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Abstract

We present a general theory of topological maps whereby sensory input, topo-
logical and local metrical information are combined to define the topological maps
explaining such information. Topological maps correspond to the minimal models
of an axiomatic theory describing the relationships between the different sources
of information explained by a map. We use a circumscriptive theory to specify the
minimal models associated with this representation.

The theory here proposed is independent of the exploration strategy the agent
follows when building a map. We provide an algorithm to calculate the models of
the theory. This algorithm supports different exploration strategies and facilitates
map disambiguation when perceptual aliasing arises.

1 Introduction

Topological maps are graph-like spatial representations. Nodes in such a graph often
represent states in the agent’s configuration space and edges represent system trajec-
tories that take the agent from one state to another. A hierarchical structure can be
accommodated on top of this “behavior graph”, where nodes at one level of the hier-
archy represent sets of nodes in lower levels. Despite their common use, there is no
consensus about what topological maps are, or how they are built. The meanings of
nodes and edges in a topological map varies according to the application as well as the
algorithms used to build them. Richer structures than the graph-like description above
are sometimes adopted as part of what a topological map is. Nevertheless, there are
common elements to most of the topological map descriptions, namely, the use of sen-
sory input descriptions in order to identify nodes, connectivity relations among nodes
in the map, and local metrical information associated with edges in the map.

�This work has taken place in the Intelligent Robotics Lab at the Artificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Intelligent Robotics lab is supported in part by NSF grants
IRI-9504138 and CDA 9617327, and by funding from Tivoli Corporation.
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In this paper, we present a general theory of topological maps whereby sensory in-
put, topological and local metrical information are combined to define the topological
maps explaining such information. We take a declarative approach to define what topo-
logical maps are and how they are related to the information used to build them. We
distinguish between thecausal graph, which is a transition graph representation of reg-
ularities in action and sensory experience, and thetopological map, which represents
spatial properties of actions and of places and paths in the environment. We define
topological maps as the minimal models of an axiomatic theory describing the rela-
tionships between the different sources of information explained by a map. We provide
an algorithm to calculate the models of the theory. This algorithm supports differ-
ent exploration strategies and facilitates map disambiguation when perceptual aliasing
arises.

The major assumption underlying the topological approach to mapping is that there
is a level of abstraction of the underlying environment at which actions are determinis-
tic. In the Spatial Semantic Hierarchy[Kuipers, 2000], this is achieved by definingdis-
tinctive statesandactionscomposed of trajectory-following and hill-climbing control
laws such that actions are functionally deterministic when applied between distinctive
states (see Figure 1). There are two other assumptions that, when true, allow us to state
the axiomatic theory in simpler terms. These are the assumptions that (a) a path does
not intersect itself, and (b) a distinctive state corresponds to at most one path and one
direction on that path. Section 5.3 describes the more elaborate default theory required
to handle environments that violate these assumptions.

2 Related Work

Causal and topological maps have been mainly studied by cognitive theories of space
and robotics. Cognitive theories of space are interested in the cognitive map, the human
knowledge of large-scale space. Robotics is interested in representations of space that
can be used (and learned) by an autonomous robot.

Computational theories of the cognitive map have been proposed by[Kuipers,
1978, Davis, 1983, McDermott and Davis, 1984, Leiser and Zilbershatz, 1989, Gopal
et al., 1989, O’Neill, 1991, Kortenkampet al., 1995]. These theories account for in-
complete knowledge of space, use of multiple frames of reference, qualitative repre-
sentation of metrical information, and connectivity relations among landmarks. The
theories differ on how sensory information is represented, what a place is, and how the
overall spatial knowledge is structured.

The use of topological maps in robotics varies according to the type of information
used when building such map.[Rivest and Schapire, 1987, Dudeket al., 1991, Dean
et al., 1993, Basyeet al., 1995] use the sequence of views and actions generated by
the robot exploration to recover the minimum deterministic automaton consistent with
such information. In these works, actions do not have any spatial properties associated
with them. Metrical information associated with actions is considered by[Koenig and
Simmons, 1996, Shatkay and Kaelbling, 1997], but there sensory information (views)
is not used. The use of both sensory and metrical information is proposed by[Kuipers
and Byun, 1988, Engelson and McDermott, 1992, Davis, 1983, Simmons and Koenig,
1995]. Among these works,[Kuipers and Byun, 1988, Davis, 1983] propose the use
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of multiple metrical frames of reference: the places in the topological map are not
necessarily embedded in a single two dimensional Euclidean frame of reference, nor
it is necessary to do so in order to create the topological map.[Kuiperset al., 1993,
Kuipers, 2000] propose the existence of topological objects (i.e. paths, regions) that
can explain the agent’s experiences without relying on metrical information but rather
qualitative spatial properties (i.e. travel, turnRight, turnLeft, turnAround) associated
with actions.

In research on physical robots by[Lee, 1996, Choset and Nagatani, 2001], effort
has been put on describing how the agent solves the problem of “perceptual alias-
ing” (i.e. different places that share the same view). Different exploration strate-
gies as well as different discrimination procedures are proposed to solve this prob-
lem. The description of topological maps is usually closely tied to the algorithms
and exploration strategy used by the agent. It is difficult then to know what topo-
logical maps are and how they are related to the agent’s experiences. The work by
[Choset and Nagatani, 2001] exploits the topology of the robot’s free space to localize
the robot on a partially constructed map. The map used in this work is the general-
ized Voronoi graph (GVG) which is a topological map that also encodes some metric
information about the robot’s environment. Our definition of topological maps in-
cludes but is not limited to GVGs. We propose an axiomatic theory of topological
maps. The task of building the map is stated as an abduction task[Shanahan, 1996,
Remolina and Kuipers, 1998] where the agent’s map correspond to the minimal mod-
els among those that explains its observations. Stating the minimality conditions as
well as the ontology of the spatial representation is the content of this paper.

Metrical grid-based maps are another spatial representation used in the robotics
community[Elfes, 1987, Borenstein and Koren, 1991, Thrunet al., 1998]. In these
approaches the location of objects in a two dimensional Euclidean space are used to
explain the agent’s experiences. Topological maps as described in this paper can use
metrical maps but they are confined to places, paths and local two dimensional frames
of reference associated with regions.

The Spatial Semantic Hierarchy[Kuipers, 2000] assumes that an agent first builds
a network of places and paths on top of which metrical models are added, rather than to
build first a single metrical map from which a network of places and paths is derived.
This assumption is motivated by research on human cognitive maps[Lynch, 1960,
Piaget and Inhelder, 1967, Siegel and White, 1975]. For the engineering tasks of robot
exploration, mapping, and navigation, we believe that the “topology-first” approach
is more efficient and robust. For example,[Thrunet al., 1998] propose a method for
integrating topological and metrical paradigms to solve the concurrent mapping and
localization problem studied in the mobile robotics community. The method has two
phases. In the first phase, the topological mapping solves a global position alignment
problem between potentially indistinguishable, significant places. The subsequent met-
ric mapping phase produces a fine-grained metric map of the environment in high res-
olution. ”This work illustrates that topological approaches indeed scale up to large and
highly ambiguous environments. The environments tested here are difficult in that they
possess large cycles, and in that local sensor information is insufficient to disambiguate
locations”[Thrunet al., 1998].

Finally, there are also feature-based spatial representations[Tardoset al., 2002]
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where the map is a graph whose nodes represent observed features and whose edges
represent geometric relationships between these features. Under these approaches the
locations of geometric features in the environment and the position of the vehicle is
jointly estimated in a stochastic framework. Like grid-based methods, feature-based
methods are subject to cumulative metrical error and the difficulty of properly closing
large loops. A major benefit of topological maps is that the problem of correctly closing
large loops is separated from the problem of metrical mapping of local environments.
We refer the reader to Borenstein’s book[Borensteinet al., 1996] (Chapter 8) for a
review of different approaches to map building.

This article is organized as follows: in Section 3 we define how the agent represents
its experiences in the environment. Section 4 defines the causal map representation.
The topological theory is presented in three parts: Section 5 introduces the main prop-
erties of paths and places. Section 6 adds boundary relations to this representation, and
Section 7 defines the use of local metrical information. Section 8 presents our algo-
rithms to build the topological maps associated with the agent’s experiences. Finally,
we present our conclusions in Section 9.

3 The agent’s experiences in the environment

We assume that the continuous interaction of the agent and its environment is summa-
rized by a discreteview-action-viewsequence of the form

v0; a0; v1; a1; : : : ; an�1; vn : (1)

A view represents a sensory description associated with an environment state. Only the
name and not the internal structure of a view matters. The environment states where
the views in sequence 1 were observed are calleddistinctive states(dstates). Note
that distinctive states represent not only location, but also the agent’s orientation in
the environment. The same view can occur at different distinctive states (perceptual
aliasing). It is possible for the agent to associate different distinctive state names with
the same environment state. This is the case since the agent might not know at which
of several environment states it is currently located. It is the purpose of the causal and
topological theories (Sections 4 and 5) to deduce which of these dstates names refer to
the same environment state.

An action denotes a sequence of one or more control laws[Kuo, 1987] that take
the agent from one dstate to the next. For example, in[Kuipers and Byun, 1988,
Kuipers and Byun, 1991, Kuipers, 2000] distinctive states are the result of following
trajectory-followingand thenhill-climbing control laws. The basin of attraction of the
hill-climbing control laws absorbs accumulated error from each trajectory-following
control law, along each action. Even with realistic levels of accuracy in the control
laws, if the initial basin of attraction is large enough, and the hill-climbing control law
is effective enough, the action become functionally deterministic (Figure 1).

The sequence (1) is transformed into a set ofschemas of the form
h (vi; dsi); ai; (vi+1; dsi+1) i, wheredsi is the dstate name associated with the envi-
ronment state where viewvi is observed. A schema represents a particular action ex-
ecution of the agent in the environment. An action execution is characterized in terms
of the distinctive states the agent was at before and after the action was performed.
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ds1
ds2

Figure 1: Actions between distinctive states are functionally deterministic. The control laws making up

an action have a basin of attraction surrounding the initial distinctive state (ds1). Any trajectory starting in

that basin moves toward the fixed-point of the hill-climbing control law. Since any implementation has finite

precision, the action terminates in a small region around the destination distinctive state (ds2). As long as the

final region is small enough to be contained within the initial basin of attraction of every subsequent action

departing from that state, then actions are functionally deterministic.

Example 1. Consider the environment in Figure 2. In order to go from distinc-
tive stateds1 to distinctive stateds2, the agent executes the sequence of control laws
h get into corridor; follow middle line; localize iwhereget into corridor is a tra-
jectory following control law that moves the agent fromds1 to a, follow middle line
is a trajectory following control law that takes the agent froma to b, andlocalize is a
hill-climbing control law that takes the agent fromb to the distinctive stateds2. Envi-
ronment statesa andb are not distinctive states. At the distinctive stateds2 the agent
is facing the wall ahead and it is equidistant from this wall and the intersection corners.

ds2

ds3

ds1 a b

Figure 2: A sequence of control strategies ,h get into corridor; follow middle line; localize i,

takes the agent from distinctive stateds1 to distinctive stateds2. This continuous motion is represented

by the schemah (v1; ds1); a1; (v2; ds2) i, wherev1 andv2 are the views atds1 andds2, and the action

symbola1 represents the sequence of control laws.

Distinctive stateds3 is at the same physical location asds2 but with a different
orientation. When the robot is atds3, it is facing the open space (corridor) to the right
of ds2. In order to go from distinctive stateds2 to distinctive stateds3, the agent
executes the sequence of control strategiesh face space on right; localize i. The
schemash (v1; ds1); a1; (v2; ds2) i andh (v2; ds2); a2; (v3; ds3) i are created, where
a1 anda2 are action symbols representing the respective sequence of control laws.2

4 Causal graphs

Schemas summarize the continuous interactions of the agent in the environment. This
is done by storing the initial and final distinctive states (and their corresponding views)
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for any action execution. By considering only the views associated with the initial and
final distinctive states of a schema, we define theview graph(Section 4.2.1), which
relates different views by actions linking them. By considering sequences of actions
as well as views, the agent can further distinguish distinctive states. In Section 4.3 we
define the predicateceq which is the case for distinctive states that are not distinguish-
able by actions and views. We then define thecausal graphwhose nodes are classes of
distinctive states (classes w.r.t.ceq). This representation is akin to the view graph al-
though it imposes further refinement in the set of environment states that are consistent
with the agent experiences.

4.1 Ontology of the Causal theory

We use a first order sorted language in order to describe causal graphs. The sorts
of such language includeviews, actions, action types, action qualitative descriptions,
distinctive statesand schemas. Next we present the predicate symbols and axioms
associated with this ontology.

We use the predicateView(ds;v) to represent the fact thatv is theviewassociated
with distinctive stateds. We assume that a distinctive state has a unique view,1 2

9!v V iew(ds; v) : (2)

However, we donot assume that views uniquely determine distinctive states (i.e.
V iew(ds; v) ^ V iew(ds0; v) 6! ds = ds0). This is the case since the sensory capabili-
ties of an agent may not be sufficient to distinguish distinctive states.

An action has a unique type, eithertravel or turn, associated with it.3 These con-
stant symbols define completely the sort ofaction types(Axiom 3). The predicate
Action type(a; type) represents the fact that the type of actiona is type. Formally,

turn 6= travel; 8atype fatype = turn _ atype = travelg ; (3)

9!type Action type(a; type) : (4)

Turn actionshave associated a unique qualitative description. The sort of qualita-
tive descriptions is completely defined by the constant symbolsturnLeft, turnRightand
turnAround(Axioms 5 and 6). We use the predicateTurn desc(a;desc) to indicate
thatdescis the qualitative description of theturn action a. Formally,4

UNA[turnLeft; turnRight; turnAround] ; (5)

8desc fdesc = turnLeft _ desc = turnRight _ desc = turnAroundg ; (6)

Turn desc(a; desc)! Action type(a; turn) ; (7)

Action type(a; turn)! 9!desc Turn desc(a; desc) : (8)

A schemarepresents a particular action execution of the agent in the environment.
We use the following predicates to represent information associated with a schema:

1Throughout this paper we assume that free variables in formulas are universally quantified.
2The formula9!v P (v) means“there exists a uniquev s.t.P (v)” . Formally,9v8x [P (x) � x = v].
3The type of an action will be important in the topological theory (Section 5). For completeness of the

presentation we introduce this concept here.
4The notationUNA[t1; : : : ; tn] represents the uniqueness of names axioms for the grounded terms

t1; : : : ; tn. These axioms require thatti 6= tj for i 6= j.
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action(s,a)— actiona is the action associated withschema s—, context(s,ds)— ds is
the startingdistinctive stateassociated with the action execution represented byschema
s —, andresult(s,ds)— ds is the endingdistinctive stateassociated with the action
execution represented byschemas—. While we require a unique context and action
associated with a schema, the result of a schema is optional (but unique if it exists):

9!a action(s; a); 9!ds context(s; ds) ; result(s; ds) ^ result(s; ds0)! ds = ds
0
: (9)

Most often we are interested incompleteschemas: those for whom the result-
ing distinctive state exists. Nevertheless, incomplete schemas allow the representa-
tion to account for common states of incomplete knowledge like “I could take you
there, but I can’t tell you how”[Kuipers, 2000]. We use the (Causal Schema) predicate
CS(s; ds; a; ds0) defined as

CS(s; ds; a; ds0) �def context(s; ds) ^ action(s; a) ^ result(s; ds
0) (10)

to express the fact that schemas represents an execution of actiona which took the
agent fromdistinctive stateds to distinctive stateds0.

An action execution also has metrical information associated with it. This metrical
information represents an estimate of, for example, the distance or the angle between
the distinctive states associated with the action execution. We defer the study of metri-
cal information associated with schemas until Section 7.

While schemas are explicit objects of our theory, it is convenient to leave them
implicit. We introduce the following convenient notation:5

hds; a; ds0i �def 9s CS(s; ds; a; ds
0)

hv; a; v0i �def 9s; ds; ds
0 fCS(s; ds; a; ds0) ^ V iew(ds; v) ^ V iew(ds0; v0)g

h(v; ds); a; (v0; ds0)i �def 9s fCS(s; ds; a; ds
0) ^ V iew(ds; v) ^ V iew(ds0; v0)g

hds; type; ds0i �def 9s; a fCS(s; ds; a; ds0) ^ Action type(a; type)g

hds; desc; ds0i �def 9s; a fCS(s; ds; a; ds0) ^ Turn desc(a; desc)g

4.2 The E formulae.

The agent’s experiences in the environment,E, are described in terms ofCS, View,
Action typeandTurn descformulae. Associated withE we have the setsS(E), DS(E),
V(E), A(E)of schemas, distinctive states, views and action constant symbols occurring
in E. We require all these symbols to be different (i.e.uniqueness of namesassumption)
and to completely define their corresponding sorts (domain closureassumption):

UNA[s1; : : : ; sk]; si 2 S(E) ; UNA[ds1; : : : ; dsl]; dsi 2 DS(E) ;

UNA[a1; : : : ; an]; ai 2 A(E) ; UNA[v1; : : : ; vm]; vi 2 V (E) ; (11)

8s
_

si2S(E)

s = si ; 8ds
_

dsi2DS(E)

ds = dsi ;

8a
_

ai2A(E)

a = ai ; 8v
_

vi2V (E)

v = vi :

5Notice that we have “overloaded” the bracket notation depending on the type of its arguments.
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The axioms above are not only required from a logical point of view, but make sense
from the knowledge representation point of view. Domain closure axioms prevent
models from including objects different from those experienced (named) by the agent.
Each of the agent schemas represents a different experience and the agent names them
with a different schema constant symbol. Different view symbols represent different
sensory input. This is the case since the agent decides what view to associate with a
sensory input.Different distinctive state constant symbols might represent the same
environment state. Nevertheless, we assume that different distinctive state symbols
are interpreted by different elements of the sort of distinctive states and we use the
predicateceq (Causally Equal) to indicate whether two distinctive states represent the
same environment state (Section 4.3).

Finally, the type of actions as well as the qualitative description of turn actions have
to be specified as part of the formulaeE:

Action type(a; type) �
_

Action type(ai;typei)2E

[a = ai ^ type = typei] (12)

Turn desc(a; desc) �
_

Turn desc(ai;desci)2E

[a = ai ^ desc = desci] (13)

Definition 1. Given a setE of CS, View, Action typeandTurn typeformulae,

COMPLETION(E)

denotes the union ofE with Axioms 11 - 13.
Example 2.Consider the set of experiencesE gathered by the agent while navigat-

ing the environment in Figure 3. The agent moves among intersections by performing
actionml. The sensory input at the different intersections is very similar, and the agent
associates the viewv+6 with the different distinctive states it found (i.e.a, b andc).

��
��
��
��

�
�
�
�

��
��
��
��

a b c

Figure 3:The agent moves among corridor intersections that have the same viewv+. a, b andc are the

distinctive states where this view is observed at.

The elements ofE are as follows:Action type(ml; travel), CS(s1; a;ml; b),
CS(s2; b;ml; c), V iew(a; v+), V iew(b; v+), andV iew(c; v+).

The uniqueness of names axioms associated withE ares1 6= s2 anda 6= b ^ a 6=
c ^ b 6= c. The domain closure axioms associated withE are8s fs = s1 _ s = s2g,
8ds fds = a _ ds = b _ ds = cg, 8a fa = mlg and8v fv = v+g.

Finally, we also have the axioms8a; desc fTurn desc(a; desc) � falseg and
8a; type fAction type(a; type) � [a = ml ^ type = travel]g. 2

6As with any other symbol name, the view name is arbitrary. The + in the view name is used to indicate
that the view corresponds to a four corridor intersection. Later we use the symbol= to indicate that the view
corresponds to an end of corridor.
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4.2.1 The view graph

The view graph associated with a set of experiencesE is the labeled graph
hNodes; Edges; Labelsi such that:

� Nodes = V(E), Labels = A(E).

� Edges =f(v; a; v0) : COMPLETION(E) j= hv; a; v0i g.

When the same view occurs at different environment states, the view graph is not
very informative. The agent has to use information other than the views alone in order
to distinguish different environment states (see next section and Section 5). How-
ever, should the agent have enough sensory capabilities as to distinguish distinctive
states by their views, then the view graph becomes a powerful spatial representation
for reliable navigation. Work in[Schölkopf and Mallot, 1995, Franzet al., 1998,
Mallot and Gillner, 2000, Steck and Mallot, 2000] shows how the view graph is con-
sistent with human navigation abilities.

4.3 The Causal theory

We use the predicateceq(ds;ds0) to denote the fact thatdistinctive statesds andds0

arecausallyindistinguishable. (In Section 5 we define when distinctive states are topo-
logically indistinguishable.) Informally,ceq(ds; ds0) is the case whenever distinctive
statesds andds0 are indistinguishable by the actions and views in a given set of expe-
riencesE. The theoryCT (E) below defines the extent of the predicateceq.

The causal theory associated with a set of experiencesE, CT(E), is the following
nested abnormality theory (NATs)[Lifschitz, 1995] (see Appendix A):

CT (E) = (14)

COMPLETION(E) ;

Axioms 2� 10 ;

hds; a; ds0i ^ hds; a; ds00i ! ds
0 = ds

00
; (15)

CEQ block = (16)

f max ceq :

ceq(ds1; ds1);

ceq(ds1; ds2)! ceq(ds2; ds1);

ceq(ds1; ds2) ^ ceq(ds2; ds3)! ceq(ds1; ds3);

ceq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v); (17)

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2) (18)

g

Axiom 15 states our assumption that actions are deterministic. Axiom 17 states
that indistinguishable distinctive states have the same view. Axiom 18 states that if
distinctive statesds andds0 are indistinguishable, and actiona is performed for bothds
andds0, then the resulting distinctive states must also be indistinguishable. Axioms 17
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and 18 allow us to prove that ifds andds0 are two indistinguishable distinctive states,
then any sequence of actions executed atds andds0 will render the same sequence of
views.

Given an action symbolA and distinctive stateds, A(ds) = ds0 if the schema
hds;A; ds0i has been observed, otherwise,A(ds) =?. Moreover,A(?) =?. The
definition is then extended to action sequences in the standard way. Notice thatA(ds)
is well-defined given our assumption that actions are deterministic (Axiom 15).

Lemma 1 LetA denote a sequence of action symbols. LetA(ds) denote the distinctive
state symbol resulting from executing the sequenceA starting at distinctive stateds, or
? if A is not defined fords. Then,

ceq(ds1; ds2) ^ A(ds1) 6=? ^A(ds2) 6=?! V iew(A(ds1); v) � V iew(A(ds2); v) :

There is a special case in whichceq is an equivalence relation without explicitly
stating the axioms requiring so. This is the case when the result of every action at
every distinctive state is known.

Definition 2. A set of experiencesE is completewhenever

E j= 8a; ds9ds0hds; a; ds0i :

Theorem 1 LetE be a complete set of experiences and letCEQ block be defined as
follows:

f max ceq :

ceq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v);

ceq(ds1; ds2) ^ h ds1; a; ds
0

1 i ^ h ds2; a; ds
0

2 i ! ceq(ds01; ds
0

2)

g

Then, the predicateceq is an equivalence relation.

Proof. See Appendix B.2

When a set of experiences is complete the predicateceqcaptures the idea that two
distinctive states are the same if they render the same views under any sequence of
actions.

Theorem 2 LetE be a complete set of experiences. Then,

ceq(ds1; ds2) � 8A; v [V iew(A(ds1); v) � V iew(A(ds2); v)] :

Proof. See Appendix B.2

Example 3. Consider the set of experiencesE as in Example 2 (see Figure 4a).
Since the same view is experienced ata, b andc, the extent ofceq is maximized by
declaringceq = true (i.e. 8x; y ceq(x; y)). Notice that axiom (18) is trivially satisfied
since no action has been executed atc.

Although a, b and c were experienced at different environment states, they are
declared causally indistinguishable. This happens because neither the actions nor the
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Figure 4: (a) Distinctive statesa, b andc cannot be causally distinguished. Topological information is

needed in order to distinguish them. (see text) (b)a, b andc are distinguished given the new information

hc; travel; di.

views in E provide enough information to distinguish them. By using topological
information (i.e. the concepts ofpath andplace, see Section 5) we will be able to
distinguish these distinctive states (see Example 5).

Suppose the agent continues exploring the environment and gets the new informa-
tion V iew(d; v =); CS(s3; c;ml; d), as suggested in Figure 4b. In virtue of lemma 1,
it can be seen thatceq(ds; ds0) � ds = ds0, and consequently the agent concludes that
all distinctive states refer to different environment states.2

Different models ofCT (E) generally arise when the set of experiencesE is in-
complete (i.e. the agent has not completely explored the environment) or when weak
sensors determine the same view at different environment states.

Example 4. Consider the environment depicted in Figure 5. The agent visits the
different distinctive states as suggested by their numbers in the figure. The same travel
actionml is performed when traveling from a corner to the intersection (i.eh 1;ml; 2 i)
and viceversa (e.g.h 4;ml; 5 i). A turn around action is performed when reaching a cor-
ner (e.g. h 3; change path direction; 4 i,h 7; change path direction; 8 i, etc.). As-
sume that the different corners have the same views (i.e. view(1) = view(4) = view(8),
view(3)= view(7) = view(11)), and views associated with the other distinctive states
are different.

�
�
�
�

�
�
�
�

�� ��
��
��
��

1
5

6

8

7

9

{2,10} {3,11}
{4,12}

Figure 5: The agent visits the different distinctive states in the order suggested by their numbers. The

same view occurs at the different corners (i.e view(1)= view(4) = view (8)). Three different causal models

can be associated with the agent exploration of this T-environment (see text).

Three models ofCT (E) can be associated with the explorationE of the T-
environment:

1. Model 1:ceq(8; 12); ceq(12; 8); ceq(x; x).7

2. Model 2:ceq(1; 12); ceq(12; 1); ceq(x; x).

7The extent ofceq in model 1 is defined byf(8; 12); (12; 8)g [ f(x; x) : x = 1; : : : ; 12g.
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3. Model 3:ceq(4; 12); ceq(12; 4); ceq(3; 11); ceq(11; 3); ceq(2; 10); ceq(10; 2); ceq(x; x).

In all the models above,:ceq(1; 4), :ceq(1; 8), :ceq(4; 8). For instance, from
h 1;ml; 2 i,h 4;ml; 5 i, andview(2) 6= view(5) we conclude that:ceq(1; 4). Although
dstate12 is at the same environment state as dstate4, it is possible thatceq(1; 12) or
ceq(8; 12). This is the case since no action has been performed at dstate12.

Notice that the models ofCT (E) are maximal with respect to the set inclusion
for ceq. The number of elements in the possible extents ofceq could vary, and con-
sequently the number of different environment states represented by the models
of CT (E) will also vary. For instance, the three models above represent11, 11 and9
environment states respectively.

Finally, notice that all the models above are possible since at the causal level turn
and travel actions do not bear any spatial meaning. When we consider topological
information, only model 3 above will be possible (see Example 10).2

4.4 The causal graph

The causal graph associated with a set of experiencesE is the labeled graph
hNodes; Edges; Labelsi such that:

� Nodes =DS(E)=ceq, Labels = A(E),

� Edges =f([ds]; a; [ds]0) : COMPLETION(E) j= hds; a; ds0i g.

whereDS(E)=ceq denotes the set of equivalence classes ofDS(E)moduloceq, and
[ds] denotes the equivalence class ofds givenceq.

{a,b,c}

ml
{a} {b}

{c}
{d}

ml

ml

ml

ml

ml
v+ v

a b c

Figure 6: (a)-(b). Causal graphs associated with the set of experiences in Figures 4a and 4b. (c) view

graph associated with the set of experiences in Figure 4b. Notice that the causal and view graphs associated

with the experiences in Figure 4a are isomorphic.

The problem of distinguishing environment states by outputs (views) and inputs
(actions) has been studied in the framework of automata theory[Angluin, 1978, Gold,
1978, Rivest and Schapire, 1987, Basyeet al., 1995]. In this framework, the problem
we address is the one of finding the minimum automaton (w.r.t. the number of states)
consistent with a given set of input/output pairs. Without any particular assumptions
about the environment or the agent’s perceptual abilities, the problem of finding this
smallest automaton is NP-complete ([Angluin, 1978, Gold, 1978]).
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5 Topological maps

Actions in the causal theory convey patterns of experience but not spatial configura-
tion. Spatial configuration is considered by the topological theory where actions are
categorized into two classes:turns andtravels. Turns and travels are explained by a
new ontology, that ofplacesandpaths. Turn actions leave the agent at the same place.
Travel actions move the agent to a new place along a path.

Grouping places intoregionsallows an agent to reason efficiently about its spatial
knowledge. Regions themselves can be grouped to form new regions forming a spatial
abstraction hierarchy. (In this article we do not consider this hierarchy.) In Section 6
we defineboundary regionsassociated with paths. Informally, a path has associated
three disjoint regions: the set of places in the path, the set of places to the left of the
path, and the set of places to the right of the path. Boundary regions allow the agent
to distinguish distinctive states, for two distinctive states can be considered different if
they are in different boundary regions of the same path (see Example 17).

Local metrical information derived during action execution is considered in the
topological theory. For instance, the distances among places on a path or the angles
among paths intersecting in a place can be accommodated in the topological map. We
study the use of metrical information in Section 7.

5.1 Ontology of the Topological theory

The main purpose of the topological theoryTT (E) is to minimize the set of topological
paths and topological places consistent with the given experiencesE. The concepts of
pathandplaceare used to distinguish environment states that are not distinguishable by
actions and views alone. We use the predicateteq(ds;ds0) to indicate that distinctive
statesds andds0 are topologically indistinguishable. This will be the case, when in
addition to not being distinguishable by views and actions,ds andds0 are at the same
place facing the same direction along the same path.

Within the sort of places, we distinguish betweentopological placesandregions.
A topological place is a set of distinctive states linked by turn actions. A region is a set
of places. We use the predicatestplaceandis region to identify these subsorts.

A path defines an order relation among places connected by travel with no turn
actions. They play the role of streets in a city layout. Among paths,topological paths
correspond to those paths whose places are topological places. We use the predicate
tpath to identify these paths. A path connecting regions is called aroute. A path
has two directions,pos andneg, which can be thought of as referring to “upstream”
and “downstream” in the order of places on the path. The path direction also serves
as a frame of reference for specifying the boundary regions describing places to the
left and right of the path (see Section 6). The sort of path directions is completely
defined byposandneg. For a directiondir,�dir is defined such that�pos = neg and
�neg = pos.

The relations among distinctive states, places and paths are characterized in terms
of the following predicates:on(pa,p)— placep is onpathpa —,order(pa,dir,p,q) —
placep is beforeplaceq, when facing directiondir on pathpa—, at(ds,p)—distinctive
stateds is atplacep—, andalong(ds,pa,dir)—distinctive stateds is alongpathpa in
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directiondir—. Figure 7 summarizes the dependencies among the above predicates.
Section 5.2 formalizes these relationships.

 

{31}

{30}

{28}

tplace(p)  on(pa,p)  order(pa,dir,p,q)   tpath(pa)

 turn(ds,ds’)                                   travel(ds,ds’)

<ds,turn,ds’>                                  <ds,travel,ds’>

{32, 37−39}

{33}

{47}

turn_eq(ds,ds’)                              travel_eq(ds,ds’)

at(ds,p)                                         along(ds,pa,dir)

{45,46} {40}

{20: AT=block}

teq(ds,ds’)

Figure 7: Dependency among predicates inTT (E). Labels on the graph’s arrows refer to the axioms

relating the predicates pointed by the arrows.

Distinctive states related by turns moduloteq (turn eq) must beat the same topological place (tplace).

Distinctive states related by travels moduloteq (travel eq) arealong the same topological path (tpath).

Knowing at which places and along which paths distinctive state are, determines what places areon what

paths. The order of places on a path is derived from travels among distinctive states along a path.

Since the extents oftravel eq andturn eq must be defined in order to determine places and paths, one has

to know what distinctive states areteq. The arrows pointing toteq on the top of the diagram indicate that

among the possible interpretations forteq, the preferred models of the theory select those that lead to a map

where a minimum set of paths and places are needed to explain the schemas at the bottom of the diagram.

Since a map can be arbitrarily large, no finite domain can be adequate and so we
require the sorts of places and paths to be contably infinite. This is not to say that the
topological map has infinite number ofplaces or paths. Given a model of the theory,
the topological map corresponds to the submodel obtained by restricting the different
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predicates totopological places, regions, topological pathsand routes. Sincetopo-
logical placesare identified with finite sets of distinctive states andtopological paths
are identified with finite sequences of distinctive states, the topological map associated
with a finite set of schemas (and so a finite set of distinctive states) has a finite number
of topological placesand topological paths. We require infinite sorts of places and
paths to avoid models being non-comparable due to a mismatch in the cardinalities of
the sorts, as illustrated in Example 16.

5.2 The topological theory

The topological theory associated withE, TT(E) , is the following nested abnormality
theory (NATs)[Lifschitz, 1995] (see Appendix A): (The condition that the sorts of
places and paths are countably infinite is formalized by asserting the existence of a
bijection between these sorts and the natural numbers.)

TT (E) = (19)

there exist countably infinitely many places ;

there exist countably infinitely many paths ;

:9p [tplace(p)^ is region(p)] ;

:9pa [tpath(pa)^ route(pa)] ;

COMPLETION(E) ;

Axioms 2� 10 ;

hds; a; ds0i ^ hds; a; ds00i ! ds
0 = ds

00
; (Axiom 15)

T block ;

AT block :

The blockT block defines the properties of the predicatesdturn, dtravel, and ~travel.dturn is the equivalence closure of the schemash�; turn; �i; dtravel and ~travel are the
equivalence and transitive closure of the schemash�; travel; �i respectively (Appendix
D).

The blockAT block is the heart of our theory. It defines how the agent groups
distinctive states intoplaces, and howplacesare ordered bypaths. The purpose of this
block is to define the extent of the predicatestpath, tplace, at, along, order, onandteq.
The block has the associated circumscription policy

circ tpath � tplace var ~SSHpred

stating that a minimum set of topological paths is preferred to a mini-
mum set of topological places. The symbol� indicates prioritized circum-
scription (see Appendix A). ~SSHpred stands for the tuple of predicates
hat; along; order; on; teq; turn eq; travel eqi. The predicatestravel eq and
turn eq are “auxiliary” predicates used in our topological theory. Although they are
completely defined in terms ofteq, dturn and dtravel, they need to vary in the circum-
scription policy. The blockAT block is defined as follows:
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AT block = (20)

f max teq :

teq(ds; ds) ;

teq(ds1; ds2)! teq(ds2; ds1) ;

teq(ds1; ds2) ^ teq(ds2; ds3)! teq(ds1; ds3) ; (21)

teq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v); (22)

teq(ds1; ds2) ^ h ds1; a; ds
0

1 i ^ h ds2; a; ds
0

2 i ! teq(ds01; ds
0

2) ; (23)

teq(ds1; ds2)! 8p [at(ds1; p) � at(ds2; p)] ^ (24)

8pa; dir [along(ds1; pa; dir) � along(ds2; pa; dir)] ;

h ds; turn; ds0 i ! :teq(ds; ds0) ; (25)

h ds; turnAround; ds0 i ^ hds; turnAround; ds00 i ! teq(ds0; ds00) ; (26)

h ds1; turnAround; ds2 i ^ h ds2; turnAround; ds3 i ! teq(ds1; ds3) ; (27)

at(ds; p)! tplace(p); (28)

9!p at(ds; p); (29)

turn eq(ds1; ds2) � 8p [at(ds1; p) � at(ds2; p)] ; (30)

fmin turn eq : (31)

teq(ds1; ds2) ^ teq(ds3; ds4) ^dturn(ds2; ds3)! turn eq(ds1; ds4);

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

along(ds; pa; dir)! tpath(pa); (32)

f min along : (33)

hds; travel; ds0 i ! 9pa; dir
�
along(ds; pa; dir) ^ along(ds0; pa; dir)

�
; (34)

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir); (35)

teq(ds1; ds2)! along(ds1; pa; dir) � along(ds2; pa; dir) (36)

g

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1; (37)

at(ds1; p)^at(ds2; p)^along(ds1; pa; dir)^along(ds2; pa; dir)! teq(ds1; ds2);(38)

�
hds; turn desc; ds

0i ^ turn desc 6= turnAround ^ (39)

along(ds; pa; dir) ^ along(ds0; pa1; dir1)
�
! pa 6= pa1;

f min order : (40)�
h ds; travel; ds0 i ^ at(ds; p) ^ at(ds0; q)^ (41)

along(ds; pa; dir) ^ along(ds0; pa; dir)
�
! order(pa; dir; p; q);

order(pa; pos; p; q) � order(pa;neg; q; p); (42)

order(pa; dir; p; q) ^ order(pa; dir; q; r)! order(pa; dir; p; r) (43)

g
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:order(pa; dir; p; p); (44)

fmin on : at(ds; p) ^ along(ds; pa; dir)! on(pa; p) g (45)

on(pa; p) ^ on(pa; q) ^ tpath(pa)! (46)

9ds1; dir1; ds2; dir2 [at(ds1; p) ^ along(ds1; pa; dir1) ^ at(ds2; q)^

along(ds2; pa; dir2) ^ travel eq(ds1; ds2)] ;

fmin travel eq : (47)dtravel(ds1; ds2)! travel eq(ds1; ds2);

hds1; turnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1)

teq(ds1; ds2) ^ teq(ds3; ds4) ^ travel eq(ds2; ds3)! travel eq(ds1; ds4);

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

circ tpath � tplace var ~SSHpred (48)

g

We discuss these axioms in turn.
Predicateteq is an equivalence relation. It stands fortopologically equal. When-

everteq(ds1; ds2) is the case, we can considerds1 andds2 as denoting the same envi-
ronment state:ds1 andds2 cannot be distinguished by views and actions (Axioms 22
and 23), they are at the same place, and they are along the same paths (Axiom 24).

Axiom 25 states that aturn action takes the agent from one distinctive state to a
different one. In particular we assume that a schema of the formhds; Turn; dsi is not
included in the agent’s experiences. Axiom 26 states that there is a unique (moduloteq)
distinctive state resulting from performing a turn around action. After two turn around
actions the agent is back to the same dstate (Axiom 27). Turn around actions are special
since they link distinctive states along the same path but in opposite directions (Axiom
35).

Axioms 29 and 30 state how the agent groups distinctive states into places. Ev-
ery distinctive state is at a unique topological place (Axiom 29). Whenever the agent
turns, it stays at the same topological place (Axiom 30). Distinctive states grouped
into a topological place should beturn connected (moduloteq) (Axiom 30). Block 31
states that the predicateturn eq corresponds to the relationdturn moduloteq.

Travelactions among distinctive states are abstracted to topological paths connect-
ing the places associated with such distinctive states. Travel axioms are explained in
terms of the two related predicates,along andorder. Both of these predicates are
the minimum ones explaining travel actions and satisfying other properties included in
Blocks 33 and 40, respectively.

Block 33 defines the predicatealong. Whenever an agentturns around, it stays in
the same path but facing the opposite path’s direction (Axiom 35). Axiom 36 is a trivial
consequence of the definition ofteq but it has to be included in the block so that the
interpretation ofalong has tuples other than the ones explicitly derived from schemas
(see Example 7).

There are further restrictions on the properties ofalong. For instance, a distinctive
state is along at most one path (Axiom 37). Since Axiom 37 provides “negative” in-
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formation aboutalong, it does not need to be included in Block 33 (see Proposition
4 in [Lifschitz, 1994]). Axiom 37 prevents the existence of different paths that con-
verge to the same distinctive state (in Section 5.3 we will make this axiom a default).
Finally, Axiom 38 states that there exist at most one distinctive state indicating a path’s
direction at a given place on the path.

Turn actions other thanturnAroundchange the path the initial and final distinctive
states linked by the action are along (Axiom 39). This axiom allows the agent to con-
clude the existence of different paths once it turns right or left at a place (see Example
9). This axiom prevents the existence of self-intersecting paths (Figure 15).

Block 40 defines the predicateorder. In addition to explaining travel actions,
order defines an order among the places on a path satisfying the following two proper-
ties: i) the order of places in a given path direction is the inverse of the order of places
in the other path direction (Axiom 42), and ii), the order of places in a path is transitive
(Axiom 43).

There are further restrictions on the properties oforder: i) the order of places in a
path should be non-reflexive (Axiom 44), and ii) the agent has to have traveled among
the places on the same path (Axiom 46). Since these requirements provide “negative”
information aboutorder, they do not need to be included in Block 40 (see Proposition
4 in [Lifschitz, 1994]). Notice that we rule out the existence of circular paths (Axiom
44). In Section 5.3 we will make this axiom a default.

Axiom 46 requires the agent to have traveled among the places on the same path.
travel eq defines when two distinctive states are linked by travel actions without turns
(except forturnAround actions) (see Block 47). Example 8 illustrates how by using
travel eq the agent can minimize the set of topological paths.
Remark. We will be using the following properties of our theory. Axiom 37 in combi-
nation with Axioms 34, 41, and 44, imply that that whenever the agent has directly trav-
eled between two distinctive states, the places associated with these distinctive states
are different:

Corollary 1. ~travel(ds; ds0)! place(ds) 6= place(ds0) ;
whereplace(ds) denotes the unique topological place that distinctive stateds is

at (Axiom 29). Moreover, consecutive travels among distinctive states occur along the
same topological path.

Corollary 2.

~travel(ds; ds0)! 9!pa; dir
�
order(pa; dir; place(ds); place(ds0)) ^ along(ds; pa; dir)

^along(ds; pa; dir)] :

In order to prove that distinctive statesds1 andds2 are at different topological places,
one has to prove that:turn eq(ds1; ds2). The following theorem states a strong con-
dition for when this is the case. Given an equivalence relationR, [x]R denotes the
equivalence class ofx according toR.

Theorem 3 Letds1 be a distinctive state symbol such that

8ds2 62 [ds1]dturn; [ds2]teq \ [ds1]dturn = ; :

Then, 8ds2 62 [ds1]dturn; place(ds2) 6= place(ds1) :
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Proof. See Appendix C.2

Recall that the interpretations fortpath andtplace are finite. Our circumscription
policy 48 and the fact that the sorts of paths and places are infinite implies the following
fact:

Theorem 4 Any two models of the SSH topological theory have the same number of
topological paths and the same number of topological places.

Proof. See Appendix C.2

However, Theorem 4 does not mean that a unique map is necessarily associated
with a set of schemas. As shown in Example 13 the SSH topological theory could have
more than one non-isomorphic model.
fend of remarkg

The next examples illustrate the interplay among the axioms in ATblock.
Example 5.

���� ���� ����a b c

Figure 8:Distinctive statesa, b andc cannot be distinguished at the causal level (see Example 3). Using

the concepts ofpathsandplacesthese dstates are distinguished.

Consider the set of experiencesE

h (a; v+); travel; (b; v+) i; h (b; v+); travel; (c; v+) i

as in Example 3, Figure 8. From Corollary 1 we deduce thatplace(a), place(b) and
place(c) are all different places. From Corollary 2, the topological map associated
with E has one topological path and three topological places. Distinctive statesa and
b can be distinguished though they are “causally indistinguishable” (i.e.ceq(a; b) ^
:teq(a; b)).

Only distinctive states linked by turn actions can be grouped into a topological place
(Axiom 30). Under incomplete information this constraint could imply the existence
of more places than the ones needed in a map.

Example 6.Consider the set of experiencesE indicated by the formulae

h a; travel; b i; h b; turnAround; c i; h c; travel; d i ;

in addition to the views associated with the distinctive states. Moreover, assume that
views uniquely distinguish the different distinctive states. The model forTT(E) is pre-
sented in Figure 9c. The model has three places and one path. Not having aturn action
relatinga andd prevents the agent from grouping these distinctive states into the same
place, as suggested in Figure 9b. Next we show why this is the case.
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a b
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Figure 9: (a) The agent navigates a rectangle environment getting the experiencesh a; travel; b i,

h b; turnAround; c i, andh c; travel; d i. The corresponding topological map has three places and one

path (c) rather than two places and one path (b). Distinctive statesa andd cannot be grouped into the same

topological place since they are not linked by turn actions. Notice that the order of places in the path is not

total. Should the agent turn around and experience the schemah d; turnAround; a i, it will consider (b) as

the topological map and disregard (c).

Since views uniquely distinguish distinctive states, thenteq(x; y) � x = y. From
the definition ofturn eq (Block 31), it follows then thatturn eq = dturn. Since the
only turn action mentioned inE is the one in schemah b; turnAround; c i, we deduce
that dturn(ds; ds0) � [ds = ds0 _ fds = b ^ ds0 = cg _ fds = c ^ ds0 = bg]. In
particular,:turn eq(a; d). In virtue of Axiom 30 we cannot conclude thata andd are
at the same topological place.2

The next example shows the interplay betweenteq andalong as well as the effect
of maximizingteq.

Example 7.

c
de

a , a’

b, b’

Figure 10:The agent moves back and forth from one intersection to the other. The second time the agent

visits distinctive statesa andb, it gives the namesa0 andb0. From the topological theory it follows that these

names correspond to the previously visiteda andb.

Consider the set of schemasha; turnRight; b i, h b; travel; c i, h c; turnAround; d i,
hd; travel; e i, h e; turnRight; a0 i, h a0; turnRight; b0 iconsistent with an agent going
from one four-way intersection to another (Figure 10). Let’s consider the models of
these schemas. From our axioms, at least one path and three places must exist:

Places Paths Along teq
P =fa,bg Pa: b-c d-e along(b,Pa,dir) along(c,Pa,dir) :teq(a; b), :teq(c; d)
Q = fc,dg along(d,Pa,-dir) along(e,Pa,-dir):teq(e; a0), :teq(a0; b0)
R = fe,a’,b’g

We know thatP 6= Q andQ 6= R. By havingteq(a; a0), we can complete the
model such thatP = R. The maximization ofteq will force the model to have
teq(b; b0). By including Axiom 36 in the Block 33 we are allowed to have a model
in which teq(b; b0) is the case. Notice that a travel action has not been performed atb0

and so the schemas do not support a tuple of the formalong(b0; �; �). 2
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Example 8. Consider the extension of the previous example where the schema
h b0; travel; c0 i is obtained. Axiom 46 requires the agent to have traveled among places
on the same path. As for places, we check this requirement “modulo”teq, sinceteq
plays the role of equality in our theory. In this example, the agent concludes that
teq(c; c0). Notice that: dtravel(b; c0) andtravel eq(b; c0) are the case.2

By requiring the agent to have traveled among the places on a same path (Axiom
46), different paths can be identified. The next example illustrates the case.

Example 9. Suppose the agent explores the environment depicted in Figure 11a

ds3

ds1 ds2

ds6ds5

ds4

pa

pa1

pa2

(a) (b)

A B

C D

Figure 11:By requiring the agent to have traveled among the places on a same path (Axiom 46), different

paths can be identified. (a) The agent visits the different distinctive states in the orderds1; ds2; : : : ; ds6.

(b) depicts the topological map associated with (a). Three paths instead of only two are required to explain

the agent experiences (see text).

obtaining the following schemas:

h ds1; travel; ds2 ih ds2; turnRight; ds3 ih ds3; travel; ds4 i

h ds4; turnLeft; ds5 ih ds5; travel; ds6 i

We assume that the agent associates different views with the different distinctive states
in the example. Axiom 29 implies that there exist placesA, B, C andD (see Figure
11b) such that

at(ds1; A); at(ds2; B); at(ds3; B); at(ds4; C); at(ds5; C); at(ds6; D) :

Moreover, Corollary 1 implies thatA 6= B ; B 6= C ; C 6= D : Under our
assumption that all distinctive states in the example have different views, it follows
that teq(ds1; ds2) � ds1 = ds2 and thusdturn = turn eq. Since:dturn(ds1; ds3),
:dturn(ds1; d5) and:dturn(ds2; ds6) are the case,A, B, C andD are all different.
Axiom 34 implies that there exist pathsPa; Pa1; Pa2, and directionsdir; dir1; dir2,
such that:

order(Pa; dir; A;B); along(ds1; Pa; dir); along(ds2; Pa; dir);

order(Pa1; dir1; B; C); along(ds3; Pa1; dir1); along(ds4; Pa1; dir1);

order(Pa2; dir2; C;D); along(ds5; Pa2; dir2); along(ds6; Pa2; dir2) :

Schemashds2; turnRight; ds3i andhds4; turnLeft; ds5i, and Axiom 39 implies that
Pa 6= Pa1; Pa1 6= Pa2. Sinceteq(ds1; ds2) � ds1 = ds2 and there is not
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turnAround schemas inE, then dtravel = travel eq. Consequently: dtravel(ds1; ds4)
and: dtravel(ds1; ds5) are the case, and in virtue of Axiom 46 it follows thatPa 6=
Pa2 : 2

Example 10.Consider the same T-environment exploration presented in Example
4 (see Figure 12). When using only causal information, three possible models are
associated with the exploration. When using topological information, only one of these
models is possible as illustrated next.

�
�
�
�

�
�
�
�

�� ��
��
��
��

1
5

6

8

7

9

{2,10} {3,11}
{4,12}

Figure 12: The agent visits the different distinctive states in the order suggested by their num-

bers. The same travel actionml is performed when traveling from a corner to the intersection (i.e

h 1;ml; 2 i) and viceversa (i.e.h 4;ml; 5 i). A turn around action is performed when reaching a corner

(i.e. h 3; turnAround; 4 i,h 7; turnAround; 8 i, etc.). Assume that the different corners have the same

views (i.e. view(1) = view(4) = view(8), view(3)= view(7) = view(11)), and views associated with the other

distinctive states are different. Three different causal models can be associated with the agent exploration of

this T-environment but only one of them is consistent with topological information (see text).

The three causal models associated with T-environment are:

1. Model 1:ceq(8; 12); ceq(12; 8); ceq(x; x).

2. Model 2:ceq(1; 12); ceq(12; 1); ceq(x; x).

3. Model 3:ceq(4; 12); ceq(12; 4); ceq(3; 11); ceq(11; 3); ceq(2; 10); ceq(10; 2); ceq(x; x).

We are to show that only model3 above is consistent with topological information.
For this we show the following three facts: (i) any model must have at least2 tpaths and
5 tplaces (since there is not a turn action between dstatesf5; 6g and dstatesf2; 9; 10g,
these dstates are not at the same topological place, as suggested by Figure 12) (ii) there
is a model with2 tpaths and5 tplaces (this is the intended model), (iii) a model of
:teq(2; 10) must have at least6 tplaces. This last statement implies that models1 and
2 above are not consistent with topological information.

Fromh 1; travel; 2 i andh 2; travel; 3 i, Corollary 2 implies that there exist a path
Pa1 and directiondir1 such that

along(1; Pa1; dir1); along(2; Pa1; dir1); along(3; Pa1; dir1) :

Moreover, Corollary 1 implies that

place(1) 6= place(2); place(2) 6= place(3); place(1) 6= place(3) :

From h 3; turnAround; 4 i, h 4; travel; 5 i, Axiom 35 and Corollary 2, it is the case
thatalong(4; Pa1;�dir1); along(5; Pa1;�dir1) :Similarly, fromh 5; turnLeft; 6 i,
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h 6; travel; 7 i, h 7; turnAround; 8 i, h 8; travel; 9 iwe conclude that there exist a path
Pa2 and directiondir2 such thatPa1 6= Pa2 (Axiom 39) and

place(5) 6= place(8); along(6; Pa2; dir2); along(7; Pa2; dir2);

along(8; Pa2;�dir2); along(9; Pa2;�dir2) :

From h 9; turnRight; 10 i, h 10; travel; 11 i, h 11; turnAround; 12 i, there exist path
Pa3 and directiondir3 such thatPa2 6= Pa3 and

along(10; Pa3; dir3); along(11; Pa3; dir3); along(12; Pa3;�dir3) :

Theorem 3 allow us to conclude thatplace(5) 62 fplace(1); place(2); place(3)g. The
same argument shows thatplace(8) 62 fplace(1); place(2); place(3); place(5)g. Con-
sequently, a miminal model of the theory must have at least two tpaths and five tplaces.

Notice that in the intended model of the T-environment,Pa1 = Pa3, dir1 = dir3,
teq(2; 10), teq(3; 11) andteq(4; 12). This model is indeed a model ofTT (E) since
at least two topological paths and five topological places are needed to explainE, and
consequently any model must have two topological paths and five topological places
(Theorem 4).

If :teq(2; 10) were the case, then Theorem 3 allows to conclude thatplace(9) 62
fplace(1); place(2); place(3); place(5); place(8)g and so the model will have at least
six tplaces. Consequentlyteq(2; 10) has to be the case in a minimal model of the the-
ory.2

Example 11. Consider an extension of the previous example where we have the
additional schemash 9; turnLeft; 50 i; h 50; turnRight; 9 i. In this case, the intended
model hasfour places and two paths. Notice that now the agent can conclude that
place(5) = place(2) by makingteq(50; 5) and soturn eq(5; 2). 2

The theory does not assume a “rectilinear” environment where paths intersect
at most in one place. Consider the next example.

Example 12. Suppose the agent explores the environment depicted in Figure 13
obtaining the following schemas:

hds1; turnAround; ds2i hds2; turnAround; ds1i hds1; travel; ds3i
hds3; turnRight; ds4i hds4; turnLeft; ds3i hds3; travel; ds6i
hds6; turnLeft; ds7i hds7; travel; ds4i
hds4; turnRight; ds5i hds5; travel; ds2i

We assume that views uniquely distinguish the different distinctive states. From
Corollary 1 there exist the different placesA,B, andC suggested in the figure. In ad-
dition, Corollary 2 implies the existence of a path,Pa, and direction, saypos, such
that order(Pa; pos; A;B); order(Pa; pos;B;C); order(Pa; pos; A;C): More-
over, from schemasfhds7; travel; ds4i; hds5; travel; ds2ig and Axiom 34, there exist
pathsPa1; Pa2, and directionsdir1; dir2, such that

order(Pa1; dir1; C;B) ^ along(ds7; Pa1; dir1)^ along(ds4; Pa1; dir1) ;
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ds4

ds5
ds6

ds7

(b)(a)

A B C

Pa1,dir1

Pa,pos

Pa,neg

Pa,pos

Figure 13: The environment in (a) illustrates a case where different paths intersect at more than one

place. Suppose the agent explores the environment by visiting the different distinctive states in the order

ds1; ds2; ds1; ds3; ds4; ds3; ds6; ds7; ds4; ds5; ds2. (b) depicts the topological map associated with this

environment.

order(Pa2; dir2; B;A) ^ along(ds5; Pa2; dir2) ^ along(ds2; Pa2; dir2) :

Sincealong(ds6; Pa; pos), from Axiom 39 and schemahds6; turnLeft; ds7i we
conclude thatPa 6= Pa1 : Since we are minimizing paths, by settingPa2 = Pa and
dir2 = neg, we obtain a minimal model forE. Notice that in this model, placesB and
C belong to two different paths,Pa andPa1. 2

There are some patterns of experience in which our theory is not applicable. In
particular, Axiom 44 rules out circular paths and Axiom 37 rules out experiences where
different paths merge into the same distinctive state. In Section 5.3 we extend the
topological theory to deal with these type of paths.

Since the positive and negative direction of a path are chosen arbitrarily (Axiom
34), there is not a unique minimal model forTT (E). Given any modelM of TT (E)
one could define another modelM 0 of TT (E) by choosing a pathpa in M and revers-
ing the roles of the directionspos andneg for pa. We will consider these “up to path
direction isomorphic” models to be the same. However, no “up to path direction iso-
morphic” topological maps can explain the same pattern of experience. This happens
because the experiences are incomplete, or the agent’s sensors are weak.

EF

B C DA
A C D

EF

A C

(a)
(b) (c)

B B D

EF

Figure 14:(a) The agent goes around the block visiting placesA,B,: : :,F ,C in the order suggested in the

figure. IntersectionsB andC look alike to the agent. (b) and (c) represent two possible representations for

the environment in (a). Topological information is not enough to decide whether the agent is back toB or

C.

Example 13. Assume that the agent visits placesA,B,C,D,E,F ,C in the order
suggested by Figure 14. Assume also that intersections look alike. In particular, places
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B andC look alike. Given this information, the agent is not able to decide whether it
is back toB orC and consequently two minimal models can be associated with the set
of experiences in this environment (Figures 14b,c).

Metrical information can be used to deduce the correct topology (see Example 18).
However, if the agent accumulates more information, by turning atC and traveling to
D, then topological information suffices to deduce that the topology of the environment
is the one in Figure 14b. This is the case since the views atC andD are different.2

5.3 Coping with self intersecting paths

a b

Figure 15:(a) Self intersecting paths. (b) Convergent paths.

The topological theory presented in the previous section is adequate for represent-
ing environments where “complex” paths configurations do not occur. In particular,
we assume that self-intersecting and convergent paths do not exist (Figure 15). In this
section we extend our theory to deal with these types of paths. Converging paths are
the standard counterexample for the axiom stating that distinctive states are along a
unique path (Axiom 37). We replace Axiom 37 by the block

f min convergent paths :

[along(ds; pa; dir) ^ along(ds; pa1; dir1)

^: [pa = pa1 ^ dir = dir1]]! convergent paths(pa; pa1)

g

Self-intersecting paths are the standard counterexample for the axioms stating that turn-
ing changes the path (Axiom 39), at a place there is at most one distinctive state along
a path direction (Axiom 38), and the order of places in a path is not reflexive (Axiom
44). We replace these axioms by the block

fmin self intersecting :

order(pa; dir; p; p)! self intersecting(pa) ;�
hds; turn desc; ds

0i ^ turn desc 6= TurnAround ^ along(ds; pa; dir)

^along(ds0; pa; dir1)
�
! self intersecting(pa) ;

[at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)

^:teq(ds1; ds2)]! self intersecting(pa)

g

While we have definedconvergentandself-intersectingpaths, we still need to state
that by default these kind of paths do not exist. This is accomplished by giving pri-
ority to the minimization of these two predicates over any other predicate. The new
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circumscription policy associated with our theory becomes

circ self intersecting � convergent paths � tpath � tplace var ~SSHpred: (49)

The new theory is aconservativeextension of our previous theory, sinceany topo-
logical map with respect to our previous theory is a topological map according to the
new theory. In particular, the maps associated with examples 5 through 12 are still
valid maps for the new theory. Next we study some cases we could not handle before.

Example 14. Suppose the agent has experienced the following schemas (Figure
16):

h b; travel; d i h d; turnAround; c i h c; turnRight; e i
h e; travel; a i h a; turnAround; b i

a b d

e

c

Figure 16:Distinctive statea is along two different paths. These two paths are declared convergent paths

in the model of our theory.

From Axiom 34 we know that exist pathsPa; Pa1 and directionsdir; dir1
such that along(b; Pa; dir), along(d; Pa; dir), along(e; Pa1; dir1) and
along(a; Pa1; dir1) are the case. Moreover, from Axiom 35 it follows that
along(b; Pa1;�dir1). We have two possible models for these schemas:

� Model 1. In this modelPa 6= Pa1. Consequently,self intersecting = false
andconvergent paths(Pa; Pa1) are the case.

� Model 2. In this modelPa = Pa1. Consequently,self intersecting(Pa) and
convergent paths = false are the case.

We prefer model 1 over model 2 according to the circumscription policy 49.2

Example 15.Consider the set of experiencesE

h (a; v+); travel; (b; v+) i; h (b; v+); travel; (c; v+) i

as in Example 3. In the intended minimal model there are one path and three
places. There are however other interpretations for the schemas. For example, the
agent travelled froma to b along pathPa and then “changed” paths to travel from
b back toa along pathPa1. In this “model” we haveteq(a; c), Pa 6= Pa1 and
convergent paths(Pa; Pa1). The model has two paths and two places (less places
than the intended model). By prioritizing paths over places we get rid of this model.
The prioritization conveys the heuristic that “paths help to determine places”. In gen-
eral if “conceptX helps to determine conceptY ” thenX has higher priority thanY in
our circumscription policy.2
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Our requirement of infiniteplaces andpaths allow us to compare any two models
of the theory (see Theorem’s 4 proof). This requirement also allow us to deal with
unexpected models as illustrated in the next example.

Example 16.Consider the schemaha; travel; biwherea andb have the same view.
The intended model has one topological path and two topological places. One expects
that the path is not circular (self-intersecting), and so the existence of two places. How-
ever, without requiring the existence of enough places, the following model is also
possible:

places =fAg, tplace =fAg paths =fPag, tpaths =fPag
teq(a,b) self intersecting(Pa)
at(a,A) at(b,A) along(a,Pa,pos), along(b,Pa,pos)

order(Pa,pos,A,A)

In this model,self intersecting(Pa) must be the case, since the universe of
places only has one place. Notice that when comparing two models according to the
circumscription policy 49, the universe ofpaths andplaces in the models has to be the
same. One can vary the interpretation oftpath, tplace, and so on, butnot the universe
of paths andplaces. The model above is ruled out by requiring the universe ofplaces
to have enough (infinite) places.2

6 Boundary Regions

Topological paths play the role ofstreetsin a city layout map. Streets are often used
as a reference for specifying the location of a given place: a place will be either on the
given street or in one of the “two sides” –left or right– of the street.

Mathematically, the concept of left and right of a topological path is related to the
topological one of the interior and exterior of a curve. While not all curves have a well
defined interior and exterior (for example, consider a spiral, or a fractal curve), closed
not self-intersecting curves –Jordan curves– do have associated interior and exterior
sets: when the curve is removed, the plane is divided into two disjoint connected sets
[Beardon, 1979]. Moreover, in order to go from the interior to the exterior (or vice
versa) of the curve
, one has to cross
. Our analogy of topological paths and mathe-
matical curves breaks down because in general the agent might be able to travel from
one side of the path to the other without crossing the path. This can happen because of
the agent’s inability to detect that it has crossed the path, or (more often) because paths
are not long enough to divide the environment into two regions (for example, consider
a dead-end street).

In order to determine boundary relations – the location of a place with respect to
a path – we formally state the following heuristic. Suppose the agent is at an inter-
section on a given path, and it then turns right. If the agent now travels, any place it
finds while traveling with no turns will be on the right of the starting path. While this
heuristic draws the correct conclusion in a rectilinear environment, it may draw incor-
rect conclusions when paths are not straight. Consequently, we state our heuristic as a
‘defeasible” rule so as not to conclude a boundary relation when inconsistent sources
of information exist (Figure 17).
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Figure 17:Different environments illustrating how our default to determine boundary relations work. In

(a) we conclude by default that place C is to the left of the path from A to B. In (b) we conclude nothing

about the location of place D with respect to this path. In (c) we conclude that place C is to the left of the

path from A to B. This is the case since there is no information to conclude otherwise.

TurnRightandturnLeftactions are used to define the relative orientation between
paths at a given place (Section 6.1), relations that are then used to infer whether a
place is on the left or the right of a given path (Section 6.2). The boundary relations
inferred by an agent may not be complete: the agent does not necessarily know the
location of each place with respect to each path. Nevertheless, the boundary relations
inferred by the agent are useful to distinguish places otherwise not distinguishable by
the topological maps as described so far (see Example 17).

6.1 Qualitative orientation of paths at a place

We extend the topological level in order to represent the relative orientation among
paths that intersect at a given place. We use the predicates

totheLeftOf(p;pa;dir;pa1;dir1) ; totheRightOf(p;pa;dir;pa1;dir1)

to represent the facts that (i)p is aplaceon both paths,pa andpa1, and (ii), when the
agent is atplace pfacing on the directiondir of pa, after executing a turn left (right)
action, the agent will be facing on the directiondir1 of pa1(see Figure 18).

The predicatestotheLeftOf andtotheRightOf are derived from the actions per-
formed by the agent at a place:

fmin totheRightOf; min totheLeftOf : (50)

[hds; turnRight; ds1i ^ at(ds; p) ^ along(ds; pa; dir) ^ along(ds1; pa1; dir1)]

! totheRightOf(p; pa; dir; pa1; dir1);

[hds; turnLeft; ds1i ^ at(ds; p) ^ along(ds; pa; dir) ^ along(ds1; pa1; dir1)]

! totheLeftOf(p; pa; dir; pa1; dir1):

g

6.2 Left and Right of a path

A path has associated two regions: the places to the left of the path and the places to the
right of the path. We use the predicatesleftOf(pa;dir; lr) andrightOf(pa;dir; rr)
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to denote thatregionlr (rr) is the left (right) region of pathpawith respect to the path’s
directiondir. The properties of these predicate are as follows:

9!lr fleftOf(pa; dir; lr)g ; 9!rr frightOf(pa; dir; rr)g (51)

leftOf(pa; dir; r) � rightOf(pa;�dir; r) (52)

fmin is region : LeftOf(pa; dir; lr)! is region(lr)g (53)

leftOf(pa; dir; lr) ^ leftOf(pa1; dir1; lr)! pa = pa1 (54)

Axiom 51 states the existence and uniqueness of a path’s left/right regions. The domain
of leftOf is restricted by Block 53 and Axiom 54. Since left/right regions of a path
interchange when changing the path direction (Axiom 52), constraining the domain of
leftOf imposes similar constraints on the domain ofrightOf .

We use the predicatein region(p,r) to indicate thatplacep is in region r. The
domain of in region is constrained by Axiom 55. The properties ofin region are
defined in Block 56. A path has associated three disjoint set of places: the places on
the path, and the places to the left/right of the path (Axioms 58 and 59). Boundary
relations are derived according to Axiom 60 and 61 (see Figure 18): (the symmetry
betweenleftOf andrightOf defined by Axiom 52 let us write our axioms in terms
of only one of these predicates.)

in region(p; r)! is region(r) ; (55)

f min in region : (56)

f in region : (57)

on(pa; p) ^ leftOf(pa; dir; lr)! :in region(p; lr); (58)

[leftOf(pa; dir; lr) ^ rightOf(pa; dir; rr)^ (59)

in region(p; lr)]! :in region(p; rr) ;

[totheRightOf(p1; pa; dir; pa1; dir1) ^ order(pa1; dir1; p1; p)^ (60)

rightOf(pa; dir; rr) ^ :Ab(pa;p)]! in region(p; rr);

[totheLeftOf(p1; pa; dir; dir1; pa1) ^ order(pa1; dir1; p1; p)^ (61)

leftOf(pa; dir; lr) ^ :Ab(pa;p)]! in region(p; lr)

g

g

p

p1

Pa, dir
Pa1, dir1

Figure 18:PathPa1is to the right of pathPaat placep1. Placep is after placep1on pathpa1. By default,

we conclude that placep is to the right of pathpa.

Block 56 defines the extent of the predicatein region. The outer preference min-
imizesin region, so its positive instances only reflect actual observations. Normally
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boundary relations are false. This is the case since by default the agent does not know
the location of a place with respect to a given path. The inner block 57 states under
what conditions the agent can derive a boundary relation. For instance, according to
Axiom 60, if at placep1 pathpa1 is to the right of pathpa, and placep is afterp1 on
pathpa1, then normally it is the case thatp is on the right ofpa (see Figure 18). The
predicateAb inside block 57 is theauxiliary “abnormality” predicate associated with
a NAT block (Appendix A). (See[Lifschitz, 1995] for a similar formalization of the
standard example: objects normally do not fly; birds normally do.) Some sufficient
conditions for whenAb is the case can be derived from Block 57 as follows.

Let leftOf 0 andrightOf 0 denote the following abbreviations:

leftOf
0(p; pa; dir) � 9lr fleftOf(pa; dir; lr) ^ in region(p; lr)g ;

rightOf
0(p; pa; dir) � 9rr frightOf(pa; dir; rr) ^ in region(p; rr)g ;

which allow us to implicitly refer to the left and right regions associated with a path
(these abreviations make sense given Axiom 51). Axioms inside Block 57 can be
rewritten as follows:

on(pa; p)! : leftOf 0(p; pa; dir) ^ : rightOf 0(p; pa; dir);

leftOf
0(p; pa; dir)! : rightOf 0(p; pa; dir);

[totheRightOf(p1; pa; dir; pa1; dir1) ^ order(pa1; dir1; p1; p)^

:rightOf 0(p; pa; dir)
�
! Ab(pa; p);

[totheLeftOf(p1; pa; dir; dir1; pa1) ^ order(pa1; dir1; p1; p)^

: leftOf 0(p; pa; dir)
�
! Ab(pa; p) :

Using this rewriting of Block 57, one can derive the following (among others) suf-
ficient conditions to deduceAb:

on(pa; p) ^ [totheRightOf(p1; pa; dir; pa1; dir1) ^ order(pa1; dir1; p1; p)] (62)

! Ab(pa; p) ;

[totheRightOf(p1; pa; dir; pa1; dir1) ^ order(pa1; dir1; p1; p) ^ (63)

totheLeftOf(p2; pa; dir; pa2; dir2) ^ order(pa2; dir2; p2; p)]

! Ab(pa; p) ;

[totheRightOf(p1; pa; dir; pa1; dir1) ^ order(pa1; dir1; p1; p) ^ (64)

totheRightOf(p2; pa;�dir; pa2; dir2) ^ order(pa2; dir2; p2; p)]

! Ab(pa; p) :

Conditions 62-64 show sufficient conditions for whenAb is the case, and conse-
quently when the agent should not deduce boundary relations. (Condition 64 uses the
symmetry betweenleftOf 0 andrightOf 0 defined by Axiom 52.) These conditions
are in terms of predicates others thanin region, leftOf andrightOf whose extent
is the purpose of Blocks 56 and 57.

6.3 Adding boundary relations to the topological map

We update the topological theory by including Axioms 50-61 inside the blockAT block
(Section 5.2), and the new circumscription policy becomes

circ :in region � tpath � tplace var ~newSSHpred
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where ~newSSHpred stands for the tuple of predicates

h at; along; order; on; teq; turn eq; travel eq;

totheRightOf ; totheLeftOf ; leftOf ; rightOf ; is region

i :

The circumscription policy states that Axioms 60 and 61 should be used to draw con-
clusions even at the expense of having more paths or more places on the map. This
is achieved by maximizingin region over tpath in the circumscription policy. This
policy also prevents the theory from preferring pathologicaltpaths andtplaces. By
maximizing the extent ofin region at the expense of having possibly more paths or
more places, boundary relations determine distinctions among environment states that
could not be derived from the connectivity of places alone. The next example illustrates
the case.

Example 17. Consider an agent visiting the different corners of a square room in
the order suggested by Figure 19a. In addition, suppose the agent’s sensory appara-
tus allows it to defineviewsby characterizing the direction of walls and open space.
Accordingly, the agent experiencesfour different views,v1-v4, in this environment.

The agent’s experiences,E, in this environment are:

V iew(ds1; v1), V iew(ds2; v2), V iew(ds3; v1), V iew(ds4; v2), V iew(ds5; v1),
hds1; turnRight; ds2 i, hds2; travel; ds3 i, hds3; turnRight; ds4 i, hds4; travel; ds5 i.

P

Pa

Rds5

ds1
ds2 ds3

ds4

Pb

Q

Q
Pa

P=R

Pb

Q

R

Pa

Pb

P

a b c

Figure 19: (a) Sequence of actions followed by an agent while navigating a square room. Starting at

distinctive state ds1, distinctive states are visited in the order suggested by their number. (b) and (c) depict

the resulting topological map without and using boundary regions, respectively.

Suppose that the agent does not use boundary regions when building the topological
map. Fromhds3; turnRight; ds4i and Axiom 39 we can deduce thatPa 6= Pb in
Figure 19b. Then the minimal topological model associated withE has two paths and
two places. In this model,teq(ds1; ds5) is the case. The environment looks perfectly
symmetric to the agent (Figure 19b).!!

Suppose now that the agent relies on boundary regions. LetP, Q, R, be the topo-
logical places associated withd1, d3 andd5 respectively. From Axiom 34, letPa, Pb,
dira anddirb be such that

order(Pa; dira; P;Q) ; along(ds2; Pa; dira); along(ds3; Pa; dira);
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order(Pb; dirb; Q;R); along(ds4; P b; dirb); along(ds5; P b; dirb) ;

are the case. From Block 50 we conclude thattotheRightOf(Q;Pa; dira; P b; dirb).
In the proposed model, the extent ofin region is maximized by declaringAb = false
inside Block 57 and consequently (Axiom 60)in region(R; right(Pa; dira)) where
right(Pa; dira) denotes the right region ofPa when facingdira (Axiom 51). More-
over, from Block 56 we deducein region(p; r) � [p = R ^ r = right(Pa; dira)].
Finally, from Axiom 58 we concludeP 6= R sinceon(Pa; P ) is the case. The result-
ing topological map is depicted in Figure 19c.2

Boundary relations are in general not enough to distinguish different environment
states. This is the case when the agent has weak sensors, the environment is symmetric,
or the agent’s experiences are incomplete (see Example 19). The use of local metrical
information could help on those cases although metrical uncertainty could render this
extra information useless. We discuss this issues in the next section.

7 Using local metrical information

Action executions have associated metrical information representing the observed mag-
nitude of the action. For instance, after traveling the agent may have an estimate of the
distance between the “end places” of the travel action, and after turning, the agent
may have an estimate of the angle turned. Different kind of metrical estimates could
be associated with a travel or turn action. For example, the agent could measure the
arc length associated with a travel action. In addition, it could measure the minimum
distance to an object on the left and the right sides at each point along the trajectory
associated with a travel action[Kuipers, 2000].

Action’s executions local metrical information is integrated into frames of reference
associated with topological objects:

� Each path has associated a one dimensional frame of reference which assigns a
position to each place in the path.

� Each place has associated a radial frame of reference which assigns a heading
(angle) to each path the place belongs to.

� Regions or places might have associated two dimensional frames of reference
which assign real valued tuples to certain places. Local analog maps[Elfes,
1987, Borenstein and Koren, 1991, Thrun, 1998] can also be associated with
places[Kuipers, 2000].

As positionsandheadingsare derived from noisy data, there is uncertainty associ-
ated with their real values. Different representations for this uncertainty are possible:
intervals, probability distribution functions, etc. As the agent repeatedly navigates
among the same places and paths, new measure estimates are taken into account to
update the uncertainty associated with positions and headings. In order to propagate
uncertainty about the real value of positions and headings we use the compound and
merge operations[Smith and Cheeseman, 1986]. These operations take different forms
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depending on how one represents uncertainty as well as on the dimensionality of the
variables’ domains. In our current work we useintervals to represent uncertainty in
position and headings, and the compound and merge operations correspond to add and
intersect intervals, respectively. Nevertheless, the discussion in this section applies to
other forms of representing uncertainty as long as the the compound and merge opera-
tions are provided for that representation.

We use the predicateaction execution(s; Int) to state that theintervalInt rep-
resents an estimate of the metrical information about the execution of the action asso-
ciated with schemas. We use the notationhds; (type Int);ds0 i, wheretypeis travel
or turn, as an abbreviation for the formula

9s; a fCS(s; ds; a; ds0) ^ action type(a; type) ^ action execution(s; Int)g :

How the estimates are to be interpreted depends on the type of action (turn or travel)
the schema refers to. In the next sections we will describe how to do so.

7.1 One dimensional frames of reference

A path has associated a one dimensional frame of reference which assigns a location to
each place on the path. This location is a real number, representing the “distance” with
respect to an arbitrary but fixed place on the path. This real value represents a quantity
whose magnitude is derived by the robot while navigating the environment. The units
of this quantity can bemeters, feet, ornumber of wheel rotations. Hereafter, we assume
that all quantities are given in the same units.

The distance among places on a path are derived from estimates acquired when
traveling among places on the path. These estimates have to beconsistentso that
positions can be associated with places. Next we formalize these ideas.

The position of a place on a path is represented by the predicate
position1(path;place;position). Positions along a path are unique and only as-
signed to places belonging to the path:

position1(pa; p; pos) ^ position1(pa; p; pos0)! pos = pos
0
; (65)

position1(pa; p; pos)! on(pa; p) : (66)

The distance between two places in a path is defined as the absolute value of
the difference between their corresponding positions on the path. The predicate
path distance(pa;p;q;d) represents the fact that the distance between placesp
andq on pathpa is d. The predicatepath distance is defined as follows:

path distance(pa; p; q; d) � (67)

9posp; posq fposition1(pa; p; posp) ^ position1(pa; q; posq) ^ d = jposp � posqjg :

Estimates of the distance between places on a path are gathered while the agent
navigates the environment. The predicatepath distance�(pa;p;q; Id) represents
the fact that the closed intervalId is an estimate of the distance between placesp
and q on pathpa. Distance estimates are derived from experiences of the robot in
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the environment. Distance estimates are “compounded” to derive new estimates from
known ones. Formally,

f min path distance
� :�

h ds; (travel Id); ds
0 i ^ at(ds; p) ^ at(ds0; q) ^ along(ds; pa; dir)^ (68)

along(ds0; pa; dir)
�
! path distance

�(pa; p; q; Id) ;�
order(pa; dir; p; q) ^ order(pa; dir; q; r) ^ path distance

�(pa; p; q; Ipq)^ (69)

path distance
�(pa; q; r; Iqr)

�
! path distance

�(pa; p; r; Ipq + Iqr)

g

where the addition of intervals is defined in the usual way:[a; b]+[c; d] = [a+c; b+d].
Finally, distance estimates are “merged” in order to have the “best” estimate associated
with a distance. The predicatepath distance
(pa; p; r; Id) denotes the merging of
distance estimates:

path distance

(pa; p; r; I) �def I = \fIest : path distance

�(pa; p; q; Iest)g : (70)

The distance between places on a path must becompatiblewith all of its estimates.
Formally,

path distance

(pa; p; q; Id)! 9d 2 Id path distance(pa; p; q; d) : (71)

When the agent has distance estimates available,path distance
(pa; p; q; Id) is
always the case for some intervalId. In a topological mapId 6= ; (Axiom 71) and it
should be possible to assign locations to places on a path as specified by Axiom 67.
The actual values of positions are not that important (there could be many ways to
satisfy the metrical constraints). Their main use is to rule out possible interpretations
of the theory where such positions do not exist given Axiom 71.

7.2 Radial frames of reference

Each place has a local frame of reference w.r.t. which path headings are associated.
This information is represented by the predicateradial(p;pa;dir;h) denoting the
fact thatwhen the agent is located at placep, pathpa could be followed in direction
dir by facing the headingh w.r.t. the radial frame of reference local top. Head-
ings take values in[0; 2�). The formalization of radial frames of reference follows
the same steps as for one dimensional frames of reference. Estimates of the angle
between paths at a place are gathered fromturn actions. Angle estimates are com-
pounded and merged as we did for distances among places in a path. We use the
predicatesangle(p;pa;dir;pa1;dir1; ang) -ang is the angle the agent will have to
turn to face pathpa1 in directiondir1 when it is at placep facing pathpa in direction
dir-, angle�(p;pa;dir;pa1;dir1; Iang) - Iang is an estimate of the angle at placep
between pathpa in directiondir and pathpa1in directiondir1.

7.3 Two dimensional frames of reference

While radial and one dimensional frames of reference are associated with any place
and path, respectively, there is not a general topological theory asserting when to cre-
ate a two dimensional frame of reference, what places should be included in a such
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frame of reference, or how to assign place locations consistent with the estimates of
distances and angles gathered by the agent. Having a global frame of reference in-
cluding all places in the map is usually inappropriate since the uncertainty associated
with some places’ locations in such a frame of reference may not allow the agent to
draw useful conclusions. Instead, the agent can have multiple frames of reference as
well as relations among the different frames of reference[McDermott and Davis, 1984,
Kuipers, 2000]. As the agent explores the environment, new frames of reference are
created when the current’s location uncertainty with respect to the current frame of
reference is larger than a given threshold[Moutarlier and Chatila, 1989, Engelson and
McDermott, 1992].

The problem of assigning locations to places given some metrical constraints can be
solved by borrowing methods from different fields. For example, estimation theory tells
us how to estimate the true value of a given set of variables given noisy observations of
the relations between those variables[Gelb, 1974, Smith and Cheeseman, 1986]. The
robotics community has developed algorithms to solve a network of spatial relations
[Durrant-Whyte, 1987, Durrant-Whyte, 1988a, Durrant-Whyte, 1988b, Moutarlier and
Chatila, 1989]. Techniques from multidimensional scaling[Borg and Groenen, 1997]
and nonlinear programming[Peressiniet al., 1988] can also be used.

A topological map does not explicitly represent the distance or direction between
two arbitrary places. In order to do so, distances between places on a path as well
as the angles between paths at a place must be combined. We use the predicate
location2(p;q; l) to indicate that the location of placeq with respect to the two di-
mensional frame of reference associated with placep is l (a real valued pair). We do
not restrict what places are assigned locations with respect to a given two dimensional
frame of reference.

When restricted to environments with “straight” paths, it is possible to state when
a two dimensional frame of reference iscompatiblewith the actual experiences of the
robot. The next axioms state this requirement:

location2(p; p1; lp1) ^ location2(p; p2; lp2) ^ path distance

(pa; p1; p2; Id) (72)

! jlp1 � lp2j 2 Id :

[location2(p; p1; lp1) ^ location2(p; p2; lp2) ^ location2(p; p3; lp3)^ (73)

order(pa; dir; p1; p2) ^ order(pa0; dir0; p2; p3) ^ angle
(p2; pa; dir; pa0; dir0; Iang)
�

! angle(� ~lp2lp1; ~lp2lp3) 2 Iang ;

whereangle(~v; ~w) denotes the angle in[0; 2�) from vector~v to vector~w. When curved
paths are possible, the predicatepath distance represents distancealong the path, not
straight-line distance between end point. To handle curved paths, we have to separate
those two concepts, or have estimates of both types of “distances”.

Axioms 72 and 73 assume that paths are straight. In order to deal with more general
paths, one should include some parameters describing the shape of the path, or at least
an estimate of the change in heading while traveling[Kuipers and Levitt, 1988, Musto
et al., 1999]. For instance, in[Kuipers and Levitt, 1988] travel actions were represented
ashds; (travel dist 4�); ds0i, wheredist corresponds to the distance between the
places associated withds andds0, and4� corresponds to the change of orientation
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while traveling. However, there is not a statement of how this extra information is used
or whether it suffices to describe appropriate metrical constraints for two dimensional
frames of reference. While a more detailed account of the use of metrical information
is desirable, including representing and reasoning about a path’s shape, we have left
this description outside the scope of this work.

Using different metrical estimation approaches requires a reworking of the axioms
in this section. In such case, the compound and merge operations (Axioms 68 to 70
) should be described differently. It is not difficult to define compound and merge
operations for Gaussian representations of metrical uncertainty. More care will be
required to update Axiom 71 which is used to refute inconsistent hypotheses, since no
combination of Gaussians is logically inconsistent. A greater change will be needed in
order to take into account the shape of paths when creating two dimensional frames of
reference. Nevertheless, the presented axiomatization defines where in the theory the
metrical information comes into place and suggests the type of axioms that need to be
added.

7.4 Combining topological and metrical information

In this section we formally state what it means for the topological map to be con-
sistent with a given set of frames of reference. In order to do so, given distinctive
statesds; ds1; : : : ; dsn, we introduce the notationhds : ds1; : : : ;dsn i to state that
the places associated with the differentdsi have a location in the two dimensional
frame of reference associated withds’s place,

Definition 3. Let ds; ds1; : : : ; dsn be a set of distinctive states. By definition,

h ds : ds1; : : : ; dsn i �def (74)

9p

(
at(ds; p) ^

n̂

i=1

9pi; li [at(dsi; pi) ^ location2(p; pi; li)]

)

fend of definitiong

By 2D Frames we denote the formula specifying any two dimensional frames of
reference used by the agent. Without loss of generality, we require two dimensional
frames of reference to be specified as in Definition 74. We require any model of the
SSH to have only the two dimensional frames of reference specified in2D Frames.
In addition, the places belonging to a frame of reference should be only those explicitly
stated in 74. These last two requirements can be stated as follows:

f min location2 : 2D Frames g (75)

The topological theory includes local metrical information by adding Axioms 65
to 75 inside the blockAT block (Block 20). The priority of predicates in the cir-
cumscription policy associated withAT block remains the same. The predicates var-
ied in the circumscription policy now include those predicates use to describe met-
rical information: radial, position1, position2, path distance, path distance�,
path distance
, angle, angle� andangle
.
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Figure 20:(a) The robot goes around the block visiting distinctive statesds1 to ds11 in the order sug-

gested by the figure. Distinctive stateds11 is observed at the same environment state asds4. Assume

distinctive statesds1 andds4 look alike to the agent. (b) and (c) represent two possible topological maps

for the environment in (a) (see Example 13). The model in (c) can be discarded as it is not consistent with

the available metrical information. (d) With�10o noise associated with turn actions, the agent cannot use

metrical information to discard the environment depicted in (c).

The next examples illustrate how metrical information is used to disambiguate the
topological map.

Example 18.Consider Example 13 where two topological maps are consistent with
the agent’s experiences (see Figure 20). Suppose that “perfect” metrical information is
available to the agent.

How does the agent figure out that it is back tods4 rather than tods1?. As claimed
in Example 13 both optionsteq(ds4; ds11) andteq(ds1; ds11) are topologically possi-
ble (Figures 20b,c). However, given the metrical information above, only the assump-
tion teq(ds4; ds11) is a consistent one. To deduce this fact, the agent includes the frame
of referencehds4 : ds1; : : : ; ds11i in E, which renders impossibleteq(ds4; ds11).

Should the metrical information have been less precise, the agent might not benefit
from this extra metrical information. For example, suppose that instead of sharp90o

turn angles, there exists a�10o uncertainty associated with the turn actions above (i.e.
consider replacinghds1; (turn � 90o); ds2i by hds1; (turn [�110o;�80o]; ds2i).8

In this case the agent cannot use metrical information to deduce that it is back tods4
and it will have two topological maps consistent with its information.2

The example above may suggest that metrical information is used to check whether
an already built topological map is consistent with metrical information. However, by
including Axioms 65-75 inside ATblock, metrical information is used while building
the topological map. As the next example illustrates, this may imply that the agent
identifies more places than it does when not using metrical information.

Example 19. Consider an agent visiting the different corners of a square room in
the order suggested by Figure 21a. In addition, suppose the agent’s sensory apparatus
allows it to defineviewsby characterizing the direction of walls and open space so that
all corners look alike to the agent (see Example 17). Suppose the agent has access to
perfect metrical information and uses it while building the metrical map.

8Whenever we use a numberx instead of an interval, it is an abbreviation for[x; x].
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Figure 21:(a) The agent visits distinctive statesds1 to ds7 by the order suggested in the figure. Suppose

all corners look alike to the agent. In particular,ds1 andds7 share the same view. (b) Topological map

associated with (a) when metrical information is not available. (c) Topological map associated with (a) when

metrical information is available. In this case, the places associated withds1 andds7 are different (P 6= S).

In order to decide whether the agent is back tods1, the framehds1 : ds1; : : : ; ds7i
is created. Given the available metrical estimates it is not possible to haveteq(ds1; ds7)
while satisfying the metrical constraints. Consequently, the topological map will have
four places instead ofthree, as illustrated in Figure 21c.2

While in the examples above all visited distinctive states were included in a two
dimensional frame of reference, this is in general not the case. In the presence of
metrical uncertainty, a global frame of reference may not provide useful information
to determine whether two places are the same, or to estimate the distance between two
arbitrary places.

8 Algorithms

In this section we present an algorithm for calculating the topological maps associated
with a set of experienceE. The models associated with the causal theory (Section 4)
can be calculated as the answer sets[Gelfond and Lifschitz, 1991] of a logic program.
This logic program is implemented in Smodels[Niemelä and Simons, 1997] as illus-
trated in[Remolina and Kuipers, 2001]. It is possible to calculate the topological maps
by a similar logic program. However, the number of grounding rules associated with
such a program turns out to be prohibitive for practical applications.

The algorithm for calculating topological maps (the models ofTT (E)) is stated
as a“best first” search. A search state is implemented by a partial model,pmodel.
A partial model ofTT (E) is a model ofTT (E0), for someE0 � E (Section 8.1).
Branches in the search are represented by creatingextensionsfor the current search
state (pmodel). Thatpmodel0 is an extension ofpmodel implies thatpmodel0 inherits
from pmodel all known objects and facts.

At each step of the search a schemah ds; a; ds0 i has to be explained. Either the
identity ofds0 can be proved or a search branch is created for every previously known
distinctive stateds0i that cannot be proven to be different fromds0. The identity of the
schema’s context (i.e.ds in h ds; a; ds0 i) is known at each step in the search.

In the branch whereteq(ds0i; ds
0) is the case,:teq(ds0j ; ds

0); i 6= j are also as-
serted. An additional branch is created where:teq(ds0; ds0j) are asserted. This branch
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represents the possibility thatds0 is indeed different from previously known dstates.
The next state to explore is the one that is minimal according to the order associated
with the circumscription policy forTT (E). This search algorithm is described in Fig-
ures 22 and 23.

Find-Models (S)
f

;; S =s0; : : : ; sn ; sequence of schemas such thatresult(si) = context(si+1)
queue =; ; models =; ;
pmodel = create-new-pmodel(S); insert(pmodel,queue) ;
while queue6= ; do

begin
pmodel = get-next-pmodel(queue);
s = get-next-schema(pmodel);
Explain(pmodel,s) ;
if (inconsistent(pmodel)_ has-extensions(pmodel)) then skip;
else if total-model(pmodel) then insert(pmodel, models);
else insert(pmodel,queue);

end
return models;

g

Figure 22: Best first search algorithm used to calculate the models of TT(E). The queue contains

consistentpartial models (pmodels) to be expanded. At each step of the search, a minimal partial model is

picked and the next schema from its list of associated schemas is explained. A pmodel has extensions when a

branch has been created while explaining a schema. A pmodel is atotal-modelwhen it has no more schemas

to explain. Figure 23 defines how a pmodel explains a schema and when extensions are created.

The three key steps in the search are (Figure 23): creating a set of possible candi-
dates to branch (possible-equal-dstates), generating a set of extensions when needed
(create-possible-extensions), and explaining a schema in a given partial model (assert-
schema). Another important issue is to detect when a partial model becomes inconsis-
tent. We use the predicateinconsistent(pmodel) to denote this fact and the rules

x
pmodel
= y ^ x

pmodel

6= y ! inconsistent(pmodel);

teq(x; y) 2 pmodel ^ :teq(x; y) 2 pmodel ! inconsistent(pmodel) :

In the next sections we will show how to rewrite the axioms in the topological theory so
they can be fed to a theorem prover to deduce equality and inequality relations. We use
the rule-based system Algernon[Crawford and Kuipers, 1991] as our theorem prover.
In Section 8.2 we present an illustrative trace of the algorithm.

8.1 Implementation

Our logic for partial models takes the basic ideas developed in the area of formal rea-
soning about contexts[McCarthy and Buva�c, 1998]. In addition to a list of schemas to
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Explain (pmodel, s)
f ;; s is a schemah ds; a; ds0 i

candidates =fg;
if known-result(pmodel,s)
then Assert-schema(pmodel,s);
else begin

candidates = possible-equal-dstates(pmodel,s);
if candidates6= fg

then create-possible-extensions(pmodel,s,candidates)
else Assert-schema(pmodel,s)

end
g
Known-result(pmodel, s)
f ;; s is a schemah ds; a; ds0 i

;; The notationobj 2 pmodel indicates that objectobj is
;; known in the partial modelpmodel.
returnds0 2 pmodel _ 9 ds�; ds0� 2 pmodel [hds�; a; ds0� i 2 pmodel ^ teq(ds�; ds)];

g
Assert-schema (pmodel, s)
f ;; s is a schemah ds; a; ds0 i. ds is known inpmodel

asserts 2 pmodel;
if : known-result(pmodel,s)
then begin

assertds0 2 pmodel;
Create places and paths needed to explains.

end
else begin

pick ds0� s.t.9ds� 2 pmodel [teq(ds�; ds) ^ h ds�; a; ds0� i 2 pmodel] ;

assertds0
pmodel
= ds0� in pmodel;

end
g

Figure 23:Explaining a schema. known-result(pmodel,s =h ds; a; ds0 i) is the case when the equality

class fords0 can be deduced in the partial modelpmodel. Possible-equal-dstates(cntx,s)returns dstates

known inpmodel, having the same view asds0 and that cannot be proven different fromds0 in pmodel. For

eachds00 2 candidates, create-possible-extensions(pmodel,s,candidates)creates an extension ofpmodel

whereteq(ds0; ds00) is the case. If the identity ofds0 can be established, thens is asserted inpmodel. This

declaresds0 to be known inpmodel and creates the places and paths that explains according to the axioms

of the topological theoryTT (E).
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explain, a partial model has associated a set of objects (i.e. distinctive states, schemas,
places, paths) that are known in the model. The basic relation among pmodels is the
one ofextensions. Thatpmodel0 is an extension ofpmodel implies that all known ob-
jects and facts inpmodel are known objects and facts inpmodel0 (i.e. pmodel0 inherits
from pmodel all known objects and facts). This inheritance property of extensions can
be implemented in Algernon by rules like the next one:

at(ds; place; pmodel) ^ extension(pmodel; pmodel1)! at(ds; place; pmodel1)

Create candidates.Possible-equal-dstates(pmodel,s=h ds; a; ds0 i) returns a list of
states that are possible equal tods0. These are dstates known inpmodel, having the
same view asds0 and that cannot be proven different fromds0 in pmodel. Givens, we
filter outds00 as equal tods0 using rules including:

s = hds; turn; ds0 i ^ at(ds; p) ^ at(ds00; q) ^ p 6= q ! :teq(ds0; ds00) (76)�
s = h ds; travel; ds0 i ^ along(ds; pa; dir) ^ along(ds00; pa1; dir1)^

: [pa = pa1 ^ dir = dir1]]! :teq(ds0; ds00)�
s = h ds; travel; ds0 i ^ along(ds; pa; dir) ^ at(ds; p) ^ at(ds00; q)^

order(pa; dir; q; p)]! :teq(ds0; ds00)

The rules above are derived from the axioms in our theory. For instance, rule 76
is derived from the fact that each distinctive state is at a unique place, and distinctive
states that are related by turn actions are at the same place. In the implementation,
all the topological predicates have a last extra argument for a pmodel. For instance,
instead of writingat(ds; p) we writeat(ds; p; pmodel). at(ds; p; pmodel) is the case
whenat(ds; p) is true in the partial modelpmodel (i.e. pmodel j= at(ds; p)).

Equality relations among topological objects (i.e. dstates, places, paths) are proved
using rules derived by rewriting topological axioms. These rules include:

view(ds1; v1) ^ view(ds2; v2) ^ v1 6= v2 ! :teq(ds1; ds2) (77)

h ds; turn; ds0 i ! :teq(ds; ds0) (78)

order(pa; dir; p; q)! p 6= q (79)

radial(p; ds1; h1) ^ radial(p; ds2; h2) ^ h1 6= h2! ds1 6= ds2 (80)

position1(pa; dir; p1; pos1)^ position1(pa; dir; p2; pos2)^pos1 6=pos2! p1 6=p2 (81)

leftOf(pa; dir; p) ^ on(pa; q)! p 6= q (82)

leftOf(pa; dir; p) ^ on(pa1; p)! pa 6= pa1 (83)

at(ds; p) ^ at(ds; q)! p = q (84)

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1 (85)

Rules 77 and 78 rely on the fact that dstates have a unique view and turn actions
link different distinctive states (Axioms 22 and 39). Rule 79 uses the fact that paths
are not circular in order to conclude that ifp is beforeq thenp andq must be different
(Axiom 44). Rules 80 and 81 use radial and one dimensional frames of reference to
conclude inequality of dstates and places, respectively (Axiom 65). Rules 82 and 83
use boundary relations in order to distinguish places and paths respectively (Axiom
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58).9 Rules 84 and 85 state that each distinctive state is at a unique place, along a
unique path direction (Axioms 29 and 37).

Assert schema. Assert-schema(pmodel, s)creates the places and paths needed
to explains. Instead of assertings = h ds; a; ds0 i in pmodel, the algorithm asserts
s� = h ds�; a; ds0� i whereds� andds0� are the representatives inpmodel for theteq
equivalence classes ofds andds0. Asserting a schema in Algernon corresponds to cre-
ating the frame (object) representing the schema. Forward and backward chaining rules
derived from the topological theory are then evaluated, and places and paths needed to
explains are created.

8.2 Trace example

2

dpath−1

dpath−2

dpath−3

(b)(a)

0,v {1,9},v {2,10},v1

3,v2

5,v2

4,v1

6,v

7,v3

8,v4
P0

dpath−0

P3P4

P1=P5

Figure 24:(a) Numbers identify the dstates created by the map building algorithm. Views associated with

dstates are also shown. Dstates1 and9 are at the same environment location. (b) Places and dpaths created

by the map building algorithm. Notice thatP1 andP5 are two names for the same place.

We illustrate the topological map building algorithm with the environment of Fig-
ure 24a. Distinctive states are visited in the order suggested by the figure. Distinctive
state9 is at the same environment location as dstate1. However, two topological map
are possible: either the agent is back to dstate1 or dstate0 (this is Example 13). After
traveling from dstate9 to dstate10, only one topological map is possible (Figure 24b).
Figure 25 illustrates the use of the topological rules to distinguish distinctive states that
share the same view. Figure 26 shows when branches in the search are created and how
they can be refuted as more information becomes available to the agent.10

9leftOf(pa; ; dir; p) in the implementation is an abbreviation for Section 6.2’s longer expression
leftOf(pa; dir; lr) ^ in region(p; lr).

10In the implementation,dpathsrepresent ordered dstates linked by travel actions. Dpaths correspond to
paths that only have one direction associated with them. Paths are created when the agent has traveled in
both direction of a path. At that time, two dpaths are associated with the path, one for each path’s direction.
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Figure 25:(a) When the agent reaches dstate4, the same viewv1 has been observed at dstate2. Since

dstate2 is along dpath-0 and dstate4 will be along dpath-1 (the agent just traveled from dstate3 along

dpath-1), dstate4 and2 are proven different. Dpaths0 and1 are different since there is aturnRight action

relating them (Axiom 39). PlaceP3 is created to be the place dstate4 is at (Axiom 29). PlaceP3 is proven

different from placeP2 sinceP2 is beforeP3 along dpath-1 (Corollary 1). Consequently, dstates5 and3

are proven different.

There are however two possible models depending whetherP3 is to the right or not of dpath-0. Our boundary

regions circumscription policy (Section 6.3) prefers PMODEL-0 in whichP3 is to the right of dpath-0 over

PMODEL-001 in which no boundary relations exist. In this example, the search will never explore further the

branch associated with PMODEL-001 because the branch associated with PMODEL-0 leads to a consistent

map for the given experiences.

(b) The agent travels to dstate6 along dpath-2. BecauseP3 is to the right of dpath-0, dpath-2 cannot be the

same as dpath-0, which makes PMODEL-1 and PMODEL-2 inconsistent. The only remaining (and hence

minimal) model is PMODEL-0, in which dstate 6 is different from dstates 0 and 1.
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 PMODEL−6 ( DS−9 = DS−9 )

dpath−0

dpath−1

dpath−3

dpath−2

PMODEL−4

dpath−0

dpath−1

dpath−2

dpath−3

dpath−0

dpath−1

dpath−2

dpath−0

dpath−1

dpath−3

P0
P5

P2

P3P4

P0 P2

P3P4

dpath−3

P1=P5 P1 P2

P3

P0=P5

dpath−2

P4

P0 P5 P1 P2

P3P4

P0 P2

P3P4

P1=P5

dpath−0

dpath−1

dpath−3

dpath−2

P1 P2

P3P4

P0=P5

PMODEL−3 ( DS−1 = DS−9 ) PMODEL−4 ( DS−0 = DS−9 )

PMODEL−3

diff erent views.
inconsistent: DS−10 and DS−1 have

P1

Figure 26:By the time the agent reaches dstate8, six places (not five) are part of the map. PlacesP5 and

P1 are not equal since the dstates are these places are not yet turn related (Axiom 30). Turning from dstate

8 to 9 leaves the agent with the three possibilities: (pmodel-3) dstates9 and1 are equal (and soP1 = P5,

or (pmodel-4) dstates9 and0 are equal (and soP0 = P1), or (pmodel-6) dstate9 is a new different dstate.

That dstates9 and6 are different follows from the fact that placesP4 andP5 are different. Pmodels3 and

4 are minimal according to the topological theory circumscription policy. Pmodel-6 is not, but is left as a

possible state in the search should new information render the other models inconsistent. The new schema

h 9;ML; 10 i will render pmodel-4 inconsistent. Since actions are deterministic and dstates0 and9 are

equal in this model, so should dstates1 and10. However, these dstates have different views so they cannot

be equal. Pmodel-3 will then be the only map associated with the set of experiences.
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9 Conclusions

What have we accomplished?. We have taken an informal description of the theory of
topological maps and provided a formal account of the theory. In addition, we have
extended the theory to handle perceptual aliasing, to describe environments with self
intersecting and convergent paths, and to deal with local metrical information including
uncertainty. The topological theory is independent of the agent’s exploration strategy
and of the algorithms used to build topological maps. We have taken the theory as
a specification for a program able to keep track of different topological maps consis-
tent with the agent’s experiences in the environment. This program supports different
exploration strategies as well as facilitates map disambiguation when the case arises.

A logical account of the causal, topological and local metrical theories was given
using Nested Abnormality Theories. The minimality conditions embedded in the for-
malization define the preferred models associated with the theories. In Sections 4
through 7 we illustrated the main properties of the theories. In particular we showed
how the minimal models associated with these theories are adequate models for the
spatial knowledge an agent has about its environment. We also demonstrated how the
causal, topological, and local metrical levels of the representation assume different
spatial properties of the actions performed by the agent. This provides an increasingly
refined ability to infer or refute equality relations (ceq and teq) among experienced
environment states. By clarifying the ontology of causal and topological maps, and
determining the dependency structure of the non-monotonic theory, we provide a solid
foundation for general-purpose strategies for exploring unknown environments, or for
disambiguating cases of perceptual aliasing.

The circumscription priority ordering embedded in the theory is a result of our re-
search, as we experimented with various orders to determine which ordering defined
models that corresponded to what is intuitively the “correct map” of the environment.
Because we have no formal definition of what the correct map is, it is impossible to
prove mathematically that the circumscription priority ordering is the correct one. Pos-
sibly future research can provide such a formal definition, but the difficulties arise from
handling partial experience in the environment, or highly symmetrical environments
with a great deal of perceptual aliasing.

How useful is this theory? This work defines topological maps independently of
the algorithms used to create such maps. The theory is general in that it covers the
major ideas in the field of spatial representation using topological maps. The theory is
useful in that it specifies the minimal set of objects and relationships any topological
map building implementation should have. Although our theory covers most of the
known ideas about topological maps, it is not just a union of previous work in a com-
mon framework. The theory defines different spatial ontologies (causal, topological,
metrical), illustrates what spatial knowledge is captured by each ontology, and then
shows the relationships among these ontologies. The theory shows how the combined
spatial knowledge associated with the different ontologies results in a different ”map”
from the one associated with each independent ontology.

The axiomatic theory has practical value. It has been used to build cognitive maps
by both physical and simulated robots.[Remolina, 2001, Kuipers and Beeson, 2002,
Kuiperset al., 2003] explicitly use the axiomatic theory described in this paper as well



46

as the implemented algorithms in order to build topological maps.[Remolina, 2001]
shows how a wheelchair robot builds the topological map of a building’s floor. The
major focus of this work was on testing the applicability and correctness of the axioms
and algorithms here described.

In [Kuipers and Beeson, 2002] topological maps are built as a mean to disambiguate
distinctive states with the same view. The map provides an unambiguous assignment
of distinctive states to views, which can then used by the robot to ”refine its views”
so that it is possible to distinguish distinctive states from sensory information alone.
”Lassie (the robot)... collected 240 images from 20 distinctive states. The topological
map linking them contained seven places and four paths... By building the causal and
topological map the robot is able to disambiguate all twenty distinctive states, even
though there are only ten different views...”[Kuipers and Beeson, 2002].

Finally, Figure 9 in[Kuiperset al., 2003] describes experimental results where
a simulated agent builds a topological map and learns boundary relations for grid-
like environments. This work presents a computational hypothesis that describes how
the ”skeleton” of major paths emerges from the interaction of three factors: ”(i) the
topological map is represented as a bipartite graph of places and paths, where a path
is a one-dimensional ordered set of places, (ii) a traveler incrementally accumulates
topological relationships, including the relation of a place to a path serving as a divid-
ing boundary separating two regions; and (iii) the wayfinding algorithm prefers paths
rich in boundary relations so they are likely to acquire more boundary relations. This
positive-feedback loop leads to an oligarchy of paths rich in boundary relations (i.e.
the skeleton in the cognitive map)”[Kuiperset al., 2003].
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A Nested Abnormality theories

In this appendix we define circumscription and nested abnormalities theories follow-
ing [Lifschitz, 1994, Lifschitz, 1995]. The main idea of circumscription is to consider,
instead of arbitrary models of an axiom set, only the models that satisfy a certain min-
imality condition (usually set inclusion).

Definition 4. [Circumscription] LetA(P;Z1; : : : ; Zm) be a sentence containing a
predicate constantP and object, function and/or predicate constantsZ1; : : : ; Zm (and
possibly other object, function and predicate constants). Thecircumscription of P in A
with variedZ1; : : : ; Zm is the sentence

A(P;Z1; : : : ; Zm) ^ :9p; z1; : : : ; zm [A(p; z1; : : : ; zm) ^ p < P ] (86)

wherep < P denotes the formula

8x fp(x) ! P (x)g ^ 9x f:p(x) ^ P (x)g :
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We denote Formula 86 byCIRC [A;P ;Z]. fend of definitiong

Intuitively, the models ofCIRC [A;P ;Z] are the models ofA in which the extent
of P cannot be smaller without losing the propertyA, even at the price of changing the
interpretations of the constantsZ.

It is often convenient to arrange different defaults by assigning priorities to them.
Next we define two extensions to the basic definition of circumscription: parallel and
prioritized circumscription.

Definition 5. [Parallel Circumscription] Theparallel circumscription

CIRC
�
A;P 1; : : : ; Pn;Z

�
is the sentenceA(P;Z) ^ :9p; z [A(p; z) ^ p � P ], whereP stands for the tuple of
predicatesP 1; : : : ; Pn andp � P stands for the formula8 1 � i � n pi � P i ^9 1 �
i � n pi < P i. fend of definitiong

Definition 6. [Prioritized Circumscription] Theprioritized circumscription

CIRC
�
A;P 1 � : : : � Pn;Z

�
is the sentenceA(P;Z) ^ :9p; z [A(p; z) ^ p � P ], whereP stands for the tuple of
predicatesP 1; : : : ; Pn andp � P stands for the formula

n_
i=1

0@i�1̂

j=1

(pj = P j) ^ (pi < P i)

1A :

fend of definitiong

The formulap � P defines alexicographicorder among the predicates inp and
P . Proposition 15 in[Lifschitz, 1994] shows that prioritized circumscription can be
reduced to parallel circumscription as follows:

Theorem 5 The circumscriptionCIRC
�
A;P 1 � : : : � Pn;Z

�
is equivalent to

n̂

i=1

CIRC
�
A;P i;P i+1; : : : ; Pn; Z

�
:

Notation 1. CIRC
�
A;P 1 � : : ::Pi : : : � Pn;Z

�
stands for the formula

CIRC
�
A ^ not Pi � :Pi;P

1 � : : : not Pi : : : � Pn;Z; Pi
�

wherenot Pi is a new constant predicate not occurring inA. fend of notationg
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A.1 Nested Abnormality theories (NAT’s)

Nested abnormality theories allows one to apply the circumscription operator to a sub-
set of axioms, by structuring the knowledge base (the theory) into blocks. Each block
can be viewed as a group of axioms that describes a certain collection of predicates and
functions, and the nesting of blocks reflects the dependence of these descriptions on
each other.

Definition 7. [NAT’s] Consider a second-order languageL that doesnot includeAb
among its symbols. For every natural numberk, byLk we denote the language obtained
from L by addingAb as a k-ary predicate constant.Blocksare defined recursively as
follows: For anyk and any list of function and/or predicate constantsC1; : : : ; Cm of L,
if each ofA1; : : : ; An is a formula ofLk or ablock, thenfC1; : : : ; Cm : A1; : : : ; Ang
is a block. The last expression reads:C1; : : : ; Cm are such thatA1; : : : ; An. About
C1; : : : ; Cm we say that they aredescribedby this block.

The semantics of NAT’s is characterized by a map' that translates blocks into
sentences ofL. It is convenient to make' defined also on formulas of the languages
Lk. If A is such a formula, then'(A) stands for the universal closure ofA. For blocks
we define, recursively:

' fC1; : : : ; Cm : A1; : : : ; Ang = 9ab CIRC ['A1; : : : ; 'An : ab : C1; : : : ; Cm] :

fend of definitiong

Most often, it is desirable not to mention the predicateAb at all. We will adopt the
following notations:

� fC1; : : : ; Cm;min P : A1; : : : ; Ang stands for

fC1; : : : ; Cm; P : P (x) ! Ab(x); A1; : : : ; Ang

� fC1; : : : ; Cm;max P : A1; : : : ; Ang stands for

fC1; : : : ; Cm; P : :Ab(x) ! P (x); A1; : : : ; Ang

Definition 8. We extend the definition ofblocksas follows: ifA is a block, so is
CIRC[A;P 1 � : : : � Pn;Z]. The semantics of NATs is extended such that

�CIRC[A;P 1 � : : : � Pn;Z] = CIRC[�A;P 1 � : : : � Pn;Z] :

fend of definitiong

As the next theorem shows, in some cases prioritized circumscription can be ex-
pressed using NAT’s. In these cases however, the notation for prioritized circumscrip-
tion is more compact than its equivalent NAT’s. This motivates our previous definition.

Theorem 6 LetA be a sentence such thatAb does not occur inA. Then,

CIRC[A;P � Q;Z] = fZ; min Q : fZ; Q; min P : A g g :
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B ceq properties

In this appendix we provide proofs for the different properties of the predicatedceq
defined in Section 4.
Theorem 1. LetE be a complete set of experiences and letCEQ blockbe defined as
follows:

f max ceq :

ceq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v);

ceq(ds1; ds2) ^ h ds1; a; ds
0

1 i ^ h ds2; a; ds
0

2 i ! ceq(ds01; ds
0

2)

g

Then the predicateceq is an equivalence relation.
Proof. LetM1 be a model for the axioms inside theCEQ blockas well as the other
axioms ofCT (E). LetM2 be a structure identical toM1 except that

ceqM2(ds; ds0) � ceqM1(ds; ds0) _ ds = ds0 :

We are to prove thatM2 is a model for the axioms inside theCEQ blockand conse-
quentlyCEQ block j= ceq(ds; ds).11 Indeed,

� M2 j= ceq(ds; ds0) ! ceq(ds0; ds). In fact,

ceqM2(ds; ds0) � ceqM1(ds; ds0) _ ds = ds0

! ceqM1(ds0; ds) _ ds0 = ds

� ceqM2(ds0; ds)

� M2 j= ceq(ds; ds0) ^ ceq(ds0; ds00)! ceq(ds; ds00). In fact,

ceqM2(ds; ds0) ^ ceqM2(ds0; ds00)

�
�
ceqM1(ds; ds0) _ ds = ds0

�
^
�
ceqM1(ds0; ds00) _ ds0 = ds00

�
�

�
ceqM1(ds; ds0) ^ ceqM1(ds0; ds00)

�
_
�
ds = ds0 ^ ceqM1(ds0; ds00)

�
_�

ceqM1(ds; ds0) ^ ds0 = ds00
�
_ (ds = ds0 ^ ds0 = ds00)

! ceqM1(ds; ds00) _ (ds = ds0 ^ ds0 = ds00)

� ceqM2(ds; ds00)

� M2 j= ceq(ds; ds0) ! V iew(ds; v) � V iew(ds0; v). In fact,

ceqM2(ds; ds0) � ceqM1(ds; ds0) _ ds = ds0

! 8v [V iew(ds; v) � V iew(ds0; v)] _ ds = ds0

! 8v [V iew(ds; v) � V iew(ds0; v)] _ 8v [V iew(ds; v) � V iew(ds0; v)]

� V iew(ds; v) � V iew(ds0; v)

11M2 satisfies the other axioms inCT (E) sinceceq does not occur in them.
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� M2 j= ceq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds
0
2i ! ceq(ds01; ds

00
2). In fact,

ceqM2(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i

�
�
ceqM1(ds1; ds2) ^ hds1; a; ds

0

1i ^ hds2; a; ds
0

2i
�
_

(ds1 = ds2 ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i)

! ceqM1(ds01; ds
0

2) _ (hds1; a; ds
0

1i ^ hds1; a; ds
0

2i)
(15)
! ceqM1(ds01; ds

0

2) _ ds01 = ds02

� ceqM2(ds01; ds
0

2)

Let’s prove thatCEQ block j= ceq(ds; ds0) ! ceq(ds0; ds). LetM2 be a model
identical toM1 except that

ceqM2(ds; ds0) = ceqM1(ds; ds0) _ ceqM1(ds0; ds) :

By definition,ceqM2 is symmetric. We need to prove thatM2 satisfy the axioms inside
CEQ block:

� M2 j= ceq(ds; ds0) ! V iew(ds; v) � V iew(ds0; v). In fact,

ceqM2(ds; ds0) � ceqM1(ds; ds0) _ ceqM1(ds0; ds)

! 8v [V iew(ds; v) � V iew(ds0; v)] _ 8v [V iew(ds0; v) � V iew(ds; v)]

� V iew(ds; v) � V iew(ds0; v)

� M2 j= ceq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds
0
2i ! ceq(ds01; ds

0
2). In fact,

ceqM2(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i

�
�
ceqM1(ds1; ds2) ^ hds1; a; ds

0

1i ^ hds2; a; ds
0

2i
�
_�

ceqM1(ds2; ds1) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i
�

! ceqM1(ds01; ds
0

2) _ ceqM1(ds02; ds
0

1)

� ceqM2(ds01; ds
0

2)

Finally, let’s prove thatCEQ block j= ceq(ds; ds0)^ceq(ds0; ds00)! ceq(ds; ds00).
LetM2 be a model identical toM1 except that

ceqM2 = transitive closure(ceqM1) :

By definition,ceqM2 is transitive. IfceqM1 is reflexive and symmetric, so isceqM2 .
We need to prove thatM2 satisfies the axioms insideCEQ block:

� M2 j= ceq(ds; ds0) ! V iew(ds; v) � V iew(ds0; v). In fact,

ceq
M2(ds; ds0)

� 9ds0; ds1; : : : ; dsn
�
ds = ds

0
; ds

0 = ds
n
; ceq

M1(dsi; dsi+1); 0 � i < n
�

! 9ds0; ds1; : : : ; dsn�
ds = ds

0
; ds

0 = ds
n
; V iew(dsi; v) � V iew(dsi+1

; v); 0 � i < n
�

! 9ds0; dsn
�
ds = ds

0
; ds

0 = ds
n
; V iew(ds0; v) � V iew(dsn; v)

�
� V iew(ds; v) � V iew(ds0; v)
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� M2 j= ceq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds
0
2i ! ceq(ds01; ds

0
2). In fact,

ceq
M2(ds1; ds2) ^ hds1; a; ds

0

1i ^ hds2; a; ds
0

2i

� 9dsi(1 � i � n)
�
ds1 = ds

1
; ds2 = ds

n
; ceq

M1(dsi; dsi+1); 1 � i < n
�

^hds1; a; ds
0

1i ^ hds2; a; ds
0

2i

hyp:
! 9dsi9hdsi; a; dsi

0

i�
ds1 = ds1; ds2 = dsn; ds01 = ds1

0

; ds02 = dsn
0

; ceqM1(dsi; dsi+1); 1 � i < n
�

! 9dsi
0

h
ds

0

1 = ds
10
; ds

0

2 = ds
n0

; ceq
M1(dsi

0

; ds
(i+1)0); 1 � i < n

i
� ceq

M2(ds01; ds
0

2) 2

When a set of experiences is complete the predicateceq captures the idea that
two distinctive states are the same if they render the same views under any sequence
of actions. Assume thatE is complete and letA = a1; : : : ; an denote a sequence
of actions. The termA(ds) denotes the distinctive state resulting from executingA
starting atds. By definition,A(ds) = ds if n = 0, A(ds) = ds0 such thatE j=
h ha1; : : : ; an�1i(ds); an; ds0i. Notice that the definition ofA(ds) makes sense since
E is complete and actions are deterministic.
Theorem 2. LetE be a complete set of experiences. Then,

ceq(ds; ds0) � 8A; v [V iew(A(ds); v) � V iew(A(ds0); v)] :

Proof. Let M1 be a model for the axioms inside theCEQ blockas well as the other
axioms ofCT (E). LetM2 be a model identical toM1 except that

ceqM2(ds; ds0) � 8A; v [V iew(A(ds); v) � V iew(A(ds0); v)] :

By induction in the length of action sequences on can prove thatceqM1 � ceqM2 .
Our proof is complete by showing thatM2 satisfies the axioms insideCEQ block:

� M2 j= ceq(ds; ds0) ! V iew(ds; v) � V iew(ds0; v). In fact, supposeM2 j=
ceq(ds; ds0) and consider the empty sequence of actions,A = fg, A(ds) = ds.
Then

V iew(ds; V ) � V iew(A(ds); v) � V iew(A(ds0); v) � V iew(ds0; v) :

� M2 j= ceq(ds1; ds2) ^ hds1; a; ds01i ^ hds2; a; ds
0
2i ! ceq(ds01; ds

0
2). In fact,

ceq
M2(ds01; ds

0

2)

� 8A; v
�
V iew(A(ds01); v) � view(A(ds02); v)

�
 hds1; a; ds

0

1i ^ hds2; a; ds
0

2i ^

8A; v [V iew(aA(ds1); v) � V iew(aA(ds2); v)]

 ceq
M2(ds1; ds2) ^ hds1; a; ds

0

1i ^ hds2; a; ds
0

2i

2
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C teq properties

In this appendix we prove some properties of the SSH topological theory. Recall the
SSH topological theory is defined as follows:

TT (E) =

there exist infinitely many places ;

there exist infinitely many paths ;

:9p [tplace(p)^ is region(p)] ;

:9pa [tpath(pa)^ route(pa)] ;

COMPLETION(E) ;

Axioms 2� 10 ;

hds; a; ds0i ^ hds; a; ds00i ! ds
0 = ds

00
; (Axiom 15)

T block ;

AT block = (87)

f max teq :

�

circ tpath � tplace var ~SSHpred (88)

g

where� is the set of axioms defined on Block 20 (Section 5.2), and~SSHpred stands
for the tuple of predicateshat; along; order; on; teq; turn eq; travel eqi.

Proposition 1 LetM be a model ofTT (E). Then,

� M j= 8pa; [tpath(pa) � 9ds; dir along(ds; pa; dir)].

� M j= 8p; [tplace(p) � 9ds at(ds; p)].

Proof.

CIRC[�; tpath � tplace;SSHpred]

� fProposition 15 in [Lifschitz; 1994]g

CIRC[�; tpath; tplace; SSHpred]^ CIRC[�; tpath; tplace;SSHpred]

! fdef: of circumscriptiong

CIRC[�; tpath]

Since� = �0(tpath) ^ [along(ds; pa; dir) ! tpath(pa)] where�0(tpath) is
negative, then

CIRC[�; tpath]

�

CIRC[�0(tpath) ^ [along(ds; pa; dir)! tpath(pa)]; tpath]

� fProposition 4 in [Lifschitz; 1994]g
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�0(tpath) ^ CIRC[along(ds; pa; dir)! tpath(pa); tpath]

! fProposition 1 in [Lifschitz; 1994]g

[9ds; dir along(ds; pa; dir)] � tpath(pa)

Similarly, � = �0 ^ [at(ds; p) ! tplace(p)] wheretpath does not occur in�0.
Then,

CIRC[�; tpath � tplace;SSHpred]

! fsee aboveg

CIRC[�; tpath; tplace;SSHpred]

! fdef: parallel circumscriptiong

CIRC[�; tpath; tplace]

! fdef: parallel circumscriptiong

CIRC[�0 ^ [at(ds; p)! tplace(p)]; tplace]

� fPropositions 1 and 4 in [Lifschitz; 1994]g

�0 ^ [9ds; at(ds; p)] � tplace(p)

2

Proposition 2 The topological map associated with a finite set of experiencesE has a
finite number of topological paths and a finite number of topological places.

Proof. Since a distinctive state is along at most one topological path (Axiom
37), Proposition 1 implies that for any modelM of TT (E) there is an injection from
tpathM into distinctive-statesM . Sincedistinctive-statesM is finite so istpathM .

Similarly, since distinctive states are at a unique topological place (Axiom 29),
from Proposition 1 we conclude that the set of topological places in a model ofTT (E)
is finite.2

Theorem 3. Let ds1 be a distinctive state symbol such that

8ds2 62 [ds1]dturn; [ds2]teq \ [ds1]dturn = ; : (89)

Then
8ds2 62 [ds1]dturn; place(ds2) 6= place(ds1) :

Proof. The hypothesis of the theorem implies that

8ds2 62 [ds1]dturn; :turn eq(ds2; ds1) :

Indeed,

turn eq(ds1; ds2) � 9b0; : : : ; bn; b00 ; : : : ; bn0 s:t:

� b0 = ds2; bn0 = ds1 ;

� teq(bi; bi0); i = 0; : : : ; n

� dturn(bi0 ; bi+1); i = 0; : : : ; n� 1 :
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Let 1 � j � n such that
�
8j � k � n; bk0 2 [ds1]dturn� andb(j�1)0 62 [ds1]dturn.

Notice that such aj exists sinceds1 = b00 62 [ds1]dturn andds1 = bn0 2 [ds1]dturn.
Consequently,

turn eq(ds1; ds2)

!

bj0 2 [ds1]dturn
! fteq(bj ; bj0)g

[bj ]teq \ [ds1]dturn 6= ;

! f89g

bj 2 [ds1]dturn
! fdturn(b(j�1)0 ; bj)g
b(j�1)0 2 [ds1]dturn
!

false

Thus:turn eq(ds2; ds1) should be the case.2

Theorem 4. Any two models of the SSH topological theory have the same number
of topological paths and the same number of topological places.

Proof. In order to prove that two modelsM1 andM2 of TT (E) have the same num-
ber of topological paths (tpaths) and the same number of topological places (tplaces),
it is enough to show that this is the case for models of theAT block (Block 87). Sup-
pose thattpathM1 has less elements thantpathM2 , and so there exists an injection
� : tpathM1 ! tpathM2 . One can extend� to define an isomorphism fromM1 into
M 0

2, such thatM 0
2 � M2, where� is the order defined by the circumscription policy

88. This proves thatM1 andM2 have the same number of topological paths. In fact,

� Let � : tplaceM1 ! placesM2 be an injection. Such an injection exists since
tplaceM1 is finite andplacesM2 is infinite.

� Let � : SM1 ! SM2 be the identity over the sorts (S) of distinctive states,
actions, views, schemas, path types and path directions. Recall we assumed a
Herbrand interpretation for these sorts, where the corresponding universes are
defined by the constant symbols inE.

The function� above defines an isomorphic embedding fromM1 into M2 in the
standard way. In fact,�(M1) = M 0

2 is defined as follows:

� tpathM
0

2 = �(tpathM1), tplaceM
0

2 = �(tplaceM1).

� teqM
0

2 = �(teqM1) = fteq(ds1; ds2) : M1 j= teq(ds1; ds2)g = teqM1 .

� atM
0

2 = �(atM1) = fat(ds; �(p)) : M1 j= at(ds; p)g.

� alongM
0

2 = �(alongM1) = falong(ds; �(pa); dir) : M1 j= along(ds; pa; dir)g.
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� orderM
0

2=�(orderM1) =forder(�(pa); dir; �(p); �(q)) :M1 j= order(pa; dir; p; q)g.

� onM
0

2 = �(onM1) = fon(�(pa); �(p)) : M1 j= on(pa; p)g.

� turn eqM
0

2 = �(turn eqM1) = turn eqM1.

� travel eqM
0

2 = �(travel eqM1) = travel eqM1.

Notice that the language of� is defined byftpath; tplaceg [ SSHpred. Thus
M1 j= � implies�(M1) j= �. Notice that the circumscription policy varies all predi-
cates in the language of�, and� is the identity over all constant symbols in the theory,
for otherwise,�(M1) j= � is not necessarily the case. In general the interpretations of
an unary predicate (set) under a circumscriptive theory do not have the same number
of elements. For example, consider the models ofCIRC[(P (0) ^ P (1)) _ P (2);P ],
where the interpretation ofP could have one or two elements (this example is due to
Vladimir Lifschitz).

Since�(tpathM1) � tpathM2 , then�(M1) �M2, and soM2 is not minimal, and
is therefore not a model ofTT (E). It follows thatM1 andM2 have the same number
of topological paths.

Similar argument shows thatM1 andM2 have the same number of topological
places. If not, there would exists� : tpathM1 ! tpathM2 a bijection and� :
tplaceM1 ! tplaceM2 an injection that allows us to apply the same argument as above.
2

D Theory axioms

The blockT block inside Block 19 in Section 5.2 defines the properties of the pred-
icates dturn, dtravel, and ~travel. dturn is the equivalence closure of the schemas
h�; turn; �i; dtravel and ~travel are the equivalence and transitive closure of the schemas
h�; travel; �i respectively.12

T block = f min dturn;min dtravel;min ~travel :

hds; turn; ds0i ! dturn(ds; ds0);
hds; travel; ds0i ! dtravel(ds; ds0) ^ ~travel(ds; ds0);

dturn(ds; ds);dturn(ds; ds0)! dturn(ds0; ds);dturn(ds; ds0) ^dturn(ds0; ds00)! dturn(ds; ds00);
dtravel(ds; ds);dtravel(ds; ds0)! dtravel(ds0; ds);dtravel(ds; ds0) ^ dtravel(ds0; dr)! dtravel(ds; dr);
~travel(ds; ds0) ^ ~travel(ds0; ds00)! ~travel(ds; ds00)

g

12A block of the formfC1; : : : ; Cn; minP1; : : : ;minPk : A1; : : : ; Amg denotes the set of blocks
fC1; : : : ; Cn; minP1 : A1; : : : ; Amg, : : :, fC1; : : : ; Cn; minPk : A1; : : : ; Amg.
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