right]_{\widehat{\text { turn }}} \\
& \rightarrow \\
& \text { false }
\end{aligned}
$$

Thus \neg turn_eq $\left(d s_{2}, d s_{1}\right)$ should be the case.
Theorem 4. Any two models of the SSH topological theory have the same number of topological paths and the same number of topological places.

Proof. In order to prove that two models M_{1} and M_{2} of $T T(E)$ have the same number of topological paths (tpaths) and the same number of topological places (tplaces), it is enough to show that this is the case for models of the AT_block (Block 87). Suppose that $t p a t h^{M_{1}}$ has less elements than tpath $h^{M_{2}}$, and so there exists an injection $\phi: t p a t h^{M_{1}} \rightarrow t p a t h^{M_{2}}$. One can extend ϕ to define an isomorphism from M_{1} into M_{2}^{\prime}, such that $M_{2}^{\prime} \prec M_{2}$, where \prec is the order defined by the circumscription policy 88. This proves that M_{1} and M_{2} have the same number of topological paths. In fact,

- Let $\phi:$ tplace $^{M_{1}} \rightarrow$ places ${ }^{M_{2}}$ be an injection. Such an injection exists since tplace ${ }^{M_{1}}$ is finite and places ${ }^{M_{2}}$ is infinite.
- Let $\phi: S^{M_{1}} \rightarrow S^{M_{2}}$ be the identity over the sorts (S) of distinctive states, actions, views, schemas, path types and path directions. Recall we assumed a Herbrand interpretation for these sorts, where the corresponding universes are defined by the constant symbols in E.

The function ϕ above defines an isomorphic embedding from M_{1} into M_{2} in the standard way. In fact, $\phi\left(M_{1}\right)=M_{2}^{\prime}$ is defined as follows:

- tpath $^{M_{2}^{\prime}}=\phi\left(\right.$ tpath $\left.^{M_{1}}\right)$, tplace $^{M_{2}^{\prime}}=\phi\left(\right.$ tplace $\left.{ }^{M_{1}}\right)$.
- $t e q^{M_{2}^{\prime}}=\phi\left(t e q^{M_{1}}\right)=\left\{t e q\left(d s_{1}, d s_{2}\right): M_{1} \models t e q\left(d s_{1}, d s_{2}\right)\right\}=t e q^{M_{1}}$.
- $a t^{M_{2}^{\prime}}=\phi\left(a t^{M_{1}}\right)=\left\{a t(d s, \phi(p)): M_{1} \models a t(d s, p)\right\}$.
- $\operatorname{along}^{M_{2}^{\prime}}=\phi\left(\operatorname{along}^{M_{1}}\right)=\left\{\operatorname{along}(d s, \phi(p a), \operatorname{dir}): M_{1} \models \operatorname{along}(d s, p a, \operatorname{dir})\right\}$.
- $\operatorname{order}^{M_{2}^{\prime}}=\phi\left(\operatorname{order}^{M_{1}}\right)=\left\{\operatorname{order}(\phi(p a), \operatorname{dir}, \phi(p), \phi(q)): M_{1} \models \operatorname{order}(p a, \operatorname{dir}, p, q)\right\}$.
- $o n^{M_{2}^{\prime}}=\phi\left(o n^{M_{1}}\right)=\left\{o n(\phi(p a), \phi(p)): M_{1} \models o n(p a, p)\right\}$.
- turn_e $^{q^{M_{2}^{\prime}}}=\phi\left(\right.$ turn_e $\left.^{M_{1}}\right)=$ turn_e $^{M 1}$.
- travel_e $q^{M_{2}^{\prime}}=\phi\left(\right.$ travel_e $\left.q^{M_{1}}\right)=$ travel_e $q^{M 1}$.

Notice that the language of Γ is defined by $\{t p a t h$, tplace $\} \cup S S H$ pred. Thus $M_{1} \models \Gamma$ implies $\phi\left(M_{1}\right) \models \Gamma$. Notice that the circumscription policy varies all predicates in the language of Γ, and ϕ is the identity over all constant symbols in the theory, for otherwise, $\phi\left(M_{1}\right) \models \Gamma$ is not necessarily the case. In general the interpretations of an unary predicate (set) under a circumscriptive theory do not have the same number of elements. For example, consider the models of $C I R C[(P(0) \wedge P(1)) \vee P(2) ; P]$, where the interpretation of P could have one or two elements (this example is due to Vladimir Lifschitz).

Since $\phi\left(t p a t h^{M_{1}}\right) \subset \operatorname{tpath}^{M_{2}}$, then $\phi\left(M_{1}\right) \prec M_{2}$, and so M_{2} is not minimal, and is therefore not a model of $T T(E)$. It follows that M_{1} and M_{2} have the same number of topological paths.

Similar argument shows that M_{1} and M_{2} have the same number of topological places. If not, there would exists $\phi: \operatorname{tpath}^{M_{1}} \rightarrow \operatorname{tpath}^{M_{2}}$ a bijection and $\phi:$ tplace ${ }^{M_{1}} \rightarrow$ tplace ${ }^{M_{2}}$ an injection that allows us to apply the same argument as above.

D Theory axioms

The block T_block inside Block 19 in Section 5.2 defines the properties of the predicates $\widehat{\text { turn }}$, travel, and travel. $\widehat{\text { turn }}$ is the equivalence closure of the schemas $\langle\cdot$, turn,$\cdot\rangle ;$ travel and travel are the equivalence and transitive closure of the schemas $\langle\cdot$, travel,,$\cdot\rangle$ respectively. ${ }^{12}$

$$
\begin{aligned}
& \text { T_block }=\{\text { min } \widehat{\text { turn }}, \text { min travel, min travel }: \\
& \left\langle d s, t u r n, d s^{\prime}\right\rangle \rightarrow \widehat{\operatorname{turn}}\left(d s, d s^{\prime}\right), \\
& \left\langle d s, \text { travel }, d s^{\prime}\right\rangle \rightarrow \widehat{\operatorname{travel}}\left(d s, d s^{\prime}\right) \wedge \operatorname{travel}\left(d s, d s^{\prime}\right), \\
& \widehat{\operatorname{turn}}(d s, d s) \text {, } \\
& \widehat{\operatorname{turn}}\left(d s, d s^{\prime}\right) \rightarrow \widehat{\operatorname{turn}}\left(d s^{\prime}, d s\right), \\
& \widehat{\operatorname{turn}}\left(d s, d s^{\prime}\right) \wedge \widehat{\operatorname{turn}}\left(d s^{\prime}, d s^{\prime \prime}\right) \rightarrow \widehat{\operatorname{turn}}\left(d s, d s^{\prime \prime}\right), \\
& \widehat{\operatorname{travel}}(d s, d s) \text {, } \\
& \widehat{\operatorname{travel}}\left(d s, d s^{\prime}\right) \rightarrow \widehat{\operatorname{travel}}\left(d s^{\prime}, d s\right), \\
& \widehat{\operatorname{travel}}\left(d s, d s^{\prime}\right) \wedge \widehat{\operatorname{travel}}\left(d s^{\prime}, d r\right) \rightarrow \widehat{\operatorname{travel}}(d s, d r), \\
& \operatorname{travel}\left(d s, d s^{\prime}\right) \wedge \operatorname{travel}\left(d s^{\prime}, d s^{\prime \prime}\right) \rightarrow \operatorname{travel}\left(d s, d s^{\prime \prime}\right) \\
& \text { \} }
\end{aligned}
$$

[^8]
References

[Angluin, 1978] D. Angluin. On the complexity of minimum inference of regular sets. Information and Control, 39:337-350, 1978.
[Basye et al., 1995] K. Basye, T. Dean, and L.P. Kaelbling. Learning dynamics: System identification for perceptually challenged agents. Artificial Intelligence, 72(1):139-171, 1995.
[Beardon, 1979] A. F. Beardon. Complex Analysis. John Weley \& Sons, New York, 1979.
[Borenstein and Koren, 1991] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle-avoidance for mobile robots. IEEE Journal of Robotics and Automation, 7(3):278-288, 1991.
[Borenstein et al., 1996] J. Borenstein, H.R. Everett, and L. Feng. Navigating mobile robots: systems and techniques. A K Peters, Wellesley, Massachusetts, 1996.
[Borg and Groenen, 1997] I. Borg and P. Groenen. Modern multidimensional scaling: theory and applications. Springer, New York, 1997.
[Choset and Nagatani, 2001] H. Choset and K. Nagatani. Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Trans. on Robotics and Automation, 17(2):125-137, April 2001.
[Crawford and Kuipers, 1991] J. Crawford and B. Kuipers. Algernon: a tractable system for knowledge representation. SIGART Bulletin, 2(3):35-44, 1991.
[Davis, 1983] E. Davis. The MERCATOR representation of spatial knowledge. In A. Bundy, editor, Proc. of the 8th IJCAI, pages 295-301, Los Altos, 1983. Kaufmann Inc.
[Dean et al., 1993] T. Dean, K. Basye, and L. Kaelbling. Uncertainty in graph-based map learning. In Jonathan H. Connell and Sridhar Mahadevan, editors, Robot Learning, pages 171-192. Kluwer Academic Publishers, 1993.
[Dudek et al., 1991] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph construction. IEEE Trans. on Robotics and Automation, 7(6):859865, 1991.
[Durrant-Whyte, 1987] H. F. Durrant-Whyte. Consistent integration and propagation of disparate sensor observations. The International Journal of Robotics Research, 6(3):3-24, 1987.
[Durrant-Whyte, 1988a] H. F. Durrant-Whyte. Integration, coordination and control of multisensor robot systems. Kluwer Academic Publishers, Boston, 1988.
[Durrant-Whyte, 1988b] H. F. Durrant-Whyte. Uncertain geometry in robotics. IEEE Journal of Robotics and Automation, 5(6):23-31, 1988.
[Elfes, 1987] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, RA3(3):249-265, 1987.
[Engelson and McDermott, 1992] S.P. Engelson and D.V. McDermott. Error correction in mobile robot map learning. In IEEE International Conference on Robotics and Automation, pages 2555-2560, 1992.
[Franz et al., 1998] M. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff. Learning view graphs for robot navigation. Autonomous Robots, 5:111-125, 1998.
[Gelb, 1974] A. Gelb. Applied Optimal Estimation. MIT Press, Cambridge, MA, 1974.
[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365-385, 1991.
[Gold, 1978] E. Mark Gold. Complexity of automaton identification from given data. Information and Control, 37:302-320, 1978.
[Gopal et al., 1989] S. Gopal, R. L. Klatzky, and T. R. Smith. Navigator: a psychologically based model of environmental learning through navigation. Journal of Environmental Psychology, 9:309-331, 1989.
[Koenig and Simmons, 1996] S. Koenig and R. Simmons. Passive distance learning for robot navigation. In Proceedings of the Thirteenth International Conference on Machine Learning (ICML), pages 266-274, 1996.
[Kortenkamp et al., 1995] D. Kortenkamp, E. Chown, and S. Kaplan. Prototypes, locations, and associative networks (PLAN): towards a unified theory of cognitive mapping. Cognitive Science, 19:1-51, 1995.
[Kuipers and Beeson, 2002] B. Kuipers and P. Beeson. Bootstrap learning for place recognition. In AAAI-02, pages 174-180. The AAAI press, 2002.
[Kuipers and Byun, 1988] B. Kuipers and Y. T. Byun. A robust qualitative method for spatial learning in unknown environments. In Morgan Kaufmann, editor, AAAI-88, 1988.
[Kuipers and Byun, 1991] B. Kuipers and Y. T. Byun. A robot exploration and mapping strategy based on semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems, 8:47-63, 1991.
[Kuipers and Levitt, 1988] B. Kuipers and T. Levitt. Navigation and mapping in largescale space. AI Magazine, 9(2):25-43, 1988.
[Kuipers et al., 1993] B. Kuipers, R. Froom, W.Y. Lee, and D. Pierce. The semantic hierarchy in robot learning. In J. Connell and S. Mahadevan, editors, Robot Learning, pages 141-170. Kluwer Academic Publishers, 1993.
[Kuipers et al., 2003] B. Kuipers, D. Tecuci, and B. Stankiewicz. The skeleton in the cognitive map: a computational and empirical exploration. Environment and Behavior, 35(1):80-106, 2003.
[Kuipers, 1978] B. Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129153, 1978.
[Kuipers, 2000] B. Kuipers. The spatial semantic hierarchy. Artificial Intelligence Journal, 119:191-233, 2000.
[Kuo, 1987] B. C. Kuo. Automatic Control Systems. Prentice-Hall, Inc., fifth edition, 1987.
[Lee, 1996] W. Y. Lee. Spatial Semantic Hierarchy for a Physical Mobile Robot. PhD thesis, The University of Texas at Austin, 1996.
[Leiser and Zilbershatz, 1989] D. Leiser and A. Zilbershatz. THE TRAVELLER: a computational model of spatial network learning. Environment and Behavior, 21(4):435-463, 1989.
[Lifschitz, 1994] V. Lifschitz. Circumscription. In Handbook of Logic in Artificial Intelligence and Logic Programming, volume 3, pages 297-352. Oxford University Press, 1994.
[Lifschitz, 1995] V. Lifschitz. Nested abnormality theories. Artificial Intelligence, 74(2):351-365, 1995.
[Lynch, 1960] K. Lynch. The Image of the City. The MIT press, Cambridge, Massachusetts, 1960.
[Mallot and Gillner, 2000] H. A. Mallot and S. Gillner. Route navigating without place recognition: What is recognized in recognition-triggered responses? Perception, 29:43-55, 2000.
[McCarthy and Buvač, 1998] J. McCarthy and S. Buvač. Formalizing context (expanded notes). In A. Aliseda, R.J. van Glabbeek, and C. Westerstähl, editors, Computing Natural Language, volume 8L of CSLI Lecture Notes, pages 13-50. 1998.
[McDermott and Davis, 1984] D. V. McDermott and E. Davis. Planning routes through uncertain territory. Artificial Intelligence, 22:107-156, 1984.
[Moutarlier and Chatila, 1989] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot location and environment modelling. In 5th International Symposium on Robotics Research, pages 85-89, 1989.
[Musto et al., 1999] A. Musto, K. Stein, K. Schill, A. Eisenkolb, and W. Brauer. Qualitative motion representation in egocentric and allocentric frames of reference. In Fourth International Conference on Spatial Information Theory (COSIT'99). Springer, 1999.
[Niemelä and Simons, 1997] I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded semantics for normal logic programs. In 4th International Conference on Logic Programming and Nonmonotonic Reasoning, number 1265 in Lecture Notes in Computer Science, pages 420-429. SpringerVerlag, 1997.
[O'Neill, 1991] M. O'Neill. A biologically based model of spatial cognition and wayfinding. Journal of Environmental Psychology, 11:299-320, 1991.
[Peressini et al., 1988] A. L. Peressini, F. E. Sullivan, and K. J. Uhl. The mathematics of nonlinear programming. Springer-Verlag, New York, 1988.
[Piaget and Inhelder, 1967] J. Piaget and B. Inhelder. The Child's Conception of Space. Norton, New York, 1967. First published in French, 1948.
[Remolina and Kuipers, 1998] E. Remolina and B. Kuipers. Towards a formalization of the Spatial Semantic Hierarchy. In Fourth Symposium on Logical Formalizations of Commonsense Reasoning, London, January 1998.
[Remolina and Kuipers, 2001] E. Remolina and B. Kuipers. A logical account of causal and topological maps. In International Joint Conference in Artificial Intelligence (IJCAI-01), pages 5-11. AAAI press, Menlo Park, August 2001.
[Remolina, 2001] E_{i} Remolina. A Logical Account of Causal and Topological Maps. PhD thesis, The University of Texas at Austin, 2001.
[Rivest and Schapire, 1987] R. L. Rivest and R. E. Schapire. A new approach to unsupervised learning in deterministic environments. In Proceedings of the Fourth International Workshop on Machine Learning, 1987.
[Schölkopf and Mallot, 1995] B. Schölkopf and H. Mallot. View-based cognitive mapping and path planning. Adaptive Behavior, 3:311-348, 1995.
[Shanahan, 1996] M. P. Shanahan. Noise and the common sense informatic situation for a mobile robot. In AAAI-96, pages 1098-1103, 1996.
[Shatkay and Kaelbling, 1997] H. Shatkay and L. Kaelbling. Learning topological maps with weak local odometry information. In IJCAI-97, 1997.
[Siegel and White, 1975] A.W. Siegel and S. White. The development of spatial representations of large-scale environments. In H. Reese, editor, Advances in child development and behavior, volume 10, pages 9-55. Academic Press, 1975.
[Simmons and Koenig, 1995] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In IJCAI 95, 1995.
[Smith and Cheeseman, 1986] R. Smith and P. Cheeseman. On the representation of and estimation of spatial uncertainty. The International Journal of Robotics Research, 5:56-68, 1986.
[Steck and Mallot, 2000] S. D. Steck and H. A. Mallot. The role of global and local landmarks in virtual environment navigation. Presence, 9(1):69-83, 2000.
[Tardos et al., 2002] J. Tardos, J. Neira, P. Newman, , and J. Leonard. Robust mapping and localization in indoor environments using sonar data. The International Journal of Robotics Research, 21(6):311-330, 2002.
[Thrun et al., 1998] S. Thrun, S. Gutmann, D. Fox, W. Burgard, and B. Kuipers. Integrating topological and metric maps for mobile robot navigation: A statistical approach. In AAAI-98, pages 989-995, 1998.
[Thrun, 1998] S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):21-71, 1998.

[^0]: *This work has taken place in the Intelligent Robotics Lab at the Artificial Intelligence Laboratory, The University of Texas at Austin. Research of the Intelligent Robotics lab is supported in part by NSF grants IRI-9504138 and CDA 9617327, and by funding from Tivoli Corporation.

[^1]: ${ }^{1}$ Throughout this paper we assume that free variables in formulas are universally quantified.
 ${ }^{2}$ The formula $\exists!v P(v)$ means "there exists a unique v s.t. $P(v)$ ". Formally, $\exists v \forall x[P(x) \equiv x=v]$.
 ${ }^{3}$ The type of an action will be important in the topological theory (Section 5). For completeness of the presentation we introduce this concept here.
 ${ }^{4}$ The notation $U N A\left[t_{1}, \ldots, t_{n}\right]$ represents the uniqueness of names axioms for the grounded terms t_{1}, \ldots, t_{n}. These axioms require that $t_{i} \neq t_{j}$ for $i \neq j$.

[^2]: ${ }^{5}$ Notice that we have "overloaded" the bracket notation depending on the type of its arguments.

[^3]: ${ }^{6}$ As with any other symbol name, the view name is arbitrary. The + in the view name is used to indicate that the view corresponds to a four corridor intersection. Later we use the symbol \sqsupset to indicate that the view corresponds to an end of corridor.

[^4]: ${ }^{7}$ The extent of $c e q$ in model 1 is defined by $\{(8,12),(12,8)\} \cup\{(x, x): x=1, \ldots, 12\}$.

[^5]: ${ }^{8}$ Whenever we use a number x instead of an interval, it is an abbreviation for $[x, x]$.

[^6]: ${ }^{9}$ leftOf(pa, , dir, p) in the implementation is an abbreviation for Section 6.2's longer expression leftOf $(p a, d i r, l r) \wedge$ in_region $(p, l r)$.
 ${ }^{10}$ In the implementation, dpaths represent ordered dstates linked by travel actions. Dpaths correspond to paths that only have one direction associated with them. Paths are created when the agent has traveled in both direction of a path. At that time, two dpaths are associated with the path, one for each path's direction.

[^7]: ${ }^{11} M_{2}$ satisfies the other axioms in $C T(E)$ since $c e q$ does not occur in them.

[^8]: ${ }^{12}$ A block of the form $\left\{C_{1}, \ldots, C_{n}, \min P_{1}, \ldots, \min P_{k}: A_{1}, \ldots, A_{m}\right\}$ denotes the set of blocks $\left\{C_{1}, \ldots, C_{n}, \min P_{1}: A_{1}, \ldots, A_{m}\right\}, \ldots,\left\{C_{1}, \ldots, C_{n}, \min P_{k}: A_{1}, \ldots, A_{m}\right\}$.

