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Abstract

We present a general theory of topological maps whereby sensory input, topo-
logical and local metrical information are combined to define the topological maps
explaining such information. Topological maps correspond to the minimal models
of an axiomatic theory describing the relationships between the different sources
of information explained by a map. We use a circumscriptive theory to specify the
minimal models associated with this representation.

The theory here proposed is independent of the exploration strategy the agent
follows when building a map. We provide an algorithm to calculate the models of
the theory. This algorithm supports different exploration strategies and facilitates
map disambiguation when perceptual aliasing arises.

1 Introduction

Topological maps are graph-like spatial representations. Nodes in such a graph often
represent states in the agent’s configuration space and edges represent system trajec-
tories that take the agent from one state to another. A hierarchical structure can be
accommodated on top of this “behavior graph”, where nodes at one level of the hier-
archy represent sets of nodes in lower levels. Despite their common use, there is no
consensus about what topological maps are, or how they are built. The meanings of
nodes and edges in a topological map varies according to the application as well as the
algorithms used to build them. Richer structures than the graph-like description above
are sometimes adopted as part of what a topological map is. Nevertheless, there are
common elements to most of the topological map descriptions, namely, the use of sen-
sory input descriptions in order to identify nodes, connectivity relations among nodes
in the map, and local metrical information associated with edges in the map.

*This work has taken place in the Intelligent Robotics Lab at the Atrtificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Intelligent Robotics lab is supported in part by NSF grants
IRI-9504138 and CDA 9617327, and by funding from Tivoli Corporation.



In this paper, we present a general theory of topological maps whereby sensory in-
put, topological and local metrical information are combined to define the topological
maps explaining such information. We take a declarative approach to define what topo-
logical maps are and how they are related to the information used to build them. We
distinguish between theausal graphwhich is a transition graph representation of reg-
ularities in action and sensory experience, andidpelogical map which represents
spatial properties of actions and of places and paths in the environment. We define
topological maps as the minimal models of an axiomatic theory describing the rela-
tionships between the different sources of information explained by a map. We provide
an algorithm to calculate the models of the theory. This algorithm supports differ-
ent exploration strategies and facilitates map disambiguation when perceptual aliasing
arises.

The major assumption underlying the topological approach to mapping is that there
is a level of abstraction of the underlying environment at which actions are determinis-
tic. In the Spatial Semantic Hierarchiguipers, 2000, this is achieved by definingjs-
tinctive statesandactionscomposed of trajectory-following and hill-climbing control
laws such that actions are functionally deterministic when applied between distinctive
states (see Figure 1). There are two other assumptions that, when true, allow us to state
the axiomatic theory in simpler terms. These are the assumptions that (a) a path does
not intersect itself, and (b) a distinctive state corresponds to at most one path and one
direction on that path. Section 5.3 describes the more elaborate default theory required
to handle environments that violate these assumptions.

2 Related Work

Causal and topological maps have been mainly studied by cognitive theories of space
and robotics. Cognitive theories of space are interested in the cognitive map, the human
knowledge of large-scale space. Robotics is interested in representations of space that
can be used (and learned) by an autonomous robot.

Computational theories of the cognitive map have been proposdéiipers,
1978, Davis, 1983, McDermott and Davis, 1984, Leiser and Zilbershatz, 1989, Gopal
et al, 1989, O'Neill, 1991, Kortenkamet al, 1995. These theories account for in-
complete knowledge of space, use of multiple frames of reference, qualitative repre-
sentation of metrical information, and connectivity relations among landmarks. The
theories differ on how sensory information is represented, what a place is, and how the
overall spatial knowledge is structured.

The use of topological maps in robotics varies according to the type of information
used when building such mapRivest and Schapire, 1987, Dudekal., 1991, Dean
et al, 1993, Basyeet al, 1995 use the sequence of views and actions generated by
the robot exploration to recover the minimum deterministic automaton consistent with
such information. In these works, actions do not have any spatial properties associated
with them. Metrical information associated with actions is considerelbgnig and
Simmons, 1996, Shatkay and Kaelbling, 1R9ut there sensory information (views)
is not used. The use of both sensory and metrical information is propodédiipers
and Byun, 1988, Engelson and McDermott, 1992, Davis, 1983, Simmons and Koenig,
1999. Among these workgdKuipers and Byun, 1988, Davis, 198@ropose the use



of multiple metrical frames of reference: the places in the topological map are not
necessarily embedded in a single two dimensional Euclidean frame of reference, nor
it is necessary to do so in order to create the topological riigpiperset al, 1993,
Kuipers, 2000 propose the existence of topological objects (i.e. paths, regions) that
can explain the agent's experiences without relying on metrical information but rather
qualitative spatial properties (i.e. travel, turnRight, turnLeft, turnAround) associated
with actions.

In research on physical robots biyee, 1996, Choset and Nagatani, 2)sffort
has been put on describing how the agent solves the problem of “perceptual alias-
ing” (i.e. different places that share the same view). Different exploration strate-
gies as well as different discrimination procedures are proposed to solve this prob-
lem. The description of topological maps is usually closely tied to the algorithms
and exploration strategy used by the agent. It is difficult then to know what topo-
logical maps are and how they are related to the agent’'s experiences. The work by
[Choset and Nagatani, 2000dxploits the topology of the robot’s free space to localize
the robot on a partially constructed map. The map used in this work is the general-
ized Voronoi graph (GVG) which is a topological map that also encodes some metric
information about the robot’s environment. Our definition of topological maps in-
cludes but is not limited to GVGs. We propose an axiomatic theory of topological
maps. The task of building the map is stated as an abductior $hslhahan, 1996,
Remolina and Kuipers, 1998here the agent’s map correspond to the minimal mod-
els among those that explains its observations. Stating the minimality conditions as
well as the ontology of the spatial representation is the content of this paper.

Metrical grid-based maps are another spatial representation used in the robotics
community[Elfes, 1987, Borenstein and Koren, 1991, Thetral, 1999. In these
approaches the location of objects in a two dimensional Euclidean space are used to
explain the agent’s experiences. Topological maps as described in this paper can use
metrical maps but they are confined to places, paths and local two dimensional frames
of reference associated with regions.

The Spatial Semantic Hierarcliuipers, 2000 assumes that an agent first builds
a network of places and paths on top of which metrical models are added, rather than to
build first a single metrical map from which a network of places and paths is derived.
This assumption is motivated by research on human cognitive fhapsh, 1960,
Piaget and Inhelder, 1967, Siegel and White, 19F6r the engineering tasks of robot
exploration, mapping, and navigation, we believe that the “topology-first” approach
is more efficient and robust. For exampl&€hrunet al,, 1994 propose a method for
integrating topological and metrical paradigms to solve the concurrent mapping and
localization problem studied in the mobile robotics community. The method has two
phases. In the first phase, the topological mapping solves a global position alignment
problem between potentially indistinguishable, significant places. The subsequent met-
ric mapping phase produces a fine-grained metric map of the environment in high res-
olution. "This work illustrates that topological approaches indeed scale up to large and
highly ambiguous environments. The environments tested here are difficult in that they
possess large cycles, and in that local sensor information is insufficient to disambiguate
locations”[Thrunet al., 1999.

Finally, there are also feature-based spatial representdfiandoset al., 2007



where the map is a graph whose nodes represent observed features and whose edges
represent geometric relationships between these features. Under these approaches the
locations of geometric features in the environment and the position of the vehicle is
jointly estimated in a stochastic framework. Like grid-based methods, feature-based
methods are subject to cumulative metrical error and the difficulty of properly closing
large loops. A major benefit of topological maps is that the problem of correctly closing
large loops is separated from the problem of metrical mapping of local environments.
We refer the reader to Borenstein's bol@orensteinet al., 19964 (Chapter 8) for a

review of different approaches to map building.

This article is organized as follows: in Section 3 we define how the agent represents
its experiences in the environment. Section 4 defines the causal map representation.
The topological theory is presented in three parts: Section 5 introduces the main prop-
erties of paths and places. Section 6 adds boundary relations to this representation, and
Section 7 defines the use of local metrical information. Section 8 presents our algo-
rithms to build the topological maps associated with the agent’s experiences. Finally,
we present our conclusions in Section 9.

3 The agent’s experiences in the environment

We assume that the continuous interaction of the agent and its environment is summa-
rized by a discretgiew-action-vievwsequence of the form

Vo, A0,Y1,01,---,0n—1,Un - (1)

A view represents a sensory description associated with an environment state. Only the
name and not the internal structure of a view matters. The environment states where
the views in sequence 1 were observed are callstinctive states(dstates). Note

that distinctive states represent not only location, but also the agent’s orientation in
the environment. The same view can occur at different distinctive stpéeseftual
aliasing). It is possible for the agent to associate different distinctive state names with
the same environment state. This is the case since the agent might not know at which
of several environment states it is currently located. It is the purpose of the causal and
topological theories (Sections 4 and 5) to deduce which of these dstates names refer to
the same environment state.

An action denotes a sequence of one or more control |#u®, 1987 that take
the agent from one dstate to the next. For exampldKinipers and Byun, 1988,
Kuipers and Byun, 1991, Kuipers, 20d0distinctive states are the result of following
trajectory-followingand therhill-climbing control laws. The basin of attraction of the
hill-climbing control laws absorbs accumulated error from each trajectory-following
control law, along each action. Even with realistic levels of accuracy in the control
laws, if the initial basin of attraction is large enough, and the hill-climbing control law
is effective enough, the action become functionally deterministic (Figure 1).

The sequence (1) is transformed into a set sifhemas of the form
((vi,ds;), a4, (Viy1,dsit1) ), Whereds; is the dstate name associated with the envi-
ronment state where view is observed. A schema represents a particular action ex-
ecution of the agent in the environment. An action execution is characterized in terms
of the distinctive states the agent was at before and after the action was performed.
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Figure 1: Actions between distinctive states are functionally deterministic. The control laws making up
an action have a basin of attraction surrounding the initial distinctive state (dsl1). Any trajectory starting in
that basin moves toward the fixed-point of the hill-climbing control law. Since any implementation has finite
precision, the action terminates in a small region around the destination distinctive state (ds2). As long as the
final region is small enough to be contained within the initial basin of attraction of every subsequent action
departing from that state, then actions are functionally deterministic.

Example 1. Consider the environment in Figure 2. In order to go from distinc-
tive stateds1 to distinctive statels2, the agent executes the sequence of control laws
( get_into_corridor, follow_middle_line,localize ) whereget_into_corridor is a tra-
jectory following control law that moves the agent fralal to a, follow_middle_line
is a trajectory following control law that takes the agent frato b, andlocalize is a
hill-climbing control law that takes the agent frdmto the distinctive statds2. Envi-
ronment statea andb are not distinctive states. At the distinctive stdt@ the agent
is facing the wall ahead and it is equidistant from this wall and the intersection corners.
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Figure 2: A sequence of control strategies get_into_corridor, follow_-middle_line, localize),
takes the agent from distinctive stafel to distinctive statals2. This continuous motion is represented
by the schemd (v1, dsl), al, (v2,ds2) ), wherevl andv2 are the views atls1 andds2, and the action
symbolal represents the sequence of control laws.

Distinctive stateds3 is at the same physical location ds2 but with a different
orientation. When the robot is dt3, it is facing the open space (corridor) to the right
of ds2. In order to go from distinctive stat@s2 to distinctive stateis3, the agent
executes the sequence of control strategifsce_space_on_right, localize). The
schemasg (v1,dsl),al, (v2,ds2)) and( (v2,ds2), a2, (v3,ds3) ) are created, where
al anda2 are action symbols representing the respective sequence of contral laws.

4 Causal graphs

Schemas summarize the continuous interactions of the agent in the environment. This
is done by storing the initial and final distinctive states (and their corresponding views)



for any action execution. By considering only the views associated with the initial and
final distinctive states of a schema, we definelmv graph(Section 4.2.1), which
relates different views by actions linking them. By considering sequences of actions
as well as views, the agent can further distinguish distinctive states. In Section 4.3 we
define the predicateeq which is the case for distinctive states that are not distinguish-
able by actions and views. We then definedhasal graphwhose nodes are classes of
distinctive states (classes w.rdeq). This representation is akin to the view graph al-
though it imposes further refinement in the set of environment states that are consistent
with the agent experiences.

4.1 Ontology of the Causal theory

We use a first order sorted language in order to describe causal graphs. The sorts
of such language includdews actions action typesaction qualitative descriptions
distinctive statesand schemas Next we present the predicate symbols and axioms
associated with this ontology.

We use the predicaléiew(ds, v) to represent the fact thais theviewassociated
with distinctive statels. We assume that a distinctive state has a unique vrew,

v View(ds,v) . (2)

However, we daot assume that views uniquely determine distinctive states (i.e.
View(ds,v) A View(ds',v) / ds = ds’). This is the case since the sensory capabili-
ties of an agent may not be sufficient to distinguish distinctive states.

An action has a unique type, eithgavel or turn, associated with . These con-
stant symbols define completely the sortamtiontypes(Axiom 3). The predicate
Action_type(a, type) represents the fact that the type of actéis type Formally,

turn # travel, Vatype {atype = turnV atype = travel} , 3)
Itype Action_type(a,type) . 4)

Turn actionshave associated a unique qualitative description. The sort of qualita-
tive descriptions is completely defined by the constant syntbaid eft, turnRightand

turnAround(Axioms 5 and 6). We use the predic8farn_desc(a, desc) to indicate
thatdesdis the qualitative description of tharn action a Formally?

UN AlturnLeft, turnRight, turnAround] , 5)
Vdesc {desc = turnLeft V desc = turnRight V desc = turnAround} , (6)
Turn_desc(a,desc) — Action_type(a,turn) , )
Action_type(a,turn) — ldesc Turn_desc(a,desc) . (8)

A schemarepresents a particular action execution of the agent in the environment.
We use the following predicates to represent information associated with a schema:

IThroughout this paper we assume that free variables in formulas are universally quantified.

2The formuladlv P(v) meansthere exists a unique s.t. P(v)”. Formally,JvVz [P(z) = « = v].

3The type of an action will be important in the topological theory (Section 5). For completeness of the
presentation we introduce this concept here.

4The notationUN A[t1, ... ,t,] represents the uniqueness of names axioms for the grounded terms
t1,...,tn. These axioms require thit # t; for i # j.



action(s,a)— actiona is the action associated wglchema-s-, context(s,ds)— ds is
the startinglistinctive statessociated with the action execution representesthgma

s —, andresult(s,ds)— ds is the endinglistinctive stateassociated with the action
execution represented lsghemas—. While we require a unique context and action
associated with a schema, the result of a schema is optional (but unique if it exists):

Jla action(s,a), Ids context(s,ds) ,result(s,ds) A result(s,ds') = ds=ds" . (9)

Most often we are interested tompleteschemas: those for whom the result-
ing distinctive state exists. Nevertheless, incomplete schemas allow the representa-
tion to account for common states of incomplete knowledge like “I could take you

there, but | can’t tell you how[Kuipers, 2000. We use the (Causal Schema) predicate
CS(s,ds,a,ds’) defined as

CS(s,ds,a,ds") =qep context(s,ds) A action(s,a) A result(s,ds’) (10)

to express the fact that schemaepresents an execution of actiarwhich took the
agent fromdistinctive statels to distinctive statels’.

An action execution also has metrical information associated with it. This metrical
information represents an estimate of, for example, the distance or the angle between
the distinctive states associated with the action execution. We defer the study of metri-
cal information associated with schemas until Section 7.

While schemas are explicit objects of our theory, it is convenient to leave them
implicit. We introduce the following convenient notatién:

(ds,a,ds") =qey Is CS(s,ds,a,ds")

(v,a,v") =ges Is,ds,ds’ {CS(s,ds,a,ds") A View(ds,v) A View(ds',v')}
((v,ds),a, (v',ds")) Zger 35 {CS(s,ds,a,ds") A View(ds,v) A View(ds',v")}
(ds,type,ds') =ger 3s,a {CS(s,ds,a,ds") A Action_type(a, type)}
(ds,desc,ds"y =qey Is,a {C'S(s,ds,a,ds") A Turn_desc(a, desc)}

4.2 The E formulae.

The agent’s experiences in the environmdftare described in terms @S View,
ActiontypeandTurn.descformulae. Associated witk we have the setS(E) DS(E)

V(E), A(E) of schemas, distinctive states, views and action constant symbols occurring
in E. We require all these symbols to be different (uaiqueness of namassumption)

and to completely define their corresponding sattsnfain closuressumption):

UNA[sy,...,sk), si € S(E), UNA[dsy,...,ds], ds; € DS(E),

UNAlay,...,a,), a; € A(E) , UNA[v,...,vn], v; € V(E), (11)
Vs \/ s =5;, Vds \/ ds = ds; ,
s;i€S(E) ds;€DS(E)
Ya \/ a=a;, Yv \/ v =0;.
a; EA(E) v, EV(E)

SNotice that we have “overloaded” the bracket notation depending on the type of its arguments.



The axioms above are not only required from a logical point of view, but make sense
from the knowledge representation point of view. Domain closure axioms prevent
models from including objects different from those experienced (named) by the agent.
Each of the agent schemas represents a different experience and the agent names them
with a different schema constant symbol. Different view symbols represent different
sensory input. This is the case since the agent decides what view to associate with a
sensory input.Different distinctive state constant symbols might represent the same
environment state Nevertheless, we assume that different distinctive state symbols
are interpreted by different elements of the sort of distinctive states and we use the
predicateceq (Causally Equal) to indicate whether two distinctive states represent the
same environment state (Section 4.3).

Finally, the type of actions as well as the qualitative description of turn actions have
to be specified as part of the formulae

Action_type(a,type) = V [a = a; A type = typei] (12)
Action_type(a;,type;)EE
Turn_desc(a,desc) = \/ [a = ai A desc = desc;] (13)

Turn_desc(a;,desc;)EE

Definition 1. Given a setr of CS View, ActiontypeandTurn_typeformulae,
COMPLETION(E)

denotes the union & with Axioms 11 - 13.

Example 2. Consider the set of experiendegathered by the agent while navigat-
ing the environment in Figure 3. The agent moves among intersections by performing
actionml. The sensory input at the different intersections is very similar, and the agent
associates the views-° with the different distinctive states it found (i.&.b andc).

Figure 3:The agent moves among corridor intersections that have the same view, b andc are the
distinctive states where this view is observed at.

The elements oE are as follows: Action_type(ml, travel), CS(sl,a,ml,b),
CS(s2,b,ml, c), View(a,v+), View(b, v+), andView(c, v+).

The unigueness of names axioms associated vdhesl # s2 anda # bA a #
¢ A'b # c. The domain closure axioms associated viithreVs {s = s1V s = s2},
Vds{ds =aVds=bVds=c}Va {a =ml}andVv {v=v+}.

Finally, we also have the axiomé,desc {Turn_desc(a,desc) = false} and
Va, type {Action_type(a,type) = [a = ml A type = travel]}. O

6As with any other symbol name, the view name is arbitrary. The + in the view name is used to indicate
that the view corresponds to a four corridor intersection. Later we use the syltbahdicate that the view
corresponds to an end of corridor.



4.2.1 The view graph

The view graph associated with a set of experiencBsis the labeled graph
(Nodes, Edges, Labels) such that:

¢ Nodes = V(E), Labels = A(E).
e Edges ={(v,a,v') : COMPLETION(E) = (v,a,v") }.

When the same view occurs at different environment states, the view graph is not
very informative. The agent has to use information other than the views alone in order
to distinguish different environment states (see next section and Section 5). How-
ever, should the agent have enough sensory capabilities as to distinguish distinctive
states by their views, then the view graph becomes a powerful spatial representation
for reliable navigation. Work ifSchilkopf and Mallot, 1995, Frangt al, 1998,

Mallot and Gillner, 2000, Steck and Mallot, 200¢hows how the view graph is con-
sistent with human navigation abilities.

4.3 The Causal theory

We use the predicaiseq(ds, ds’) to denote the fact thatistinctive stategls andds’
arecausallyindistinguishable. (In Section 5 we define when distinctive states are topo-
logically indistinguishable.) Informallyeq(ds,ds’) is the case whenever distinctive
statesds andds’ are indistinguishable by the actions and views in a given set of expe-
riencesE. The theoryC'T (E) below defines the extent of the predicage.

The causal theory associated with a set of experieBc&€ (E), is the following
nested abnormality theory (NATH)ifschitz, 1999 (see Appendix A):

CT(E) = (14)
COMPLETION(E) ,
Azioms 2 — 10,
(ds,a,ds'y A (ds,a,ds") — ds' = ds", (15)
CEQblock = (16)
{ maz ceq:

ceq(ds1,ds1),
ceq(ds1,ds2) — ceq(dsz,ds1),
ceq(ds1,ds2) A ceq(dsz2,ds3) — ceq(ds1,dss),

ceq(dsi,dsz) — View(dsi,v) = View(dsz,v), a7)
ceq(dsi,dsz2) A (ds1,a,dsy) A {ds2,a,dsh) — ceq(ds’, ds) (18)
}

Axiom 15 states our assumption that actions are deterministic. Axiom 17 states
that indistinguishable distinctive states have the same view. Axiom 18 states that if
distinctive stateds andds’ are indistinguishable, and actiars performed for botlas
andds’, then the resulting distinctive states must also be indistinguishable. Axioms 17
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and 18 allow us to prove thatdfs andds’ are two indistinguishable distinctive states,
then any sequence of actions executedsaandds’ will render the same sequence of
views.

Given an action symbaoll and distinctive statels, A(ds) = ds' if the schema
(ds, A,ds') has been observed, otherwisi(ds) =1. Moreover,A(L) =1. The
definition is then extended to action sequences in the standard way. NoticH dsat
is well-defined given our assumption that actions are deterministic (Axiom 15).

Lemma 1 Let A denote a sequence of action symbols.Agis) denote the distinctive
state symbol resulting from executing the sequehstarting at distinctive statds, or
L if Ais not defined fods. Then,

ceq(dsi,ds2) N A(ds1) #L NA(ds2) #L— View(A(ds1),v) = View(A(ds2),v) .

There is a special case in whiehg is an equivalence relation without explicitly
stating the axioms requiring so. This is the case when the result of every action at
every distinctive state is known.

Definition 2. A set of experiencef is completewhenever

E |=Va,ds3ds'(ds,a,ds") .

Theorem 1 Let E be a complete set of experiences andd&Q block be defined as
follows:
{ maz ceq:
ceq(ds1,ds2) = View(ds1,v) = View(dsz,v),
ceq(ds1,dsz2) A (ds1,a,dsy) A (dsz2,a,dsh) — ceq(dsy,dss)

}

Then, the predicateeq is an equivalence relation.

Proof. See Appendix Bl

When a set of experiences is complete the predicagieaptures the idea that two
distinctive states are the same if they render the same views under any sequence of
actions.

Theorem 2 Let E be a complete set of experiences. Then,
ceq(ds1,dss) = VA, v [View(A(ds1),v) = View(A(dsz2),v)] .
Proof. See Appendix BO

Example 3. Consider the set of experiencésas in Example 2 (see Figure 4a).
Since the same view is experiencedaab andc, the extent okeq is maximized by
declaringceq = true (i.e. Vz,y ceq(z,y)). Notice that axiom (18) is trivially satisfied
since no action has been executed. at

Although a, b and c were experienced at different environment states, they are
declared causally indistinguishable. This happens because neither the actions nor the
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Figure 4: (a) Distinctive states,, b andc cannot be causally distinguished. Topological information is
needed in order to distinguish them. (see text)abh andc are distinguished given the new information
(e, travel, d).

views in E provide enough information to distinguish them. By using topological
information (i.e. the concepts gluth andplace, see Section 5) we will be able to
distinguish these distinctive states (see Example 5).

Suppose the agent continues exploring the environment and gets the new informa-
tion View(d,v 1), CS(s3,c,ml,d), as suggested in Figure 4b. In virtue of lemma 1,
it can be seen thakq(ds, ds') = ds = ds’, and consequently the agent concludes that
all distinctive states refer to different environment states.

Different models ofCT(E) generally arise when the set of experienées in-
complete (i.e. the agent has not completely explored the environment) or when weak
sensors determine the same view at different environment states.

Example 4. Consider the environment depicted in Figure 5. The agent visits the
different distinctive states as suggested by their numbers in the figure. The same travel
actionm! is performed when traveling from a corner to the intersection (i,enl, 2 ))
and viceversa (e.d.4,ml,5)). Aturn around action is performed when reaching a cor-
ner (e.g. (3, change_path_direction,4),( 7, change_path_direction, 8 ), etc.). As-
sume that the different corners have the same views (i.e. view(1) = view(4) = view(8),
view(3)= view(7) = view(11)), and views associated with the other distinctive states

are different.
—1 §_§_A (210} 412, a1

Figure 5: The agent visits the different distinctive states in the order suggested by their numbers. The
same view occurs at the different corners (i.e view(1)= view(4) = view (8)). Three different causal models
can be associated with the agent exploration of this T-environment (see text).

Three models ofCT(E) can be associated with the explorati@hof the T-
environment:

1. Model 1:ceq(8,12), ceq(12, 8), ceq(z, z).”
2. Model 2:ceq(1,12), ceq(12, 1), ceq(z, ).

"The extent oteq in model 1 is defined by(8,12), (12,8)} U {(z,z) :x=1,...,12}.
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3. Model 3:ceq(4,12), ceq(12,4), ceq(3,11), ceq(11, 3), ceq(2, 10), ceq(10, 2), ceq(z, x).

In all the models abovesceq(1,4), —ceq(1,8), —ceq(4,8). For instance, from
(1,ml,2),(4,ml,5), andview(2) # view(5) we conclude thatceq(1,4). Although
dstatel2 is at the same environment state as dstaieis possible thateq(1, 12) or
ceq(8,12). This is the case since no action has been performed at dgtate

Notice that the models ofCT'(E) are maximal with respect to the set inclusion
for ceq. The number of elements in the possible extents aéq could vary, and con-
sequently the number of different environment states represented by the models
of CT(E) will also vary. For instance, the three models above reprekgnitl and9
environment states respectively.

Finally, notice that all the models above are possible since at the causal level turn
and travel actions do not bear any spatial meaning. When we consider topological
information, only model 3 above will be possible (see Example 10).

4.4 The causal graph

The causal graph associated with a set of experieficds the labeled graph
(Nodes, Edges, Labels) such that:

e Nodes =DS(E)/ceq, Labels = A(E),
e Edges ={([ds], a,[ds]') : COMPLETION (E) = (ds,a,ds') }.

whereDS(E)/ceq denotes the set of equivalence classeB8{E)moduloceq and
[ds] denotes the equivalence classiefgivenceq

- -
(o] (D) (e

a b C

Figure 6: (a)-(b). Causal graphs associated with the set of experiences in Figures 4a and 4b. (c) view
graph associated with the set of experiences in Figure 4b. Notice that the causal and view graphs associated
with the experiences in Figure 4a are isomorphic.

The problem of distinguishing environment states by outputs (views) and inputs
(actions) has been studied in the framework of automata tHémyluin, 1978, Gold,
1978, Rivest and Schapire, 1987, Basyal, 1994. In this framework, the problem
we address is the one of finding the minimum automaton (w.r.t. the number of states)
consistent with a given set of input/output pairs. Without any particular assumptions
about the environment or the agent’s perceptual abilities, the problem of finding this
smallest automaton is NP-complel&iigluin, 1978, Gold, 1978.
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5 Topological maps

Actions in the causal theory convey patterns of experience but not spatial configura-
tion. Spatial configuration is considered by the topological theory where actions are
categorized into two classesfiurnsandtravels Turns and travels are explained by a
new ontology, that oplacesandpaths Turn actions leave the agent at the same place.
Travel actions move the agent to a new place along a path.

Grouping places intoegionsallows an agent to reason efficiently about its spatial
knowledge. Regions themselves can be grouped to form new regions forming a spatial
abstraction hierarchy. (In this article we do not consider this hierarchy.) In Section 6
we defineboundary regionsassociated with paths. Informally, a path has associated
three disjoint regions: the set of places in the path, the set of places to the left of the
path, and the set of places to the right of the path. Boundary regions allow the agent
to distinguish distinctive states, for two distinctive states can be considered different if
they are in different boundary regions of the same path (see Example 17).

Local metrical information derived during action execution is considered in the
topological theory. For instance, the distances among places on a path or the angles
among paths intersecting in a place can be accommodated in the topological map. We
study the use of metrical information in Section 7.

5.1 Ontology of the Topological theory

The main purpose of the topological the@¥' (E) is to minimize the set of topological
paths and topological places consistent with the given experigic€he concepts of
pathandplaceare used to distinguish environment states that are not distinguishable by
actions and views alone. We use the preditatgds, ds’) to indicate that distinctive
statesds andds’ are topologically indistinguishable. This will be the case, when in
addition to not being distinguishable by views and actialksandds’ are at the same
place facing the same direction along the same path.

Within the sort of places, we distinguish betweepological placesandregions
A topological place is a set of distinctive states linked by turn actions. A region is a set
of places. We use the predicatptace andis_region to identify these subsorts.

A path defines an order relation among places connected by travel with no turn
actions. They play the role of streets in a city layout. Among patipglogical paths
correspond to those paths whose places are topological places. We use the predicate
tpath to identify these paths. A path connecting regions is calledute. A path
has two directionspos andneg, which can be thought of as referring to “upstream”
and “downstream” in the order of places on the path. The path direction also serves
as a frame of reference for specifying the boundary regions describing places to the
left and right of the path (see Section 6). The sort of path directions is completely
defined byposandneg For a directionfir, —dir is defined such that pos = neg and
—neg = pos.

The relations among distinctive states, places and paths are characterized in terms
of the following predicateson(pa,p)— placep is onpathpa —,order(pa,dir,p,q) —
placep is beforeplaceq, when facing directiodir on pathpa—, at(ds,p)—distinctive
stateds is atplacep—, andalong(ds,pa,dir)—distinctive statels is alongpathpa in
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directiondir—. Figure 7 summarizes the dependencies among the above predicates.
Section 5.2 formalizes these relationships.

teq(ds,ds’)

/ {20: AT=block} \

tplace(p) on(pa,p) order(pa,dir,p,q) tpath(pa)

{45,46 {40}
{28} \ {32, 37-39}

at(di’p along(ds,pa,dir)

{30}
{33}
turn_eq(ds,ds’) travel eq(ds,ds’)
A
131 {47
turn(ds, ds’) “travel(ds,ds’)
<ds,turn,ds’> <ds,travel,ds’>

Figure 7: Dependency among predicatesTtT’(E). Labels on the graph’s arrows refer to the axioms
relating the predicates pointed by the arrows.

Distinctive states related by turns moduley (turn_eq) must beat the same topological placeéplace).
Distinctive states related by travels modubgy (travel-eq) arealong the same topological pathpath).
Knowing at which places and along which paths distinctive state are, determines what placesnduat

paths. The order of places on a path is derived from travels among distinctive states along a path.

Since the extents afravel_eq andturn_eq must be defined in order to determine places and paths, one has
to know what distinctive states ateq. The arrows pointing téeq on the top of the diagram indicate that
among the possible interpretations feg, the preferred models of the theory select those that lead to a map
where a minimum set of paths and places are needed to explain the schemas at the bottom of the diagram.

Since a map can be arbitrarily large, no finite domain can be adequate and so we
require the sorts of places and paths to be contably infinite. This is not to say that the
topological map has infinite number pfaces or paths. Given a model of the theory,
the topological map corresponds to the submodel obtained by restricting the different
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predicates tdopological placesregions topological pathsandroutes Sincetopo-
logical placesare identified with finite sets of distinctive states @opological paths

are identified with finite sequences of distinctive states, the topological map associated
with a finite set of schemas (and so a finite set of distinctive states) has a finite number
of topological placesandtopological paths We require infinite sorts of places and
paths to avoid models being non-comparable due to a mismatch in the cardinalities of
the sorts, as illustrated in Example 16.

5.2 The topological theory

The topological theory associated wEh TT(E), is the following nested abnormality
theory (NATs)[Lifschitz, 1999 (see Appendix A): (The condition that the sorts of
places and paths are countably infinite is formalized by asserting the existence of a
bijection between these sorts and the natural numbers.)

TT(E) = (29)
there exist countably infinitely many places ,
there exist countably infinitely many paths ,
—3p [tplace(p) A is_region(p)],
—3pa [tpath(pa) A route(pa)] ,
COMPLETION(E),
Azioms 2 — 10,
(ds,a,ds') A (ds,a,ds") — ds' = ds", (Aziom 15)
T block ,
AT block .

The blocKT _block defines the properties of the predicatesn, tr/a;el, andtravel.
turn is the equivalence closure of the schemasurn, -); travel andtravel are the
equivalence and transitive closure of the schefndsavel, -) respectively (Appendix
D).

The blockAT _block is the heart of our theory. It defines how the agent groups
distinctive states intplaces and howplacesare ordered bpaths The purpose of this
block is to define the extent of the predicatigsth, tplace at, along, order, onandteq
The block has the associated circumscription policy

circ tpath = tplace var SSprred

stating that a minimum set of topological paths is preferred to a mini-
mum set of topological places. The symbsl indicates prioritized circum-
scription (see Appendix A). SS}fpred stands for the tuple of predicates
(at, along, order, on, teq, turn_eq, travel_eq). The predicatesravel_eq and
turn_eq are “auxiliary” predicates used in our topological theory. Although they are
completely defined in terms oéq, turn andtravel, they need to vary in the circum-
scription policy. The blockAT _block is defined as follows:
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AT block = (20)
{ maz teq :
teq(ds,ds) ,
teq(dsi,ds2) — teq(ds2,ds1) ,
teq(dsi,dsz2) Ateq(dsa,dss) — teq(dsi,dss) , (21)
teq(dsi,ds2) = View(ds1,v) = View(dsz2,v), (22)
teq(dsi,ds2) A {ds1,a,ds) ) A {ds2,a,dsy) — teq(dsy,dss) , (23)
teq(ds1,ds2) — Vplat(dsi,p) = at(dsz,p)] A (24)
Vpa, dir [along(ds1, pa,dir) = along(ds2, pa, dir)] ,

(ds,turn,ds’ ) — —teq(ds,ds’) , (25)
(ds,turnAround,ds’ ) A {ds, turnAround,ds" ) — teq(ds',ds") , (26)
(ds1,turnAround,dsz ) A (dsa,turnAround,dss ) — teq(dsi,dss) , (27)
at(ds,p) — tplace(p), (28)
Alp at(ds, p), (29)
turn_eq(dsy,ds2) = Vp[at(ds1,p) = at(dsz,p)], (30)
{min turn_eq: (31)

teq(dsi,dsz2) A teq(dss,dss) A t%(dsz, dss) — turn_eq(dsi,dss),
turn_eq(dsi,ds2) A turn_eq(dsz, dss) — turn_eq(dsi,dss)

}

along(ds,pa,dir) — tpath(pa), (32)

{ min along : (33)
{ds, travel,ds' y — Ipa, dir [along(ds,pa,dir) A along(ds',pa,dir)] ,  (34)
(ds,turnAround,ds’y — along(ds, pa,dir) = along(ds', pa, —dir), (35)
teq(dsi,ds2) — along(ds1, pa, dir) = along(ds2, pa, dir) (36)

}

along(ds,pa,dir) A along(ds,pal,dirl) — pa = pal A dir = dirl, (37)

at(ds1, p)Aat(ds2,p) Aalong(ds1, pa,dir) Aalong(ds2, pa, dir) — teq(dsi, ds{B8)

[(ds, turn_desc,ds') A turn_desc # turnAround A (39)
along(ds, pa, dir) A along(ds', pal, dirl)] — pa # pal,

{ min order : (40)
[( ds,travel,ds") A at(ds,p) A at(ds', q)A (41)
along(ds, pa, dir) A along(ds', pa, dir)] — order(pa,dir,p,q),
order(pa,pos, p,q) = order(pa,neg, q,p), (42)
order(pa,dir,p, q) A order(pa,dir,q,r) — order(pa,dir,p,r) (43)

}
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-order(pa,dir,p,p), (44)
{min on : at(ds,p) A along(ds, pa,dir) — on(pa,p) } (45)
on(pa, p) A on(pa, q) A tpath(pa) — (46)

Ads1, diry, dssz, dirs [at(dsi, p) A along(dsi,pa,diri) A at(dsz, ¢)A
along(dsz, pa,dirzs) A travel_eq(ds1,dsz2)],
{min travel_eq: 47)

tael(dshdsQ) — travel_eq(dsi,ds2),

(ds1,turnAround,dss ) — travel_eq(dsi,ds2) A travel_eq(dsz,ds1)
teq(dsi,dsz2) A teq(dss,dss) A travel_eq(dsa,dss) — travel_eq(ds1, dss),
travel_eq(dsi,dsz2) A travel_eq(dsz2,dss) — travel_eq(dsi,dss)

}

circ tpath = tplace var SSffpred (48)

}

We discuss these axioms in turn.

Predicateeq is an equivalence relation. It stands fopologically equal When-
everteq(dsy,dss) is the case, we can considir anddss as denoting the same envi-
ronment stateds; andds, cannot be distinguished by views and actions (Axioms 22
and 23), they are at the same place, and they are along the same paths (Axiom 24).

Axiom 25 states that &rn action takes the agent from one distinctive state to a
different one. In particular we assume that a schema of the {dsp¥'urn, ds) is not
included in the agent’s experiences. Axiom 26 states that there is a unique (nagulo
distinctive state resulting from performing a turn around action. After two turn around
actions the agent is back to the same dstate (Axiom 27). Turn around actions are special
since they link distinctive states along the same path but in opposite directions (Axiom
35).

Axioms 29 and 30 state how the agent groups distinctive states into places. Ev-
ery distinctive state is at a unique topological place (Axiom 29). Whenever the agent
turns, it stays at the same topological place (Axiom 30). Distinctive states grouped
into a topological place should bern connected (modulteq) (Axiom 30). Block 31
states that the predicatern_eq corresponds to the relatignrn moduloteq.

Travelactions among distinctive states are abstracted to topological paths connect-
ing the places associated with such distinctive states. Travel axioms are explained in
terms of the two related predicatedong andorder. Both of these predicates are
the minimum ones explaining travel actions and satisfying other properties included in
Blocks 33 and 40, respectively.

Block 33 defines the predicatong. Whenever an agetirns around it stays in
the same path but facing the opposite path’s direction (Axiom 35). Axiom 36 is a trivial
consequence of the definition tfg but it has to be included in the block so that the
interpretation ofzlong has tuples other than the ones explicitly derived from schemas
(see Example 7).

There are further restrictions on the propertiesiofig. For instance, a distinctive
state is along at most one path (Axiom 37). Since Axiom 37 provides “negative” in-
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formation aboutilong, it does not need to be included in Block 33 (see Proposition
4 in [Lifschitz, 1994). Axiom 37 prevents the existence of different paths that con-
verge to the same distinctive state (in Section 5.3 we will make this axiom a default).
Finally, Axiom 38 states that there exist at most one distinctive state indicating a path’s
direction at a given place on the path.

Turn actions other thatwrnAroundchange the path the initial and final distinctive
states linked by the action are along (Axiom 39). This axiom allows the agent to con-
clude the existence of different paths once it turns right or left at a place (see Example
9). This axiom prevents the existence of self-intersecting paths (Figure 15).

Block 40 defines the predicateder. In addition to explaining travel actions,
order defines an order among the places on a path satisfying the following two proper-
ties: i) the order of places in a given path direction is the inverse of the order of places
in the other path direction (Axiom 42), and ii), the order of places in a path is transitive
(Axiom 43).

There are further restrictions on the propertiesnafer: i) the order of places in a
path should be non-reflexive (Axiom 44), and ii) the agent has to have traveled among
the places on the same path (Axiom 46). Since these requirements provide “negative”
information aboubrder, they do not need to be included in Block 40 (see Proposition
4 in [Lifschitz, 1994). Notice that we rule out the existence of circular paths (Axiom
44). In Section 5.3 we will make this axiom a default.

Axiom 46 requires the agent to have traveled among the places on the same path.
travel_eq defines when two distinctive states are linked by travel actions without turns
(except forturn Around actions) (see Block 47). Example 8 illustrates how by using
travel _eq the agent can minimize the set of topological paths.

Remark. We will be using the following properties of our theory. Axiom 37 in combi-
nation with Axioms 34, 41, and 44, imply that that whenever the agent has directly trav-
eled between two distinctive states, the places associated with these distinctive states
are different:

Corollary 1. travel(ds,ds') — place(ds) # place(ds')

whereplace(ds) denotes the unique topological place that distinctive statis
at (Axiom 29). Moreover, consecutive travels among distinctive states occur along the
same topological path.

Corollary 2.

tra_'vel(ds, ds') — A'pa,dir [order(pa,dir,place(ds),place(ds')) A along(ds, pa, dir)
Nalong(ds,pa, dir)] .
In order to prove that distinctive statés; andds, are at different topological places,
one has to prove thatturn_eq(ds;,ds2). The following theorem states a strong con-

dition for when this is the case. Given an equivalence relafiofiz]r denotes the
equivalence class af according toR.

Theorem 3 Letds; be a distinctive state symbol such that
VdSQ g [dsl]t/u;ﬂ [dSZ]teq n [dsl]t/u-ﬁz = @ .

Then, Vdsy ¢ [ds1]—, place(dss) # place(ds1) .



19

Proof. See Appendix CO

Recall that the interpretations fewath andtplace are finite. Our circumscription
policy 48 and the fact that the sorts of paths and places are infinite implies the following
fact:

Theorem 4 Any two models of the SSH topological theory have the same number of
topological paths and the same number of topological places.

Proof. See Appendix CO

However, Theorem 4 does not mean that a unique map is necessarily associated
with a set of schemas. As shown in Example 13 the SSH topological theory could have
more than one non-isomorphic model.

{end of remark

The next examples illustrate the interplay among the axioms ibl&€k.
Example 5.

Figure 8:Distinctive states, b andc cannot be distinguished at the causal level (see Example 3). Using
the concepts gbathsandplacesthese dstates are distinguished.

Consider the set of experiendeés
((a,v+),travel, (b,v+) ), ((b,v+),travel, (c,v+))

as in Example 3, Figure 8. From Corollary 1 we deduce tiiate(a), place(b) and
place(c) are all different places. From Corollary 2, the topological map associated
with E has one topological path and three topological places. Distinctive staied

b can be distinguished though they are “causally indistinguishable” ¢eg(a, b) A
_'teQ(aa b))

Only distinctive states linked by turn actions can be grouped into a topological place
(Axiom 30). Under incomplete information this constraint could imply the existence
of more places than the ones needed in a map.

Example 6. Consider the set of experiencEdndicated by the formulae

(a,travel,b), (b,turnAround,c), (c,travel,d) ,

in addition to the views associated with the distinctive states. Moreover, assume that
views uniquely distinguish the different distinctive states. The model1gE)is pre-
sented in Figure 9c. The model has three places and one path. Not havingaction
relatinga andd prevents the agent from grouping these distinctive states into the same
place, as suggested in Figure 9b. Next we show why this is the case.
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Figure 9: (a) The agent navigates a rectangle environment getting the experiéncesavel, b ),

(b, turnAround, c), and (¢, travel,d). The corresponding topological map has three places and one
path (c) rather than two places and one path (b). Distinctive stadesid cannot be grouped into the same
topological place since they are not linked by turn actions. Notice that the order of places in the path is not
total. Should the agent turn around and experience the schéparn Around, a ), it will consider (b) as

the topological map and disregard (c).

Since views uniquely distinguish distinctive states, ther{z,y) = z = y. From
the definition ofturn_eq (Block 31), it follows then thaturn_eq = turn. Since the
only turn action mentioned it is the one in schemigb, turn Around, c ), we deduce
thatturn(ds,ds') = [ds = ds' V {ds = bA ds' = ¢} V {ds = cAds' = b}]. In
particular,~turn_eq(a, d). In virtue of Axiom 30 we cannot conclude thaandd are
at the same topological placg.

The next example shows the interplay betwégnandalong as well as the effect
of maximizingteq.
Example 7.

Figure 10:The agent moves back and forth from one intersection to the other. The second time the agent
visits distinctive states andb, it gives the names’ andd’. From the topological theory it follows that these
names correspond to the previously visitedndb.

Consider the set of schemés, turnRight,b), (b, travel,c), {c, turnAround, d),
(d,travel,e), (e,turnRight,a'), (a',turnRight,b’ Yconsistent with an agent going
from one four-way intersection to another (Figure 10). Let's consider the models of
these schemas. From our axioms, at least one path and three places must exist:

Places Paths Along teq

P ={a,b} Pa: b-cd-e along(b,Pa,dir) along(c,Pa,dir) —teq(a,b), ~teq(c, d)
Q ={c,d} along(d,Pa,-dir) along(e,Pa,-dir) ~teq(e,a'), —teq(a’,d")
R={ea.b}

We know thatP # @ and@ # R. By havingteq(a,a’), we can complete the
model such thatP = R. The maximization ofteq will force the model to have
teq(b,b’). By including Axiom 36 in the Block 33 we are allowed to have a model
in which teq(b, ') is the case. Notice that a travel action has not been perforntéd at
and so the schemas do not support a tuple of the tdemg(d', e, ¢). O
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Example 8. Consider the extension of the previous example where the schema
(b, travel, ') is obtained. Axiom 46 requires the agent to have traveled among places
on the same path. As for places, we check this requirement “modego’sinceteq
plays the role of equality in our theory. In this example, the agent concludes that
teg(c,c'). Notice thatﬁtr/a;el(b, c') andtravel_eq(b, ¢') are the casel

By requiring the agent to have traveled among the places on a same path (Axiom
46), different paths can be identified. The next example illustrates the case.
Example 9. Suppose the agent explores the environment depicted in Figure 11la

A B
dsl ds2
— I
ds3
pal
ds5 dsh| pa2
dsA c D

@ (b)

Figure 11:By requiring the agent to have traveled among the places on a same path (Axiom 46), different
paths can be identified. (a) The agent visits the different distinctive states in thedoidels2, . . ., ds6.

(b) depicts the topological map associated with (a). Three paths instead of only two are required to explain
the agent experiences (see text).

obtaining the following schemas:

(dsl,travel,ds2){ds2,turnRight,ds3)(ds3, travel,ds4)
(ds4,turnLeft,ds5 )(dsb, travel,ds6 )

We assume that the agent associates different views with the different distinctive states
in the example. Axiom 29 implies that there exist pladesB, C and D (see Figure
11b) such that

at(dsl, A), at(ds2,B), at(ds3,B), at(ds4,C), at(ds5,C), at(ds6,D) .

Moreover, Corollary 1 impliesthat # B , B # C , C # D . Under our
assumption that all distinctive states in the example have different views, it follows
thatteq(dsy,ds2) = ds1 = dss and thusturn = turn_eq. Sinceﬂt%(dsl,dsfi),
—turn(ds1, d5) and—turn(ds2, ds6) are the cased, B, C and D are all different.
Axiom 34 implies that there exist patli&, Pal, Pa2, and directiondir, dirl, dir2,

such that:

order(Pa,dir, A, B), along(dsl, Pa,dir), along(ds2, Pa,dir),
order(Pal,dirl, B,C), along(ds3, Pal,dirl), along(ds4, Pal,dirl),
order(Pa2,dir2,C, D), along(dsb, Pa2,dir2), along(ds6,Pa2,dir2) .

Schemasds2, turnRight, ds3) and(ds4, turnLe ft, ds5), and Axiom 39 implies that
Pa # Pal, Pal # Pa2. Sinceteq(dsi,ds2) = ds; = dss and there is not
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turn Around schemas i, thentravel = travel_eq. Consequentlywtr/a;el(dsl, ds4)
and—travel(dsl, ds5) are the case, and in virtue of Axiom 46 it follows that #
Pa2 . 0O

Example 10.Consider the same T-environment exploration presented in Example
4 (see Figure 12). When using only causal information, three possible models are
associated with the exploration. When using topological information, only one of these
models is possible as illustrated next.

-1 ?_?_A{Zvlo} (412, k3ay

L

Figure 12: The agent visits the different distinctive states in the order suggested by their num-
bers. The same travel actiom! is performed when traveling from a corner to the intersection (i.e
(1,ml,2)) and viceversa (i.e{4,ml,5)). A turn around action is performed when reaching a corner

(i.e. (3,turnAround,4),(7,turnAround,8), etc.). Assume that the different corners have the same
views (i.e. view(1) = view(4) = view(8), view(3)= view(7) = view(11)), and views associated with the other
distinctive states are different. Three different causal models can be associated with the agent exploration of
this T-environment but only one of them is consistent with topological information (see text).

The three causal models associated with T-environment are:

1. Model 1:ceq(8,12), ceq(12,8), ceq(z, ).

2. Model 2:ceq(1,12), ceq(12, 1), ceq(z, ).

3. Model 3:ceq(4,12), ceq(12,4), ceq(3,11), ceq(11, 3), ceq(2, 10), ceq(10, 2), ceq(z, x).

We are to show that only mod&labove is consistent with topological information.
For this we show the following three facts: (i) any model must have at2¢psths and
5 tplaces (since there is not a turn action between ds{ateés and dstate$2, 9, 10},
these dstates are not at the same topological place, as suggested by Figure 12) (ii) there
is a model with2 tpaths and tplaces (this is the intended model), (iii) a model of
—teq(2, 10) must have at leasttplaces. This last statement implies that modedsd
2 above are not consistent with topological information.

From(1,travel,2) and(2, travel, 3 ), Corollary 2 implies that there exist a path
Pal and directiondir1 such that

along(1, Pal, dirl), along(2, Pal, dirl), along(3, Pal,dirl) .
Moreover, Corollary 1 implies that
place(1) # place(2), place(2) # place(3), place(1) # place(3) .

From ( 3, turnAround,4), (4,travel,5), Axiom 35 and Corollary 2, it is the case
thatalong(4, Pal, —dirl), along(5, Pal, —dirl) . Similarly, from (5, turnLeft,6 ),
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(6, travel,7), (7,turnAround, 8), (8, travel,9 ) we conclude that there exist a path
Pa2 and directiondir2 such thatPal # Pa2 (Axiom 39) and

place(5) # place(8), along(6, Pa2,dir2), along(7, Pa2,dir2),

along(8, Pa2, —dir2), along(9, Pa2, —dir2) .

From (9, turnRight, 10}, (10, travel, 11), (11, turnAround, 12}, there exist path
Pa3 and directiondir3 such thatPa2 # Pa3 and

along(10, Pa3, dir3), along(11, Pa3, dir3), along(12, Pa3, —dir3) .

Theorem 3 allow us to conclude thauce(5) ¢ {place(1), place(2), place(3)}. The
same argument shows thdtice(8) & {place(1), place(2), place(3), place(5)}. Con-
sequently, a miminal model of the theory must have at least two tpaths and five tplaces
Notice that in the intended model of the T-environméhit] = Pa3, dirl = dir3,
teq(2,10), teg(3,11) andteq(4,12). This model is indeed a model @T'(E) since
at least two topological paths and five topological places are needed to ekplan
consequently any model must have two topological paths and five topological places
(Theorem 4).
If —teq(2,10) were the case, then Theorem 3 allows to concludeghai(9) ¢
{place(1), place(2), place(3), place(5), place(8)} and so the model will have at least
six tplaces. Consequentlyg(2, 10) has to be the case in a minimal model of the the-
ory. O

Example 11. Consider an extension of the previous example where we have the
additional schema&9, turnLeft,5'), (5',turnRight,9). In this case, the intended
model hasfour places and two paths. Notice that now the agent can conclude that
place(5) = place(2) by makingteq(5',5) and scturn_eq(5,2). O

The theory does not assume a “rectilinear” environment where paths intersect
at most in one place Consider the next example.

Example 12. Suppose the agent explores the environment depicted in Figure 13
obtaining the following schemas:

(dsl,turnAround,ds2) (ds2,turnAround,dsl) (dsl,travel,ds3)
(ds3,turnRight, ds4) (ds4,turnLeft,ds3) (ds3, travel, ds6)
(ds6,turnLeft,dsT) (ds7, travel, ds4)
(ds4,turnRight, ds5) (dsb, travel, ds2)

We assume that views uniquely distinguish the different distinctive states. From
Corollary 1 there exist the different placdsB, andC' suggested in the figure. In ad-
dition, Corollary 2 implies the existence of a pathg, and direction, sayos, such
that order(Pa, pos, A, B), order(Pa,pos,B,C), order(Pa,pos,A,C). More-
over, from schema§(ds7, travel, ds4), (ds5, travel, ds2)} and Axiom 34, there exist
pathsPal, Pa2, and directionglirl, dir2, such that

order(Pal,dirl,C, B) A along(ds7, Pal,dirl) A along(ds4, Pal,dirl) ,
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ds2

@ (b)

Figure 13: The environment in (a) illustrates a case where different paths intersect at more than one
place. Suppose the agent explores the environment by visiting the different distinctive states in the order
dsl,ds2,dsl,ds3,ds4,ds3,ds6,ds7,ds4,ds5,ds2. (b) depicts the topological map associated with this
environment

order(Pa2,dir2, B, A) A along(dsb, Pa2,dir2) A along(ds2, Pa2,dir2) .

Sincealong(ds6, Pa, pos), from Axiom 39 and schem@ls6, turnLeft, ds7) we
conclude thaPa # Pal . Since we are minimizing paths, by settifg2 = Pa and
dir2 = neg, we obtain a minimal model faE. Notice that in this model, placd® and
C belong to two different pathd?a andPal. O

There are some patterns of experience in which our theory is not applicable. In
particular, Axiom 44 rules out circular paths and Axiom 37 rules out experiences where
different paths merge into the same distinctive state. In Section 5.3 we extend the
topological theory to deal with these type of paths.

Since the positive and negative direction of a path are chosen arbitrarily (Axiom
34), there is not a unique minimal model f6f"(E). Given any modelM of TT(E)
one could define another moddl’ of T'T'(E) by choosing a patha in M and revers-
ing the roles of the directionsos andneg for pa. We will consider these “up to path
direction isomorphic” models to be the same. However, no “up to path direction iso-
morphic” topological maps can explain the same pattern of experience. This happens
because the experiences are incomplete, or the agent’s sensors are weak.
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[ Xel

B
@

Mee
(@
|
~*gl
o,

(b) ©)

Figure 14:(a) The agent goes around the block visiting pladeB,. . .,F,C in the order suggested in the
figure. IntersectiondB andC' look alike to the agent. (b) and (c) represent two possible representations for
the environment in (a). Topological information is not enough to decide whether the agent is Haak to

C

Example 13. Assume that the agent visits placdasB,C',D,E,F,C in the order
suggested by Figure 14. Assume also that intersections look alike. In particular, places
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B and( look alike. Given this information, the agent is not able to decide whether it
is back toB or C' and consequently two minimal models can be associated with the set
of experiences in this environment (Figures 14b,c).

Metrical information can be used to deduce the correct topology (see Example 18).
However, if the agent accumulates more information, by turnin@ ahd traveling to
D, then topological information suffices to deduce that the topology of the environment
is the one in Figure 14b. This is the case since the viewsaid D are different0

5.3 Coping with self intersecting paths

\6@ —

a b

Figure 15:(a) Self intersecting paths. (b) Convergent paths.

The topological theory presented in the previous section is adequate for represent-
ing environments where “complex” paths configurations do not occur. In particular,
we assume that self-intersecting and convergent paths do not exist (Figure 15). In this
section we extend our theory to deal with these types of paths. Converging paths are
the standard counterexample for the axiom stating that distinctive states are along a
unique path (Axiom 37). We replace Axiom 37 by the block

{ min convergent_paths :
[along(ds, pa, dir) A along(ds,pal,dirl)
A= [pa = pal A dir = dirl]] — convergent_paths(pa,pal)

}

Self-intersecting paths are the standard counterexample for the axioms stating that turn-
ing changes the path (Axiom 39), at a place there is at most one distinctive state along
a path direction (Axiom 38), and the order of places in a path is not reflexive (Axiom
44). We replace these axioms by the block

{min self_intersecting :
order(pa,dir,p,p) — sel f_intersecting(pa) ,
[(ds, turn_desc, ds') A turn_desc # TurnAround A along(ds,pa, dir)

/\along(ds',pa,dirl)] — sel f_intersecting(pa) ,
[at(ds1,p) A at(dsz, p) A along(dsi,pa,dir) A along(dsz, pa, dir)
N=teq(dsy,dss2)] — self_intersecting(pa)

}

While we have definedonvergenandself-intersectingaths, we still need to state
that by default these kind of paths do not exist. This is accomplished by giving pri-
ority to the minimization of these two predicates over any other predicate. The new
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circumscription policy associated with our theory becomes
circ sel f_intersecting > convergent_paths > tpath = tplace var SSprred. (49)

The new theory is aonservativeextension of our previous theory, singey topo-
logical map with respect to our previous theory is a topological map according to the
new theory In particular, the maps associated with examples 5 through 12 are still
valid maps for the new theory. Next we study some cases we could not handle before.

Example 14. Suppose the agent has experienced the following schemas (Figure
16):

(b,travel,d) {d,turnAround,c) (c,turnRight,e)
(e,travel,a) {a,turnAround,b)

Figure 16:Distinctive states is along two different paths. These two paths are declared convergent paths
in the model of our theory.

From Axiom 34 we know that exist pathBa, Pal and directionsdir, dirl
such that along(b, Pa,dir), along(d, Pa,dir), along(e, Pal,dirl) and
along(a, Pal,dirl) are the case. Moreover, from Axiom 35 it follows that
along(b, Pal, —dirl). We have two possible models for these schemas:

e Model 1. In this modelPa # Pal. Consequentlysel f_intersecting = false
andconvergent_paths(Pa, Pal) are the case.

e Model 2. In this modelPa = Pal. Consequentlysel f _intersecting(Pa) and
convergent_paths = false are the case.

We prefer model 1 over model 2 according to the circumscription policy#49.
Example 15.Consider the set of experiendes

((a,v+),travel, (b,v+) ), ((b,v+),travel, (c,v+))

as in Example 3. In the intended minimal model there are one path and three
places. There are however other interpretations for the schemas. For example, the
agent travelled froms to b along pathPa and then “changed” paths to travel from
b back toa along pathPal. In this “model” we haveteq(a,c), Pa # Pal and
convergent_paths(Pa, Pal). The model has two paths and two places (less places
than the intended model). By prioritizing paths over places we get rid of this model.
The prioritization conveys the heuristic that “paths help to determine places”. In gen-
eral if “conceptX helps to determine concept’ then X has higher priority thaiy” in
our circumscription policyd
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Our requirement of infinitglaces andpaths allow us to compare any two models
of the theory (see Theorem’s 4 proof). This requirement also allow us to deal with
unexpected models as illustrated in the next example.

Example 16.Consider the schema, travel, b) wherea andb have the same view.
The intended model has one topological path and two topological places. One expects
that the path is not circular (self-intersecting), and so the existence of two places. How-
ever, without requiring the existence of enough places, the following model is also
possible:

places ={A}, tplace={A} paths={Pa}, tpaths{Pa}

teq(a,b) sel f _intersecting(Pa)

at(a,A) at(b,A) along(a,Pa,pos), along(b,Pa,pos)
order(Pa,pos,A,A)

In this model, sel f_intersecting(Pa) must be the case, since the universe of
places only has one place. Notice that when comparing two models according to the
circumscription policy 49, the universe pdths andplaces in the models has to be the
same. One can vary the interpretationmfth, tplace, and so on, bubot the universe
of paths andplaces. The model above is ruled out by requiring the universgl afes
to have enough (infinite) places.

6 Boundary Regions

Topological paths play the role streetsin a city layout map. Streets are often used
as a reference for specifying the location of a given place: a place will be either on the
given street or in one of the “two sides” —left or right— of the street.

Mathematically, the concept of left and right of a topological path is related to the
topological one of the interior and exterior of a curve. While not all curves have a well
defined interior and exterior (for example, consider a spiral, or a fractal curve), closed
not self-intersecting curveslerdan curves do have associated interior and exterior
sets: when the curve is removed, the plane is divided into two disjoint connected sets
[Beardon, 197P Moreover, in order to go from the interior to the exterior (or vice
versa) of the curve, one has to crosg. Our analogy of topological paths and mathe-
matical curves breaks down because in general the agent might be able to travel from
one side of the path to the other without crossing the path. This can happen because of
the agent’s inability to detect that it has crossed the path, or (more often) because paths
are not long enough to divide the environment into two regions (for example, consider
a dead-end street).

In order to determine boundary relations — the location of a place with respect to
a path — we formally state the following heuristic. Suppose the agent is at an inter-
section on a given path, and it then turns right. If the agent now travels, any place it
finds while traveling with no turns will be on the right of the starting path. While this
heuristic draws the correct conclusion in a rectilinear environment, it may draw incor-
rect conclusions when paths are not straight. Consequently, we state our heuristic as a
‘defeasible” rule so as not to conclude a boundary relation when inconsistent sources
of information exist (Figure 17).
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Figure 17:Different environments illustrating how our default to determine boundary relations work. In
(a) we conclude by default that place C is to the left of the path from A to B. In (b) we conclude nothing
about the location of place D with respect to this path. In (c) we conclude that place C is to the left of the
path from A to B. This is the case since there is no information to conclude otherwise.

TurnRightandturnLeftactions are used to define the relative orientation between
paths at a given place (Section 6.1), relations that are then used to infer whether a
place is on the left or the right of a given path (Section 6.2). The boundary relations
inferred by an agent may not be complete: the agent does not necessarily know the
location of each place with respect to each path. Nevertheless, the boundary relations
inferred by the agent are useful to distinguish places otherwise not distinguishable by
the topological maps as described so far (see Example 17).

6.1 Qualitative orientation of paths at a place

We extend the topological level in order to represent the relative orientation among
paths that intersect at a given place. We use the predicates

totheLeftOf(p, pa, dir, pal,dirl) , totheRightOf(p,pa,dir,pal,dirl)

to represent the facts that f)is aplaceon both pathspaandpal, and (ii), when the
agent is aplace pfacing on the directionlir of pa, after executing a turn left (right)
action, the agent will be facing on the directiginl of pal(see Figure 18).

The predicatesotheLe ftO f andtothe RightO f are derived from the actions per-
formed by the agent at a place:

{min totheRightOf, min totheLeftOf : (50)
[(ds,turnRight,dsl) A at(ds,p) A along(ds, pa,dir) A along(dsl, pal, dirl)]
— totheRightOf(p,pa,dir,pal,dirl),
[(ds,turnLeft,dsl) A at(ds,p) A along(ds,pa,dir) A along(dsl,pal,dirl)]
— totheLe ftOf(p, pa, dir,pal, dirl).

6.2 Left and Right of a path

A path has associated two regions: the places to the left of the path and the places to the
right of the path. We use the predicateft Of (pa, dir, Ir) andright Of (pa, dir, rr)
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to denote thategionir (rr) is the left (right) region of patpawith respect to the path’s
directiondir. The properties of these predicate are as follows:

AMir {leftOf(pa,dir,lr)}, Alrr {rightOf(pa,dir,rr)} (51)
leftOf(pa,dir,r) = rightO f (pa, —dir, ) (52)
{min is_region : LeftO f(pa,dir,lr) — is_region(lr)} (53)
leftOf(pa,dir,lr) AleftO f(pal,dirl,lr) — pa = pal (54)

Axiom 51 states the existence and uniqueness of a path’s left/right regions. The domain
of leftOf is restricted by Block 53 and Axiom 54. Since left/right regions of a path
interchange when changing the path direction (Axiom 52), constraining the domain of
leftO f imposes similar constraints on the domainrofhtO f.

We use the predicata_region(p,r) to indicate thaplacep is inregionr. The
domain ofin_region is constrained by Axiom 55. The propertiesf region are
defined in Block 56. A path has associated three disjoint set of places: the places on
the path, and the places to the left/right of the path (Axioms 58 and 59). Boundary
relations are derived according to Axiom 60 and 61 (see Figure 18): (the symmetry
betweeneftOf andrightO f defined by Axiom 52 let us write our axioms in terms
of only one of these predicates.)

in_region(p,r) — is_region(r), (55)
{ min in_region : (56)
{ in_region : (57)
on(pa,p) A leftO f(pa,dir,lr) — —in_region(p,lr), (58)
[leftOf (pa, dir,lr) A rightOf(pa,dir,rr)A (59)
in_region(p,lr)] — —in_region(p,rr),
[totheRightO f(pl, pa,dir,pal, dirl) A order(pal,dirl,pl, p)A (60)
rightO f (pa,dir,rr) A =Ab(pa,p)] — in_region(p,rr),
[totheLeftO f(pl, pa,dir,dirl, pal) A order(pal,dirl, pl,p)A (61)
leftOf(pa,dir,lr) A ~Ab(pa,p)] — in_region(p,lr)
}
}
Pa, dir
Pal, dirl
p
pl

Figure 18:PathPalis to the right of patiPaat placepl. Placep is after placepl on pathpal By default,
we conclude that plageis to the right of pattpa.

Block 56 defines the extent of the predicateregion. The outer preference min-
imizesin_region, SO its positive instances only reflect actual observations. Normally
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boundary relations are false. This is the case since by default the agent does not know
the location of a place with respect to a given path. The inner block 57 states under
what conditions the agent can derive a boundary relation. For instance, according to
Axiom 60, if at placepl pathpalis to the right of pattpa, and place is afterpl on
pathpal, then normally it is the case thptis on the right ofpa (see Figure 18). The
predicateAb inside block 57 is thauxiliary “abnormality” predicate associated with
a NAT block (Appendix A). (SeéLifschitz, 1993 for a similar formalization of the
standard example: objects normally do not fly; birds normally do.) Some sufficient
conditions for wherdb is the case can be derived from Block 57 as follows.
LetleftO f' andrightO f' denote the following abbreviations:
leftOf' (p,pa,dir) = Ar {leftO f(pa, dir,lr) A in_region(p,lr)},
rightOf' (p,pa,dir) = 3rr {rightO f (pa, dir,rr) A in_region(p,rr)} ,
which allow us to implicitly refer to the left and right regions associated with a path
(these abreviations make sense given Axiom 51). Axioms inside Block 57 can be
rewritten as follows:
on(pa,p) = —leftOf' (p,pa,dir) A —rightOf'(p,pa,dir),
leftOf' (p, pa,dir) — —~rightOf' (p, pa, dir),
[totheRightOf(pl, pa,dir,pal,dirl) A order(pal,dirl, pl,p)A
—rightOf' (p,pa,dir)] — Ab(pa,p),
[totheLe ftOf(pl,pa,dir,dirl,pal) A order(pal,dirl, pl,p)A
- leftOf (p,pa,dir)] — Ab(pa,p) .
Using this rewriting of Block 57, one can derive the following (among others) suf-
ficient conditions to deducdb:
on(pa, p) A [totheRightOf(pl,pa,dir,pal,dirl) A order(pal,dirl, pl,p)] (62)
— Ab(pa,p) ,
[totheRightO f(pl,pa,dir,pal,dirl) A order(pal,dirl, pl,p) A (63)
totheLe ftO f (p2, pa, dir, pa2, dir2) A order(pa2,dir2, p2, p)]
— Ab(pa,p) ,
[totheRightO f(pl,pa,dir,pal,dirl) A order(pal,dirl,pl,p) A (64)
tothe RightO f (p2, pa, —dir, pa2, dir2) A order(pa2,dir2, p2,p)]
— Ab(pa,p) .
Conditions 62-64 show sufficient conditions for whda is the case, and conse-
quently when the agent should not deduce boundary relations. (Condition 64 uses the
symmetry betweede ftO f' andrightOf' defined by Axiom 52.) These conditions

are in terms of predicates others thanregion, leftO f andrightOf whose extent
is the purpose of Blocks 56 and 57.

6.3 Adding boundary relations to the topological map

We update the topological theory by including Axioms 50-61 inside the bAdcklock
(Section 5.2), and the new circumscription policy becomes

circ —in_region >~ tpath > tplace var nengHpred
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wherenewngpred stands for the tuple of predicates

( at, along, order, on, teq, turn_eq, travel_eq,
totheRightOf, totheLeftOf, leftOf, rightOf, is_region

).

The circumscription policy states that Axioms 60 and 61 should be used to draw con-
clusions even at the expense of having more paths or more places on the map. This
is achieved by maximizingn_region overtpath in the circumscription policy. This
policy also prevents the theory from preferring pathologipaths andtplaces. By
maximizing the extent ofn_region at the expense of having possibly more paths or
more places, boundary relations determine distinctions among environment states that
could not be derived from the connectivity of places alone. The next example illustrates
the case.

Example 17. Consider an agent visiting the different corners of a square room in
the order suggested by Figure 19a. In addition, suppose the agent’s sensory appara-
tus allows it to defineviewsby characterizing the direction of walls and open space.
Accordingly, the agent experienciear different viewsy1-v4 in this environment.

The agent’s experiences, in this environment are:

View(dsl,vl), View(ds2,v2), View(ds3,vl), View(ds4,v2), View(ds5,vl),
(dsl,turnRight,ds2), {ds2,travel,ds3), (ds3,turnRight,ds4 ), { ds4,travel,dsb ).

P £951 Q

o0 ds3
\_”/ o>
Pa ds4

P Q

" P=R Q QL
O=0 )

ass R \/ R

a b C

Figure 19: (a) Sequence of actions followed by an agent while navigating a square room. Starting at
distinctive state ds1, distinctive states are visited in the order suggested by their number. (b) and (c) depict
the resulting topological map without and using boundary regions, respectively.

Suppose that the agent does not use boundary regions when building the topological
map. From(ds3, turnRight,ds4) and Axiom 39 we can deduce thBu # Pbin
Figure 19b. Then the minimal topological model associated ®ittas two paths and
two places. In this modeleg(dsl, ds5) is the case. The environment looks perfectly
symmetric to the agent (Figure 19b).!!

Suppose now that the agent relies on boundary regionsP @t R, be the topo-
logical places associated witll, d3 andd5 respectively. From Axiom 34, |d?a, Pb,
dir, anddir, be such that

order(Pa,dir,, P,Q), along(ds2, Pa,dir,), along(ds3, Pa,dir,),
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order(Pb, diry, @, R), along(ds4, Pb,diry), along(ds5, Pb,diry) ,

are the case. From Block 50 we conclude thabe RightO f(Q, Pa, dir,, Pb, diry).
In the proposed model, the extentiafregion is maximized by declarindb = false
inside Block 57 and consequently (Axiom 6@)-region(R, right(Pa, dir,)) where
right(Pa, dir,) denotes the right region d?a when facingdir, (Axiom 51). More-
over, from Block 56 we deduc@_region(p,r) = [p = R A r = right(Pa, dir,)].
Finally, from Axiom 58 we conclud@ # R sinceon(Pa, P) is the case. The result-
ing topological map is depicted in Figure 192.

Boundary relations are in general not enough to distinguish different environment
states. This is the case when the agent has weak sensors, the environmentis symmetric,
or the agent’s experiences are incomplete (see Example 19). The use of local metrical
information could help on those cases although metrical uncertainty could render this
extra information useless. We discuss this issues in the next section.

7 Using local metrical information

Action executions have associated metrical information representing the observed mag-
nitude of the action. For instance, after traveling the agent may have an estimate of the
distance between the “end places” of the travel action, and after turning, the agent
may have an estimate of the angle turned. Different kind of metrical estimates could
be associated with a travel or turn action. For example, the agent could measure the
arc length associated with a travel action. In addition, it could measure the minimum
distance to an object on the left and the right sides at each point along the trajectory
associated with a travel actidKuipers, 2000.

Action’s executions local metrical information is integrated into frames of reference
associated with topological objects:

e Each path has associated a one dimensional frame of reference which assigns a
position to each place in the path.

e Each place has associated a radial frame of reference which assigns a heading
(angle) to each path the place belongs to.

¢ Regions or places might have associated two dimensional frames of reference
which assign real valued tuples to certain places. Local analog (Edfes,
1987, Borenstein and Koren, 1991, Thrun, 1968n also be associated with
placedKuipers, 2000.

As positionsandheadingsare derived from noisy data, there is uncertainty associ-
ated with their real values. Different representations for this uncertainty are possible:
intervals probability distribution functionsetc. As the agent repeatedly navigates
among the same places and paths, new measure estimates are taken into account to
update the uncertainty associated with positions and headings. In order to propagate
uncertainty about the real value of positions and headings we use the compound and
merge operationsSmith and Cheeseman, 198%hese operations take different forms
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depending on how one represents uncertainty as well as on the dimensionality of the
variables’ domains. In our current work we uséervalsto represent uncertainty in
position and headings, and the compound and merge operations correspond to add and
intersect intervals, respectively. Nevertheless, the discussion in this section applies to
other forms of representing uncertainty as long as the the compound and merge opera-
tions are provided for that representation.

We use the predicatection_execution(s, Int) to state that thenterval Int rep-
resents an estimate of the metrical information about the execution of the action asso-
ciated with schema. We use the notatiofids, (type Int),ds’ ), wheretypeis travel
orturn, as an abbreviation for the formula

Js,a {CS(s,ds,a,ds") A action_type(a, type) A action_execution(s, Int)} .

How the estimates are to be interpreted depends on the type of action (turn or travel)
the schema refers to. In the next sections we will describe how to do so.

7.1 One dimensional frames of reference

A path has associated a one dimensional frame of reference which assigns a location to
each place on the path. This location is a real number, representing the “distance” with
respect to an arbitrary but fixed place on the path. This real value represents a quantity
whose magnitude is derived by the robot while navigating the environment. The units
of this quantity can benetersfeet ornumber of wheel rotationddereafter, we assume

that all quantities are given in the same units.

The distance among places on a path are derived from estimates acquired when
traveling among places on the path. These estimates have ¢onséstentso that
positions can be associated with places. Next we formalize these ideas.

The position of a place on a path is represented by the predicate
positionl(path, place, position). Positions along a path are unique and only as-
signed to places belonging to the path:

positionl(pa,p, pos) A positionl(pa,p,pos’) — pos = pos’ , (65)
positionl(pa,p, pos) — on(pa,p) . (66)

The distance between two places in a path is defined as the absolute value of
the difference between their corresponding positions on the path. The predicate
path_distance(pa, p, q,d) represents the fact that the distance between places
andq on pathpais d. The predicat@ath_distance is defined as follows:

path_distance(pa,p,q,d) = (67)
dposy, posq {positionl(pa,p,posy) A positionl(pa,q,posq) A d = |posp — posq|} -

Estimates of the distance between places on a path are gathered while the agent
navigates the environment. The predicateah_distance™(pa, p, q,1aq) represents
the fact that the closed intervdl), is an estimate of the distance between plgzes
andq on pathpa. Distance estimates are derived from experiences of the robot in
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the environment. Distance estimates aterfipoundetito derive new estimates from
known ones. Formally,

{ min path_distance™ :
[( ds, (travel I ),ds") A at(ds,p) A at(ds', q) A along(ds, pa,dir)A (68)
along(ds',pa,dir)] — path_distance”™ (pa,p,q,14) ,
[order(pa, dir,p,q) A order(pa,dir,q,r) A path_distance”™ (pa,p, q, I,q)A (69)
path_distance™ (pa, q,r, Iq,«)] — path_distance”™ (pa,p,r, Ipqg + Iy)

}

where the addition of intervals is defined in the usual Wayb] +[c, d] = [a+c, b+d].
Finally, distance estimates amnérged in order to have the “best” estimate associated
with a distance. The predicateith_distance®(pa,p,r, I;) denotes the merging of
distance estimates:

®(

path_distance® (pa,p,r,I) =gef I = N{L.st : path_distance™(pa,p,q,l.st)} . (70)

The distance between places on a path musbiogpatiblewith all of its estimates.
Formally,
®(

path_distance® (pa,p, q, I4) — 3d € I path_distance(pa,p,q,d) . (71)

When the agent has distance estimates availablé, distance®(pa,p, q, I3) is
always the case for some interval In a topological magdy # 0 (Axiom 71) and it
should be possible to assign locations to places on a path as specified by Axiom 67.
The actual values of positions are not that important (there could be many ways to
satisfy the metrical constraints). Their main use is to rule out possible interpretations
of the theory where such positions do not exist given Axiom 71.

7.2 Radial frames of reference

Each place has a local frame of reference w.r.t. which path headings are associated.
This information is represented by the prediceselial(p, pa, dir, h) denoting the

fact thatwhen the agent is located at plapepath pacould be followed in direction

dir by facing the headingp w.rt. the radial frame of reference local fo. Head-

ings take values if0, 27). The formalization of radial frames of reference follows

the same steps as for one dimensional frames of reference. Estimates of the angle
between paths at a place are gathered ftom actions. Angle estimates are com-
pounded and merged as we did for distances among places in a path. We use the
predicatemngle(p, pa, dir, pal, dirl, ang) -angis the angle the agent will have to

turn to face patipalin directiondirl when it is at place facing pathpain direction

dir-, angle™(p, pa, dir, pal, dirl, L.,¢) - I, IS an estimate of the angle at plgze
between patlpain directiondir and pathpalin directiondirl.

7.3 Two dimensional frames of reference

While radial and one dimensional frames of reference are associated with any place
and path, respectively, there is not a general topological theory asserting when to cre-
ate a two dimensional frame of reference, what places should be included in a such
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frame of reference, or how to assign place locations consistent with the estimates of
distances and angles gathered by the agent. Having a global frame of reference in-
cluding all places in the map is usually inappropriate since the uncertainty associated
with some places’ locations in such a frame of reference may not allow the agent to
draw useful conclusions. Instead, the agent can have multiple frames of reference as
well as relations among the different frames of referdieDermott and Davis, 1984,
Kuipers, 2000. As the agent explores the environment, new frames of reference are
created when the current’s location uncertainty with respect to the current frame of
reference is larger than a given threshidbutarlier and Chatila, 1989, Engelson and
McDermott, 1992

The problem of assigning locations to places given some metrical constraints can be
solved by borrowing methods from different fields. For example, estimation theory tells
us how to estimate the true value of a given set of variables given noisy observations of
the relations between those variabl€lb, 1974, Smith and Cheeseman, 198the
robotics community has developed algorithms to solve a network of spatial relations
[Durrant-Whyte, 1987, Durrant-Whyte, 1988a, Durrant-Whyte, 1988b, Moutarlier and
Chatila, 1989. Techniques from multidimensional scalifBorg and Groenen, 1997
and nonlinear programmiri@eressinet al, 1989 can also be used.

A topological map does not explicitly represent the distance or direction between
two arbitrary places. In order to do so, distances between places on a path as well
as the angles between paths at a place must be combined. We use the predicate
location2(p, q,1) to indicate that the location of plagewith respect to the two di-
mensional frame of reference associated with pjae! (a real valued pair). We do
not restrict what places are assigned locations with respect to a given two dimensional
frame of reference.

When restricted to environments with “straight” paths, it is possible to state when
a two dimensional frame of referencecismpatiblewith the actual experiences of the
robot. The next axioms state this requirement:

location2(p, pl,1p1) A location2(p, p2, ly2) A path_distance® (pa,pl,p2, I ) (72)

— |lp1 — lp2| cly.

[location2(p, pl,lp1) A location2(p,p2,lp2) A location2(p, p3,ly3)A (73)
order(pa,dir, p1,p2) A order(pa’, dir', p2, p3) A angle® (p2, pa, dir, pa’, dir', ng)]

— angle(—lyalp1, lp2lps) € Tang

whereangle (7, @) denotes the angle [, 27) from vectors to vectorw. When curved

paths are possible, the predicatgh_distance represents distan@ong the pathnot
straight-line distance between end point. To handle curved paths, we have to separate
those two concepts, or have estimates of both types of “distances”.

Axioms 72 and 73 assume that paths are straight. In order to deal with more general
paths, one should include some parameters describing the shape of the path, or at least
an estimate of the change in heading while traveliugipers and Levitt, 1988, Musto
etal, 1999. Forinstance, ifKuipers and Levitt, 1988ravel actions were represented
as(ds, (travel dist /@),ds'), wheredist corresponds to the distance between the
places associated witls andds’, and /A@ corresponds to the change of orientation
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while traveling. However, there is not a statement of how this extra information is used
or whether it suffices to describe appropriate metrical constraints for two dimensional
frames of reference. While a more detailed account of the use of metrical information
is desirable, including representing and reasoning about a path’s shape, we have left
this description outside the scope of this work.

Using different metrical estimation approaches requires a reworking of the axioms
in this section. In such case, the compound and merge operations (Axioms 68 to 70
) should be described differently. It is not difficult to define compound and merge
operations for Gaussian representations of metrical uncertainty. More care will be
required to update Axiom 71 which is used to refute inconsistent hypotheses, since no
combination of Gaussians is logically inconsistent. A greater change will be needed in
order to take into account the shape of paths when creating two dimensional frames of
reference. Nevertheless, the presented axiomatization defines where in the theory the
metrical information comes into place and suggests the type of axioms that need to be
added.

7.4 Combining topological and metrical information

In this section we formally state what it means for the topological map to be con-
sistent with a given set of frames of reference. In order to do so, given distinctive
statesds, dsy, . . ., ds,, we introduce the notatiofds : dsj,...,ds,) to state that
the places associated with the differelat have a location in the two dimensional
frame of reference associated with's place,

Definition 3. Letds,ds1,...,ds, be a set of distinctive states. By definition,

(ds : dsi,...,dsn) =def (74)

dp {at(ds,p) A /\ Api, I; [at(dsi, pi) A location2(p,pi,li)]}

i=1

{end of definitiof

By 2D _Frames we denote the formula specifying any two dimensional frames of
reference used by the agent. Without loss of generality, we require two dimensional
frames of reference to be specified as in Definition 74. We require any model of the
SSH to have only the two dimensional frames of reference specifi2fd ik’ rames.

In addition, the places belonging to a frame of reference should be only those explicitly
stated in 74. These last two requirements can be stated as follows:

{ min location2 : 2D_Frames } (75)

The topological theory includes local metrical information by adding Axioms 65
to 75 inside the bloclAT _block (Block 20). The priority of predicates in the cir-
cumscription policy associated withiT"_block remains the same. The predicates var-
ied in the circumscription policy now include those predicates use to describe met-
rical information: radial, positionl, position2, path_distance, path_distance™,
path_distance®, angle, angle™ andangle®.
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Figure 20:(a) The robot goes around the block visiting distinctive stateisto ds11 in the order sug-
gested by the figure. Distinctive sta#®11 is observed at the same environment statedss Assume
distinctive stategls1 andds4 look alike to the agent. (b) and (c) represent two possible topological maps
for the environment in (a) (see Example 13). The model in (c) can be discarded as it is not consistent with
the available metrical information. (d) Witht10° noise associated with turn actions, the agent cannot use
metrical information to discard the environment depicted in (c).

The next examples illustrate how metrical information is used to disambiguate the
topological map.

Example 18.Consider Example 13 where two topological maps are consistent with
the agent’s experiences (see Figure 20). Suppose that “perfect” metrical information is
available to the agent.

How does the agent figure out that it is backitd rather than tals1?. As claimed
in Example 13 both optioneq(ds4, ds11) andteq(ds1, ds11) are topologically possi-
ble (Figures 20b,c). However, given the metrical information above, only the assump-
tionteq(ds4, ds11) is a consistent one. To deduce this fact, the agentincludes the frame
of referencdds4 : dsl,...,dsll) in E, which renders impossibleq(ds4, ds11).

Should the metrical information have been less precise, the agent might not benefit
from this extra metrical information. For example, suppose that instead of 8harp
turn angles, there existsdal 0° uncertainty associated with the turn actions above (i.e.
consider replacingds1, (turn — 90°),ds2) by (ds1, (turn [-110°, —80°], ds2)).8
In this case the agent cannot use metrical information to deduce that it is bdgk to
and it will have two topological maps consistent with its information.

The example above may suggest that metrical information is used to check whether
an already built topological map is consistent with metrical information. However, by
including Axioms 65-75 inside Alblock, metrical information is used while building
the topological map. As the next example illustrates, this may imply that the agent
identifies more places than it does when not using metrical information.

Example 19. Consider an agent visiting the different corners of a square room in
the order suggested by Figure 21a. In addition, suppose the agent’s sensory apparatus
allows it to defineviewsby characterizing the direction of walls and open space so that
all corners look alike to the agent (see Example 17). Suppose the agent has access to
perfect metrical information and uses it while building the metrical map.

8Whenever we use a numbeiinstead of an interval, it is an abbreviation far, z].
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Figure 21:(a) The agent visits distinctive statésl to ds7 by the order suggested in the figure. Suppose

all corners look alike to the agent. In particuldgl andds7 share the same view. (b) Topological map
associated with (a) when metrical information is not available. (c) Topological map associated with (a) when
metrical information is available. In this case, the places associatediwlitandds7 are different £ # S).

In order to decide whether the agent is back4bd, the framelds1 : dsl,...,ds7)
is created. Given the available metrical estimates it is not possible tadgvs 1, ds7)
while satisfying the metrical constraints. Consequently, the topological map will have
four places instead dhreg as illustrated in Figure 21¢]

While in the examples above all visited distinctive states were included in a two
dimensional frame of reference, this is in general not the case. In the presence of
metrical uncertainty, a global frame of reference may not provide useful information
to determine whether two places are the same, or to estimate the distance between two
arbitrary places.

8 Algorithms

In this section we present an algorithm for calculating the topological maps associated
with a set of experienc&. The models associated with the causal theory (Section 4)
can be calculated as the answer $&slfond and Lifschitz, 1991of a logic program.

This logic program is implemented in Smodéiemel and Simons, 199as illus-

trated inf[Remolina and Kuipers, 2001t is possible to calculate the topological maps

by a similar logic program. However, the number of grounding rules associated with
such a program turns out to be prohibitive for practical applications.

The algorithm for calculating topological maps (the model§'Gf(E)) is stated
as a“best first” search. A search state is implemented by a partial mquhetddel
A partial model of T (E) is a model of'T'(E'"), for someE’ C E (Section 8.1).
Branches in the search are represented by creatitensiongor the current search
state (pmodel). Thatmodel’ is an extension ghmodel implies thatpmodel’ inherits
from pmodel all known objects and facts.

At each step of the search a schefu, a,ds’ ) has to be explained. Either the
identity of ds’ can be proved or a search branch is created for every previously known
distinctive statels; that cannot be proven to be different frei¥l. The identity of the
schema’s context (i.els in (ds, a,ds’)) is known at each step in the search.

In the branch whereeq(ds;,ds') is the casenteq(ds’;,ds'), i # j are also as-
serted. An additional branch is created wheteg(ds', ds}) are asserted. This branch
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represents the possibility thds’ is indeed different from previously known dstates.
The next state to explore is the one that is minimal according to the order associated
with the circumscription policy fof'T'(E). This search algorithm is described in Fig-
ures 22 and 23.

Find-Models (S)
{
S =s0,...,8, ; Sequence of schemas such thatult(s;) = context(s;+1)
queue #;  models = ;
pmodel = create-new-pmodel(S);  insert(pmodel,queue);
while queue# 0 do
begin
pmodel = get-next-pmodel(queue);
s = get-next-schema(pmodel);
Explain(pmodel,s) ;
if (inconsistent(pmodely has-extensions(pmodel)) then skip;
else if total-model(pmodel) then insert(pmodel, models);
else insert(pmodel,queue);
end
return models;

}

Figure 22: Best first search algorithm used to calculate the models of TT(E)The queue contains
consistenpartial models (pmodels) to be expanded. At each step of the search, a minimal partial model is
picked and the next schema from its list of associated schemas is explained. A pmodel has extensions when a
branch has been created while explaining a schema. A pmodgital-enodelwhen it has no more schemas

to explain. Figure 23 defines how a pmodel explains a schema and when extensions are created.

The three key steps in the search are (Figure 23): creating a set of possible candi-
dates to branchppssible-equal-dstatgsgenerating a set of extensions when needed
(create-possible-extensignand explaining a schema in a given partial modsbkgert-
schema Another important issue is to detect when a partial model becomes inconsis-
tent. We use the predicateconsistent(pmodel) to denote this fact and the rules

pmodel
Az # 1y — inconsistent(pmodel),

pmodel
teq(z,y) € pmodel A —teq(z,y) € pmodel — inconsistent(pmodel) .

In the next sections we will show how to rewrite the axioms in the topological theory so
they can be fed to a theorem prover to deduce equality and inequality relations. We use
the rule-based system Algernp@rawford and Kuipers, 199hs our theorem prover.

In Section 8.2 we present an illustrative trace of the algorithm.

8.1 Implementation

Our logic for partial models takes the basic ideas developed in the area of formal rea-
soning about contex{dcCarthy and Buvg 1999. In addition to a list of schemas to
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Explain (pmodel, s)

{;; sisascheméds,a,ds’)
candidates };
if known-result(pmodel,s)
then Assert-schema(pmodel,s);

else begin
candidates = possible-equal-dstates(pmodel,s);
if candidates# {}

then create-possible-extensions(pmodel,s,candidates)
else Assert-schema(pmodel,s)
end
}
Known-result(pmodel, s)
{;; sisascheméds,a,ds’)
;; The notatiorvbj € pmodel indicates that objeetb; is
;; known in the partial modeimodel.
returnds’ € pmodel V 3ds*,ds'’* € pmodel [{ds*,a,ds'* ) € pmodel A teq(ds*,ds)];
}
Assert-schema (pmodel, s)
{:; sisaschemads,a,ds’). ds is known inpmodel
assert € pmodel,
if = known-result(pmodel,s)
then begin
assertls’ € pmodel;
Create places and paths needed to explain
end
else begin
pick ds"™ s.t. Ads* € pmodel [teq(ds*,ds) A (ds*,a,ds"™ ) € pmodel] ;
asserids’ """ 45" in pmodel:
end

Figure 23:Explaining a schema known-result(pmodel,s #ds, a, ds’ }) is the case when the equality
class fords' can be deduced in the partial mogehodel. Possible-equal-dstates(cntx,®turns dstates
known inpmodel, having the same view a&’ and that cannot be proven different fral¥l in pmodel. For
eachds” € candidates, create-possible-extensions(pmodel,s,candidatesjtes an extension pfnodel
whereteg(ds’, ds'") is the case. If the identity afs’ can be established, theris asserted ipmodel. This
declaresds’ to be known inpmodel and creates the places and paths that explaiccording to the axioms
of the topological theor{"T'(E).
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explain, a partial model has associated a set of objects (i.e. distinctive states, schemas,
places, paths) that are known in the model. The basic relation among pmodels is the
one ofextensionsThatpmodel’ is an extension gfmodel implies that all known ob-

jects and facts ipmodel are known objects and factspmodel’ (i.e. pmodel’ inherits

from pmodel all known objects and facts). This inheritance property of extensions can
be implemented in Algernon by rules like the next one:

at(ds,place, pmodel) A extension(pmodel, pmodell) — at(ds,place, pmodell)

Create candidates.Possible-equal-dstates(pmodel{sts, a, ds')) returns a list of
states that are possible equaldd. These are dstates knownmodel, having the
same view ags’ and that cannot be proven different frafsl in pmodel. Givens, we
filter outds” as equal tals’ using rules including:

s = (ds,turn,ds’) A at(ds,p) A at(ds",q) Ap # q — —teq(ds’,ds")  (76)
[s = (ds,travel,ds' ) A along(ds, pa,dir) A along(ds", pal, dir1)A
- [pa = pal A dir = dirl]] — —teq(ds',ds")
[s = (ds,travel,ds' ) A along(ds, pa,dir) A at(ds,p) A at(ds", q)A
order(pa,dir,q,p)] — —teq(ds', ds")

The rules above are derived from the axioms in our theory. For instance, rule 76
is derived from the fact that each distinctive state is at a unique place, and distinctive
states that are related by turn actions are at the same place. In the implementation,
all the topological predicates have a last extra argument for a pmodel. For instance,
instead of writingat(ds, p) we write at(ds, p, pmodel). at(ds, p, pmodel) is the case
whenat(ds, p) is true in the partial modelmodel (i.e. pmodel |= at(ds, p)).

Equality relations among topological objects (i.e. dstates, places, paths) are proved
using rules derived by rewriting topological axioms. These rules include:

view(ds1,v1) A view(ds2,v2) A vi # va — —teq(ds1,ds2) 77)
(ds,turn,ds’ ) — —teq(ds,ds") (78)
order(pa,dir,p,q) = p #q (79)
radial(p,dsl, hl) A radial(p,ds2,h2) A hl # h2 — dsl # ds2 (80)
positionl(pa,dir, pl, posl) A positionl(pa,dir,p2, pos2) Aposl #pos2 — pl#p2 (81)
leftOf(pa,dir,p) A on(pa,q) = p #q (82)
leftOf(pa,dir,p) A on(pal,p) — pa # pal (83)
at(ds,p) A at(ds,q) > p=gq (84)
along(ds, pa,dir) A along(ds,pal,dirl) — pa = pal A dir = dirl (85)

Rules 77 and 78 rely on the fact that dstates have a unique view and turn actions
link different distinctive states (Axioms 22 and 39). Rule 79 uses the fact that paths
are not circular in order to conclude thapifs beforeg thenp andg must be different
(Axiom 44). Rules 80 and 81 use radial and one dimensional frames of reference to
conclude inequality of dstates and places, respectively (Axiom 65). Rules 82 and 83
use boundary relations in order to distinguish places and paths respectively (Axiom
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58)° Rules 84 and 85 state that each distinctive state is at a unique place, along a
unique path direction (Axioms 29 and 37).

Assert schema. Assert-schema(pmodel, sjeates the places and paths needed
to explains. Instead of asserting = (ds, a,ds’) in pmodel, the algorithm asserts
s* = (ds*,a,ds™ ) whereds* andds’* are the representativesmodel for theteq
equivalence classes @ andds’. Asserting a schema in Algernon corresponds to cre-
ating the frame (object) representing the schema. Forward and backward chaining rules
derived from the topological theory are then evaluated, and places and paths needed to
explains are created.

8.2 Trace example

dp?th—S

PO P1=P5 2
— 0V Y 1,0y fnd 21N ® -~ dpath-0

6.V J 5,v2<—l dpath—2<fp4<f? P3

4,v1 Y
i dpath-1

(€Y (b)

Figure 24:(a) Numbers identify the dstates created by the map building algorithm. Views associated with
dstates are also shown. Dstateand9 are at the same environment location. (b) Places and dpaths created
by the map building algorithm. Notice th&tl and P5 are two names for the same place.

We illustrate the topological map building algorithm with the environment of Fig-
ure 24a. Distinctive states are visited in the order suggested by the figure. Distinctive
state9 is at the same environment location as dslatelowever, two topological map
are possible: either the agent is back to dstate dstated (this is Example 13). After
traveling from dstat® to dstatel 0, only one topological map is possible (Figure 24b).
Figure 25 illustrates the use of the topological rules to distinguish distinctive states that
share the same view. Figure 26 shows when branches in the search are created and how
they can be refuted as more information becomes available to the*dgent.

SleftO f(pa, ,dir,p) in the implementation is an abbreviation for Section 6.2's longer expression
leftOf(pa, dir,lr) A in_region(p, Ir).

10/n the implementationgpathsrepresent ordered dstates linked by travel actions. Dpaths correspond to
paths that only have one direction associated with them. Paths are created when the agent has traveled in
both direction of a path. At that time, two dpaths are associated with the path, one for each path’s direction.
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Figure 25:(a) When the agent reaches dstat¢he same view1 has been observed at dstateSince
dstate2 is along dpath-0 and dstatewill be along dpath-1 (the agent just traveled from dstat@long
dpath-1), dstatd and2 are proven different. Dpatttsandl are different since there istarn Right action

relating them (Axiom 39). Plac®3 is created to be the place dstdtes at (Axiom 29). PlaceP3 is proven
different from placeP2 since P2 is before P3 along dpath-1 (Corollary 1). Consequently, dstdtesd3

are proven different.

There are however two possible models depending whéthes to the right or not of dpath-0. Our boundary
regions circumscription policy (Section 6.3) prefers PMODEL-0 in whiéhis to the right of dpath-0 over
PMODEL-001 in which no boundary relations exist. In this example, the search will never explore further the
branch associated with PMODEL-001 because the branch associated with PMODEL-0 leads to a consistent
map for the given experiences.

(b) The agent travels to dstaealong dpath-2. Becaudes is to the right of dpath-0, dpath-2 cannot be the
same as dpath-0, which makes PMODEL-1 and PMODEL-2 inconsistent. The only remaining (and hence
minimal) model is PMODEL-O0, in which dstate 6 is different from dstates 0 and 1.
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Figure 26:By the time the agent reaches dst&tsix places (not five) are part of the map. Plag#sand

P1 are not equal since the dstates are these places are not yet turn related (Axiom 30). Turning from dstate
8 to 9 leaves the agent with the three possibilities: (pmodel-3) dsgedesl1 are equal (and s®#1 = P5,

or (pmodel-4) dstated and0 are equal (and s&0 = P1), or (pmodel-6) dstaté is a new different dstate.

That dstate® and6 are different follows from the fact that plac#st and P5 are different. Pmodel8 and

4 are minimal according to the topological theory circumscription policy. Pmodel-6 is not, but is left as a
possible state in the search should new information render the other models inconsistent. The new schema
(9, ML,10) will render pmodel-4 inconsistent. Since actions are deterministic and détaied9 are

equal in this model, so should dstateand10. However, these dstates have different views so they cannot

be equal. Pmodel-3 will then be the only map associated with the set of experiences.
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9 Conclusions

What have we accomplished?. We have taken an informal description of the theory of
topological maps and provided a formal account of the theory. In addition, we have
extended the theory to handle perceptual aliasing, to describe environments with self
intersecting and convergent paths, and to deal with local metrical information including
uncertainty. The topological theory is independent of the agent’s exploration strategy
and of the algorithms used to build topological maps. We have taken the theory as
a specification for a program able to keep track of different topological maps consis-
tent with the agent’s experiences in the environment. This program supports different
exploration strategies as well as facilitates map disambiguation when the case arises.

A logical account of the causal, topological and local metrical theories was given
using Nested Abnormality Theories. The minimality conditions embedded in the for-
malization define the preferred models associated with the theories. In Sections 4
through 7 we illustrated the main properties of the theories. In particular we showed
how the minimal models associated with these theories are adequate models for the
spatial knowledge an agent has about its environment. We also demonstrated how the
causal, topological, and local metrical levels of the representation assume different
spatial properties of the actions performed by the agent. This provides an increasingly
refined ability to infer or refute equality relationse¢ andteq) among experienced
environment states. By clarifying the ontology of causal and topological maps, and
determining the dependency structure of the non-monotonic theory, we provide a solid
foundation for general-purpose strategies for exploring unknown environments, or for
disambiguating cases of perceptual aliasing.

The circumscription priority ordering embedded in the theory is a result of our re-
search, as we experimented with various orders to determine which ordering defined
models that corresponded to what is intuitively the “correct map” of the environment.
Because we have no formal definition of what the correct map is, it is impossible to
prove mathematically that the circumscription priority ordering is the correct one. Pos-
sibly future research can provide such a formal definition, but the difficulties arise from
handling partial experience in the environment, or highly symmetrical environments
with a great deal of perceptual aliasing.

How useful is this theory? This work defines topological maps independently of
the algorithms used to create such maps. The theory is general in that it covers the
major ideas in the field of spatial representation using topological maps. The theory is
useful in that it specifies the minimal set of objects and relationships any topological
map building implementation should have. Although our theory covers most of the
known ideas about topological maps, it is not just a union of previous work in a com-
mon framework. The theory defines different spatial ontologies (causal, topological,
metrical), illustrates what spatial knowledge is captured by each ontology, and then
shows the relationships among these ontologies. The theory shows how the combined
spatial knowledge associated with the different ontologies results in a different "map”
from the one associated with each independent ontology.

The axiomatic theory has practical value. It has been used to build cognitive maps
by both physical and simulated robofRemolina, 2001, Kuipers and Beeson, 2002,
Kuiperset al, 2003 explicitly use the axiomatic theory described in this paper as well
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as the implemented algorithms in order to build topological mgBsmolina, 2001
shows how a wheelchair robot builds the topological map of a building’s floor. The
major focus of this work was on testing the applicability and correctness of the axioms
and algorithms here described.

In [Kuipers and Beeson, 20D®@pological maps are built as a mean to disambiguate
distinctive states with the same view. The map provides an unambiguous assignment
of distinctive states to views, which can then used by the robot to "refine its views”
so that it is possible to distinguish distinctive states from sensory information alone.
"Lassie (the robot)... collected 240 images from 20 distinctive states. The topological
map linking them contained seven places and four paths... By building the causal and
topological map the robot is able to disambiguate all twenty distinctive states, even
though there are only ten different views[Kuipers and Beeson, 20D2

Finally, Figure 9 in[Kuiperset al, 2003 describes experimental results where
a simulated agent builds a topological map and learns boundary relations for grid-
like environments. This work presents a computational hypothesis that describes how
the "skeleton” of major paths emerges from the interaction of three factors: "(i) the
topological map is represented as a bipartite graph of places and paths, where a path
is a one-dimensional ordered set of places, (ii) a traveler incrementally accumulates
topological relationships, including the relation of a place to a path serving as a divid-
ing boundary separating two regions; and (iii) the wayfinding algorithm prefers paths
rich in boundary relations so they are likely to acquire more boundary relations. This
positive-feedback loop leads to an oligarchy of paths rich in boundary relations (i.e.
the skeleton in the cognitive mapKuiperset al, 200d.
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A Nested Abnormality theories

In this appendix we define circumscription and nested abnormalities theories follow-
ing [Lifschitz, 1994, Lifschitz, 1995 The main idea of circumscription is to consider,
instead of arbitrary models of an axiom set, only the models that satisfy a certain min-
imality condition (usually set inclusion).

Definition 4. [Circumscription] LetA(P, Z1, ..., Z,,) be a sentence containing a
predicate constard® and object, function and/or predicate constéfits. . ., Z,, (and
possibly other object, function and predicate constants).cirbemscription of P in A
with varied 74, . . ., Z,, is the sentence

A(Pvzlv"'vzm) /\_Elpvzla"'azm [A(pazla"'azm) /\p < P] (86)
wherep < P denotes the formula

Vz {p(z) — P(z)} A3z {-p(z)AP(z)} .
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We denote Formula 86 by TRC [A; P; Z]. {end of definitiof

Intuitively, the models o TRC [A; P; Z] are the models afl in which the extent
of P cannot be smaller without losing the propedtyeven at the price of changing the
interpretations of the constants

It is often convenient to arrange different defaults by assigning priorities to them.
Next we define two extensions to the basic definition of circumscription: parallel and
prioritized circumscription.

Definition 5. [Parallel Circumscription] Thearallel circumscription

CIRC [A;P,...,P™; 7]

is the sentencel(P, Z) A —3p, z [A(p, z) A p < P], whereP stands for the tuple of
predicatesP?, ..., P" andp < P stands forthe formuld 1 <i < np' < PP A1 <
i <np' < P {end of definition

Definition 6. [Prioritized Circumscription] Therioritized circumscription
CIRC [4;P' - ... P 7]

is the sentencel(P, Z) A —3p, z [A(p, z) A p < P], whereP stands for the tuple of

predicatesP!, ..., P" andp < P stands for the formula
n i—1
V[ A@ =P)Ar@p <P
i=1 \j=1

{end of definitioh

The formulap < P defines dexicographicorder among the predicates jpnand
P. Proposition 15 ifLifschitz, 1994 shows that prioritized circumscription can be
reduced to parallel circumscription as follows:

Theorem 5 The circumscriptiolCIRC [A; P! > ... = P"; Z] is equivalent to

/\ CIRC [4; P}, P*, .. P", 7]
i=1
Notation 1. CIRC [A; P! = ...=P;... = P"; Z] stands for the formula
CIRC [AAnot_P; = —~P; P* - ...not_P;... = P"; Z, P}]

wherenot_P; is a new constant predicate not occurringlin{end of notatiof
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A.1 Nested Abnormality theories (NAT'S)

Nested abnormality theories allows one to apply the circumscription operator to a sub-
set of axioms, by structuring the knowledge base (the theory) into blocks. Each block
can be viewed as a group of axioms that describes a certain collection of predicates and
functions, and the nesting of blocks reflects the dependence of these descriptions on
each other.

Definition 7. [NAT’s] Consider a second-order languab¢hat doesiotinclude Ab
among its symbols. For every natural numbkdny L; we denote the language obtained
from L by addingAb as a k-ary predicate constamdlocksare defined recursively as
follows: For anyk and any list of function and/or predicate constagits. . ., C,,, of L,
ifeach ofA,,..., A, isaformulaofL; or ablock then{C,...,C,, : Ai,..., A}
is ablock The last expression read§,...,C,, are such thatd,,..., A,. About
Cy,...,Cy we say that they ardescribedyy this block.

The semantics of NAT's is characterized by a maphat translates blocks into
sentences oL. It is convenient to make defined also on formulas of the languages
L. If Ais such aformula, thep(A) stands for the universal closure 4f For blocks
we define, recursively:

e{C1,...,Cm : A1,...,A,} =3ab CIRC [pA1,...,0A, : ab : C,...,Cp] .
{end of definitiof

Most often, it is desirable not to mention the predicdteat all. We will adopt the
following notations:

e {C1,...,Cp,min P : Ay,...,A,} stands for
{C4,...,Cn, P : P(z) = Ab(z), A1,..., A}

e {C1,...,Cp,maz P : A,,...,A,} stands for
{Ci1,...,Cp, P : =Ab(z) — P(z), A1,..., A}

Definition 8. We extend the definition dilocksas follows: if A is a block, so is
CIRC[A; Pt = ... = P™; Z]. The semantics of NATs is extended such that

¢CIRCIA; P! ...~ P"; Z] = CIRC[¢4A; P* - ... = P"; Z].

{end of definitioh

As the next theorem shows, in some cases prioritized circumscription can be ex-
pressed using NAT’s. In these cases however, the notation for prioritized circumscrip-
tion is more compact than its equivalent NAT’s. This motivates our previous definition.

Theorem 6 Let A be a sentence such thdb does not occur ild. Then,

CIRC[A;P > @Q;Z1={Z, minQ: {Z,Q,minP: A}}.
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B ceq properties

In this appendix we provide proofs for the different properties of the predicated

defined in Section 4.
Theorem 1 Let E be a complete set of experiences andJEQ blockbe defined as

follows:

{ maz ceq:
ceq(dsi,dsz) — View(ds1,v) = View(dsz,v),
ceq(ds1,dsz2) A (dsi,a,dsy ) A (ds2,a,dsy) — ceq(dsh, dsh)

}

Then the predicateeq is an equivalence relation.
Proof. Let M; be a model for the axioms inside tlEQ_block as well as the other
axioms of CT'(E). Let M, be a structure identical thf; except that

ceq™? (ds,ds') = ceq™* (ds,ds') vV ds = ds' .

We are to prove thal/, is a model for the axioms inside t&EQ_blockand conse-
quentlyC EQ block |= ceq(ds, ds).t! Indeed,

e M |= ceq(ds,ds') — ceq(ds',ds). In fact,
ceqM2(ds,ds") = ceq™* (ds,ds') V ds = ds'

—  ceqgM(ds',ds) v ds' = ds
= ceq™2(ds', ds)

o M = ceq(ds,ds') A ceq(ds’,ds") — ceq(ds, ds"). In fact,

ceq™? (ds,ds") A ceq™?(ds’, ds")
= (ceq™(ds,ds') v ds = ds') A (ceqg™ (ds',ds") v ds' = ds")
(ceq™* (ds,ds") A ceq™*(ds',ds")) V (ds = ds' A ceg™(ds',ds")) v
(ceg™ (ds,ds’) Ads' = ds") V (ds = ds' Ads' = ds")
—  ceqMi(ds,ds") V (ds = ds' Ads' = ds")
= ceq™2(ds,ds")

o M |= ceq(ds,ds’) — View(ds,v) = View(ds',v). In fact,

ceqM2(ds, ds') = ceq™* (ds,ds') V ds = ds’
— Yo [View(ds,v) = View(ds',v)] V ds = ds'
— Yo [View(ds,v) = View(ds',v)] V Vv [View(ds,v) = View(ds',v)]
= View(ds,v) = View(ds',v)

101, satisfies the other axioms @T'(E) sinceceq does not occur in them.
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o M, = ceq(dsy,dss) A (ds1,a,dst) A (ds2,a,dsh) — ceq(ds],dsy). Infact,
ceq™?(dsy,dss) A (ds1,a,ds)) A (dsz,a,dsh)
= (ceq™(ds1,ds2) A (ds1,a,ds)) A (dsa, a,dsh)) V
(ds1 = dsa A {ds1,a,ds)) A (dsz2,a,dsy))

—  ceqM(ds},dsh) v ((ds1,a,ds)) A (ds1,a,dsh))
1 ceq™ (ds}, dsh) V ds} = dsb,
= ceqM2(ds}, dsh)

Let’s prove thatC EQ _block |= ceq(ds,ds’) — ceq(ds’, ds). Let M be a model

identical toM; except that

ceq™?(ds, ds") = ceq™* (ds,ds") V ceq™* (ds', ds) .
By definition,ceq™? is symmetric. We need to prove thiaf, satisfy the axioms inside
CEQ block:
o M |= ceq(ds,ds’) — View(ds,v) = View(ds',v). In fact,
ceq™2(ds, ds') = ceq™* (ds, ds') V ceq™ (ds', ds)
— Yo [View(ds,v) = View(ds',v)] V Vv [View(ds',v) = View(ds,v)]
= View(ds,v) = View(ds',v)
o M |= ceq(dsy,dss) A (ds1,a,ds)) A {dsa,a,dsh) — ceq(dst,dsh). In fact,
ceq™2(dsy, dsy) A (ds1,a,ds}) A (dsa, a, dsh)
= [ceq™ (ds1,ds2) A (ds1,a,ds}) A (dss,a,dsh)] V
[cequ (d527 dsl) A <d517 a, d5l1> A <d527 a, dSI2>]
- ceqMr(dsy, dsh) V ceqM (dsh, ds})
= ceq™2(ds),dsh)
Finally, let's prove thaC EQ _block |= ceq(ds, ds')Aceq(ds’,ds") — ceq(ds,ds").

Let M> be a model identical td7; except that

ceq™? = transitive_closure(ceqg™) .

By definition, ceq™2 is transitive. Ifceq™ is reflexive and symmetric, so igq™>.
We need to prove thal/, satisfies the axioms insideéFEQ _block:

o M |= ceq(ds,ds') — View(ds,v) = View(ds',v). In fact,
ceq™?(ds, ds")
= 3ds°,ds',...,ds" [ds =ds®, ds' = ds™, ceq™ (ds',ds'), 0 < i < n]
—  3ds°,ds',...,ds"
[ds =ds°, ds' =ds™, View(dsi,v) = View(dsiﬂ,v), 0<i< n]
—  3ds®,ds" [ds =ds°, ds' = ds", View(ds®,v) = View(ds",v)]
= View(ds,v) = View(ds',v)
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o M, |= ceq(dsy,dss) A (ds1,a,ds)) A {(ds2,a,dsh) — ceq(ds’,dsh). In fact,

ceq™? (ds1,dsz2) A (ds1,a,dsy) A (dsa, a,dsh)
= 3ds'(1<i<n) [dsl =ds', dsy = ds™, ceq" (ds',ds'™), 1 <i < n]
A{ds1,a,dsy) A (ds2, a,dsh)
MY 34s'3(ds’a,ds” )
[dsl =dst,dsy = ds™,ds| = dsl’,ds’2 =ds"', ceqM1 (dst,dsit!), 1 <i< n]
—  3ds' {ds'l = dsll, dsy = ds"’, ceq™? (dsi’, ds(iﬂ)’), 1<i< n]

= ceq?(dst,dsy) O

When a set of experiences is complete the predicatgcaptures the idea that
two distinctive states are the same if they render the same views under any sequence
of actions. Assume that is complete and led = ayq,...,a, denote a sequence
of actions. The termid(ds) denotes the distinctive state resulting from executing
starting atds. By definition, A(ds) = ds if n = 0, A(ds) = ds’ such thatE |=
({a1,...,an—1)(ds),an,ds"). Notice that the definition ofi(ds) makes sense since
E is complete and actions are deterministic.
Theorem 2 Let E be a complete set of experiences. Then,

ceq(ds,ds') =VA,v [View(A(ds),v) = View(A(ds'),v)] .

Proof. Let M; be a model for the axioms inside tkEQ_block as well as the other
axioms of CT'(E). Let M, be a model identical td/; except that

ceq™? (ds,ds') = VA,v [View(A(ds),v) = View(A(ds'), v)]

By induction in the length of action sequences on can provectgdf: C ceq?.
Our proof is complete by showing thaf, satisfies the axioms insidéEQ _block:

e M, |= ceq(ds,ds') — View(ds,v) = View(ds',v). In fact, supposé/s |=
ceq(ds, ds") and consider the empty sequence of actiohs; {}, A(ds) = ds.
Then

View(ds,V) = View(A(ds),v) = View(A(ds'),v) = View(ds',v) .

o M |= ceq(dsyi,dss) A (ds1,a,ds)) A {dsa,a,dsh) — ceq(dst,dsh). In fact,

ceq™?(ds', dsb)
= VA [View(A(ds'l),v) = view(A(ds'z),v)]
+— (dsi,a,ds}) A {dsa,a,dsh) A
VA,v [View(aA(ds1),v) = View(aA(dsz2),v)]
—  ceq™2(ds1,dss) A (ds1,a,ds}) A (ds2,a, dsb)
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C teq properties

In this appendix we prove some properties of the SSH topological theory. Recall the
SSH topological theory is defined as follows:
TT(E) =
there exist infinitely many places ,
there exist infinitely many paths ,
—dp [tplace(p) A is_region(p)],
—3pa [tpath(pa) A route(pa)] ,
COMPLETION(E) ,
Azioms 2 — 10,
(ds,a,ds'y A (ds,a,ds") — ds' = ds", (Aziom 15)
T block ,
AT block = (87)
{ maz teq :
r
circ tpath = tplace var SSﬁpred (88)

}

wherel is the set of axioms defined on Block 20 (Section 5.2), 88 pred stands
for the tuple of predicate&t, along, order, on, teq, turn_eq, travel_eq).

Proposition 1 Let M be a model of T'(E). Then,
e M |=Vpa, [tpath(pa) = 3ds, dir along(ds, pa, dir)].
e M |=Vp, [tplace(p) = Ads at(ds, p)].
Proof.
CIRCIT; tpath = tplace; SS Hpred)
= {Proposition 15 in [Li fschitz,1994] }
CIRC|T;tpath;tplace, SSHpred| A CIRC[T; tpath, tplace; SS Hpred)

— {def. of circumscription}
CIRCIT; tpath]

Sincel’ = I(tpath) A [along(ds, pa,dir) — tpath(pa)] wherel”(tpath) is
negative, then

CIRC[T;tpath)

CIRC|[I' (tpath) A [along(ds, pa, dir) — tpath(pa)]; tpath]
= {Proposition 4 in [Lifschitz,1994] }
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[ (tpath) A CIRC[along(ds, pa, dir) — tpath(pa); tpath]
- {Proposition 1 in [Lifschitz,1994] }
[3ds, dir along(ds, pa, dir)] = tpath(pa)
Similarly, ' = I A [at(ds,p) — tplace(p)] wheretpath does not occur if”.
Then,
CIRCIT; tpath = tplace; SS Hpred)
- {see above}
CIRC|[T;tpath, tplace; SS Hpred)
— {def. parallel circumscription}
CIRC|T; tpath, tplace]
- {def. parallel circumscription}
CIRC[I' A [at(ds,p) — tplace(p)]; tplace]
{Propositions 1 and 4 in [Li fschitz,1994]}
I A [3ds, at(ds, p)] = tplace(p)

Proposition 2 The topological map associated with a finite set of experieAdeas a
finite number of topological paths and a finite number of topological places.

Proof. Since a distinctive state is along at most one topological path (Axiom
37), Proposition 1 implies that for any mod#l of T'T(E) there is an injection from
tpath™ into distinctive-states™. Sincedistinctive-states™ is finite so istpath™ .

Similarly, since distinctive states are at a unique topological place (Axiom 29),
from Proposition 1 we conclude that the set of topological places in a mo@dl k)
is finite. O

Theorem 3 Letds; be a distinctive state symbol such that
VdSQ ¢ [dsl]m, [dSQ]teq n [dsl]/\ = (b . (89)

turn
Then
Vdss & [ds1]—, place(dss) # place(dsy) .

turn’

Proof. The hypothesis of the theorem implies that

Vdsy & [ds1]—~, —turn_eq(ds2,ds;) .

turn’

Indeed,
turn_eq(dsy,ds2) = Jbo,...,bn,boy..., by s.t.
[ bo = dSz, bnr = dSl 5
e teq(b;,by), i =0,...,n

Ot%(bil,bzq_l), iZO,...,n—l.
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Letl < j < nsuchthatlVj <k <n, by € [dsi]—] andbg;_1) & [ds1]—.
Notice that such g exists sincels; = by ¢ [dsi1]— andds; = b, € [ds
Consequently,

—
Ugurn:

turn_eq(dsy, dsz)

N
bjr € [dsl]m

- {teq(bj, bjr)}
[bj]teq N [ds1] = # 0

— {89}

bj € [dsl]%

- {turn(bij_1y,b;)}
b(j_l): S [dsl]@

-

false

Thus—turn_eq(dss, ds;) should be the casél

Theorem 4. Any two models of the SSH topological theory have the same number
of topological paths and the same number of topological places.

Proof. In order to prove that two modeM; andM, of TT(E) have the same num-
ber of topological paths (tpaths) and the same number of topological places (tplaces),
it is enough to show that this is the case for models ofdlieblock (Block 87). Sup-
pose thattpath™: has less elements thapath™?, and so there exists an injection
¢ : tpath™ — tpath™=. One can extend to define an isomorphism froM; into
M3, such thatM} < M-, where< is the order defined by the circumscription policy
88. This proves thaf\/; and M, have the same number of topological paths. In fact,

o Let ¢ : tplace™r — places™2 be an injection. Such an injection exists since
tplace™ is finite andplaces™> is infinite.

o Let ¢ : SM — SM2 pe the identity over the sorts (S) of distinctive states,
actions, views, schemas, path types and path directions. Recall we assumed a
Herbrandinterpretation for these sorts, where the corresponding universes are
defined by the constant symbolsin

The functiong above defines an isomorphic embedding frdfa into Ms in the
standard way. In factp(M;) = M} is defined as follows:

o tpath™> = o (tpath™Mr), tplace™2 = o(tplace™).

o teg™> = p(teqg™) = {teq(dsi,ds2) : My = teq(dsi,ds2)} = teq™:.

o at™ = Bat™) = {at(ds, #(p) : M = at(ds,p)}.

. alongMé = ¢(along™*) = {along(ds, p(pa),dir) : M |= along(ds,pa,dir)}.
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orderMs = ¢(order™1) = {order(¢(pa), dir, d(p), (q)) : My |= order(pa, dir, p, q)}.
on™z = ¢(on™1) = {on(¢(pa),$(p)) : Mi [ on(pa,p)}.

turn_eqMé = ¢(turn_eq™) = turn_eq™™.

. travel_eqMé = ¢(travel_eqg™) = travel_eg™™.

Notice that the language @f is defined by{tpath, tplace} U SSHpred. Thus
M; =T implies¢(M;) = T'. Notice that the circumscription policy varies all predi-
cates in the language bf and¢ is the identity over all constant symbols in the theory,
for otherwiseg(M;) |= T is not necessarily the case. In general the interpretations of
an unary predicate (set) under a circumscriptive theory do not have the same number
of elements. For example, consider the model€ 6RC[(P(0) A P(1)) V P(2); P],
where the interpretation d? could have one or two elements (this example is due to
Vladimir Lifschitz).

Sinceg(tpath™r) C tpath™2, theng(M;) < M,, and soM, is not minimal, and
is therefore not a model &FT'(E). It follows thatM; and M, have the same number
of topological paths.

Similar argument shows thad/; and M have the same number of topological
places. If not, there would exists : tpath™ — tpath™2 a bijection andyp :
tplaceMr — tplace™? aninjection that allows us to apply the same argument as above.
|

D Theory axioms

The blockT _block inside Block 19 in Section 5.2 defines the properties of the pred-
icatesturn, travel, and travel. turn is the equivalence closure of the schemas

(-, turn, -); travel andtravel are the equivalence and transitive closure of the schemas
(-,travel,-) respectively:?

T block = {min tm, min t@el, min travel :
(ds,turn,ds') — turn(ds,ds'),

(ds,travel,ds') — tﬁz;el(ds, ds') A travel(ds,ds'),

turn(ds, ds),
turn(ds,ds') — turn(ds',ds),
turn(ds,ds') A turn(ds',ds") — turn(ds,ds"),

t@el(ds, ds),
t;z;el(ds,ds') — t@el(ds',ds),

tﬁz;el(ds, ds') A tﬁz;el(ds', dr) — tﬁz;el(ds,dr),

travel(ds,ds’) A travel(ds',ds") — travel(ds, ds")
}

12A block of the form{C1,...,Cy, min P1,...,min P : Ai,..., A} denotes the set of blocks
{C1,...,Cnymin Py : A1,...,An},...{C1,...,Cn, min Py : Ay,...,An}.
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