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The Spatial Semantic Hierarchy (SSH) is a set of distinct representations for large scale
space, each with its own ontology and each abstracted from the levels below it. At the
control level, the agent and its environment are modeled as continuous dynamical systems
whose equilibrium points are abstracted to a discrete set of distinctive states. The control
laws whose execution defines trajectories linking these states are abstracted to actions, giv-
ing a discrete causal graph representation for the state space. The causal graph of states and
actions is in turn abstracted to a topological network of places and paths (i.e. the topological
map). Local metrical models of places and paths can be built within the framework of the
control, causal and topological levels while avoiding problems of global consistency.

Most of the SSH’s ideas have been traditionally described in procedural terms in-
spired by implementations of the SSH. This description has various problems when used to
implement physical agents. First, some assumptions are not explicitly stated or are difficult
to meet by current sensory technology (e.g. sensory information is not rich enough to dis-
tinguish one place from another). Second, some important SSH concepts (i.e. paths) are
not properly defined or understood. Third, sometimes it is not clear what the representation
states and consequently it is hard to apply it to new domains.

In this dissertation we propose a formal semantics for the SSH causal, topological
and local metrical theories. Based on this semantics, we extend the SSH in the following
important ways: i) we include distinctive states as objects of the theory and handle per-
ceptual aliasing, ii) we define the models associated with the SSH causal and topological
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levels, iii) we extend the SSH topological theory to handle convergent and self intersecting
paths as well as hierarchical maps , iv) we show how to combine causal, topological and
noisy local metrical information, v) based on the previous enhancements, we define an al-
gorithm to keep track of different topological maps consistent with the agent’s experiences.
This algorithm supports different exploration strategies and facilitates map disambiguation
when the case arises.
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Chapter 1

Dissertation Overview

The Spatial Semantic Hierarchy (SSH)[Kuipers and Byun, 1988, Kuipers and Byun, 1991,
Kuipers, 1996, Kuipers, 2000] is a set of distinct representations for large scale space,1 each
with its own ontology, each with its own mathematical foundation, and each abstracted from
the levels below it. The SSH is a computational theory of the cognitive map (i.e. human
knowledge of large-scale space). The SSH is used in robotics to supportmap buildingand
navigation. Using the SSH representation, navigation among places is not dependent on the
accuracy, or even the existence, of metrical knowledge of the environment.

The SSH describes the different states of knowledge that an agent uses in order to
organize its sensorimotor experiences and create a spatial representation (i.e. a map). The
SSH gives an account of how continuous interaction with the world is abstracted to a dis-
crete spatial representation. Next we describe how the different levels of the SSH (control,
causal, topological and metrical) accomplish this.

At the SSH control level, the agent and its environment are modeled as continuous
dynamical systems whose equilibrium points are abstracted to a discrete set ofdistinctive
states. A distinctive state has an associatedview describing the sensory input obtained at
that distinctive state. The control laws whose execution defines trajectories linking these
distinctive states can be abstracted toactions, giving a discrete causal graph representation
for the state space. The causal graph of states and actions can in turn be abstracted to a
topological network ofplacesandpaths(i.e. the topological map). Local metrical models,
such as occupancy grids, of places and paths can then be built on the framework of the

1In large-scale space the structure of the environment is revealed by integrating local observations over time,
rather than being perceived from a single vantage point.
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topological network while avoiding problems of global consistency.2

Our goal is to define the SSH so that it is clear how it can be implemented across
different robot platforms as well as in other domains. In principle, in order to implement
the SSH on a given robot, it should be enough to define the robot’s trajectory-following
and hill-climbing control laws, to define views, and to show how the local metrical map
is derived from sensory input. A well defined interface between the SSH and the robot’s
control system allows the SSH control level to identify distinctive states and actions linking
them. This information is then propagated to the other levels of the SSH. Under this vision,
the SSH will be a well-defined module that can be used by any robot. Unfortunately, the
existing formulation of the SSH is not at this point yet.

Part of the difficulty when implementing the SSH is to extract world informa-
tion through sensors. Advances in hardware and robotics, as well as experience gained
from previous SSH implementations[Lee, 1996], allow us to deal with sensor unrelia-
bility and implement robust control laws. As control laws are the ones that ultimately
make a robot move, it is not surprising that there has been much work on implement-
ing the SSH control level. A side effect of this effort has been that sometimes it is not
clear what is and what is not part of the SSH. For example, in[Kuipers and Byun, 1988,
Lee, 1996] the robot’s exploration strategy is part of the SSH control level, though the orig-
inal SSH’s description aims for constructing the SSH opportunistically, independent of how
actions are selected and executed by the robot.

Most of the key concepts in the SSH framework have been traditionally described
in procedural terms inspired by implementations of the SSH. This description has various
problems when used to implement physical agents. First, some assumptions are not explic-
itly stated or are difficult to meet by current sensory technology (i.e. sensory information
is not rich enough as to distinguish one place from another). Second, some important SSH
concepts (i.e. paths) are not properly defined or understood. Third, sometimes it is not clear
what the representation states and consequently it is hard to apply it to new domains.

The goal of this dissertation is to formalize the SSH causal and topological levels in
order to have a clear specification of what the SSH accounts for. We define the SSH causal
and topological models (maps) associated with a set of agent’s experiences. These models
are the spatial representation the agent creates in order to explain such experiences. How
the agent explores the environment or builds such models are not part of the SSH theory.

2See chapter 2 for a detailed overview of the SSH.
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Nevertheless, once we present the theory, we illustrate the effect of the exploration strategy
as well as present algorithms to build the SSH causal and topological maps.

We start our formalization by includingdistinctive statesas objects of the causal
and topological theory. At the SSH control level distinctive states are the fixed points of
hill climbing control laws. At the causal and topological levels distinctive states are objects
representing such fixed points the agent visits at the control level. Part of the purpose of the
causal and topological theories is to determine when two distinctive states refer to the same
environment state.

Previous descriptions of the SSH do not include distinctive states as objects of the
theory. This is the case because these descriptions assume that perceptual aliasing (i.e. dif-
ferent distinctive states that share the same view) does not occur. Should this hypothesis
not be the case, the agent’s exploration strategy has to handle any environment states disam-
biguation. This mix between the SSH description and the robot exploration strategy made
it difficult to state what the SSH itself is about.

In this dissertation we show that by including distinctive states as first order objects
of the theory it is possible to handle perceptual aliasing while formulating the spatial repre-
sentation (the SSH) independently of the agent’s exploration strategy. For this purpose we
explicitly define the models of the causal and topological theories associated with a set of
agent’s experiences. Should the experiences not be complete or perceptual aliasing occur,
different models of the theory may exist. In such cases, as part of the exploration strategy,
the agent could choose to refute some of these models or just keep exploring the environ-
ment gathering more experiences.

One interesting aspect of spatial knowledge that becomes clear with the SSH for-
malization is thenon-monotoniceffect of gathering more experiences. New information
could prove environment states to be different although they were previously believed equal,
and viceversa. This remark applies not only to environment states but also to other SSH ob-
jects like placesand paths. It is not surprising then that we use a non-monotonic logic
formalism, namely Nested Abnormalities Theories (NATs)[Lifschitz, 1995], in order to
state the SSH causal and topological theories.

A logical account of the SSH causal, topological and local metrical theories is given
using NATs. The minimality conditions embedded in the formalization define the preferred
models associated with the theories. In chapters 4 through 8 we illustrate the main prop-
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erties of the new theories. In particular we show how the minimal models associated with
these theories are adequate models for the spatial knowledge an agent has about its envi-
ronment. We also illustrate how the different levels of the representation assume different
spatial properties about both the environment and the actions performed by the agent. These
spatial properties play the role of “filters” the agent applies in order to distinguish the dif-
ferent environment states it has visited.

As part of our formalization, we have chosen to explicitly represent when two dis-
tinctive states denote the same environment state. The predicatesceq andteq (chapters 4
and 5) denote when two distinctive states are equal given causal and topological informa-
tion, respectively.ceq is the case when it is not possible to distinguish distinctive states
by views (sensory input) and actions.teq is the case when distinctive states have the same
view and are at the same place along the same paths. While the topological ontology (that
of places and paths) is more elaborated than the one for the causal level, it is easier to build
this representation than it is to distinguish environment states based only on view-action-
view sequences.

At the SSH causal level we introduced a new spatial representation, that of the
causal graph. A causal graph is a deterministic finite automaton (DFA) where states areceq

equivalence classes, and transitions correspond to actions. In the presence of perceptual
aliasing this representation is different from theview graph, a non-deterministic automaton
where states are views, and transitions are actions. In chapter 4 we elaborate on the proper-
ties of this representation.

The SSH topological theory is presented in chapters 5 through 8. We start with a
simple topological theory that assumes “simple” paths in the environment. We then extend
the theory to handle more complex paths, namely self-intersecting and convergent paths
(figure 1.1). We then extend the theory with boundary regions, local metrical information
and finally, abstraction regions. At each step, we illustrate how the new spatial represen-
tation allows the agent to distinguish environments not distinguishable with the previous
representations. Based on the SSH causal and topological formalizations, we define an
algorithm that allows the agent to keep track of different models consistent with a set of
experiences.

As the ultimate goal of this work is to show that a formal specification of the SSH
will facilitate its implementation on physical robots, we evaluated our methods by imple-
menting the SSH in Vulcan, our wheelchair robot (chapter 9). As with any other representa-
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Figure 1.1:(a) Self intersecting paths. (b) Convergent paths.

tion, we should describe the processes that act upon the representation and specify how the
representation supports such processes[Bickhard M., 1995, Markman, 1999]. In appendix
A we illustrate how the SSH supports different architectures used for robot’s navigation.

In summary, in order to bridge the gap between the SSH theory and its implemen-
tation, we propose a formal semantics of the SSH causal, topological and local metrical
theories. Based on this semantics, we extend the SSH in the following important ways: i)
we introduce distinctive states as first order objects of the theory and extend the theory to
handle perceptual aliasing; ii) we define the models associated with the SSH causal and
topological theories ; iii) we extend the theory to handle self intersecting and convergent
paths; iv) we show how to combine causal, topological and noisy local metrical information;
v) based on the previous enhancements, we define an algorithm to keep track of different
topological maps consistent with the agent’s experiences, and vi) we extend the SSH to
handle hierarchical maps (i.e. maps where there is a containment relation between regions).

The rest of this document describes the ideas above in detail. Chapter 2 presents
an overview of the SSH. Chapter 3 defines the SSH control level assumptions under which
the causal and topological levels are built. We then go into the details of the changes we
propose at the causal and topological levels. Chapters 4 and 5 present our formalization of
the SSH’s causal and topological levels. Chapter 6 adds boundary regions to the topolog-
ical level, and chapter 8 shows how regions can be included at the SSH topological level.
Chapter 7 defines the use of local metrical information in combination with causal and topo-
logical information. It also presents a method to integrate metrical information associated
with paths in order to assign locations to places in a region. Chapter 9 shows our SSH
implementation in Vulcan. In chapter 10 we review related research in the areas of robotics
and space representation. Finally, in chapter 11 we present our conclusions.
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Chapter 2

SSH Overview

2.1 The Spatial Semantic Hierarchy

The Spatial Semantic Hierarchy (SSH)[Kuipers and Byun, 1988, Kuipers and Byun, 1991,
Kuiperset al., 1993, Kuipers, 1996, Kuipers, 2000]1 is anontological hierarchyof represen-
tations for knowledge of large-scale space. An ontological hierarchy shows how multiple
representations for the same kind of knowledge can coexists. Each level of the hierarchy
has its ownontology(the set of objects and relations it uses for describing the world) and its
own set of inference and problem-solving methods. The objects, relations, and assumptions
required by each level are provided by those below it.

The SSH abstracts the structure of an agent’s spatial knowledge in a way that is
relatively independent of its sensorimotor apparatus and the environment within which it
moves. Next we describe the different SSH levels.

� The sensorimotor levelof the agent provides continuous sensors and effectors, but
not direct access to the global structure of the environment, or the robot’s position or
orientation within it.

� At the control levelof the hierarchy, the ontology is an egocentric sensorimotor one,
without knowledge of fixed objects or places in an external environment. Adistinc-
tive stateis defined as the local maximum found by a hill-climbing control strategy,
climbing the gradient of a selected feature, ordistinctiveness measure. Trajectory-
following control laws take the robot from one distinctive state to the neighborhood
of the next, where hill-climbing can find a local maximum, reducing position error
and preventing its accumulation.

1This presentation follows[Kuipers, 1996].
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� The ontology at the SSHcausal levelconsists of views, distinctive states, actions and
schemas. Aview is a description of the sensory input obtained at a locally distinc-
tive state. Anaction denotes a sequence of one or more control laws which can be
initiated at a locally distinctive state, and terminates after a hill climbing control law
with the robot at another distinctive state. Aschemais a tupleh (V; dp); A; (V 0; dq) i
representing the (temporally extended) event in which the robot takes a particular ac-
tionA, starting with viewV at the distinctive statedp, and terminating with viewV 0

at distinctive statedq. The spatial representation posits the minimal set of distinctive
states consistent with the set of schemas.

� At the topological levelof the hierarchy, the ontology consists ofplaces, pathsandre-
gions, with connectivity and containment relations. The spatial representation posits
the minimum set of paths and places consistent with the set of causal schemas.2 At
the SSH topological level, action symbols are categorized in two classes:Turn and
Travel. A place corresponds to a set of distinctive states linked by turn actions. A path
is a structure that includes an ordered sequence of places connected by travel actions
without turns. Paths are used in the cognitive map to describe linear geographical
structures such as streets. Places and paths define a topological network which can
be used to guide exploration of new environments and to solve new route-finding
problems.3 Using the network representation, navigation among distinctive states is
not dependent on the accuracy, or even the existence, of metrical knowledge of the
environment.

� At themetrical levelof the hierarchy, the ontology for places, paths, and sensory fea-
tures is extended to include metrical properties such as distance, direction, shape, etc.
Geometrical features are extracted from sensory input, and represented as annotations
on the places and paths of the topological network.

Two fundamental ontological distinctions are embedded in the SSH. First, the con-
tinuous world of the sensorimotor and control levels is abstracted to the discrete symbolic
representation at the causal and topological levels, to which the metrical level adds contin-
uous properties. Second, the egocentric world of the sensorimotor, control, and causal level
is abstracted to the world-centered ontologies of the topological and metrical levels.

2In order to state these minimality conditions, the causal and topological levels are formalized as circum-
scriptive theories (see chapter 5).

3Notice that although the topological map has a graph like structure, a path in the graph theory sense is not
necessarily a SSH topological path.
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2.2 Creating Schemas

As the agent navigates its environment, a set of schemas summarizing its experiences is
created. This set of schemas is the only source of information the agent has to create a
spatial representation of its environment. Next we describe how a set of schemas is created
as the agent navigates through its environment.

At the SSH control level, exploration is performed by alternating execution be-
tween two types of continuous control strategies,4trajectory-followingandhill-climbing .
These two types of control strategy differ in their roles: ahill-climbing control strategy is
for climbing towards a local maximum of a distinctiveness measure and thus a position of
some distinctive state; atrajectory-followingcontrol strategy is for moving from the neigh-
borhood of one distinctive state to the neighborhood of another. The actual motion from
one distinctive state to the neighborhood of another may be the result of the execution of
a sequence of more than one control strategy (see example below). Letcl = cl1; : : : ; clm
be the sequence of control strategies executed at the control level to take the agent from
distinctive stateds with view V to distinctive stateds0 with view V 0. Then, the schema
h(V; ds); A; (V 0; ds0)i is created at the SSH causal level, whereA is anactionsymbol used
whenever the sequencecl is executed.5 This way, the experiences of the robot within its
environment can be described by an alternating sequence of views and actions

(V1; ds1)A1 (V2; ds2) : : : An�1 (Vn; dsn)

which is summarized at the causal level by the set of schemas S,

S = fh (Vi; dsi); Ai; (Vi+1; dsi+1) i : i = 1; : : : ; n� 1g

Example 1

Consider the environment in figure 2.1. In order to go from distinctive stateds1 to distinc-
tive stateds2, the agent executes the sequence of control strategieshget-into-corridor,

follow-middle-line, hc-T-intersection iwhereget-into-corridoris a trajectory-
following control strategy that moves the agent fromds1 to a, follow-middle-line is
a trajectory-following strategy that takes the agent froma tob, andhc-T-intersection

is a hill-climbing control strategy that takes the agent fromb to the distinctive stateds2.
Environment statesa andb are not distinctive states. At the distinctive stateds2 the agent
is facing the wall ahead and it is equidistant from this wall and the intersection corners.

4These strategies correspond to continuous control laws[Kuo, 1987].
5See section 3.1.3, page 14.
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ds3

ds2bads1

Figure 2.1:A sequence of control strategies ,hget-into-corridor, follow-middle-line, hc-T-intersectioni, takes

the agent from distinctive stateds1 to distinctive stateds2. At the causal level, this continuous motion is

represented by the schemah (V; ds1); A; (V 0; ds2) i, where the action symbol A represents the sequencehget-

into-corridor, follow-middle-line, hc-T-intersectioni, V andV 0 are the views atds1 andds2 respectively.

Distinctive stateds3 is at the same physical location asds2 but with a different
orientation. When the robot is at ds3, it is facing the open space (corridor) at the right of
ds2. In order to go from distinctive stateds2 to distinctive stateds3, the agent executes the
sequence of control strategieshface-space-on-right,align-with-corridor i.

At the causal level, the schemash(V 1; ds1); A1; (V 2; ds2)i and
h(V 2; ds2); A2; (V 3; ds3)i are created, whereA1 represents the sequence
hget-into-corridor, follow-middle-line, hc-T-intersection i and
A2 represents the sequencehface-space-on-right,align-with-corridor i.
At the topological level,A1 is aTravel action whileA2 is aTurn action.

fend of exampleg

2.3 The SSH topological level: regions

The SSH topological level includesregions, boundariesand containmentrelations. A
boundary is a sequence of one or more directed paths. Aregion is a set of places. A
boundary regionis the set of places defined to be on one side of a boundary. A path has
associated two boundary regions, its right and left sides.

Boundary region information can be extracted from sensorimotor experiences ([Kuipers
and Levitt, 1988] suggests how to do this though it does not defines the general mechanism
for doing so). Specifying where a place lies with respect to a dividing boundary provides
partial knowledge about its position. This knowledge is particularly easy to acquire, easy to
combine with other similar pieces of knowledge, and easy to apply to route-finding prob-
lems. Partial states of knowledge are possible since the agent does not know the relative po-
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sition of every place with respect to every boundary. Once a sufficient number of boundary
relations have been accumulated, they provide a useful topological route-finding heuristic.
For example, to find a route from A to B, if there is a path such that A is on its right and B
is on its left, look for routes from A to that path and from the path to B. In[Remolina and
Kuipers, 1998b] we have given a formal account of how boundary relations are established
as the agent navigates a known environment. In chapter 6 we show how boundary regions
are used while exploring an unknown environment.

2.4 Physical Implementation of the SSH

An implementation of the SSH in a physical robot (Spot) was carried out by W.Y. Lee[Lee,
1996]. Most of this work focused on the SSH control level since the other levels can be
constructed as in the TOUR model[Kuipers, 1978].6 Next we review the key ideas in the
implementation.

At the SSH control level, the robot has only an egocentric view of its surroundings
with no concept of external objects. Sensory regularities are the way to identify external ob-
jects. Discontinuities in sensory readings mark the presence of distinctive neighborhoods.
A SSH robot identify and responds only to sensorimotor regularities at the control level.7

The type of possible distinctive neighborhoods the robot can be at is given a priory.
Each of these neighborhoods types has associated a hill climbing strategy as well as a pres-
elected order in which distinctive states are visited. Local frames of reference (LFOR) are
created when visiting a neighborhood. This coordinate system allows the creation of views
as well as the tracking of corners otherwise not possible from sonar readings. Since the
sensory information associated with a neighborhood is not at once available to the robot,
the robot has to explore the neighborhood in order to identify the neighborhood’s type. This
exploration procedure is described by a finite state automaton. Final states in this automaton
identify the type of neighborhood. Transitions in the automaton describe how information
of the neighborhood should be collected and used to discriminate the neighborhood.

In order to choose a hill climbing strategy, the following elements are considered:
6Notice that the TOUR model does not account for perceptual aliasing, and it assumes that a unique topo-

logical map is consistent with the agent’s experiences. Any possible ambiguity has to be solved before giving
the schemas to the TOUR algorithm.

7For example, a frontal object is represented internally as a regularity of the changes in frontal sonar mea-
surement over time[Lee, 1996].
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the trajectory-following control strategy that brought Spot into the neighborhood, the event
that signal the neighborhood (corner or front-blocked), and an analysis of the immediate
surroundings in terms of qualitative positions of frontal objects, if any. The hill climbing
strategies work by applying a trajectory-following control strategy that constrains two de-
grees of freedom, and then climbing a distinctive measure in the remaining one degree of
freedom until its local maximum is reached. In general the hill climbing strategy is a two
step procedure: first, a distinctive location must be found, and then distinctive orientations
at that location are determined. A distinctive state is a pair(location, orientation). Special
algorithms to find distinctive orientations were developed. These algorithms deal with error
in sonar readings produced by specularity.
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Chapter 3

Control Level

At the SSH control level, the agent and its environment are modeled as continuous dynam-
ical systems whose equilibrium points are abstracted to a discrete set ofdistinctive states.
The agent “moves” from one distinctive state to another, by using a combination oftra-
jectory followingand hill climbing control laws. The execution of these control laws is
abstracted at the SSH causal level as a set of causal schemas (section 2.2, page 8) from
which causal, topological and metrical representations of space are created (chapters 4 to
8). Our main hypothesis to build these spatial representations is that the execution of con-
trol laws isdeterministicin the following sense: executing a sequence of control laws at
a particular environment state leaves the agent “at the same” resulting distinctive state. In
this chapter we state this property of the SSH control level (the SSHclosure property).

In general it is difficult to prove that a given set of control laws and a particular
environment satisfy the SSH closure property. A particular case where the closure prop-
erty can be proved is for a “Voronoi robot”, a robot that moves along the Voronoi diagram
associated with the environment: the set of points that are equidistant from two nearby ob-
jects[Aurenhammer, 1991, Choset and Nagatani, 2001] . In section 3.2 we elaborate in the
properties and limitations of Voronoi robots.

Hill climbing control laws are chosen based on sensory input and (maybe) the tra-
jectory following that brought the robot to the current environment state. It may be the case
that different hill climbing control laws bringing the robot to different distinctive states
could be chosen for execution. We would rule out this possibility by requiring distinctive
states to bewell separated(section 3.1.2).

The closure property on the set of control laws and the well separation among dis-

12



tinctive states guarantee that actions at the causal level are deterministic.For the purpose
of this dissertation, this is all we need to know about the control level. Next we briefly
elaborate on these SSH control level properties. The reader is referred to[Lee, 1996,
Kuipers, 2000] for more detailed information.

3.1 SSH control assumptions.

1Exploration of an unknown environment takes place by selecting a control law based on
sensory information available about the local neighborhood. Typically, we expect behavior
to be an alternation betweenhill-climbing control laws, which bring the agent to a locally-
distinctive state from any state within the local neighborhood, andtrajectory-followingcon-
trol laws, which bring the agent from one distinctive state to the neighborhood of the next.

3.1.1 The SSH control closure property

The navigation strategy of alternating trajectory-following and hill-climbing control laws
presumes that the following criteria are satisfied. We call these theclosure criteriaon the
set of control laws.

1. After a hill-climbing control law is executed and terminates at a distinctive state, at
least one trajectory-following control law is available for selection. This ensures that
there is a choice of action from the current distinctive state: there are no dead end.

2. After a trajectory-following control law is executed and reaches its termination state,
at least one hill-climbing control law is available for selection. This ensures that each
trajectory terminates at a distinctive state.

3.1.2 Well separated dstate

The closure property does not rule out the possibility that more than one hill-climbing may
be available for selection. For the purpose of having deterministic actions at the causal
level, we require that

the basins of attraction of distinctive states are well separated.

This separation property ensure that at most one hill-climbing is available for selection
after a trajectory following control law is performed. Notice that the basins of attraction of

1In this section we follow[Kuipers, 2000].
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distinctive states could intersect, but in those common environment states the robot has a
consistent “clear choice” of which hill climbing control law to perform (see figure 3.1).

a b

Figure 3.1:Consider a robot coming into an intersection as indicated by the arrow in the figure. Suppose a
robot hill climbs to localize itself equidistant from at least three nearby objects. (a) In a “perfect” intersection,
the agent will hill climb to the center of the intersection. (b) A small perturbation on the intersection ofa, will
cause the robot to have at least two different distinctive states it could reach (indicated by dots in the figure).
The SSH well-separated distinctive states property requires the agent to have a clear selection criteria so that
when entering the intersection the agent always hill climbs to the same distinctive state.

3.1.3 From control laws to actions

Sequences of control laws are given anaction name at the SSH causal level. In order to
decide whether two of such sequences have the same name, we do not consider the last
control law of the sequence (which is required to be a hill climbing control law). Formally,

action(cl1; : : : ; cln) = action(cl01; : : : ; cl
0
m) iff n = m ^ 8i < n cli = cl0i

whereaction(cl) denotes the action name associated with the sequence of control lawscl.

3.2 Voronoi robots

A Voronoi robot moves along the Voronoi diagram associated with the environment: the set
of points that are equidistant from two nearby objects[Choset and Nagatani, 2001]. Voronoi
robots are relevant to the SSH control level because they have a well developed mathematics
that allows one to characterize and prove properties about the control level. Moreover, they
are well understood and different algorithms exist to implement them[Chosetet al., 1997,
Choset and Nagatani, 2001]. However, they have two well known limitations. First, small
perturbations in the environment can greatly change the Voronoi diagram (for instance, con-
sider the example in figure 3.1). Second, they assume that the robot can perceive at least
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two nearby objects. This is not the case if the agent only has weak sensors or if objects are
outside the range of the sensors. In this case, control laws that keep the robot equidistant
from a reference wall are used[Kuipers and Byun, 1988, Lee, 1996].

For the purpose of this dissertation all we need to assume about the SSH control
level is that its behaviors can be abstracted to deterministic actions at the causal level. This
is guarantee by satisfying the closure and well-separation properties. Certainly, actions
could fail and so the agent could get lost. We handle these failures during navigation (when
using an already built map) and assume they do not occur during map building.
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Chapter 4

Causal Level

The agent’s experiences in the environment are summarized at the SSH causal level by
schemas. A schemarepresents an agent’s particular action execution in the environment.
An action execution takes the agent from onedistinctive stateto another. Sensory informa-
tion at distinctive states is represented byviews.

We can think of a schema as a tuple

h(v; ds); a; (v0; ds0)i

representing the event in which the agent starting at distinctive stateds (whose view isv),
executed actiona, terminating at distinctive stateds0 (whose view isv0). It is also possible
to have an incomplete schema where the resulting distinctive state,ds0, is “missing”. These
incomplete schemas allow the SSH causal level to account for common states of incomplete
knowledge like “I could take you there, but I can’t tell you how”[Kuipers, 2000]. In sec-
tion 4.1.4 we define how to represent schemas and the information associated with them.
We also formally define (see section 4.1.5) a variety of useful “tuple notations”, including
h(v; ds); a; (v0 ; ds0)i, which we will use hereafter.

Schemas can be used to direct the agent behavior in the environment, to distin-
guish distinctive states, or as a basis for more elaborated spatial representations. In the
first case, for example, if the agent’s current view isv and it has experienced a schema
h(v; ds); a; (v0 ; ds0)i, it could executea and expect to observev0 [Kuipers, 2000]. In the
second case, by considering view-action-view sequences, the agent can distinguish distinc-
tive states that share the same view (see section 4.2.3). Finally, in chapter 5 we show how
by adding some spatial interpretation to the actions executed by the agent, we can build a
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spatial representation from a set of schemas (the SSH topological map).

This chapter is organized as follows: section 4.1 presents the causal level ontology.
We then define how causal information can be used to distinguish distinctive states (section
4.2). We define two types of “spatial” representations that can be directly derived from a
set of schemas: the SSH view graph (section 4.2.2) and the SSH causal graph (section 4.3).
Finally, in section 4.4 we present a logic program to calculate the models of the SSH causal
level theory.

4.1 Causal level Ontology

We use a first order sorted language in order to describe the SSH causal level. The sorts
of such language includeviews, actions, distinctive states, schemasandroutines.1 Next we
present the predicate symbols and axioms associated with each of these sorts.

4.1.1 Views

A view represents a set of sensory inputs. While it is possible to associate a view with any
environment state, only views associated with sensory input at distinctive states are con-
sidered by the SSH. Moreover, at the SSH causal level only the name of the view matters.
Different view names represent different sets of sensory input (see axiom 4.15). The in-
ternal structure used by the agent to describe a sensory input is not considered at the SSH
causal level.

4.1.2 Actions

An actiondenotes a sequence of one or more control laws. As for views, at the SSH causal
level only the name of the action matters. Different action names represent different se-
quences of control laws (see axiom 4.14).

We assume that an action has a type, eithertravel or turn, associated with it.2 We
use the predicate

Action type(a; type) ;

1New sorts will be added when we present the SSH topological and metrical levels (chapters 5 and 7).
2The type of an action will be important at the SSH topological level (chapter 5). For completeness of the

presentation we introduce this concept here.
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to represent the fact that the type of actiona is type. The type of an action is unique:3 4

9!type Action type(a; type) : (4.1)

The constant symbolsturn and travel define completely the sort ofaction types.
Formally,5

turn 6= travel ; (4.2)

8atype fatype = turn _ atype = travelg :

Turn Right, Turn left, Turn Around

Turn actions have associated a qualitative description. This new sort of qualitative de-
scriptions is completely defined by the different constant symbolsturnLeft, turnRightand
turnAround. Formally,6

UNA(turnLeft; turnRight; turnAround) ; (4.3)

8desc fdesc = turnLeft _ desc = turnRight _ desc = turnAroundg : (4.4)

We use the predicate
Turn desc(a; desc)

to indicate thatdescis the qualitative description ofaction a. The description associated
with an action is unique. Moreover, only turn actions have associated a qualitative descrip-
tion:

Turn desc(a; desc) ! Action type(a; turn) ; (4.5)

Action type(a; turn)! 9!desc Turn desc(a; desc) : (4.6)

Axiom 4.5 says that onlyturn actions have associated a qualitative description.
Axiom 4.6 states that each turn action has associated a unique qualitative description.7

3Throughout this paper we assume that formulas are universally quantified.
4The formula9!v P (v) means“there exists a uniquev s.t.P (v)” . Formally,9v8x [P (x) � x = v].
5While we assume a first order sorted logic, such a logic does not have “subsorts”. It will be nice to say: the

sort of actions has two subsorts, turn actions and travel actions. In order to have the “subsorts” of turn and travel
actions, we will have to explicitly include the predicates “turn” and “travel” (instead of the constant symbols
turn andtravel), and require that

8a turn(a) � :travel(a) :

We have chosen not to explicitly represent “subsorts of actions” but rather talk about the “type of the action”.
6The notationUNA(t1; : : : ; tn) represents the uniqueness of names axioms for the grounded terms

t1; : : : ; tn. These axioms simply require thatti 6= tj for i 6= j.
7We could think of the turn action’s qualitative description as defining the “turn actions subsorts” turnRight,

turnLeft and TurnAround (see footnote 5).
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4.1.3 Distinctive States

At the SSH control level a distinctive state is defined as the local maximum found by a
hill-climbing control strategy, climbing the gradient of a selected feature, or distinctiveness
measure. At the SSH causal level, names are given to these distinctive states. The agent
associates distinctive state names with the environment state it is at after performing a hill
climbing control law. It is possible for the agent to associate different distinctive state names
with the same environment state. This is the case since the agent might not know at which
of several environment states it is currently located.

A distinctive state has an associated view. We use the predicate

V iew(ds; v) ;

to represent the fact thatv is aviewassociated withdistinctive stateds. We assume that a
distinctive state has a unique view,

9!v V iew(ds; v) : (4.7)

However, we donot assume that views uniquely determine distinctive states (i.e.
V iew(ds; v) ^ V iew(ds0; v) 6! ds = ds0). This is the case since the sensory capabilities
of an agent may not be sufficient to distinguish distinctive states.

4.1.4 Schemas

A schema represents a particular action execution of the agent in the environment. An
action execution is characterized in terms of the distinctive states the agent was at before and
after the action was performed. We use the following predicates to represent information
associated with a schema:

� action(s,a): actiona is the action associated withschema s.

� context(s,ds): ds is the startingdistinctive stateassociated with the action execution
represented byschemas.

� result(s,ds): ds is the endingdistinctive stateassociated with the action execution
represented byschemas.

While we require a unique context and action associated with a schema, the result of a
schema is optional (but unique if it exists):

9!a action(s; a) ; (4.8)

9!ds context(s; ds) ; (4.9)

result(s; ds) ^ result(s; ds0)! ds = ds0 : (4.10)
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Most often we are interested incompleteschemas: those for whom the resulting
distinctive state exists. We use the predicateCS(s; ds; a; ds0) defined as

CS(s; ds; a; ds0) �def context(s; ds) ^ action(s; a) ^ result(s; ds
0) (4.11)

to express the fact that schemas represents an execution of actiona which took the agent
from distinctive stateds to distinctive stateds0.8

An action execution also has metrical information associated with it. This metri-
cal information represents an estimate of, for example, the distance or the angle between
the distinctive states associated with the action execution. We defer the study of metrical
information associated with schemas until chapter 7.

4.1.5 Schema notation

While schemas are explicit objects of our theory, most of the time it is convenient to leave
them implicit. We introduce the following convenient notation:

hds; a; ds0i �def 9s CS(s; ds; a; ds0)

hv; a; v0i �def 9s; ds; ds0
�
CS(s; ds; a; ds0) ^ V iew(ds; v) ^ V iew(ds0; v0)

	
h(v; ds); a; (v0; ds0)i �def 9s

�
CS(s; ds; a; ds0) ^ V iew(ds; v) ^ V iew(ds0; v0)

	
hds; type; ds0i �def 9s; a

�
CS(s; ds; a; ds0) ^Action type(a; type)

	
hds; desc; ds0i �def 9s; a

�
CS(s; ds; a; ds0) ^ Turn desc(a; desc)

	
Notice that we have “overloaded” the bracket notation depending on the type of its

arguments.

4.1.6 Routines

A routine is a set of schemas indexed by views. We use the predicate

Routine(r; v; s)

8CS stands for Causal Schema.
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to indicate that inroutine r, schema sis indexed by viewv. A view can index multiple
schemas in a routine. That a view indexes a schema means that the context of the schema
should have associated such view:

Routine(r; v; s) ^ context(s; ds)! V iew(ds; v)

Routines model routes where particular actions are taken when the agent observes
a given view. Routines are used to model “situated action” where the agent chooses its next
action to execute by choosing a schema associated with the current view. It is possible that
the current view indexes more than one schema in which case either a non-deterministic
choice is made or if the agent is paying enough attention to identify the distinctive state as-
sociated with the view, then that will allow the schema to be selected deterministically. No-
tice that at a distinctive state different actions can be performed, and consequently the agent
may have different schemas associated with a distinctive state. However, when schemas are
indexed in a routine, only one schema per distinctive state is indexed:

Routine(r; v; s) ^Routine(r; v; s0) ^ context(s; ds) ^ context(s0; ds)! s = s0

While routines allow the SSH to explain different phenomena associated with hu-
man navigation abilities (e.g. leaving home to buy groceries on Saturday morning and
ending up at work), there is not a more complete theory about routines than the one pre-
sented here. We have left as a future work to formally describe a navigation model using
routines. When complemented with places (see next chapter), routines account for learned
plans the agent could perform even when such plans are partially specified.

4.2 SSH Causal theory

The agent’s experiences in the environment are described in terms ofCS, View, Action type
andTurn descatomic formulae. Hereafter we useE to denote a particular agent’s experi-
ence formulae. GivenE we want to specify how the agent can distinguish different distinc-
tive states. Informally, distinctive statesds andds0 are distinguishable at the SSH causal
level, if either they have different views or there exists a sequence of actions “connecting”
these distinctive states to corresponding distinguishable distinctive states (section 4.2.3).

4.2.1 The E formulae.

As mentioned above, the agent’s experiences in the environment,E, are described in terms
of CS, View, Action typeandTurn descatomic formulae. Associated withE we have the
following set of constant symbols occurring inE:
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� S(E) : the set ofschemaconstant symbols occurring inE.

� DS(E) : the set ofdistinctive statesconstant symbols occurring inE.

� V(E) : the set ofviewconstant symbols occurring inE.

� A(E) : the set ofactionconstant symbols occurring inE.

We require theuniqueness of namesassumption for the different constant symbols occurring
in E:

UNA[s1; : : : ; sk] si 2 S(E) (4.12)

UNA[ds1; : : : ; dsl] dsi 2 DS(E) (4.13)

UNA[a1; : : : ; an] ai 2 A(E) (4.14)

UNA[v1; : : : ; vm] vi 2 V (E) (4.15)

The uniqueness of names axioms above are not only required from a logical point
of view, but make sense from the knowledge representation point of view. Each of the
agent schemas represents a different experience and the agent names them with a different
schema constant symbol (axiom 4.12).9 Similar remark applies for the names of actions
(axiom 4.14). We assume that different view symbols represent different sensory input (ax-
iom 4.15). This is the case since the agent decides what view to associate with a sensory
input. As for the distinctive state symbols inE, different distinctive state constant symbols
might represent the same environment state. Part of the objective of the SSH causal and
topological theories is to conclude which distinctive state symbols are to be interpreted as
the same environment states. Nevertheless, we assume that different distinctive state sym-
bols inE are interpreted by different states (axiom 4.13) and we use the predicateceq to
indicate whether two distinctive states represent the same environment state.10 In this case
we said that the distinctive states arecausallyindistinguishable (see section 4.2.3).11

We require thedomain closureassumption for the sort ofviews, distinctive states,
schemasand actions. These domain axioms state that the only views, distinctive states,
actions or schemas that exist are those explicitly named by the symbol constants occurring
in E. These axioms prevent models of the SSH from including objects different from those

9From an implementation point of view, each schema is represented by a unique frame (or data structure) in
the database.

10ceq stands for Causally Equal.
11The SSH causal level might not be enough to distinguish distinctive states experienced at different envi-

ronment states (see Example 4, page 29).
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experienced (named) by the agent.

8s
_

si2S(E)

s = si (4.16)

8ds
_

dsi2DS(E)

ds = dsi (4.17)

8a
_

ai2A(E)

a = ai (4.18)

8v
_

vi2V (E)

v = vi (4.19)

Finally, the type of actions as well as the qualitative description of turn actions have
to be specified as part of the formulaeE:12

Action type(a; type) �
_

Action type(ai;typei)2E

[a = ai ^ type = typei] (4.20)

Turn desc(a; desc) �
_

Turn desc(ai;desci)2E

[a = ai ^ desc = desci] (4.21)

Definition 1

Given a setE of CS, View, Action typeandTurn typeatomic formulae,

COMPLETION(E)

denotes the union ofE with Axioms 4.12 - 4.21.
fend of definitiong

The next example illustrates the concepts and axioms defined in this section.

Example 2

Consider the set of experiencesE gathered by the agent while navigating the environment
in figure 4.1. The agent moves among intersections by performing a midline control law,
which at the SSH causal level becomes actionml. The sensory input at the different inter-
sections is very similar, and the agent associates the viewv+13 with the different distinctive

12While we give an explicit formula for the completion ofAction type andTurn desc, we could have
written these axioms asCIRC(E;Action type),CIRC(E;Turn desc) expressing the fact that the domains
(extents) ofAction type andTurn desc should be the smallest ones givenE. Proposition 2 in[Lifschitz,
1994] shows that these two formulations are identical. As usual, “completion axioms” rule out models where
the agent uses information other that the explicitly stated inE. See appendix C, page 219.

13As with any other symbol name, the view name is arbitrary. The + in the view name is used to indicate
that the view corresponds to a four corridor intersection. Later we use the symbol= to indicate that the view
corresponds to an end of corridor.
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states it found (i.e.a, b andc).
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Figure 4.1:The agent moves among corridor intersections that have the same viewv+. a, b andc are the

distinctive states where this view is observed at.

The elements ofE are as follows:

Action type(ml; travel) ;

CS(s1; a;ml; b) ; CS(s2; b;ml; c) ;

V iew(a; v+) ; V iew(b; v+) ; V iew(c; v+) :

The uniqueness of names axioms associated withE are:

s1 6= s2 ;

a 6= b ^ a 6= c ^ b 6= c :

The domain closure axioms associated withE are:

8s fs = s1 _ s = s2g ;

8ds fds = a _ ds = b _ ds = cg ;

8a a = ml ;

8v v = v + :

Finally, we also have the axioms

8a; type Action type(a; type) � [a = ml ^ type = travel] ;

8a; desc Turn desc(a; desc) � false :

fend of exampleg

4.2.2 The SSH view graph

Schemas can be used to define further representations of the agent’s experiences in the en-
vironment. Two of such representations are theview graphand theSSH causal graph. Next

24



we present the view graph and defer the presentation of the SSH causal graph to section 4.3.

The SSH view graphassociated with a set of experiencesE is the labeled graph
hNodes;Edges; Labelsi such that:

� Nodes = V(E).

� Labels = A(E).

� Edges =f(v; a; v0) : COMPLETION(E) j= hv; a; v0i g.

Example 3

The view graph associated with the set of experiences in example 2 is depicted in figure 4.2.
fend of exampleg

ml

v+

Figure 4.2:View graph associated with the experiences in example 2.

As the example above suggests, the view graph is not very informative when the
same view occurs at different environment states. The agent has to use information other
than the views alone in order to distinguish different environment states (for example, see
chapter 5). However, should the agent have enough sensory capabilities as to distinguish
distinctive states by their views, then the view graph becomes a powerful spatial represen-
tation for reliable navigation. Work in[Sch�olkopf and Mallot, 1995, Franzet al., 1998,
Mallot and Gillner, 2000, Steck and Mallot, 2000] shows how the view graph is consistent
with human navigation abilities.

In the next section we illustrate how using actions and distinctive states the agent
can distinguish environment states. In the next chapter we show how topological informa-
tion can be used to further distinguish environment states.
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4.2.3 CT(E)

Given a set of experiencesE, the SSH causal theoryCT(E) defines when two distinctive
states are indistinguishable at the SSH causal level. We use the predicate

ceq(ds; ds0)

to denote the fact thatdistinctive statesds andds0 arecausallyindistinguishable.14 Infor-
mally, ceq(ds; ds0) is the case whenever distinctive statesds andds0 are indistinguishable
by the actions and views inE. We will assume that actions aredeterministic. Whenever the
agent performs an action at a given distinctive state, it always ends up at the same distinctive
state:

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00 : (4.22)

The SSH causal theory associated with a set of experiencesE, CT(E), is the follow-
ing nested abnormality theory (NATs)[Lifschitz, 1995] (see appendix C, page 219):15

CT (E) = (4.23)

COMPLETION(E) ;

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 4:22)

CEQ block

whereCEQ block is:

CEQ block =

f max ceq :

ceq(ds1; ds2)! ceq(ds2; ds1);

ceq(ds1; ds2) ^ ceq(ds2; ds3)! ceq(ds1; ds3);

ceq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v); (4.24)

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2) (4.25)

g

Next we discuss the axioms definingceq. First at all, the predicateceq is an equiv-
alence relation on the sort of distinctive states.

Theorem 1 The predicate ceq is an equivalence relation.
14In chapter 5 we define when distinctive states are topologically indistinguishable.
15Throughout this paper we assume that formulas are universally quantified.
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Proof. See appendix E (page 229).16

Axiom 4.24 states that indistinguishable distinctive states have the same view. Fi-
nally, axiom 4.25 states that if distinctive statesds andds0 are indistinguishable, then it
should be the case that if actiona has been performed for bothds andds0, the resulting
distinctive states should be indistinguishable. This axiom captures the following intuition:
if ds andds0 are two indistinguishable distinctive states, any sequence of actions executed
at ds andds0 will render the same sequence of views. Indeed, axioms 4.24 and 4.25 allow
us to prove the following useful lemma:

Lemma 1 Let A denote a sequence of action symbols. LetA(ds) denote the distinctive
state symbol resulting from excuting the sequenceA starting at distinctive stateds, or? if
A is not defined fords.17 Then,

ceq(ds1; ds2) ^A(ds1) 6=? ^A(ds2) 6=?

! V iew(A(ds1); v) � V iew(A(ds2); v) :

There is a special case whenceq is an equivalence relation without writing the
axioms stating so. This happens when the result of every action at every distinctive state is
known. In this case, we say that the set of experiences iscomplete.

16Notice thatceq being reflexive does not follow fromceq being symmetric and transitive.
17Given an action symbolA and distinctive stateds, A(ds) = ds0 if the schemahds;A; ds0i has been

observed, otherwise,A(ds) =?. Moreover,A(?) =?. The definition is then extended to action sequences in
the standard way. Notice thatA(ds) being well-defined relies on our assumption that actions are deterministic
(axiom 4.22).
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Definition 2

A set of experiencesE is completewhenever

E j= 8a; ds9ds0hds; a; ds0i :

fend of definitiong

Theorem 2 LetE be a complete set of experiences. LetCT(E)be defined as follows:

CT (E) =

COMPLETION(E) ;

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 4:22)

CEQ block =

f max ceq :

ceq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v);

ceq(ds1; ds2) ^ h ds1; a; ds
0

1 i ^ h ds2; a; ds
0

2 i ! ceq(ds01; ds
0

2)

g

Then the predicateceq is an equivalence relation.

Proof. See appendix E (page 232).

When a set of experiences is complete the predicateceqcaptures the idea that two
distinctive states are the same if they render the same views under any sequence of actions.
Assume thatE is complete and letA = a1; : : : ; an denote a sequence of actions. SinceE

is complete,A(s) 6=? and the formulaV iew(A(ds); v) makes sense.

Theorem 3 LetE be a complete set of experiences. Then,

ceq(ds1; ds2) � 8A; v [V iew(A(ds1); v) � V iew(A(ds2); v)] :

Proof. See appendix E (page 234).

The problem of distinguishing environment states by outputs (views) and inputs
(actions) has been studied in the framework of automata theory[Angluin, 1978, Gold, 1978,
Rivest and Schapire, 1987, Basyeet al., 1995]. In this framework, the problem we address
is the one of finding the minimum automaton (w.r.t. the number of states) consistent with a
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given set of input/output pairs. Without any particular assumptions about the environment
or the agent’s perceptual abilities, the problem of finding this smallest automaton is NP-
complete ([Angluin, 1978, Gold, 1978]). The reader is referred to[Basyeet al., 1995] for
an example of how to use automata to model dynamical systems.

Example 4

Consider the set of experiencesE as in example 2 (page 23) (see figure 4.3a):

Action type(ml; travel) ;

CS(s1; a;ml; b) ; CS(s2; b;ml; c) ;

V iew(a; v+) ; V iew(b; v+) ; V iew(c; v+) :

Since the same view is experienced ata, b andc, the extent ofceq is maximized by declar-
ing ceq = true (i.e. 8x; y ceq(x; y)). Notice that axiom (4.25) is trivially satisfied since no
action has been executed atc.

a cb��
��
��
��

�
�
�
�

��
��
��
��

a b c d��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

a b

Figure 4.3:(a) Distinctive statesa, b andc cannot be distinguished at the causal level. Topological informa-

tion is needed in order to distinguish them. (see text) (b)a, b andc are distinguished given the new information

hc; travel; di.

Thougha, b andc were experienced at different states environment states, at the
causal level they are declared as indistinguishable. This happens because neither the ac-
tions nor the views provide enough information to distinguish them. By using topological
information (i.e. the concepts ofpath andplace in chapter 5) we will be able to distinguish
these distinctive states (see example 8, page 47).

Suppose the agent continues exploring the environment and gets the new informa-
tion

V iew(d; v =); CS(s3; c;ml; d);

as suggested in figure 4.3b. In virtue of lemma 1, it can be seen thatceq(ds; ds0) � ds =

ds0, and consequently all distinctive states refer to different environment states.
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fend of exampleg

As shown in the following example,there could exist different non-isomorphic
models that maximize the extent of the predicateceq.

Example 5

LetE be the set defined by the following formulae:

Action type(ml; travel) ;

CS(s1; a;ml; b) ; CS(s2; c;ml; d) :

V iew(a; v) ; V iew(b; v) ; V iew(c; v) ; V iew(d; v1)

There are two different models forceq. In one of them,ceq(a; b) ^ :ceq(b; c) is the case,
and in the other one:ceq(a; b) ^ ceq(b; c) is the case. Notice that in virtue of axiom 4.25,
in both of these models:ceq(a; c) is the case.
fend of exampleg

Different models ofCT (E) generally arise when the set of experiencesE is incom-
plete (i.e. the agent has not completely explore the environment) or weak sensors inputs at
different environment states are classified as the same view.

Example 6

Consider the environment depicted in figure 4.4. The agent visits the different dis-
tinctive states as suggested by their numbers in the figure. The same travel actionml

is performed when traveling from a corner to the intersection (i.eh 1;ml; 2 i) and vicev-
ersa (i.e. h 4;ml; 5 i). A turn around action is performed when reaching a corner (i.e.
h 3; turn around; 4 i,h 7; turn around; 8 i, etc.). Assume that the different corners have
the same views (i.e. view(1) = view(4) = view(8), view(3)= view(7) = view(11)), and views
associated with the other distinctive states are different.

Three models ofCT (E) can be associated with the explorationE of the T-environment:

1. Model 1:ceq(8; 12); ceq(12; 8); ceq(x; x).18

2. Model 2:ceq(1; 12); ceq(12; 1); ceq(x; x).

3. Model 3:ceq(4; 12); ceq(12; 4); ceq(3; 11); ceq(11; 3); ceq(2; 10); ceq(10; 2); ceq(x; x).

18The extent ofceq in model 1 is defined byf(8; 12); (12; 8)g [ f(x; x) : x = 1; : : : ; 12g.
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Figure 4.4:The agent visits the different distinctive states in the order suggested by their numbers. The same

view occurs at the different corners (i.e view(1)= view(4) = view (8)). Three different causal models can be

associated with the agent exploration of this T-environment (see text).

Notice that in all the models above,:ceq(1; 4), :ceq(1; 8), :ceq(4; 8). For in-
stance, fromh 1;ml; 2 i,h 4;ml; 5 i, andview(2) 6= view(5) we conclude that:ceq(1; 4).
Notice that although dstate12 is at the same environment state as dstate4, it is possible that
ceq(1; 12) or ceq(8; 12). This is the case since no action has been performed at dstate12.

Notice that the models ofCT (E) are maximal with respect to the set inclusion
for ceq. The number of elements in the possible extents ofceq could vary, and con-
sequently the number of different environment states represented by the models of
CT (E). For instance, the three models above represent11, 11 and10 environment states
respectively.19

Finally, notice that all the models above are possible since at the causal level turn
and travel actions do not bear any spatial meaning. Should we consider topological infor-
mation, only model 3 above will be possible (see example 15, page 53).fend of exampleg

4.3 The SSH causal graph

The SSH causal graph associated with a set of experiencesE is the labeled graphhNodes;Edges; Labelsi

such that:

� Nodes =DS(E)=ceq .

� Labels =A(E).

� Edges =f([ds]; a; [ds]0) : COMPLETION(E) j= hds; a; ds0i g.
19See example 34 (page 148) for a program trace illustrating how the causal models change as the exploration

of the T-environment proceeds.
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whereDS(E)=ceq denotes the set of equivalence classes ofDS(E)moduloceq, and [ds]
denotes the equivalence class ofds givenceq.

Example 7

The SSH causal graph associated with the set of experiences in example 4 is shown in
figure 4.5. Notice that the causal graph and the view graph can be isomorphic. However, in
general, the causal graph makes states distinctions that cannot be derived from views alone.

ml

{a,b,c} ml

ml

ml

{d} {c}

{b}{a}

ml

ml
v+ v

a b c

Figure 4.5:SSH causal graph associated with the set of experiences in figures 4a and 4b. (c) view graph

associated with the set of experiences in figure 4b. The causal graph ina is isomorphic to the view graph

associated with the experiences in figures 4a (Example 3, page 25).

fend of exampleg

4.4 Calculating the models of CT(E)

The Herbrand models ofCT (E) are in a one to one correspondence with the answer sets
[Gelfond and Lifschitz, 1991] of the logic program in figure 4.6.20 In this program, theX
andY variables range over distinctive states and the variableV ranges over views inE.
The sets of rules 4.26 and 4.27 are the facts corresponding to the agent’s experiences. Rule
4.28 states that an answer set of the program should becompletewith respect toceq. Rules
4.29-4.31 requireceq to be an equivalence class. Rules 4.31 and 4.32 are the counterpart of
axiom 4.24. Rule 4.34 is the counterpart of axiom 4.25. In order to define the maximality
condition of ceq, the auxiliary predicatep(X;Y;X1; Y 1) is introduced. This predicate
reads as“If X andY were the same, thenX1 andY 1 would be the same”. The predicate

20See appendix D, page 226, for the definition and properties of answer sets. See appendix F, page 236, for
a proof of the correctness of the logic program in Figure 4.6.
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fcs(ds; a; ds0) : : cs(ds; a; ds0) 2 Eg (4.26)

fview(ds; v) : : view(ds; v) 2 Eg (4.27)

ceq(X; Y );:ceq(X;Y ) :

p(X; Y;X; Y ) :

p(X; Y;X2; Y 1) p(X;Y;X1; Y 1); ceq(X1;X2):

p(X; Y;X1; Y 2) p(X;Y;X1; Y 1); ceq(Y 1; Y 2):

p(X; Y;X2; Y 2) p(X;Y;X1; Y 1); cs(X1; A;X2); cs(Y 1; A; Y 2):

p(X; Y; Y 1;X1) p(X;Y;X1; Y 1):

p(X; Y;X1; Y 2) p(X;Y;X1; Y 1); p(X;Y; Y 1; Y 2):

dist(X; Y ) p(X;Y;X1; Y 1); view(X1; V ); not view(Y 1; V ):

dist(X; Y ) p(X;Y;X1; Y 1); not view(X1; V ); view(Y 1; V ):

ceq(X; Y );:ceq(X;Y ) : (4.28)

 not ceq(X;X): (4.29)

 ceq(X;Y ); not ceq(Y;X): (4.30)

 ceq(X;Y ); ceq(Y;Z); not ceq(X;Z): (4.31)

 ceq(X;Y ); view(X;V ); not view(Y; V ): (4.32)

 ceq(X;Y ); not view(X;V ); view(Y; V ): (4.33)

 not ceq(X1; Y 1); ceq(X;Y ); cs(X;A;X1); cs(Y;A; Y 1): (4.34)

 not ceq(X;Y ); not dist(X; Y ): (4.35)

Figure 4.6:Logic program associated with CT(E).

dist(X;Y ) defines when distinctive statesX andY are distinguishable. Constraint 4.35
establishes the maximality condition onceq: ceq(X;Y ) should be the case unlessX andY
are distinguishable.21 In section 9.4.1 (page 147) we illustrate the use of the program for a
simulated robot navigating a T-like environment.

21We have implemented this logic program in Smodels[Niemel�a and Simons, 1997]. In the implementation,
one has to add variable domain restrictions to the different rules. For example, rule

ceq(X;Y );:ceq(X; Y ) :

becomes
ceq(X;Y );:ceq(X; Y ) dstate(X); dstate(Y )

wheredstate is our predicate to identify the sort of distinctive states.
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4.5 Summary

SSH schemas summarize the continuous interactions of the agent in the environment. This
is done by storing the initial and final distinctive states (and their corresponding views) for
any action execution. Schemas can then later be used for directing the agent behavior, plan-
ning, or distinguishing distinctive states sharing a same view.

By considering only the views associated with the initial and final distinctive states
of a schema, we defined theSSH view graph(section 4.2.2, page 24), which relates differ-
ent views by actions linking them. When the agent can discern most distinctive states by
their views, the view graph can be used for planning routes between different distinctive
states. The view graph representation is consistent with human navigation abilities[Mallot
and Gillner, 2000, Steck and Mallot, 2000].

By considering actions as well as views, the agent can further distinguish distinc-
tive states. Two distinctive states,ds andds0, are distinguishable, if there is a sequence
of actions that when executed atds renders a different sequence of views than when it is
executed atds0. “Spatial properties” are not associated with actions when used to distin-
guish distinctive states. This may prevent the agent from differentiating distinctive states
that correspond to different environment states. In the next chapter we show how action’s
“spatial properties” can be used to create a different ontology from the causal one - that of
placesandpaths- which in turn can be used to further differentiate distinctive states.

In section 4.2.3 (page 26) we defined the predicateceq which is the case for dis-
tinctive states that are not distinguishable by actions and views. We investigated whether
the axioms definingceq (the CEQ block) were necessary and stated conditions under
which they can be simplified (see appendix E, Page 229). We then defined theSSH causal
graph whose nodes are classes of distinctive states (classes w.r.tceq). This representa-
tion is akin to the view graph although it imposes further refinement in the set of en-
vironment states that are consistent with the agent experiences. The problem of iden-
tifying the minimum set of distinctive states consistent with the agent’s experiences is
equivalent to the one of identifying the minimum automata consistent with a set of in-
put/output pairs. This problem turns out to be NP-complete when no special properties
about the actions, views, or the environment are assumed[Angluin, 1978, Gold, 1978,
Basyeet al., 1995].

Finally, in section 4.4 we defined a logic program whose answer sets are in an one
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to one correspondence with the models of the SSH causal theory. In appendix F we present
a proof of this claim.
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Chapter 5

Topological Level

Relations among the distinctive states and trajectories defined by the control level, and
among their summaries as schemas at the causal level, are effectively described by the
topological network. At the SSH topological level the ontology consists ofplaces, paths
andregions, with connectivity and containment relations among them.

Roughly speaking, aplacecorresponds to a set of distinctive states linked by turn
with no travel actions. Similarly, apathcorresponds to a set of distinctive states linked by
travel with no turn actions (except forturn aroundactions). Places and paths are created
by abduction, positing the minimal set of places, paths, and regions required to explain the
available observations (i.e. a set of schemas).

Grouping places intoregionsallows an agent to reason efficiently about its spatial
knowledge. Regions themselves can be grouped to form new regions. In chapter 8, we will
study how to formally include this hierarchy of regions in the SSH. In the next chapter we
defineboundary regionsassociated with paths. Informally, a path has associated three dis-
joint regions: the set of places in the path, the set of places to the left of the path, and the set
of places to the right of the path. Boundary regions allow the agent to distinguish distinctive
states, for two distinctive states can be considered different if they are in different boundary
regions (see example 23, page 84).

The construction of the topological map is usually described as an abduction pro-
cess[Kuipers and Byun, 1988, Kuipers and Byun, 1991, Kuiperset al., 1993, Kuipers, 1996,
Kuipers, 2000]. This abduction process is defined in procedural terms inspired by the cur-
rent implementation of the SSH. In this chapter we define the circumscriptive theory asso-
ciated with the SSH topological level. The models associated with this theory define the
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preferred modelsto be constructed by the SSH abduction process.

We will present two versions of the SSH topological theory. In the first version
(section 5.1) we make the assumption that paths cannot be self intersecting nor two differ-
ent paths can converge to a same distinctive state (see figure 5.1). In the second version
(section 5.5), a general topological theory makes these assumptions defeasible and embod-
ies the default that “normally, self-intersecting or convergent paths do not exist”. While
the later theory is more general, it is harder to calculate the consequences of its different
defaults. However, both theories are related in that any map with respect to the simpler
theory is a map with respect to the general theory.

a b

Figure 5.1:(a) Self intersecting paths. (b) Convergent paths.

This chapter is organized as follows. Section 5.1 formally defines the models asso-
ciated with the SSH topological map. Section 5.3 illustrates the case when the topological
map is not unique. In section 5.4 we show how to simplify the theory under the assumption
that views uniquely identify distinctive states. We present the general SSH topological the-
ory in section 5.5. An algorithm to calculate the models of the topological theory is defined
in section 5.6. Proofs for the different claims made in this chapter are presented in appendix
B (page 214).

5.1 The SSH Topological Theory

As in chapter 4, we assume that the agent’s experiences in the environment are given by
a formulaE (see section 4.2, page 21). We are to define the SSH topological theory,
TT (E), associated withE. The language of this theory is a sorted language with sorts
for places, pathsandpath directions. The main purpose of the topological theoryTT (E)
is to minimize the set of topological paths and topological places consistent with the given
experiencesE.

Within the sort of places, we distinguish betweentopological placesand regions.
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A topological place is a set of distinctive states linked by turn actions. A region is a set of
places. We use the predicatestpathandis region to identify these subsorts. A path defines
an order relation among places connected by travel with no turn actions. They play the role
of streets in a city layout. Among paths,topological pathscorrespond to those paths whose
places are topological places. We use the predicatetpath to identify these paths. Other
paths could exists whose places are regions. We use the predicateroute to identify these
paths.

The distinctions between topological places and regions and between topological
paths and routes will allow the agent to learn from its own experiences as well as from
given information. For example, the agent could learn about places and paths by being told,
or by “reading” a map. Our focus in this chapter is on describing the map learned from
actual experiences. We postpone the study of regions until chapters 6 and 8.

We require the sorts ofplaces and paths to be infinite. This is not to say that
the SSH topological map has infinite number ofplaces or paths. As explained in sec-
tion 5.3 (page 59), given a model of our theory, the SSH topological map corresponds to
the submodel obtained by restricting the different predicates totopological places, regions,
topological pathsandroutes. Sincetopological placesare identified with set of distinctive
states andtopological pathsare identified with sequences of distinctive states, the topolog-
ical map associated with a finite set of schemas (and so a finite set of distinctive states) has
a finite number oftopological placesand topological paths.1 Our requirement of infinite
places andpaths allow us to compare any two models of the theory. Example 22 (page 67)
illustrates the use of this requirement.

A path has associated two directions,pos and neg. A path direction provides a
frame of reference to establish the order in which places in a path are arranged or whether a
place is to the right or left of the path (see boundary regions in chapter 6). The sort of path
directions is completely defined byposandneg:2

pos 6= neg ; (5.1)

8dir fdir = pos _ dir = negg : (5.2)

The language of the SSH topological level includes the following predicates:3

1. teq(ds,ds’): distinctive statesds andds0 aretopologically indistinguishable.
1See proof in appendix B, theorem B, page 216.
2For a directiondir,�dir is defined such that�pos = neg and�neg = pos.
3Later we will make precise the informal meaning of these predicates.
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2. tplace(p): placep is atopologicalplace.

3. is region(r): placer is aregion.

4. tpath(pa): pathpa is atopologicalpath.

5. route(pa): pathpa is aroute.

6. on(pa,p): placep is onpathpa.

7. order(pa,dir,p,q): placep is beforeplaceq, when facing directiondir on pathpa.

8. at(ds,p): distinctive stateds is atplacep.

9. along(ds,pa,dir): distinctive stateds is alongpathpa in directiondir.

The SSH topological theory associated withE, TT(E) , is the following nested ab-
normality theory (NATs)[Lifschitz, 1995] (see appendix C, page 219):45

TT (E) = (5.3)

there exist infinitely many places ;

there exist infinitely many paths ;

:9p [tplace(p) ^ is region(p)] ; (5.4)

:9pa [tpath(pa) ^ route(pa)] ; (5.5)

Axioms 5:1� 5:2 ;

COMPLETION(E) ;

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 4:22)

T block ;

f min is region; min route :

AT block

g

Axiom 5.4 says that topological places and regions are two subsorts of places. Sim-
ilarly, axiom 5.5 says that topological paths and routes are two subsorts of paths. The
minimization criteria establishes that we are interested in models where the universe of
these subsorts are as small as possible in order to explainE. Further requirements on paths

4A block of the form fC1; : : : ; Cn; minP1; : : : ;minPk : A1; : : : ; Amg denotes the set of blocks
fC1; : : : ; Cn; minP1 : A1; : : : ; Amg, : : :, fC1; : : : ; Cn; minPk : A1; : : : ; Amg.

5The condition that the sorts of places and paths are infinite can be formalized requiring the existence of a
bijection between these sorts and the natural numbers.
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and places will be given by the blockAT block. In particular, since in this chapter we do
not define axioms using regions or routes,6 it is the case that the following two default
conclusions follow fromTT (E):

8p :is region(p) ; 8pa :route(pa) :

That is, in this chapter all places and paths we deal with are topological places and topolog-
ical paths respectively.

The blockT block defines the properties of the predicatesdturn, dtravel, and ~travel.dturn is the equivalence closure of the schemash�; turn; �i; dtravel and ~travel are the equiv-
alence and transitive closure of the schemash�; travel; �i respectively.

T block = (5.6)

f min dturn;min dtravel;min ~travel :

hds; turn; ds0i ! dturn(ds; ds0);
hds; travel; ds0i ! dtravel(ds; ds0) ^ ~travel(ds; ds0);

dturn(ds; ds);dturn(ds; ds0)! dturn(ds0; ds);dturn(ds; ds0) ^ dturn(ds0; ds00)! dturn(ds; ds00);
dtravel(ds; ds);dtravel(ds; ds0)! dtravel(ds0; ds);dtravel(ds; ds0) ^ dtravel(ds0; dr) ! dtravel(ds; dr);
~travel(ds; ds0) ^ ~travel(ds0; ds00)! ~travel(ds; ds00)

g

The blockAT block is the heart of our theory. It defines how the agent groups
distinctive states intoplaces, and howplacesare ordered bypaths. The purpose of this
block is to define the extent of the predicatestpath, tplace, at, along, order, onandteq. The
block has associated the circumscription policy7

circ tpath � tplace var ~SSHpred

6The predicatesis region androute do not occur inAT block. In chapters 6 and 8 we will add axioms to
AT block including these predicates.

7The symbol� indicates prioritized circumscription (see[Lifschitz, 1994] section 7.2, also appendix C,
page 219).
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where ~SSHpred stands for the tuple of predicates
hat; along; order; on; teq; turn eq; travel eq; i.8 This circumscription policy
states that a minimum set of topological paths is preferred to a minimum set of topological
places. The blockAT block is defined as follows:9 10

AT block = (5.7)

f max teq :

teq is an equivalence relation ; (5.8)

teq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v); (5.9)

teq(ds1; ds2) ^ h ds1; a; ds
0

1 i ^ h ds2; a; ds
0

2 i ! teq(ds01; ds
0

2) (5.10)

teq(ds1; ds2)! 8p [at(ds1; p) � at(ds2; p)] ^ (5.11)

8pa; dir [along(ds1; pa; dir) � along(ds2; pa; dir)]

hds; Turn; ds0i ! :teq(ds; ds0) ; (5.12)

hds; turnAround; ds0i ^ hds; turnAround; ds00i ! teq(ds0; ds00) ; (5.13)

h ds1; turnAround; ds2 i ^ h ds2; turnAround; ds3 i ! teq(ds1; ds3) ; (5.14)

at(ds; p)! tplace(p); (5.15)

9!p at(ds; p); (5.16)

turn eq(ds1; ds2) � 8p [at(ds1; p) � at(ds2; p)] ; (5.17)

fmin turn eq : (5.18)

teq(ds1; ds2) ^ teq(ds3; ds4) ^ dturn(ds2; ds3)! turn eq(ds1; ds4);

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

along(ds; pa; dir)! tpath(pa); (5.19)

f min along : (5.20)

8The predicatestravel eq and turn eq are “auxiliary” predicates used in our topological theory. Al-
though they are completely defined in terms ofteq, dturn and dtravel, they need to vary in the circumscription
policy. In order to see why this is the case consider the statementsCIRC [(Q! F ) ^ P � Q;F ;Q] and
CIRC [(Q! F ) ^ P � Q;F ;Q;P ]. In both casesF is circumscribed given the theory(Q! F )^P � Q.
Notice thatP is completely defined in terms ofQ. However, it is the case that

CIRC [(Q! F ) ^ P � Q;F ;Q] � [P � Q � F ] ;

CIRC [(Q! F ) ^ P � Q;F ;Q;P ] � [P � Q � F � false] :

AlthoughP is defined in terms ofQ, it is necessary to vary both in order to make a stronger assertion about the
minimality of F .

9Figure 5.2, page 43, summarizes the dependencies among the predicates defined by theAT block.
10See page 224 for NAT’s notation.
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h ds; travel; ds0 i ! 9pa; dir [along(ds; pa; dir) ^ along(ds0; pa; dir)] ; (5.21)

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir); (5.22)

teq(ds1; ds2)! along(ds1; pa; dir) � along(ds2; pa; dir) (5.23)

g

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1; (5.24)

at(ds1; p)^at(ds2; p)^along(ds1; pa; dir)^along(ds2; pa; dir)! teq(ds1; ds2);(5.25)

[hds; turn desc; ds0i ^ turn desc 6= turnAround ^ (5.26)

along(ds; pa; dir) ^ along(ds0; pa1; dir1)]! pa 6= pa1;

f min order : (5.27)

[h ds; travel; ds0 i ^ at(ds; p) ^ at(ds0; q)^ (5.28)

along(ds; pa; dir) ^ along(ds0; pa; dir)]! order(pa; dir; p; q);

order(pa; pos; p; q) � order(pa; neg; q; p); (5.29)

order(pa; dir; p; q) ^ order(pa; dir; q; r) ! order(pa; dir; p; r) (5.30)

g

:order(pa; dir; p; p); (5.31)

fmin on : at(ds; p) ^ along(ds; pa; dir)! on(pa; p) g (5.32)

on(pa; p) ^ on(pa; q) ^ tpath(pa)! (5.33)

9ds1; dir1; ds2; dir2 [at(ds1; p) ^ along(ds1; pa; dir1) ^ at(ds2; q)^

along(ds2; pa; dir2) ^ travel eq(ds1; ds2)] ;

fmin travel eq : (5.34)dtravel(ds1; ds2)! travel eq(ds1; ds2); (5.35)

h ds1; turnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1) (5.36)

teq(ds1; ds2) ^ teq(ds3; ds4) ^ travel eq(ds2; ds3)! travel eq(ds1; ds4);

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

circ tpath � tplace var ~SSHpred (5.37)

g

We discuss these axioms in turn.

Predicateteq stands fortopologically equal. Wheneverteq(ds1; ds2) is the case,
we can considerds1 andds2 as denoting the same environment state. Ifteq(ds1; ds2) is
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{31}

tplace(p)  on(pa,p)  order(pa,dir,p,q)   tpath(pa)

 turn(ds,ds’)                                   travel(ds,ds’)

<ds,turn,ds’>                                  <ds,travel,ds’>

turn_eq(ds,ds’)                              travel_eq(ds,ds’)

at(ds,p)                                         along(ds,pa,dir)

teq(ds,ds’)
{7: AT=block}

{15}

{16,17}

{32,33} {27}
{20, 24−26}

{23}

{34}

{6}{6}

Figure 5.2: Dependency among predicates inTT (E). Labels on the graph’s arrows refer to the axioms

relating the predicates pointed by the arrows.

Distinctive states related by turns moduloteq (turn eq) must beat the same topological place (tplace). Dis-

tinctive states related by travels moduloteq (travel eq) arealong the same topological path (tpaths). Know-

ing at which places and along which paths distinctive state are, determines what places areon what paths. The

order of places on a path is derived from travels among distinctive states along a path.

Since the extents oftravel eq andturn eq must be defined in order to determine places and paths, one needs

to know what distinctive states areteq. The arrows pointing toteq on the top of the diagram indicate that

among the possible interpretations forteq, the preferred models of the theory select those that lead to a map

where a minimum set of paths and places are needed to explain the schemas at the bottom of the diagram. An

efficient search algorithm can be defined (section 5.6, page 71) to explore the space ofteq possibilities given a

set of schemas.
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the case,ds1 andds2 cannot be distinguished by views and actions (axioms 5.9 and 5.10),
they are at the same place and along the same path direction.11

Axiom 5.12 states that aturn action takes the agent from one distinctive state to
a different one. In particular we assume that a schema of the formhds; Turn; dsi is not
included in the agent’s experiences. Axiom 5.13 states that there is a unique (moduloteq)
distinctive state resulting from performing a turn around action. After two turn around ac-
tions the agent is back to the same dstate (Axiom 5.14). Turn around actions are special
since they link distinctive states along the same path but in opposite directions (axiom 5.22).

Axioms 5.16-5.17 state how the agent groups distinctive states into places. Every
distinctive state is at a unique topological place (axiom 5.16). Whenever the agentturns,
it stays at the same topological place (axiom 5.17). Distinctive states grouped into a topo-
logical place should beturn connected (moduloteq) (axiom 5.17).12

Travelactions among distinctive states are abstracted to topological paths connect-
ing the places associated with such distinctive states (axioms 5.21 and 5.28). Travel ax-
ioms are explained in terms of the two related predicates,along andorder. Both of these
predicates are the minimum ones explaining travel actions and satisfying other properties
included in their respective blocks 5.20 and 5.27.

Block 5.20 defines the predicatealong. Whenever an agentturns around, it stays
in the same path but facing the opposite path’s direction (axiom 5.22). Axiom 5.23 is a
trivial consequence of the definition ofteq but it needs to be included in the block so that
the interpretation ofalong has tuples other than the ones explicitly derived from schemas
(see example 10, page 49).

There are further restrictions on the properties ofalong. For instance, a distinctive
state is along at most one path (axiom 5.24). Since axiom 5.24 provides “negative” infor-
mation aboutalong, it does not need to be included in block 5.20 (see proposition 4 in
[Lifschitz, 1994]). Axiom 5.24 prevents the existence of different paths that converge to the
same distinctive state (see example 18, page 57). In section 5.5 we will make this axiom a
default.

11It is possible that the maximization ofteq in theAT block implies thatteq is an equivalence relation
without explicitly requiring so. However at this point we do not have a proof for this claim.

12Block 5.18 states that the predicateturn eq corresponds to the relationdturn moduloteq.
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Turn actions other thanturnAroundchange the path the initial and final distinctive
states linked by the action are along (axiom 5.26). This axiom allows the agent to conclude
the existence of different paths once it turns right or left at a place (see Example 13, Page
51). This axiom prevents the existence of self-intersecting paths as illustrated in figure 5.1.
In section 5.5 we will make this axiom a default.

Block 5.27 defines the predicateorder. In addition to explaining travel actions,
order defines an order among the places on a path satisfying the following two properties:
i) the order of places in a given path direction is the inverse of the order of places in the
other path direction (axiom 5.29), and ii), the order of places in a path is transitive (axiom
5.30).

There are further restrictions on the properties oforder: i) the order of places in
a path should be non-reflexive (axiom 5.31), and ii) the agent has to have traveled among
the places on the same path (axiom 5.33). Since these requirements provide “negative” in-
formation aboutorder, they do not need to be included in block 5.27 (see proposition 4 in
[Lifschitz, 1994]). Notice that we rule out the existence of circular paths (axiom 5.31). In
section 5.5 we will make this axiom a default.

Axiom 5.33 requires the agent to have traveled among the places on a same path.
travel eq defines when two distinctive states are linked by travel actions without turns
(except forTurnAround actions) (see block 5.34). Example 14 illustrates how by using
travel eq the agent can minimize the set of topological paths.

The SSH topological theoryTT (E) describes those places,tplaces, and paths,
tpaths, that capture the intended meaning ofturn andtravel actions. This is done in such
a way that a minimum number of topological places and topological paths are identified.
The blockAT block formally states this minimality criterion. A minimum set of topologi-
cal paths is identified even at the cost of increasing the set of topological places. Figure 5.2
shows the dependency among the different predicates inTT (E).

Remark. Axiom 5.24 implies a stronger version of axioms 5.21 and 5.28, namely:

at(ds; p) ^ at(ds0; q) ^ ~travel(ds; ds0)!

9!pa; dir [order(pa; dir; p; q) ^ along(ds; pa; dir) ^ along(ds0; pa; dir)] :

Using the above statement in combination with axiom 5.31 we deduce that whenever the
agent has directly traveled between two distinctive states, the places associated with these
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distinctive states are different:

~travel(ds; ds0) ^ at(ds; p) ^ at(ds0; q)! p 6= q

The statement above can be rewritten as

Corollary 1

~travel(ds; ds0)! place(ds) 6= place(ds0)

whereplace(ds) denotes the unique topological place that distinctive stateds is at (axiom
5.16).

Moreover, consecutive travels among distinctive states occur along the same topo-
logical path, as stated in the next corollary.

Corollary 2

n�1̂

i=1

~travel(dsi; dsi+1)!

9!pa; dir

"
tpath(pa) ^

n̂

i=1

forder(pa; dir; place(dsi); place(dsi+1)) ^ along(dsi; pa; dir)g

#

While the sorts ofplaces and paths for a modelM of TT (E) are infinite, the
interpretation oftpath andtplace is finite. Indeed,

Theorem 4 The topological map associated with a finite set of experiencesE has a finite
number of topological paths and a finite number of topological places.

Proof. See appendix B, page 216.2

Finally, it is important to note that our circumscription policy 5.37 and the fact that
the sort of paths and places is infinite implies the following fact:13

Theorem 5 Any two models of the SSH topological theory have the same number of topo-
logical paths and the same number of topological places.

Proof. See appendix B (page 216).2

However, theorem 5 does not mean that a unique map is associated with a set of
schemas. As shown in example 19 (page 59) the SSH topological theory could have more

13Recall that the interpretations fortpath andtplace are finite.

46



than one non-isomorphic model.

In order to prove that distinctive statesds1 and ds2 are at different topological
places, one has to prove that:turn eq(ds1; ds2). The following theorem states a strong
condition for when this is case.

Theorem 6 Letds1 be a distinctive state symbol such that14

8ds2 62 [ds1]dturn; [ds2]teq \ [ds1]dturn = ; :

Then
8ds2 62 [ds1]dturn; place(ds2) 6= place(ds1) :

Proof. The hypothesis of the theorem implies8ds2 62 [ds1]dturn; :turn eq(ds2; ds1) (see
appendix B, page 217).2

fend of remarkg

The next examples illustrate the interplay among the axioms in ATblock.

Example 8

a cb��
��
��
��

�
�
�
�

��
��
��
��

Figure 5.3:Distinctive statesa, b andc cannot be distinguished at the causal level (see example 4, page 29).

Using the concepts of paths and places these distinctive states become distinguishable.

Consider the set of experiencesE as in Example 4 (page 29), Figure 5.3. From ax-
iom 5.16 we conclude that there exist placesP;Q; andR, such thatat(a; P ); at(b;Q) and
at(c;R). Since it is the case that ~travel(a; b), from corollary 1 we conclude thatP 6= Q.
Similar arguments allow us to conclude thatQ 6= R andP 6= R. Consequently, the topo-
logical map associated withE has three topological places. Distinctive statesa andc can
be distinguished though they are “causally indistinguishable” (i.e.ceq(a; c) ^ :teq(a; c)).

14Given an equivalence relationR, [x]R denotes the equivalence class ofx according toR.
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From corollary 2 we deduce that there exist a topological pathPa and directionDir
such thatorder(Pa;Dir; P;Q) andorder(Pa;Dir;Q;R). Consequently, the topological
map has one topological path and three topological places.
fend of exampleg

Only distinctive states linked by turn actions can be grouped into a topological place
(axiom 5.17). Under incomplete information this constraint could imply the existence of
more places than the ones needed.

Example 9

Consider the set of experiencesE indicated by the formulae:
h a; travel; b i; h b; turnAround; c i; h c; travel; d i, in addition to the views associ-
ated with the distinctive states. Moreover, assume that views uniquely distinguish the
different distinctive states. The model forTT(E) is presented in figure 5.4c. The model has
three places and one path. Not having aturn action relatingd anda prevents the agent
from grouping these distinctive states into the same place, as suggested in figure 5.4b. Next
we show why this is the case.

�
�
�
�

�
�
�
� �

�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(a) (b) (c)

C
Pa

BPaABPaA
b

c
a

d

Figure 5.4: (a) Consider the set of experiences E given by

h a; travel; b i; h b; turnAround; c i; h c; travel; d i corresponding to the agent navigating in a rect-

angle environment. The topological map associated withE, has three places and one path (c) rather than two

places and one path (b). Distinctive statesa andd cannot be grouped into the same topological place since they

are not linked by turn actions. Should the agent turn around and experience the schemah d; turnAround; a i,

it will consider (b) as the topological map and disregard (c).

Since views uniquely distinguish distinctive states, thenteq(x; y) � x = y.15

From the definition ofturn eq (block 5.18), it follows then thatturn eq = dturn.
We can calculatedturn as follows. The onlyturn action mentioned inE is the
one in schemah b; turnAround; c i. Consequently, from block 5.6 we deduce

15See section 5.4, page 60.
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dturn(ds; ds0) � [ds = ds0 _ fds = b ^ ds0 = cg _ fds = c ^ ds0 = bg]. In par-
ticular,:turn eq(a; d). In virtue of axiom 5.17 we cannot conclude thata andd are at the
same topological place.

Notice that the model associated withE has three places and one path. The order
of places in the path is not total. Should the agent turn around and experience the schema
h d; turnAround; a i, the new set of experiences will have a model with two places and one
path as suggested in figure 5.4b.
fend of exampleg

The next example shows the interplay betweenteq andalong as well as the effect
of maximizingteq.

Example 10

e d c
a, a’

b, b’

Figure 5.5:The agent moves back and forth from one intersection to the other. The second time the agent

visits distinctive statesa andb, it gives the namesa0 andb0. Our topological theory will conclude that these

names correspond to the previously visiteda andb.

Consider the set of schemas

ha; turnRight; bi hb; travel; ci hc; turnAround; di

hd; travel; ei he; turnRight; a0i ha0; turnRight; b0i

consistent with an agent going from one four-way intersection to another (see figure 5.5).
Let’s consider the models of these schemas. From our axioms, at least one path and three
places must exist:

We know thatP 6= Q andQ 6= R. By having teq(a; a0), we can complete the
model such thatP = R. The question rises of whether we can maximizeteq by asserting
teq(b; b0). If we did not include axiom 5.23 in thealong block (block 5.20), we could not
maketeq(b; b0) since there is not tuple of the formalong(b0; �; �) (axiom 5.11). However,
by including this axiom in the block, we are allowed to have a model in whichteq(b; b0) is
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Places Paths Along teq
P = a,b Pa: b-c d-e along(b,Pa,dir) along(c,Pa,dir):teq(a; b), :teq(c; d)
Q = c,d along(d,Pa,-dir) along(e,Pa,-dir):teq(e; a0), :teq(a0; b0)
R = e,a’,b’

the case.16 The maximization ofteq will force the model to haveteq(b; b0).
fend of exampleg

Example 11

Consider an extension of the previous example by adding the schemahb0; travel; c0i. We
have the following situation:

Places Paths Along
P =fa,bg Pa: b-cfd-eg along(b,Pa,dir) along(c,Pa,dir)
Q = fc,dg along(d,Pa,-dir) along(e,Pa,-dir)
R = fe,a’,b’g
S =fc’g Pa1: b’-c’ along(b’,Pa1,dir1) along(c’,Pa1,dir1)

By making teq(b; b0) it is possible to havePa = Pa1. Notice that in this case
one does not need to consider axiom 5.23 inside the along block (block 5.20). This is the
case since there are tuples of the formalong(b0; �; �) implied by the schemas. By making
teq(c; c0), one show that it is possible to haveQ = S and so a model with two places and
one path. It remains to see that by maximizingteq, teq(a; a0) will be the case.17

fend of exampleg

The next example illustrates how sometimes the maximization ofteq might give
unexpected results.

Example 12

Consider the schemasfha; turnRight; bi; hb; turnRight; cig wherea, b and c have the
same view. From axiom 5.12,:teq(a; b) and:teq(b; c) are the case. Maximizingteq will

16The problem is that a travel action has not been performed atb0 and so the schemas do not support a tuple
of the formalong(b0; �; �).

17Without maximizingteq nothing forces us to identifya anda0.
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imply teq(a; c).

One could argue that the maximization is doing the right thing since there is not
much one can deduce fromturnRight schemas alone. Either extra information (more
schemas) or metrical information is needed to distinguisha from c (if indeed they are dis-
tinguishable).
fend of exampleg

By requiring the agent to have traveled among the places on a same path (axiom
5.33), different paths can be identified. The next example illustrates the case.

Example 13

(a) (b)

D

pa2

C

pa1

BpaA

ds3

ds1

ds4

ds2

ds6
ds5

Figure 5.6:By requiring the agent to have traveled among the places on a same path (axiom 5.33), different

paths can be identified. (a) The agent visits the different distinctive states in the orderds1; ds2; : : : ; ds6. (b)

depicts the topological map associated with (a). Three paths instead of only two are required to explain the

agent experiences (see text).

Suppose the agent explores the environment depicted in figure 5.6a obtaining the
following schemas:

hds1; travel; ds2i

hds2; turnRight; ds3i hds3; travel; ds4i

hds4; turnLeft; ds5i hds5; travel; ds6i

We assume that the agent associates different views with the different distinctive
states in the example. Axiom 5.16 implies that there exist placesA,B,C andD (see figure
5.6b) such that

at(ds1; A); at(ds2; B); at(ds3; B); at(ds4; C); at(ds5; C); at(ds6;D) :
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Moreover, corollary 1 implies that

A 6= B ; B 6= C ; C 6= D :

Under our assumption that all distinctive states in the example have different views, it fol-
lows then thatteq(ds1; ds2) � ds1 = ds2 and thus dturn = turn eq (see section 5.4).
Since:dturn(ds1; ds3), :dturn(ds1; d5) and:dturn(ds2; ds6) are the case, it follows that

A 6= C; A 6= D; B 6= D :

Consequently, placesA, B, C andD are all different.

Axiom 5.21 implies that there exist pathsPa; Pa1; Pa2, and directions
dir; dir1; dir2, such that:

order(Pa; dir;A;B); along(ds1; Pa; dir); along(ds2; Pa; dir);

order(Pa1; dir1; B;C); along(ds3; Pa1; dir1); along(ds4; Pa1; dir1);

order(Pa2; dir2; C;D); along(ds5; Pa2; dir2); along(ds6; Pa2; dir2) :

Since we have the schemashds2; turnRight; ds3i andhds4; turnLeft; ds5i, axiom 5.26
implies that

Pa 6= Pa1; Pa1 6= Pa2 :

Since teq(ds1; ds2) � ds1 = ds2 and there is notturnAround schemas inE, thendtravel = travel eq. Consequently: dtravel(ds1; ds4) and: dtravel(ds1; ds5) are the case,
and in virtue of axiom 5.33 it follows that

Pa 6= Pa2 :

fend of exampleg

Next we illustrate how the predicatetravel eq is used when defining topological
paths.

Example 14

Consider the environment in figure 5.7. Suppose the agent starts at distinctive statea and
visits places A,B,C,D,E, and F as suggested by the arrows in the figure.18 The correspond-
ing set of experiences contains the formulaeV iew(a; va), V iew(b; vb), ha; travel; bi, etc..

18A capital letterL denotes the topological place associated with distinctive statel.
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In addition, suppose that the views associated with the explored distinctive states are all
different. Once atF , the agent travels toA (though the agent does not know it), and adds
to the set of experiences the formulaeV iews(f; vf ), V iew(a0; va), hf; travel; a0i, where
a0 is a distinctive state name not used before. Notice that we usea0 instead ofa since the
agent does not know that it is back toa. The agent concludes that is back toa0 by deducing
thatteq(a; a0). Next we explain why this will be the case.

F A B

f
a’

ba

de c

Figure 5.7:By identifying a anda0 one path containing placesF , A, andB is created. Notice that in this

case,: dtravel(f; b) andtravel eq(f; b) hold. (see text)

We assume that in this environment the only distinctive states with viewva are
a anda0. Since no action has been executed ata0, we trivially satisfy axiom 5.10 when
declaringteq(a; a0). By declaringat(a0; A), we can have one topological pathPa such
thatorder(Pa; pos; F;A) andorder(Pa; pos;A;B). The model obtained this way will be
minimal since at least four paths are needed in a topological map of figure 5.7.

Notice that: dtravel(f; b) holds. However, it is the case thattravel eq(f; b), since
a anda0 are topologically indistinguishable (i.e.teq(a; a0)) (see block 5.34).
fend of exampleg

Example 15

Consider the same T-environment exploration presented in example 6 (page 30) (see figure
5.8). When using only causal information, three possible models are associated with the
exploration. When using topological information, only one of these models is possible as
illustrated next.

The three causal models associated with T-environment are:
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{2,10} {3,11}
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Figure 5.8: The agent visits the different distinctive states in the order suggested by their num-

bers. The same travel actionml is performed when traveling from a corner to the intersection (i.e

h 1;ml; 2 i) and viceversa (i.e.h 4;ml; 5 i). A turn around action is performed when reaching a corner (i.e.

h 3; turnAround; 4 i,h 7; turnAround; 8 i, etc.). Assume that the different corners have the same views (i.e.

view(1) = view(4) = view(8), view(3)= view(7) = view(11)), and views associated with the other distinctive

states are different. Three different causal models can be associated with the agent exploration of this T-

environment but only one of them is consistent with topological information (see text).

1. Model 1:ceq(8; 12); ceq(12; 8); ceq(x; x).19

2. Model 2:ceq(1; 12); ceq(12; 1); ceq(x; x).

3. Model 3:ceq(4; 12); ceq(12; 4); ceq(3; 11); ceq(11; 3); ceq(2; 10); ceq(10; 2); ceq(x; x).

We are to show that only model3 above is consistent with topological information.
For this we show the following three facts: (i) any model must have at least2 tpaths and5
tplaces,20 (ii) there is a model with2 tpaths and5 tplaces (this is the intended model), (iii)
a model of:teq(2; 10) must have at least6 tplaces. This last statement implies that models
1 and2 above are not consistent with topological information.

From h 1; travel; 2 i andh 2; travel; 3 i, corollary 2 implies that there exist a path
Pa1 and directiondir1 such that

along(1; Pa1; dir1); along(2; Pa1; dir1); along(3; Pa1; dir1) :

Moreover, corollary 1 implies that

place(1) 6= place(2); place(2) 6= place(3); place(1) 6= place(3) :

Fromh 3; turnAround; 4 i, h 4; travel; 5 i, axiom 5.22 and corollary 2, it is the case that

along(4; Pa1;�dir1); along(5; Pa1;�dir1) :
19The extent ofceq in model 1 is defined byf(8; 12); (12; 8)g [ f(x; x) : x = 1; : : : ; 12g.
20Since there is not a turn action between dstatesf5; 6g and dstatesf2; 9; 10g, these dstates are not at the

same topological place, as suggested by figure 5.8.
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Similarly, from h 5; turnLeft; 6 i, h 6; travel; 7 i, h 7; turnAround; 8 i, h 8; travel; 9 i we
conclude that there exist a pathPa2 and directiondir2 such thatPa1 6= Pa2 (axiom 5.26)
and

place(5) 6= place(8); along(6; Pa2; dir2); along(7; Pa2; dir2);

along(8; Pa2;�dir2); along(9; Pa2;�dir2) :

Fromh 9; turnRight; 10 i, h 10; travel; 11 i, h 11; turnAround; 12 i, there exist pathPa3
and directiondir3 such thatPa2 6= Pa3 and

along(10; Pa3; dir3); along(11; Pa3; dir3); along(12; Pa3;�dir3) :

Theorem 6 allow us to conclude thatplace(5) 62 fplace(1); place(2); place(3)g. The same
argument shows thatplace(8) 62 fplace(1); place(2); place(3); place(5)g. Consequently,
a miminal model of the theory must have at least two tpaths and five tplaces.

Notice that in the intended model of the T-environment,Pa1 = Pa3, dir1 = dir3,
teq(2; 10), teq(3; 11) andteq(4; 12). This model is indeed a model ofTT (E) since at least
two topological paths and five topological places are needed to explainE, and consequently
any model must have two topological paths and five topological places (theorem 5).

If :teq(2; 10) were the case, then theorem 6 allows to conclude thatplace(9) 62

fplace(1); place(2); place(3); place(5); place(8)g and so the model will have at least six
tplaces. Consequentlyteq(2; 10) has to be the case in a minimal model of the theory.
fend of exampleg

Example 16

Consider an extension of the previous example where we have the additional schemas

h 9; turnLeft; 50 i; h 50; turnRight; 9 i :

In this case, the intended model hasfour places and two paths. Notice that now the agent
can conclude thatplace(5) = place(2) by makingteq(50; 5) and soturn eq(5; 2). fend of
exampleg

Our theory does not assume that paths intersect at most in one place. Consider the
next example.

Example 17
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Figure 5.9: The environment in (a) illustrates a case where different paths intersect at more than one

place. Suppose the agent explores the environment by visiting the different distinctive states in the order

ds1; ds2; ds1; ds3; ds4; ds3; ds6; ds7; ds4; ds5; ds2. (b) depicts the topological map associated with this en-

vironment.

Suppose the agent explores the environment depicted in figure 5.9 obtaining the following
schemas:

hds1; turnAround; ds2i hds2; turnAround; ds1i hds1; travel; ds3i

hds3; turnRight; ds4i hds4; turnLeft; ds3i hds3; travel; ds6i

hds6; turnLeft; ds7i hds7; travel; ds4i

hds4; turnRight; ds5i hds5; travel; ds2i

We assume that views (which we omit) uniquely distinguish the different distinctive
states. From corollary 1 there exist the different placesA,B, andC suggested in the figure.
In addition, corollary 2 implies the existence of a path,Pa, and direction, saypos, such that

order(Pa; pos;A;B) ; order(Pa; pos;B;C) order(Pa; pos;A;C) :

Moreover, from schemasfhds7; travel; ds4i; hds5; travel; ds2ig and axiom 5.21, there
exist pathsPa1; Pa2, and directionsdir1; dir2, such that

order(Pa1; dir1; C;B) ^ along(ds7; Pa1; dir1) ^ along(ds4; Pa1; dir1) ;

order(Pa2; dir2; B;A) ^ along(ds5; Pa2; dir2) ^ along(ds2; Pa2; dir2) :

Sincealong(ds6; Pa; pos), from axiom 5.26 and schemahds6; turnLeft; ds7i
we conclude that

Pa 6= Pa1 :

Since we are minimizing paths, by settingPa2 = Pa ^ dir2 = neg, we obtain a minimal
model forE. Notice that in this model, placesB andC belong to two different paths,Pa
andPa1.
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fend of exampleg

Remark. As the example above illustrates, in our theory it is the case that:

order(pa; dir; p; q) 6! 9ds fat(ds; p) ^ along(ds; pa; dir)g (5.38)

order(pa; dir; p; q) ^ order(pa1; dir1; p; q) 6! fpa = pa1 ^ dir = dir1g (5.39)

Formula 5.38 expresses the fact that the order of places along a given path’s direc-
tion can be stated even though it cannot be stated what direction (distinctive state) to take in
order to follow the path. This does not come as a surprise given axiom 5.29 which relates
the order of places on both directions of a given path.21 Moreover, the block definingalong
(block 5.20, page 41) embodies the default:along(ds; pa; dir).

Formula 5.39 comes as a surprise. It states that different paths can have the same
order of places. In particular, from the order of places one cannot derive the identity of the
path. This is the case since we have not assumed a “rectilinear” environment where paths
intersect at most in one place. Our circumscription policy however, embodies the “default”

order(pa; dir; p; q) ^ order(pa1; dir1; p; q)! fpa = pa1 ^ dir = dir1g :

fend of remarkg

There are some patterns of experience in which our theory is not applicable. In
particular, axiom 5.24 rules out experiences where “known” different paths merge into the
same distinctive state. The following example illustrates the case.

Example 18

Consider the environment depicted in figure 5.10. Suppose the agent has experienced the
following schemas:

hb; travel; di hd; turnAround; ci

hc; turnRight; ei he; travel; ai

ha; turnAround; bi

From axiom 5.21 we know that exist pathsPa; Pa1 and directionsdir; dir1 such
that

along(b; Pa; dir) ^ along(d; Pa; dir) ;

21For a simple example of formula 5.38, consider the topological map associated with the schema
ha; travel; bi.
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Figure 5.10:Distinctive statea is along two different paths, which contradicts axiom 5.24. Experiences like

the one in the figure are handled by the SSH general topological theory described in section 5.5.

along(e; Pa1; dir1) ^ along(a; Pa1; dir1) :

Moreover, from axiom 5.22 it follows that

along(b; Pa1;�dir1) :

From axiom 5.24 we conclude thatPa = Pa1. However, from schemahc; turnRight; ei
and axiom 5.26 we conclude thatPa 6= Pa1 which is a contradiction.
fend of exampleg

The previous example illustrates plausible patterns of experience that realistic envi-
ronments could generate. In section 5.5 we extend our theory to cope with convergent paths
like the ones in the previous example.

5.2 teq versusceq

It is worth noticing thatteq satisfies the same axioms inside theCEQ block.22 Conse-
quently, given an interpretation forteq it could be extended to at least one interpretation for
ceq. However, the converse it not true. Given an interpretation forceq it does not necessar-
ily have a subset that defines an interpretation forteq. For instance, in example 15 (page
53) only one of the three possible interpretations forceq admits a topological structure.

It is tempting to include an axiom liketeq(ds1; ds2)! ceq(ds1; ds2) in the defini-
tion of teq (theAT block 5.7, page 41). However this will yield the wrong results sinceceq

is not varied in the block definingteq. In particular, theorem 5 will not be the case (will not
be a theorem!!), and model 2 in example 15 will admit a topological map with two tpaths
and six tplaces.

22Compare axioms 5.9-5.10 (page 41) in the definition ofteq with axiom 4.24-4.25 inceq’s definition (page
26.
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5.3 The SSH topological map

Given a minimal modelM of TT (E), the SSH topological map is defined by the extent in
M of tpath, tplace, along, order, on, at andteq. Notice that axioms 5.15 and 5.19 restrict
the domain ofat andalong to topological places and topological paths. The domain of
order is implicitly restricted to topological paths in virtue of block 5.27 and axiom 5.21.

While the sorts ofplaces and paths for a modelM of TT (E) are infinite, the
interpretation oftpath andtplaces is finite. Indeed,

Theorem 4The topological map associated with a finite set of experiencesE has a
finite number of topological paths and a finite number of topological places.

Proof. See appendix B, page 216.2

Since the positive and negative direction of a path are chosen arbitrarily (Axiom
5.21), there is not a unique minimal model forTT (E). Given any modelM of TT (E) one
could define another modelM 0 of TT (E) by choosing a pathpa in M and reversing the
roles of the directionspos andneg for pa:

� orderM
0

(Pa; pos;A;B) wheneverorderM(Pa; neg;A;B).23

� orderM
0

(Pa; neg;A;B) wheneverorderM (Pa; pos;A;B).

� alongM
0

(ds; Pa; pos) wheneveralongM (ds; Pa; neg).

� alongM
0

(ds; Pa; neg) wheneveralongM (ds; Pa; pos).

� M 0 andM are equal otherwise.

We will consider these “up to path direction isomorphic” models to be the same.
However, it is still the case that the theoryTT (E) has minimal models that are not isomor-
phic up to path direction. In general, when distinctive states look alike (i.e. have the same
view), the agent’s experiences might not be enough to distinguish them. The next example
illustrates this case.

Example 19
23orderM

0

(Pa; pos; A;B) stands for the tuple(Pa; pos; A;B) belonging to the interpretation oforder in
the modelM 0.
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Figure 5.11:(a) The agent goes around the block visiting placesA,B,: : :,F ,C in the order suggested in the

figure. IntersectionsB andC look alike to the agent. (b) and (c) represent two possible representations for the

environment in (a). Topological information is not enough to decide whether the agent is back toB orC.

Assume that the agent visits placesA,B,C,D,E,F ,C in the order suggested in figure 5.11.
We do not include the corresponding set of schemas, but we assume that intersections look
alike, and turn actions were executed at placesD, E andF . As view information is not
enough to distinguish intersections, placesB andC look alike. Given this information,
the agent is not able to decide whether it is back toB or C and consequently two minimal
models can be associated with the set of experiences in this environment (figures 5.11b,c).

Notice that if the agent accumulates more information, by turning atC and travel-
ing toD, then it can deduce that the topology of the environment is the one in figure 5.11b.
This is the case since the views atC andD are different.24

fend of exampleg

5.4 What if Views uniquely identify distinctive states

Our theory explicitly handles “perceptual aliasing” by introducing the predicateteq. This
predicate plays the role of “equality”, and so we explicitly have to handle the “replacement”
propertiesteq satisfies (see axioms 5.18, 5.23, 5.34).

It is possible to somewhat simplify our theory when views uniquely identify dis-
tinctive states. Under this hypothesis, we replace axiom 4.13 (page 22) by the following

24Metrical information can be used to deduce the correct topology. See example 25 (page 100).
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axiom:

V iew(ds1; V ) ^ V iew(ds2; V )! ds1 = ds2 (5.40)

In virtue of axioms 4.24 and 5.9,ceq �= and teq �=, and beingceq and teq
equivalence relations we conclude that they can be replaced by equality. The fact thatceq

andteq reduce to= is expected since all that is required to identify a distinctive state is its
view.

By replacingteq by =, block 5.18 can be rewritten as:

f min turn eq :dturn(ds2; ds3) ^ teq(ds1; ds2) ^ teq(ds3; ds4)! turn eq(ds1; ds4)

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

�

f min turn eq :dturn(ds2; ds3) ^ ds1 = ds2 ^ ds3 = ds4 ! turn eq(ds1; ds4)

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

�

f min turn eq :dturn(ds1; ds2)! turn eq(ds1; ds2)

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

� dturn = turn eq

where the last equality follows from the fact thatdturn is transitive, andturn eq is the
minimum transitive predicate containingdturn. Consequently, we do not need the predicate
turn eq in our formalization.

As for travel eq we can do some simplifications:

f min travel eq :dtravel(ds1; ds2)! travel eq(ds1; ds2);

h ds1; TurnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1)

teq(ds1; ds2) ^ teq(ds3; ds4) ^ travel eq(ds2; ds3)! travel eq(ds1; ds4);

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)
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g

�

f min travel eq :dtravel(ds1; ds2)! travel eq(ds1; ds2);

h ds1; TurnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1)

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

Therefore, if views uniquely identify distinctive states,AT block can be rewritten
as follows:

AT block =

f :

hds; turn; ds0i ! ds 6= ds0;

hds; turnAround; ds0i ^ hds; TurnAround; ds00i ! ds0 = ds00;

h ds1; turnAround; ds2 i ^ h ds2; turnAround; ds3 i ! ds1 = ds3 ;

at(ds; p)! tplace(p);

9!p at(ds; p);dturn(ds1; ds2) � 8p [at(ds1; p) � at(ds2; p)] ;

along(ds; pa; dir)! tpath(pa);

f min along :

h ds; travel; ds0 i ! 9pa; dir [along(ds; pa; dir) ^ along(ds0; pa; dir)] ;

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir);

g

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1;

at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)! ds1 = ds2;

[hds; turn desc; ds0i ^ turn desc 6= turnAround^

along(ds; pa; dir) ^ along(ds0; pa1; dir1)]! pa 6= pa1;

f min order :

[h ds; travel; ds0 i ^ at(ds; p) ^ at(ds0; q)^

along(ds; pa; dir) ^ along(ds0; pa; dir)]! order(pa; dir; p; q);

order(pa; pos; p; q) � order(pa; neg; q; p);
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order(pa; dir; p; q) ^ order(pa; dir; q; r) ! order(pa; dir; p; r)

g

:order(pa; dir; p; p);

fmin on : at(ds; p) ^ along(ds; pa; dir)! on(pa; p) g

on(pa; p) ^ on(pa; q) ^ tpath(pa)!

9ds1; dir1; ds2; dir2 [at(ds1; p) ^ along(ds1; pa; dir1) ^ at(ds2; q)^

along(ds2; pa; dir2) ^ travel eq(ds1; ds2)] ;

fmin travel eq :dtravel(ds1; ds2)! travel eq(ds1; ds2);

h ds1; turnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1)

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

circ tpath � tplace var at; along; order; on; travel eq

g

5.5 Coping with self intersecting paths

The topological theory presented in the previous sections is adequate for representing en-
vironments where “complex” paths configurations do not occur. In particular, we assume
that self-intersecting and convergent paths do not exist. In this section we extend our the-
ory to deal with these types of paths (see figure 5.12). Convergent paths are the standard
counterexample for our axiom stating that distinctive states are along a unique path (axiom
5.24). Self-intersecting paths are the standard counterexample for the axioms stating that:
(a) turning changes the path (axiom 5.26), (b) at a place there is at most one distinctive
state along a path direction (axiom 5.25), and (c) the order of places in a path is not reflex-
ive (axiom 5.31). We will make the axioms above defeasible statements, and embody in
our theory the default that “normally, convergent or self-intersecting paths do not exists”.
Moreover, our changes are such that any map derived with the old theory is still a map for
the new one.
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a b

Figure 5.12:(a) Self intersecting paths. (b) Convergent paths.

5.5.1 Converging paths

Converging paths are the standard counterexample for the axiom stating that distinctive
states are along a unique path (axiom 5.24). We replace

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1;

by the block

f min convergent paths :

[along(ds; pa; dir) ^ along(ds; pa1; dir1)

^: [pa = pa1 ^ dir = dir1]]! convergent paths(pa; pa1)

g

The block definingconvergent paths does not specify that we prefer models where such
paths do not exist (see section 5.5.4, page 68). For this, we need to includeconvergent paths

in our circumscription policy (see section 5.5.3).

5.5.2 Self-intersecting paths

Self-intersecting paths are the standard counterexample for the axioms stating that turning
changes the path (axiom 5.26), at a place there is at most one distinctive state along a path
direction (axiom 5.25), and the order of places in a path is not reflexive (axiom 5.31). We
replace

:order(pa; dir; p; p);

[hds; turn desc; ds0i ^ turn desc 6= turnAround ^

along(ds; pa; dir) ^ along(ds0; pa1; dir1)]! pa 6= pa1;

at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)! teq(ds1; ds2);

by the block

fmin self intersecting :

order(pa; dir; p; p)! self intersecting(pa) ;
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[hds; turn desc; ds0i ^ turn desc 6= TurnAround ^ along(ds; pa; dir)

^along(ds0; pa; dir1)]! self intersecting(pa) ;

[at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)

^:teq(ds1; ds2)]! self intersecting(pa)

g

Like convergent paths, the block definingself intersecting does not specify that we pre-
fer models where such paths do not exist (see Section 5.5.4, page 68). For this, we need to
includeself intersecting in our circumscription policy (see section 5.5.3).

5.5.3 New circumscription policy

While we have defined convergent and self-intersecting paths, we still need to formalize
that by default these kind of paths do not exist. This is accomplished by giving priority to
the minimization of these two predicates over any other predicate. The new circumscription
policy associated with our theory becomes

circ self intersecting � convergent paths � tpath � tplace var ~SSHpred: (5.41)

The intuition behind the predicate’s order in the circumscription is as follows: clearly ax-
ioms 5.26 and 5.25 are about distinguishing paths, and so we need to minimizeself intersecting

even at the expense of having more topological paths.25 Example 20 illustrates why we give
priority toself intersecting overconvergent paths. As for the orderconvergent paths �
tpath � tplace, we want to guarantee that maps according to the old theory are still maps
according to the new theory. In this sense, the new theory is a “conservative” extension of
our previous theory, as stated in the following theorem:

Theorem 7 Any topological map with respect to our previous theory is a topological map
according to the new theory.

25Notice that axiom 5.25 can be rewritten as follows:

at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)! teq(ds1; ds2)

� at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa1; dir) ^ pa = pa1! teq(ds1; ds2)

� at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa1; dir) ^ :teq(ds1; ds2)! pa 6= pa1

We beg the issue that axiom 5.31 is more about distinguishing places than it is about distinguishing paths. In
fact

:order(pa; dir; p; p) � : [order(pa; dir; p; q) ^ p = q] � [order(pa; dir; p; q)! p 6= q] :

At the very least we need to haveself intersecting � tplace in the circumscription policy.
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In particular, the maps associated with examples 8 through 17 are still valid maps
for the new theory. Next we study some cases we could not handle before.

Example 20

Consider the same scenario of example 18 (see figure 5.13, below). Suppose the agent has
experienced the following schemas:

hb; travel; di hd; turnAround; ci

hc; turnRight; ei he; travel; ai

ha; turnAround; bi

a b d

e

c

Figure 5.13:Distinctive statea is along two different paths. These two paths are declared convergent paths

in the model of our theory.

From axiom 5.21 we know that exist pathsPa; Pa1 and directionsdir; dir1 such
that

along(b; Pa; dir) ^ along(d; Pa; dir) ;

along(e; Pa1; dir1) ^ along(a; Pa1; dir1) :

Moreover, from axiom 5.22 it follows that

along(b; Pa1;�dir1) :

We have two possible models for these schemas:

� Model 1. In this modelPa 6= Pa1. Consequently,self intersecting = false and
convergent paths(Pa; Pa1) are the case.

� Model 2. In this modelPa = Pa1. Consequently,self intersecting(Pa) and
convergent paths = false are the case.

We prefer model 1 over model 2 according to the circumscription policy 5.41.fend
of exampleg
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(a) (b)

c

a b d

Figure 5.14:The environment in (a) can be described by two different topological maps. Either as a long

straight path and a curved path, or as a short straight path and a long curved path.

Example 21

Whenever convergent paths exist, the theory will have multiple models. Consider the set

of schemas (see figure 5.14)
h a; travel; b i h b; travel; d i,
h a; turnLeft; c i h c; travel; b i, h b; travel; d i.

These

schemas will have the following two models, which differ in the paths they use to explain
the travel axioms:

1. a-b-d, c-b

2. c-b-d, a-b

Notice that in both cases the shorter path will not include the tuple b-d. This comes from
the minimization ofalong. The minimization oftpath also plays a role, since otherwise
one could have a three paths modelfa-b, c-b, b-dg.

Suppose one has the extra schemahd; travel; ei. In this case the models will be
extensions of the both above:

1. a-b-d-e, c-b

2. c-b-d-e, a-b

fend of exampleg

In order to compare any two possible maps, these maps must have a common sort
of places and paths. Since a map can be arbitrarily large, no finite domain can be adequate
and so we require the sorts of places and paths to be infinite. This requirement makes the
the circumscription policy 5.41 to behave as expected. Consider the following example (see
also theorem 5, page 46).

Example 22
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Consider the schemaha; travel; bi wherea andb have the same view. The intended model
has one (topological) path and two (topological) places. One expects that the path is not
circular (self-intersecting), and so the existence of two places. However, without requiring
the existence of enough places, the following model is also possible:

places =fAg, tplace =fAg
paths =fPag, tpaths =fPag
self intersecting(Pa)

teq(a,b)
order(Pa,pos,A,A)
along(a,Pa,pos), along(b,Pa,pos)
at(a,A) at(b,A)

In this model,self intersecting(Pa) has to be the case, since the universe of
places only have one place. Notice that when comparing two models according to the cir-
cumscription policy 5.41, the universe ofpaths andplaces in the models has to be the
same. One can vary the interpretation oftpath, tplace, and so on, butnot the universe of
paths andplaces. The model above is ruled out by requiring the universe ofplaces to have
enough places.
fend of exampleg

5.5.4 Explicit definitions

It is worth noticing that the blocks definingconvergent paths andself intersecting can
be transformed into first order explicit definitions of these predicates. In effect, in virtue of
proposition 2 in[Lifschitz, 1994] we have that

convergent paths(pa; pa1) �

9ds; dir; dir1 [along(ds; pa; dir) ^ along(ds; pa1; dir1) ^ : [pa = pa1 ^ dir = dir1]] ;

self intersecting(pa) �

9p; dir [order(pa; dir; p; p)]

_

9ds; ds0; dir; dir1 [hds; Turn desc; ds0i ^ Turn desc 6= TurnAround

^ along(ds; pa; dir) ^ along(ds0; pa; dir1)]
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_

9p; ds; ds0; dir [at(ds; p) ^ at(ds0; p)^

along(ds; pa; dir) ^ along(ds0; pa; dir) ^ :teq(ds; ds0)]

Instead of taking the above formulas as axioms, we prefer to define these predicates by
giving “qualifications” of what they are, and let the minimization take the effect that given
no additional information such qualification completely define the predicates. For instance,
metrical information could be used to determine whether a path is self intersecting. This
metrical qualification would be added to the block definingself intersecting. Had we
decided to take the above formula as the definition ofself intersecting we would need to
rewrite the corresponding definition.

Another advantage of using blocks to define predicates is when there is not an ex-
plicit formula defining the predicate. For instance consider the blocks definingalong and
order (page 41).

5.5.5 General SSH topological theory

Given the changes discussed in the previous sections, theAT block for the SSH general
topological theory is as follows:

AT block =

f max teq :

teq is an equivalence relation ;

teq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v);

teq(ds1; ds2) ^ h ds1; a; ds
0
1 i ^ h ds2; a; ds

0
2 i ! teq(ds01; ds

0
2);

teq(ds1; ds2)! 8p [at(ds1; p) � at(ds2; p)] ^

8pa; dir [along(ds1; pa; dir) � along(ds2; pa; dir)] ;

hds; turn; ds0i ! :teq(ds; ds0) ;

hds; turnAround; ds0i ^ hds; TurnAround; ds00i ! teq(ds0; ds00) ;

h ds1; turnAround; ds2 i ^ h ds2; turnAround; ds3 i ! teq(ds1; ds3) ;

at(ds; p)! tplace(p);

9!p at(ds; p);

turn eq(ds1; ds2) � 8p [at(ds1; p) � at(ds2; p)] ;
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fmin turn eq :

teq(ds1; ds2) ^ teq(ds3; ds4) ^ dturn(ds2; ds3)! turn eq(ds1; ds4);

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

along(ds; pa; dir)! tpath(pa);

f min along :

h ds; travel; ds0 i ! 9pa; dir
�
along(ds; pa; dir) ^ along(ds0; pa; dir)

�
;

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir);

teq(ds1; ds2)! along(ds1; pa; dir) � along(ds2; pa; dir)

g

f min convergent paths :

[along(ds; pa; dir) ^ along(ds; pa1; dir1)

^: [pa = pa1 ^ dir = dir1]]! convergent paths(pa; pa1)

g

fmin self intersecting :

order(pa; dir; p; p)! self intersecting(pa) ;�
hds; Turn desc; ds0i ^ Turn desc 6= TurnAround ^ along(ds; pa; dir)

^ along(ds0; pa; dir1)
�
! self intersecting(pa) ;

[at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)

^ :teq(ds1; ds2)]! self intersecting(pa)

g

f min order :�
h ds; travel; ds0 i ^ at(ds; p) ^ at(ds0; q)^

along(ds; pa; dir) ^ along(ds0; pa; dir)
�
! order(pa; dir; p; q);

order(pa; pos; p; q) � order(pa; neg; q; p);

order(pa; dir; p; q) ^ order(pa; dir; q; r)! order(pa; dir; p; r)

g
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fmin on : at(ds; p) ^ along(ds; pa; dir)! on(pa; p) g

on(pa; p) ^ on(pa; q) ^ tpath(pa)!

9ds1; dir1; ds2; dir2 [at(ds1; p) ^ along(ds1; pa; dir1) ^ at(ds2; q)^

along(ds2; pa; dir2) ^ travel eq(ds1; ds2)] ;

fmin travel eq :dtravel(ds1; ds2)! travel eq(ds1; ds2);

h ds1; turnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1)

teq(ds1; ds2) ^ teq(ds3; ds4) ^ travel eq(ds2; ds3)! travel eq(ds1; ds4);

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

circ self intersecting � convergent paths � tpath � tplace var ~SSHpred

g

5.6 Calculating the models of TT(E)

It is possible to calculate the models ofTT (E) by a logic program similar to the one used
for CT (E) (Section 4.4, Page 32). However, the number of grounding rules associated with
such a program turns out to be prohibited for practical applications.

Fortunately, an algorithm for calculating the models ofTT (E) can be stated as a
“best first” search. The states of the search correspond to partial models ofTT (E).26 At
each step of the search a schemah ds; a; ds0 i has to be explained. Either the identity ofds0

can be proved or a search branch is created for every previously known distinctive stateds0i
that cannot be proven to be different fromds0.27 In the branch whereds0i

teq
= ds0 is the case,

ds0j
teq

6= ds0; i 6= j are also asserted.28 An additional brach is created whereds0
teq

6= ds0j are
asserted. This branch represents the possibility thatds0 is indeed different from previously
known dstates. The next state to explore is the one that is minimum according to the order
associated with the circumscription policy forTT (E). This algorithm is described in fig-

26A partial model ofTT (E) is a model ofTT (E0), for someE0 � E.
27We assume that at each state of the search, the identity of the schema’s context (i.e.ds in hds; a; ds0 i) is

known.
28The notationds1

teq
= ds2 states thatds1 andds2 are “equal” according to the equivalence relationteq.

Recall thatteq plays the role of equality in the theoryTT (E).
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Find-Models (Schemas S)
f

;; S =s0; : : : ; sn ; sequence of schemas such that
;; result(si) = context(si+1)
;;
;; pmodels-to-explore = ordered queue of partial models to explore.
;; models = list of total models for S.
pmodels-to-explore =; ;
models =; ;
pmodel = create-new-pmodel(S);
insert(pmodel,pmodels-to-explore) ;
while pmodels-to-explore6= ; do
begin
pmodel = get-next-pmodel(pmodels-to-explore);
s = get-next-schema(pmodel);
Explain(pmodel,s) ;
if (inconsistent(pmodel)_ has-extensions(pmodel)) then skip;
else if total-model(pmodel) then insert(pmodel, models);
else insert(pmodel,pmodels-to-explore);

end
return models;
g

Figure 5.15: Best first search algorithm used to calculate the models of TT(E). The ordered queue

pmodels-to-explorecontainsconsistentpartial models (pmodels) to be expanded. At each step of the search, a

minimal partial model is picked and the next schema from its list of associated schemas is explained. A pmodel

has extensions when a branch has been created while explaining a schema. A pmodel is atotal-modelwhen it

has no more schemas to explain. Figure 9.18 defines how a pmodel explains a schema and when extensions are

created.
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Explain (pmodel, s)
f ;; s is a schemah ds; a; ds0 i

candidates =fg;
branches = false;
if : known-result(pmodel,s)
then begin

candidates = possible-equal-dstates(pmodel,s);
if candidates6= fg
then branches = create-possible-extensions(pmodel,s,candidates)

end
if : branches then Assert-schema (pmodel,s);
g
Known-result(pmodel, s)
f ;; s is a schemah ds; a; ds0 i

;; The notationobj 2 pmodel indicates that objectobj is
;; known in the partial modelpmodel.

returnds0 2 pmodel _ 9 ds� 2 pmodel
h
h ds�; a; ds0� i 2 pmodel ^ ds�

teq
= ds

i
;

g
Assert-schema (pmodel, s)
f ;; s is a schemah ds; a; ds0 i. ds is known inpmodel

asserts 2 pmodel;
assertds0 2 pmodel;
if : known-result(pmodel,s)
then Create places and paths needed to explains.
else begin

pick ds0� s.t.9ds� 2 pmodel
h
ds�

teq
= ds ^ h ds�; a; ds0� i 2 pmodel

i
;

assertds0
pmodel
= ds0� ;

end
g

Figure 5.16:Explaining a schema. known-result(pmodel,s =h ds; a; ds0 i) is the case when the equality

class fords0 can be deduced in the partial modelpmodel. Possible-equal-dstates(cntx,s)returns dstates known

in pmodel, having the same view asds0 and that cannot be proven different fromds0 in pmodel. For each

ds00 2 candidates, create-possible-extensions(pmodel,s,candidates)creates an extension ofpmodel where

ds0
teq
= ds00 is the case. If some of these extensions are consistent, thencreate-possible-extensionsalso creates

an extension whereds0 is different from the dstates incandidates. In this last case the function returnsfalse

otherwise it returnstrue. If not extension is created, thens is asserted inpmodel. This accounts to declareds0

to be known inpmodel and create the places and paths that explains according to the axioms of the topological

theoryTT (E).
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ures 5.15 and 5.16.29 See section 9.4.2, page 152, for a discussion on the implementation
of this algorithm.

29A search state is implemented by a partial model,pmodel. Branches in the search are represented by
creatingextensionsfor the current search state (pmodel). Thatpmodel0 is an extension ofpmodel implies that
pmodel0 inherits frompmodel all known objects and facts. Partial models are described in page 155.
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5.7 Summary

Actions performed by the agent are categorized at the SSH topological level into two
classes: turn and travel. Turn actions leave the agent at the same place. Travel actions
move the agent to a new place along a path. The SSH topological map is derived from
the agent’s experiences by creating the minimum set of paths and places explaining such
experiences. In this chapter we have made precise this minimality criterion by specifying
(via circumscription) the preferred models associated with the SSH topological level.

The concepts ofpath andplacecan be used to distinguish environment states that
are not distinguishable by actions and views alone. In addition, we have illustrated how
the agent’s topological map changes as the agent acquires more experiences in the environ-
ment. These changes are non-monotonic as the agent can conclude, for example, that two
previously believed different places are indeed the same (or vice versa).

It is possible that more than one topological map is consistent with the agent’s set
of experiences. In order to disambiguate the topological map, the agent must collect new
experiences or rely on other sources of information to disambiguate its map (for example,
metrical information or regions). It is also possible that there is no topological map consis-
tent with the agent’s experiences: this happens for example if the agent travels in a loop,
violating our assumption that paths are not self-intersecting. This is not to say that we as-
sume “rectilinear” environments where paths intersect at most in one place. As example 17
(page 55) shows, paths can intersect in more that one place. Another reason for not having
a topological map are patterns of experience in which known different paths merge into the
same distinctive state (i.e. convergent paths).

In section 5.5 we defined a general topological theory where self-intersecting and
convergent paths were included. The general theory extended the more restricted one in the
sense that a map according to the later is a map according to the former. The new theory
captures the intuition that by default paths are not self-intersercting or convergent.

Finally, in section 5.6 we stated the problem of finding the models ofTT (E) as
a “best first” search. In this search, the next state to explore is the one that is minimum
according to the order associated with the circumscription policy forTT (E). We defined
the main elements of this search and postponed further details to the implementation chapter
(section 9.4.2, page 152). The algorithm here described allows the agent to keep track
of different possible models (maps) as well as to recover from distinctive state equality
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assumptions that make a model inconsistent.
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Chapter 6

Boundary Regions

Topological paths play the role ofstreetsin a city layout map. Streets are often used as a
reference for specifying the location of a given place: a place will be either on the given
street or in one of the “two sides” –left or right– of the street.

Mathematically, the concept of left and right of a SSH topological path is related
to the topological one of the interior and exterior of a curve. While not all curves have a
well defined interior and exterior (for example, consider a spiral, or a fractal curve), closed
not self-intersecting1 curves –Jordan curves– do have associated interior and exterior sets
[Beardon, 1979].2 Moreover, in order to go from the interior to the exterior (or vice versa)
of the curve
, one has to cross
.3 Our analogy of SSH topological paths and mathemati-
cal curves breaks down because in general the agent might be able to travel from one side
of the path to the other without crossing the path. This can happen because of the agent’s
inability to detect that it has crossed the path, or (more often) because paths are not long
enough to divide the environment into two regions (for example, consider a dead-end street).

In order to determine boundary relations -the location of a place with respect to a
path- we formally state the following heuristic. Suppose the agent is at an intersection on a
given path, and it then turns right. If the agent now travels, any place it finds while traveling
with no turns will be on the right of the starting path. While this heuristic draws the correct
conclusion in a rectilinear environment, it may draw incorrect conclusions when paths are
not straight. Consequently, we state our heuristic as a ‘defeasible” rule (default) so as not

1Except of course for the end points of the curve.
2When the curve is removed, the plane is divided into two disjoint connected sets.
3Given a curve
0 - a continuous function
0 : [0; 1]! R2 - such that there existt1 andt2, 
0(t1) 2 interior

of 
, 
0(t2) 2 exterior of
, then there existt andt0 such that
(t) = 
0(t0).
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to conclude a boundary relation when inconsistent sources of information exist. The next
example illustrates this case.
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Figure 6.1:Different environments illustrating how our default to determine boundary relations work. In (a)

we conclude by default that place C is to the left of the path from A to B. In (b) we conclude nothing about the

location of place D with respect to this path. In (c) we conclude that place C is to the left of the path from A to

B. This is the case since there is no information to conclude otherwise.

In the environment of Figure 6.1a we will conclude by default that placeC is to the
left of the path fromA to B. We draw this conclusion since when the agent is atA facing
in the direction ofB, it turns left and travels with no turns up to placeC.4 The same argu-
ment in the case of the environment of Figure 6.1b will allow us to conclude by default that
placeD is to the left of the path fromA to B. In this case, we assume that the environment
“slowly” curves allowing the agent to keep traveling with no turns up to placeD. However,
if later the agent turns right atA and travels with no turns toD, by default we will conclude
that placeD is to the right of the path fromA to B. These two default conclusions contradict
each other and we solve this conflict by concluding nothing about the location of placeD
with respect to the path fromA to B. Finally, in the environment of Figure 6.1c, the agent
will conclude that placeC is to the left of the path fromA to B. This is the case since there
is no information to conclude otherwise.

In order to determine boundary relations -the location of a place with respect to
a path-,turnRightand turnLeft actions are used to define the relative orientation between
paths at a given place (Section 6.1), relations that are then used to infer whether a place is
on the left or the right of a given path (Section 6.2). The boundary relations inferred by an
agent may not be complete: the agent does not necessarily know the location of each place
with respect to each path. Nevertheless, the boundary relations inferred by the agent are
useful to distinguish places otherwise not distinguishable by the SSH topological map as
described so far (see Example 23, page 84).

4Travel with no turns indicates that the agent has kept traveling in a single path.
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6.1 Qualitative orientation of paths at a place

We extend the topological level in order to represent the relative orientation among paths
that intersect at a given place. We use the predicates

totheLeftOf(p; pa; dir; pa1; dir1) ; totheRightOf(p; pa; dir; pa1; dir1)

to represent the facts that (i)p is aplaceon both paths,paandpa1, and (ii), when the agent
is atplace pfacing on the directiondir of pa, after executing a turn left (right) action, the
agent will be facing on the directiondir1 of pa1(see Figure 6.2, Page 80).

The predicatestotheLeftOf andtotheRightOf are derived from the actions per-
formed by the agent at a place:5

fmin totheRightOf; min totheLeftOf : (6.1)

[hds; turnRight; ds1i ^ at(ds; p) ^ along(ds; pa; dir) ^ along(ds1; pa1; dir1)]

! totheRightOf(p; pa; dir; pa1; dir1);

[hds; turnLeft; ds1i ^ at(ds; p) ^ along(ds; pa; dir) ^ along(ds1; pa1; dir1)]

! totheLeftOf(p; pa; dir; pa1; dir1):

g

6.2 Left and Right of a path

A path has associated two regions: the places to the left of the path and the places to the
right of the path.6 We use the predicates

leftOf(pa; dir; lr) ; rightOf(pa; dir; rr)

to denote thatregion lr (rr) is the left (right) region of pathpa with respect to the path’s
directiondir. The properties of these predicate are as follows:

9!lr fleftOf(pa; dir; lr)g ; 9!rr frightOf(pa; dir; rr)g (6.2)

leftOf(pa; dir; r) � rightOf(pa;�dir; r) (6.3)

fmin is region : (6.4)

LeftOf(pa; dir; lr)! is region(lr)

g

leftOf(pa; dir; lr) ^ leftOf(pa1; dir1; lr)! pa = pa1 (6.5)
5It is possible that the agent learns these relations by being told. In the presence of no other information,

the implications in block 6.1 become equivalences (proposition 2 in[Lifschitz, 1994]).
6Regions are set of places or regions. This way, regions form a containment hierarchy that allows the

agent to reason at different levels of detail about its spatial representation. In Chapter 8 we present a complete
formalization of regions in the context of the SSH.
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Axiom 6.2 states the existence and uniqueness of a path’s left/right regions. The domain
of leftOf is restricted by block 6.4 and axiom 6.5. Since left/right regions of a path inter-
change when changing the path direction (axiom 6.3), constraining the domain ofleftOf

imposes similar constraints on the domain ofrightOf .

We use the predicatein region(p,r) to indicate thatplace p is in region r. The
domain ofin region is constrained by axiom 6.6. The properties ofin region are defined
in block 6.7. Using this predicate, we state that a path has associated three disjoint set of
places: the places on the path, and the places to the left/right of the path( Axioms 6.9 and
6.10).7 Boundary relations are derived according to axiom 6.11 and 6.12 (see Figure 6.2):

in region(p; r)! is region(r) ; (6.6)

f min in region : (6.7)

f in region : (6.8)

on(pa; p) ^ leftOf(pa; dir; lr)! :in region(p; lr); (6.9)

[leftOf(pa; dir; lr) ^ rightOf(pa; dir; rr) ^ in region(p; lr)]! :in region(p; rr) ;(6.10)

[totheRightOf(p1; pa; dir; pa1; dir1)^ order(pa1; dir1; p1; p)^ (6.11)

rightOf(pa; dir; rr) ^ :Ab(pa;p)]! in region(p; rr);

[totheLeftOf(p1; pa; dir; dir1; pa1)^ order(pa1; dir1; p1; p)^ (6.12)

leftOf(pa; dir; lr) ^ :Ab(pa;p)]! in region(p; lr)

g

g

p

p1

Pa, dir
Pa1, dir1

Figure 6.2:PathPa1 is to the right of pathPa at placep1. Placep is after placep1 on pathpa1. By default,

we conclude that placep is to the right of pathpa.

7The symmetry betweenleftOf andrightOf defined by axiom 6.3 let us write our axioms in terms of
only one of these predicates. For example, notice that axioms 6.3 and 6.9 imply that

on(pa; p) ^ rightOf(pa; dir; rr)! :in region(p; rr)
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The outer block 6.7 states that normally boundary relations are false. This is the
case since by default the agent does not know the location of a place with respect to a given
path. The inner block 6.8 states under what conditions the agent can derive a boundary
relation. For instance, according to axiom 6.11, if at placep1 pathpa1 is to the right of
pathpa, and placep is afterp1 on pathpa1, then normally it is the case thatp is on the
right of pa (see Figure 6.2).8 The predicateAb inside block 6.8 is the standard “abnor-
mality” predicate used to represent defaults in circumscriptive theories ([McCarthy, 1980,
Lifschitz, 1994], see Appendix C, Page 219).

While block 6.7 defines the extent of the predicatein region, it does not express
our preference for models wherein region is maximal. We need to includein region in
our circumscription policy, as shown in the next section. In order to understand why this is
the case, assumeAb = false inside block 6.8. Consequently, block 6.7 becomes

f min in region :

on(pa; p) ^ leftOf(pa; dir; lr)! :in region(p; lr) ;

[leftOf(pa; dir; lr) ^ rightOf(pa; dir; rr) ^ in region(p; lr)]! :in region(p; rr) ;

[totheRightOf(p1; pa; dir; pa1; dir1)^ order(pa1; dir1; p1; p)^

rightOf(pa; dir; rr)]! in region(p; rr) ;

[toTheLeftof(p1; pa; dir; dir1; pa1)^ order(pa1; dir1; p1; p)^

leftOf(pa; dir; lr)]! in region(p; lr)

g

This block can be further simplified as follows (see Propositions 2 and 4 in[Lifschitz, 1994]):

on(pa; p) ^ leftOf(pa; dir; lr)! :in region(p; lr) ;

[leftOf(pa; dir; lr) ^ rightOf(pa; dir; rr) ^ in region(p; lr)]! :in region(p; rr) ;

in region(p; r)

�

9p1; pa; dir; pa1; dir1f

[totheRightOf(p1; pa; dir; pa1; dir1)^ order(pa1; dir1; p1; p) ^ rightOf(pa; dir; r)]

_

[toTheLeftof(p1; pa; dir; dir1; pa1)^ order(pa1; dir1; p1; p) ^ leftOf(pa; dir; r)]

g :

Since block 6.7 “normally” is equivalent to the statements above, and so, it “normally”
8See appendix C, page 219, for a similar formalization of the standard example: objects normally do not

fly; birds normally do.
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reduces to an explicit definition forin region, block 6.7 does not express our preference
for models wherein region is maximal, preference that has to be expressed elsewhere (see
next section).9

6.2.1 Adding boundary relations to the topological map

In order to use boundary relations when defining the SSH topological map, axioms 6.1-6.12
are included inside the blockAT block (see Section 5.1, page 41), and the new circumscrip-
tion policy becomes10

circ tpath � :in region � tplace var ~newSSHpred

where ~newSSHpred stands for the tuple of predicates

h at; along; order; on; teq; turn eq; travel eq;

totheRightOf ; totheLeftOf ; leftOf ; rightOf ; is region

i :

The circumscription policy states that axioms 6.11 and 6.12 should be used to draw conclu-
sions even at the expense of having more places on the map. This is achieved by maximizing
in region overtplace in the circumscription policy. Next we show the new theory.

AT block =

f max teq :

Axioms 6.1-6.12;

teq is an equivalence relation ;

teq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v);

teq(ds1; ds2) ^ h ds1; a; ds
0

1 i ^ h ds2; a; ds
0

2 i ! teq(ds01; ds
0

2);

teq(ds1; ds2)! 8p [at(ds1; p) � at(ds2; p)] ^

8pa; dir [along(ds1; pa; dir) � along(ds2; pa; dir)] ;

hds; turn; ds0i ! :teq(ds; ds0) ;

hds; turnAround; ds0i ^ hds; TurnAround; ds00i ! teq(ds0; ds00) ;

h ds1; turnAround; ds2 i ^ h ds2; turnAround; ds3 i ! teq(ds1; ds3) ;

at(ds; p)! tplace(p);

9!p at(ds; p);

9Notice that the statements above are the ones characterizing boundary relations in “rectilinear”
environments.

10See circumscription notation in page 222.
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turn eq(ds1; ds2) � 8p [at(ds1; p) � at(ds2; p)] ;

fmin turn eq :

teq(ds1; ds2) ^ teq(ds3; ds4) ^ dturn(ds2; ds3)! turn eq(ds1; ds4);

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

along(ds; pa; dir)! tpath(pa);

f min along :

h ds; travel; ds0 i ! 9pa; dir [along(ds; pa; dir) ^ along(ds0; pa; dir)] ;

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir);

teq(ds1; ds2)! along(ds1; pa; dir) � along(ds2; pa; dir)

g

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1;

at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)! teq(ds1; ds2);

[hds; turn desc; ds0i ^ turn desc 6= turnAround ^

along(ds; pa; dir) ^ along(ds0; pa1; dir1)]! pa 6= pa1;

f min order :

[h ds; travel; ds0 i ^ at(ds; p) ^ at(ds0; q)^

along(ds; pa; dir) ^ along(ds0; pa; dir)]! order(pa; dir; p; q);

order(pa; pos; p; q) � order(pa; neg; q; p);

order(pa; dir; p; q) ^ order(pa; dir; q; r) ! order(pa; dir; p; r)

g

:order(pa; dir; p; p);

fmin on : at(ds; p) ^ along(ds; pa; dir)! on(pa; p) g

on(pa; p) ^ on(pa; q) ^ tpath(pa)!

9ds1; dir1; ds2; dir2 [at(ds1; p) ^ along(ds1; pa; dir1) ^ at(ds2; q)^

along(ds2; pa; dir2) ^ travel eq(ds1; ds2)] ;

fmin travel eq :dtravel(ds1; ds2)! travel eq(ds1; ds2);

h ds1; turnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1);

teq(ds1; ds2) ^ teq(ds3; ds4) ^ travel eq(ds2; ds3)! travel eq(ds1; ds4);
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travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

circ tpath � :in region � tplace var ~newSSHpred

g

By maximizing the extent ofin region at the expense of having possibly more
places, boundary relations determine distinctions among environment states that could not
be derived from the connectivity of places alone. The next example illustrates the case.

Example 23

Consider an agent visiting the different corners of a square room in the order sug-
gested by figure 6.3a. In addition, suppose the agent’s sensory apparatus allows it to define
viewsby characterizing the direction of walls and open space. Accordingly, the agent expe-
riencesfour different views,v1-v4, in this environment (see Figure 6.4).

The agent’s experiences,E, in this environment are:

V iew(ds1; v1) V iew(ds2; v2) V iew(ds3; v1)

V iew(ds4; v2) V iew(ds5; v1)

hds1; turnRight; ds2i hds2; travel; ds3i hds3; turnRight; ds4i

hds4; travel; ds5i

P ds1
ds2

Pa

ds3

Pb

R
ds5

ds4

Q

Pb

Pa
QP=R

R

Pb

Pa
QP

a b c

Figure 6.3:(a) The figure shows the sequence of actions followed by an agent while navigating a square room.

Starting at distinctive state ds1, distinctive states are visited in the order suggested by their number. Dashed

lines indicate Turn actions. Solid lines indicate Travel actions. (b) and (c) depict the resulting topological map

without and using boundary regions, respectively.
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View Left Ahead Right Behind

v1 wall wall open open
v2 wall open open wall
v3 open wall wall open
v4 open open wall wall

Figure 6.4:Definition of views v1-v4. Each view is characterized by the direction of walls and open space.

Suppose that the agent does not use boundary regions when building the topologi-
cal map. Then the minimal topological model associated withE has two paths11 and two
places. In this model,teq(ds1; ds5) is the case. The environment looks perfectly symmet-
ric to the agent (Figure 6.3b).!!

Suppose now that the agent relies on boundary regions. LetP, Q, R, be the topolog-
ical places associated withd1, d3 andd5 respectively. From Axiom 5.21, letPa, Pb, dira
anddirb be such that

order(Pa; dira; P;Q) ; along(ds2; Pa; dira); along(ds3; Pa; dira);

order(Pb; dirb; Q;R); along(ds4; P b; dirb); along(ds5; P b; dirb) ;

are the case. From block 6.1 we conclude that

totheRightOf(Q;Pa; dira; P b; dirb) :

In the proposed model, the extent ofin region is maximized by declaring

Ab = false

inside block 6.8 and consequently from axiom 6.11 we conclude

in region(R; right(Pa; dira))

whereright(Pa; dira) denotes the right region ofPa when facingdira.12 Moreover, from
block 6.7 we deduce

in region(p; r) � [p = R ^ r = right(Pa; dira)] :

Finally, from axiom 6.9 we conclude

P 6= R

11Notice that fromhds3; turnRight; ds4i and axiom 5.26 we can deduce thatPa 6= Pb in figure 6.3b.
12Axiom 6.2 guarantees that there exists a unique such region.
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sinceon(Pa; P ) is the case. The resulting topological map is depicted in Figure 6.3c.
fend of exampleg

Boundary relations are in general not enough to distinguish different environment
states. The example below illustrates the case.

Example 24

Consider the previous example, and suppose the agent continues the navigation by visiting
the distinctive statesds6 andds7 (see Figure 6.5).

ds7

S

ds2
ds1P

ds3

ds6
ds5

R

Pc

Pa

Pb

ds4

Q

R

Pb

Q
Pa

P=S

Pc

a b

Figure 6.5: The agent continues the exploration of the square room by traveling tods7. Although ds7

andds1occur at different environment states, the agent concludes thatteq(ds1; ds7) and associates with this

environment the topological map depicted on (b).

The new set of experiencesE will be extended by including the following formulae:

V iew(ds6; v2) V iew(ds7; v1) hds5; turnRight; ds6i hds6; travel; ds7i :

Let S denote the topological place associated withds7. A minimal topological model as-
sociated withE hasP = S andteq(ds7; ds1) (see Figure 6.5b). Notice that once the agent
turns right atds5 and travels tods7, it cannot deduce that it is still to the right of the path
connecting placesP andQ.
fend of exampleg

The problem above arises because the agent’s sensory capabilities are so impover-
ished that many distinctive states are indistinguishable (i.e. there is no view-action-view
sequence that distinguishes them). Even a slightly richer sensory system (e.g. including a
compass) would eliminate the problem in example 24, and make sensory aliasing much less
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common globally. The problem cannot be eliminated entirely through better sensors, since
some environment states may be genuinely indistinguishable by any given set of sensors.

How can the agent realize thatds7 and ds1 in the previous example are indeed
different environment states?. This apparently easy problem turns out to be a hard one.
Next we summarize different approaches to solve this problem:

� The agent can gather more information as in theRehearsal procedureproposed in
[Kuipers and Byun, 1988]. In order to disambiguate two distinctive states the agent
finds a sequence of actions and views that prove (or disprove) that the agent is at a
given distinctive state. Once that sequence is found, the agent performs the actions in
the sequence and checks whether it obtains the expected views. If some of the views
obtained during the navigation do not match the expected views, the agent concludes
that it was not at the hypothesized distinctive state. If all of the views match the ex-
pected views, the agent cannot conclude anything about its starting distinctive state.
This method has three drawbacks: (i) the disambiguating sequence may not exist (as
in Example 24), (ii) the method is partially conclusive, and (iii), it requires physical
navigation. While a partially conclusive method, richer sensors will increase the ef-
fectiveness of the rehearsal procedure.

The rehearsal procedure is closely related to the problem of generating counterexam-
ples that can distinguish states in a deterministic finite state automata. If such sources
of counterexamples exist and the agent has the ability to at will go to a given but
fixed state, then learning the smallest automaton (w.r.t. the number of states) con-
sistent with a given set of actions/output pairs can be done in polynomial time[An-
gluin, 1987]. Without particular assumptions about the environment or the agent’s
perceptual abilities, the problem of finding this smallest automaton is NP-complete
([Angluin, 1978, Gold, 1978]). The reader is referred to[Basyeet al., 1995] for an
example of how to use automata to model dynamical systems.

� In order to distinguish distinctive states one could “mark” the current state and then
attempt to disambiguate distinctive states as in the rehearsal procedure[Dudeket al.,
1991]. “Marking” the environment corresponds to associate a unique view with the
current environment state. This could be achieved by physically changing the envi-
ronment (as in leaving a “I was here” note) or finding a feature not observed in any
other state. Here is how this method work in the case of Example 24.
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Once atds7the agent wants to prove the hypothesisds1 = ds7. Assuming that this
is the case, after leaving a marker in the current location, and executing the sequence
of actions

turnRight ; travel ; turnRight ; travel ; turnRight ; travel ;

the agent should be back atds1 and recognize the marker it left there (see Figure 6.5).
In our example, after executing this sequence of actions the agent will be atds5and
will not find the marker. Consequently, the agent will deduce thatds1 6= ds7. Now
the problem is to go back tods7 and remove the marker left there. In order to do so,
one has to assume that actions arereversible, and the agent knows how to reverse a
sequence of actions.

� Use metrical information (i.e. the amount of turns and travel) to integrate the differ-
ent distinctive states (or at least a set of them) into a common frame of reference. By
comparing the position ofds1andds7 in such a frame of reference, the agent can
conclude whether they are the same environment state.

The problem with this approach is the uncertainty (error) associated with metrical
information. In the presence of uncertainty, metrical information allows the agent
with high confidence to decide whether two distinctive states arenot the same. The
agent will require better metrical estimates to decide if two distinctive states are the
same. In current approaches to do so, the agent will navigate various times around the
environment in order to wash out error measurements and have better certainty about
the position of distinctive states in a common frame of reference (see[Engelson and
McDermott, 1992b, Koenig and Simmons, 1996, Shatkay and Kaelbling, 1997]). In
Chapter 7 we illustrate the use of metrical information in the context of the SSH. In
particular, if metrical and topological information are consistent with the hypothesis
that the agent is back to a particular distinctive state, by default we then conclude that
this is the case.

6.3 Summary

In this chapter we have introduced the left and right regions associated with a path, and
show how the agent determines boundary relations –the location of a place with respect to
a path–. Using boundary relations the agent can distinguish places not distinguishable from
connectivity relations alone (see Example 23).13 We use “defeasible” (default) rules to state

13In our previous work on boundary relations, we assumed that the map was given and show how the bound-
ary relations were acquired[Remolina and Kuipers, 1998a]. Here, we have extended our formalization to use
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how the agent acquires these boundary relations (Axioms 6.11-6.12). Being defaults, these
rules allow the agent to deal with inconsistent information while not restricting their appli-
cability to “rectilinear” environments (see Figure 6.1).

We have illustrated the case (Example 24) where poor sensory capabilities in addi-
tion to the symmetry of the environment will prevent the agent from differentiating some
environment states. In these cases, the SSH topological map will not capture the correct
topology of the environment. Nevertheless, the SSH topological map will have the mini-
mum set of paths and places that explain the different view-action-view sequences experi-
enced by the agent in the environment.

Finally, we have presented different alternative methods for disambiguating distinc-
tive states: (i) therehearsal procedure, where the agent tries to find a sequence of actions
that will differentiate two distinctive states, (ii) using “markers” to indicate where the agent
has been, and (iii) using metrical information. While theoretically none of these methods
solves the problem of differentiating distinctive states, they could be very effective in help-
ing the agent to discard some of the otherwise possible maps consistent with its experiences.

boundary relations during the construction of the SSH topological map.
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Chapter 7

Using Metrical Information

Quantitative spatial information is represented at each level of the SSH, from local analog
maps at the control level, to action magnitudes at the causal level, to local headings and
distances at the topological level[Kuipers, 2000]. In order for an agent to reason about
orientation and distance between places, places must be located in a common frame of
reference.1 In this chapter we discuss different frames of reference that can be associated
with SSH objects (i.e. distinctive states, places, path, regions). In particular,

� Each path has associated a one dimensional frame of reference which assigns a posi-
tion to each place in the path.

� Each place has associated a radial frame of reference which assigns a heading (angle)
to each path the place belongs to.

� Each path has associated a frame of reference which assigns to certain places a loca-
tion from fleft, right, ong.2

� Regions or places might have associated two dimensional frames of reference which
assign real valued tuples to certain places.

As positionsandheadingsare derived from noisy data, there is uncertainty asso-
ciated with their real values. Different representations for this uncertainty are possible:
intervals, probability distribution functions, etc. As the agent repeatedly navigates among

1A location in a frame of reference can be described by a real value, an angle, a real valued tuple, a discrete
value (e.g.left, right), etc.

2This corresponds to the boundary regions described in chapter 6. Notice that this is not ametrical frame
of reference.
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the same places and paths, new measure estimates are taken into account to update the un-
certainty associated with positions and headings.3 In our current work we useintervals to
represent uncertainty in position and headings. However, the methods we define to integrate
multiple frames of reference are general to other forms of representing uncertainty.

In addition to frames of reference, the SSH metrical level can accommodate more
sophisticated representations of metrical information. For example, each place could have
associated anoccupancy grid[Elfes, 1987, Borestein and Koren, 1991, Thrun, 1998] where
the position and extent of objects in the place’s local neighborhood could be represented.
The origin and scale of such an occupancy grid will coincide with those of the frame of
reference associated with the place. In this way, paths headings could be related to the oc-
cupancy grid.

This chapter is organized as follows: in section 7.1 we define how to represent
metrical information associated with schemas. The different kind of frames of reference
used by the SSH are then presented in section 7.2. In section 7.3 we define how topological
and metrical information are combined while the agent builds its map. In particular, we
define what it means for a topological map to be consistent with its metrical information.
Finally, in section 7.4 we list different techniques that are relevant when building the SSH
metrical map. In particular, we adapt a basic constraint propagation algorithm in order to
create two dimensional frames of reference preserving the estimated distance and relative
orientation between consecutive places in a path.

7.1 Schemas, representing uncertainty

Action executions have associated metrical information representing the observed magni-
tude of the action. For instance, after traveling the agent may have an estimate of the
distance between the “end places” of the travel action, and after turning, the agent may
have an estimate of the angle turned.4 Uncertainty associated with these estimates must be
taken into account when using metrical information in order to derive relations among SSH
objects. Hereafter we assume that uncertainty is represented bypositive real valued closed
intervals.

3For example, Kuipers and Byun[Kuipers and Byun, 1988, Kuipers and Byun, 1991] use a scalar Kalman-
filter in order to update the distance between two places in a path.

4Notice that different kind of metrical estimates could be associated with a travel or turn action. For exam-
ple, the agent could measure the arc length associated with a travel action. In addition, it could measure the
minimum distance to an object on the left and the right sides at each point along the trajectory associated with
a travel action[Kuipers, 2000].
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We use the predicate

action execution(s; Int) ;

to state that theinterval Int represents an estimate of the metrical information about the
execution of the action associated with schemas. How the estimates are to be interpreted
depends on the type of action (turn or travel) the schema refers to. In the next sections
we will describe how to do so. We do not further restrict the domain of the predicate
action execution. In particular, it is possible to have none or more than one estimate as-
sociated with the same schema.

We use the notation

hds; (type Int); ds0i ;

wheretypeis travel or turn, as an abbreviation for the formula

9s; a
�
CS(s; ds; a; ds0) ^ action type(a; type) ^ action execution(s; Int)

	
:

7.2 Frames of reference

In this section we consider one dimensional frames of reference which assign positions to
places on a path, radial frames of reference which assign angles to the different paths that
intersect at a given place, and two dimensional frames of reference which assign positions
to arbitrary set of places. Although we talk about frames of reference, we do not have a
sort for them. We represent them implicitly by associating them with places or paths as
explained below.

7.2.1 One dimensional frames of reference

At the SSH metrical level each path has associated a one dimensional frame of reference
which assigns a location to each place on the path. This location is a real number,5 repre-
senting the “distance” with respect to an arbitrary but fixed place on the path. The positions
of places in a path are derived from estimates acquired when traveling among places on the

5This real value represents a quantity whose magnitude is derived by the robot while navigating the envi-
ronment. The units of this quantity can bemeters, feet, or number of wheel rotations. Hereafter, we assume
that all quantities are given in the same units.
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path.6 Next we formalize these ideas.

The position of a place on a path is represented by the predicate

position1(path; place; position) :

Positions along a path are unique and only assigned to places belonging to the path. For-
mally,

position1(pa; p; pos) ^ position1(pa; p; pos0)! pos = pos0 ; (7.1)

position1(pa; p; pos)! on(pa; p) : (7.2)

The distance between two places in a path is defined as the absolute value of the
difference between their corresponding positions on the path. We use the predicate

path distance(pa; p; q; d)

to represent the fact that the distance between placesp andq on pathpa is d. The predicate
path distance is defined as follows:

path distance(pa; p; q; d) � (7.3)

9posp; posq fposition1(pa; p; posp) ^ position1(pa; q; posq) ^ d = jposp � posq jg :

Estimates of the distance between places on a path are gathered while the agent
navigates the environment. The predicate

path distance�(pa; p; q; Id)

is used to represent the fact that the closed intervalId is an estimate of the distance between
placesp andq on pathpa. Distance estimates are derived from experiences of the robot
in the environment. Distance estimates are “compounded” to derive new estimates from
known ones. Formally,

f min path distance� :

[h ds; (travel Id); ds
0 i ^ at(ds; p) ^ at(ds0; q) ^ along(ds; pa; dir)^ (7.4)

along(ds0; pa; dir)]! path distance�(pa; p; q; Id) ;

[order(pa; dir; p; q) ^ order(pa; dir; q; r) ^ path distance�(pa; p; q; Ipq)^ (7.5)

path distance�(pa; q; r; Iqr)]! path distance�(pa; p; r; Ipq + Iqr)

g

6The units of a 1-D frame of reference do not need to be externally meaningful. They must only be con-
sistent over time for the individual agent. One dimensional positions are “internal quantities” (as distinct from
nominal, ordinal, or ratio[Stevens, 1946]). That is, differences can be computed and added to positions, but
multiplication and division are not meaningful since the origin is an arbitrary landmark, not a true “zero”
quantity.
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where the addition of intervals is defined in the usual way:[a; b] + [c; d] = [a + c; b + d].
Finally, distance estimates are “merged” in order to have the “best” estimate associated
with a distance. We use the predicatepath distance
(pa; p; r; Id) defined below in order
to denote the merging of distance estimates:

path distance
(pa; p; r; I) �def I = \fIest : path distance�(pa; p; q; Iest)g : (7.6)

The distance between places on a path has to becompatiblewith all of its estimates.
Formally,7

path distance
(pa; p; q; Id)! 9d 2 Id path distance(pa; p; q; d) : (7.7)

The operations of compounding and merging are standard operations in order to
propagate uncertainty about the real value of a variable[Smith and Cheeseman, 1986].
They take different forms depending on how one represents uncertainty as well as on the
dimensionality of the variables’ domains. In our case, these operations take the form of
adding and intersecting intervals, respectively.8 Our description of how to assign posi-
tions to places on a path is a particular instance of a more general problem where given
a set of related variables as well as uncertainty about the values of the variables, one has
to determine the “best” estimate possible for the real value of the variables, while pre-
serving the relations among them[Smith and Cheeseman, 1986, Durrant-Whyte, 1988b,
Moutarlier and Chatila, 1989].

7.2.2 Radial frames of reference

Each place has a local frame of reference w.r.t. which path headings are associated. This
information is represented by the predicate

radial(p; pa; dir; h)

whose intended meaning iswhen the agent is located at placep, pathpacould be followed
in directiondir by facing the headingh w.r.t. the radial frame of reference local top. Head-
ings take values in[0; 2�).

7Axiom 7.7 also requires that the different distance estimates should beconsistent,
path distance
(pa; p; q; Id)! Id 6= ;.

8If x1; : : : ; xn aren independent normally distributed measurements of a single quantityx, with known
uncertainties�1; : : : ; �n, then the best estimate for the true value ofx is theweighted average

xavg =

P
wixiP
wi

wherewi = 1

�2
i

[Taylor, 1997]
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Headings at a place are unique and only assigned to paths the place is on. Formally,

radial(p; pa; dir; h) ^ radial(p; pa; dir; h0)! h = h0 ; (7.8)

radial(p; pa; dir; h)! on(pa; p) : (7.9)

We introduce the predicate

angle(p; pa; dir; pa1; dir1; ang)

to represent the angle the agent will have to turn to face pathpa1 in directiondir1 when it
is at placep facing pathpa in directiondir. Angles take values in[0; 2�). The predicate
angleis defined as follows:

angle(p; pa; dir; pa1; dir1; ang)� (7.10)

9hpa; hpa1 fradial(p; pa; dir; hpa) ^ radial(p; pa1; dir1; hpa1)^

ang 2 [0; 2�)^

ang � (hpa1 � hpa) = 0 mod 2�g :

We use the predicate

angle�(p; pa; dir; pa1; dir1; Iang )

to denote the fact thatIang is an estimate of the angle at placep between pathpa in direction
dir and pathpa1 in direction dir1. Estimates of the angle between paths at a place are
gathered fromturn actions. Angle estimates are compounded and merged as we did for
distances among places in a path:

f min angle� :

[h ds; (turn Iang); ds
0 i ^ at(ds; p) ^ along(ds; pa; dir) ^ along(ds0; pa1; dir1)] (7.11)

! angle�(p; pa; dir; pa1; dir; Iang) ;

[angle�(p; pa; dir; pa1; dir1; Iang) ^ angle
�(p; pa1; dir1; pa2; dir2; Iang0)] (7.12)

! angle�(p; pa; dir; pa2; dir2; Iang + Iang0 )

g

angle
(p; pa; dir; pa1; dir1; I) �def I = \fIest : angle�(p; pa; dir; pa1; dir1; Iest)g :(7.13)

Finally, the angle between paths at a place has to becompatiblewith all of its
estimates. Formally,

angle
(p; pa; dir; pa1; dir1; Iang)! 9ang 2 Iang angle(p; pa; dir; pa1; dir1; ang) (7.14)
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7.2.3 Two dimensional frames of reference

Notice that the SSH does not explicitly represent the distance or direction between two
arbitrary places. In order to do so, distances between places on a path as well as the angles
between paths at a place must be combined. We use the predicate

location2(p; q; l)

to indicate that the location of placeq with respect to the two dimensional frame of reference
associated with placep is l (a real valued pair). The location of a place w.r.t. a frame of
reference is unique,

location2(p; q; l) ^ location2(p; q; l0)! l = l0 : (7.15)

We do not restrict what places are assigned locations with respect to a given two
dimensional frame of reference. Assigning locations to places in a common frame of ref-
erence is a costly operation. In practice, not all places occur in all frames of reference nor
does a frame of reference include all places in the map.

When restricted to environments with “straight” paths,9 it is possible to state when
a two dimensional frame of reference iscompatiblewith the actual experiences of the robot.
The next axioms state this requirement:

location2(p; p1; lp1) ^ location2(p; p2; lp2) ^ path distance
(pa; p1; p2; Id) (7.16)

! jlp1 � lp2j 2 Id :

[location2(p; p1; lp1) ^ location2(p; p2; lp2) ^ location2(p; p3; lp3)^ (7.17)

order(pa; dir; p1; p2) ^ order(pa0; dir0; p2; p3) ^ angle
(p2; pa; dir; pa0; dir0; Iang)
�

! angle(� ~lp2lp1; ~lp2lp3) 2 Iang ;

whereangle(~v; ~w) denotes the angle in[0; 2�) from vector~v to vector~w.

Axioms 7.16 and 7.17 assume that paths are straight. In order to deal with more gen-
eral paths, one should include some parameters describing the shape of the path, or at least
an estimate of the change in heading while traveling.10 This last approach was adopted in
[Kuipers and Levitt, 1988] where travel actions were represented ashds; (travel dist 4�); ds0i,
wheredist corresponds to the distance between the places associated withds andds0, and

9Environments where the control law trajectories are straight lines.
10There is a deeper semantic issue here. When curved paths are possible, the predicatepath distance

represents distancealong the path, not straight-line distance between end point. To handle curved paths, we
have to separate those two concepts, or have estimates of both types of “distances”.
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4� corresponds to the change of orientation while traveling. However, there is not a state-
ment of how this extra information is used or whether it suffices to describe appropriate
metrical constraints for two dimensional frames of reference. While a more detailed ac-
count of the use of metrical information is desirable, including representing and reasoning
about a path’s shape, we have left this description outside the scope of this work. While
restricted to straight paths, our current presentation of the SSH metrical level illustrates the
main considerations in order to represent and use metrical information.

7.3 Combining topological and metrical information

While radial and one dimensional frames of reference are associated with any place and
path, respectively, there is not a general SSH theory asserting when to create a two dimen-
sional frame of reference, what places should be included in a such frame of reference, or
how to assign place locations consistent with the estimates of distances and angles gathered
by the agent. Nevertheless, in section 7.4 we address these issues from the SSH implemen-
tation point of view.

In this section we formally state what it means for the topological map to be con-
sistent with a given set of frames of reference. In order to do so, given distinctive states
ds; ds1; : : : ; dsn, we introduce the notationhds : ds1; : : : ; dsni to state that in the two
dimensional frame of reference associated withds’s place, the places associated with the
differentdsi have a location.

Definition 3

Let ds; ds1; : : : ; dsn be a set of distinctive states. By definition,

hds : ds1; : : : ; dsni �def

9p

(
at(ds; p) ^

n̂

i=1

9pi; li [at(dsi; pi) ^ location2(p; pi; li)]

)

fend of definitiong

By 2D Frames we denote the formula specifying any two dimensional frames of
reference used by the agent. Without loss of generality, we require two dimensional frames
of reference to be specified as in definition 3. We require any model of the SSH to have only
the two dimensional frames of reference specified in2D Frames. In addition, the places
belonging to a frame of reference should be only those explicitly stated in 7.18. These last
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two requirements can be stated as follows:

f min location2 : 2D Frames g (7.18)

The blockAT block (see page 41) is updated by adding axioms 7.1 to 7.18 so that
when determining places and paths, those should conform to the metrical constraints inE.
Below we present the updated version of this block:11

AT block =

f max teq :

Axioms 7.1-7.18;

Axioms 6:1� 6:12;

teq is an equivalence relation ;

teq(ds1; ds2)! V iew(ds1; v) � V iew(ds2; v);

teq(ds1; ds2) ^ h ds1; a; ds
0
1 i ^ h ds2; a; ds

0
2 i ! teq(ds01; ds

0
2);

teq(ds1; ds2)! 8p [at(ds1; p) � at(ds2; p)] ^

8pa; dir [along(ds1; pa; dir) � along(ds2; pa; dir)] ;

hds; turn; ds0i ! :teq(ds; ds0) ;

hds; turnAround; ds0i ^ hds; TurnAround; ds00i ! teq(ds0; ds00) ;

h ds1; turnAround; ds2 i ^ h ds2; turnAround; ds3 i ! teq(ds1; ds3) ;

at(ds; p)! tplace(p);

9!p at(ds; p);

turn eq(ds1; ds2) � 8p [at(ds1; p) � at(ds2; p)] ;

fmin turn eq :

teq(ds1; ds2) ^ teq(ds3; ds4) ^ dturn(ds2; ds3)! turn eq(ds1; ds4);

turn eq(ds1; ds2) ^ turn eq(ds2; ds3)! turn eq(ds1; ds3)

g

along(ds; pa; dir)! tpath(pa);

f min along :

h ds; travel; ds0 i ! 9pa; dir
�
along(ds; pa; dir) ^ along(ds0; pa; dir)

�
;

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir);

11We indicate the additions in bold letters.
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teq(ds1; ds2)! along(ds1; pa; dir) � along(ds2; pa; dir)

g

along(ds; pa; dir) ^ along(ds; pa1; dir1) ! pa = pa1 ^ dir = dir1;

at(ds1; p) ^ at(ds2; p) ^ along(ds1; pa; dir) ^ along(ds2; pa; dir)! teq(ds1; ds2);

�
hds; turn desc; ds0i ^ turn desc 6= turnAround ^

along(ds; pa; dir) ^ along(ds0; pa1; dir1)
�
! pa 6= pa1;

f min order :�
h ds; travel; ds0 i ^ at(ds; p) ^ at(ds0; q)^

along(ds; pa; dir) ^ along(ds0; pa; dir)
�
! order(pa; dir; p; q);

order(pa; pos; p; q) � order(pa; neg; q; p);

order(pa; dir; p; q) ^ order(pa; dir; q; r)! order(pa; dir; p; r)

g

:order(pa; dir; p; p);

fmin on : at(ds; p) ^ along(ds; pa; dir)! on(pa; p) g

on(pa; p) ^ on(pa; q) ^ tpath(pa)!

9ds1; dir1; ds2; dir2 [at(ds1; p) ^ along(ds1; pa; dir1) ^ at(ds2; q)^

along(ds2; pa; dir2) ^ travel eq(ds1; ds2)] ;

fmin travel eq :dtravel(ds1; ds2)! travel eq(ds1; ds2);

h ds1; turnAround; ds2 i ! travel eq(ds1; ds2) ^ travel eq(ds2; ds1);

teq(ds1; ds2) ^ teq(ds3; ds4) ^ travel eq(ds2; ds3)! travel eq(ds1; ds4);

travel eq(ds1; ds2) ^ travel eq(ds2; ds3)! travel eq(ds1; ds3)

g

circ tpath � :in region � tplace var ~newSSHpred

g

where ~newSSHpred stands for the tuple of predicates

h at; along; order; on; teq; turn eq; travel eq;
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totheRightOf; totheLeftOf; leftOf; rightOf; is region;

radial;position1;position2;

path distance;path distance�;path distance
;

angle;angle�;angle


i :

While the priorities in the circumscription policy are kept as before, by adding ax-
ioms 7.1-7.18 inside the circumscription scope, we require the topological map to have a
minimum set of paths and places consistent with the metrical information. The next exam-
ples illustrate how metrical information is used to disambiguate the topological map.

Example 25

Consider example 19 (page 59) where two topological maps are consistent with the agent’s
experiences (see figure 7.1). Suppose that “perfect” metrical information is available to the
agent such that the following set of schemas are created by the agent:12

hds1; (turn � 90o); ds2i hds2; (travel 10); ds3i

hds3; (turn 90o); ds4i hds4; (turn � 90o); ds3i

hds3; (travel 10); ds5i hds5; (turn � 90o); ds6i

hds6; (travel 20); ds7i hds7; (turn � 90o); ds8i

hds8; (travel 10); ds9i hds9; (turn � 90o); ds10i

hds10; (travel 20); ds11i

How does the agent figure out that it is back tods4 rather than tods1?. As claimed
in example 19 (page 59) both optionsteq(ds4; ds11) andteq(ds1; ds11) are topologically
possible (figures 7.1b,c). However, given the metrical information above, only the assump-
tion teq(ds4; ds11) is a consistent one. To deduce this fact, the agent includes the frame of
referencehds4 : ds1; : : : ; ds11i in E, which renders impossibleteq(ds4; ds11).

Should the metrical information have been less precise, the agent might not benefit
from this extra metrical information. For example, suppose that instead of sharp90o turn
angles, there exists a�10o uncertainty associated with the turn actions above (i.e. consider
replacinghds1; (turn � 90o); ds2i by hds1; (turn [�110o;�80o]; ds2i). In this case the
agent cannot use metrical information to deduce that it is back tods4 and it will have two
topological maps consistent with its information.
fend of exampleg

12Whenever we use a numberx instead of an interval, it is an abbreviation for[x; x].
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Figure 7.1:(a) The robot goes around the block visiting distinctive statesds1 to ds11 in the order suggested

by the figure. Distinctive stateds11 is observed at the same environment state asds4. Assume distinctive states

ds1 andds4 look alike to the agent.(b) and (c) represent two possible topological maps for the environment in

(a) (see example 19, page 59). The model in (c) can be discarded as it is not consistent with the available met-

rical information. (d) With�10o noise associated with turn actions, the agent cannot use metrical information

to discard the environment depicted in (c).

The example above may suggest that metrical information is used to check whether
an already built topological map is consistent with metrical information. However, by in-
cluding axioms 7.1-7.18 inside ATblock, metrical information is used while building the
topological map. As the next example illustrates, this may imply that the agent identifies
more places than it does when not using metrical information.

Example 26

Consider example 24 where three places and three paths where identified while the agent
explored a square room (figure 7.2b). Suppose the agent has access to perfect metrical
information and uses it while building the metrical map. In this case, the set of schemas
associated with this environment will be:

hds1; (turn � 90o); ds2i hds2; (travel 10); ds3i

hds3; (turn � 90o); ds4i hds4; (travel 10); ds5i

hds5; (turn � 90o); ds6i hds6; (travel 10); ds7i

In order to decide whether the agent is back tods1, the framehds1 : ds1; : : : ; ds7i

is created. It is easy to see that it is not possible to haveteq(ds1; ds7) while satisfying the
metrical constraints. Consequently, the topological map will havefour places instead of
three, as illustrated in figure 7.2c.
fend of exampleg

101



ds7

S

ds2
ds1P

ds3

ds6
ds5

R

Pc

Pa

Pb

ds4

Q

R

Pb

Q
Pa

P=S

Pc

Q

R

Pa

Pb

P

S
Pc

a b c

Figure 7.2:(a) The agent visits distinctive statesds1 to ds7 by the order suggested in the figure. Suppose all

corners look alike to the agent. In particular,ds1 andds7 share the same view. (b) Topological map associated

with (a) when metrical information is not available. (c) Topological map associated with (a) when metrical

information is available. In this case, the places associated withds1 andds7 are different (P 6= S).

While in the examples above all visited distinctive states were included in a two
dimensional frame of reference, this is in general not the case. In the presence of metrical
uncertainty, a global frame of reference may not provide useful information to determine
whether two places are the same, or to estimate the distance between two arbitrary places
(example 25).

7.4 Creating two dimensional frames of reference

When using two dimensional frames of reference, the SSH does not say when a frame of
reference should be created, or what places should be included in a given frame of reference.
Nor does the SSH say how to assign locations to places in a given frame of reference. In
this section we explore different answers to these issues.

7.4.1 When to create two dimensional frames of reference

In order to answer when one should create a metrical frame of reference, one should con-
sider the related question, why to use frames of reference. In examples 25 and 26 frames
of reference were created in order to decide whether two distinctive states are the same.
Another application of two dimensional frames of reference is to determine the relative
orientation and distance between arbitrary places in order to, for example, find new routes
or orient in the environment. In this last case, a place is included in a frame of reference
as long as its location uncertainty is appropriate for drawing useful conclusions. Next we
illustrate these possibilities.
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Distinguishing distinctive states

Suppose the agent is at distinctive stateds which shares the same view as distinctive states
ds0. Moreover, suppose that it is topologically consistent to assume thatds andds0 denote
the same environment state. In order to check ifds andds0 could be the same environment
state, the agent finds the shortest path fromds0 to ds, ds0 = ds0; : : : ; dsn = ds, and creates
a frame of referencehds0 : ds0; ds1; : : : ; dsni.13 The effect of having this frame of
reference when building the topological map is such thatteq(ds; ds0) will be the case if
there exists at least one location assignment to the places in the frame of reference that is
consistent with the metrical constraints. Though the method is only partially conclusive,
it helps to distinguish places before attempting more computationally expensive methods
(e.g. the rehearsal procedure).

Patchwork mapping

Having a global frame of reference including all places in the map is usually inappropriate
since the uncertainty associated with some places’ locations in such a frame of reference
may not allow the agent to draw useful conclusions. Instead, the agent can have multiple
frames of reference as well as relations among the different frames of reference[McDermott
and Davis, 1984, Kuipers, 2000]. As the agent explores the environment, new frames of
reference are created when the current’s location uncertainty with respect to the current
frame of reference is larger than a given threshold[Moutarlier and Chatila, 1989, Engelson
and McDermott, 1992b].

7.4.2 How to create two dimensional frames of reference

The problem of assigning locations to places given some metrical constraints can be solved
by borrowing methods from different fields. For example, estimation theory tells us how to
estimate the true value of a given set of variables given noisy observations of the relations
between those variables[Gelb, 1974, Smith and Cheeseman, 1986]. The robotics commu-
nity has developed algorithms to solve a network of spatial relations[Durrant-Whyte, 1987,
Durrant-Whyte, 1988a, Durrant-Whyte, 1988b, Moutarlier and Chatila, 1989]. Techniques
from multidimensional scaling[Borg and Groenen, 1997] and nonlinear programming[Per-
essiniet al., 1988] can also be used.

13The shortest path with respect to the number of edges in the path. The heuristic of choosing the shortest
path assumes that the fewer places whose location must be determined, the more accurately their locations can
be determined.
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Next we show an algorithm to create a two dimensional frame of reference while
preserving metrical constraints. The algorithm borrows its main ideas from a constraint
propagation algorithm presented in[Hernandez, 1994].

7.4.3 “Mental” route rehearsal

The proposed method to integrate multiple frames of reference is based on the idea that the
SSH supports “mental route rehearsal”. That is, the agent can “imagine himself” follow-
ing a route and assigning locations to the different places in the route. Information from
multiple routes is combined to further constrain the assignment of locations to the different
places. Next, we make these ideas precise.

A route is a sequence of the formP0 (S0; d0)P1 (S1; d1); : : : Pn, whereSi is
a topological path connecting placesPi and Pi+1 when traveling in directiondi (i.e.
order(Si; di; Pi; Pi+1) is the case). In addition, we require that all the places in the route
are different, except possiblyP0 andPn.14

The problem we are to solve is to map each place in a set of routes to a “location” in
R2. These locations are such that they preserve the estimated distance and relative orienta-
tion between consecutive places in the route. In this work, alocation is a two dimensional
rectangle whose sides are aligned with the coordinate axes ofR2.15 In order to assign loca-
tions to places in a route, an initial locationL0, an initial headingH0, and a vectorV0 must
be specified.L0 is the location assigned toP0. By mapping the local headingH0 at place
P0 to the vectorV0, the agent defines the orientation relationship between the local radial
frame of reference atP0 andR2.

OnceL0, H0, andV0 have been provided, the location of the other places in the
route is calculated by starting atP0 with locationL0 and integrating distances between
places and change of heading among the paths in the routeR.16 As a result of “following
the route”, each placePi in the route has associated a locationLoc(Pi; R; L0;H0; V0). By
convenience, we will writeLoc(Pi; R) instead ofLoc(Pi; R; L0;H0; V0), wheneverL0,H0

andV0 are understood.

14Pi = Pj ^ i < j ! i = 0 ^ j = n.
15This rectangle accounts for the uncertainty in the SSH’s metrical information. If there is no uncertainty,

then the rectangle reduces to a point inR2.
16The change of heading at placep from paths1 to paths2 is the angle an agent will have to rotate once it

gets into placep following paths1, and leavesp following paths2.
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Next we introduce the notation and definitions we use to assign locations to places.
Definition (6) specifies how to assign locations to places in a given route.

Definition 4 (Rect(A))

Given two set of vectors inR2, A andB, A + B denotes the set of vectorsfa + b : a 2

A; b 2 Bg.

Given a set of vectors,A, Rect(A) denotes the minimum rectangle containing the
set A, such that the sides of Rect(A) are aligned with the coordinate axes ofR2.

Given a vectorv in R2 and an angle� 2 [0; 2�), v� denotes the unit vector associ-
ated with the rotation ofv by an angle of�.
fend of definitiong

a

b

θ

Loc(Pi-1,R)

Loc(Pi,R)

Loc(Pi+1,R)

Si-1

Si

Figure 7.3:Calculating the location ofPi+1 given the location ofPi andPi�1 (see text).� is the change of

heading from pathSi�1 to pathSi at placePi.

For a routeR the operator�R defines how to calculate the location of placePi+1

given the location of placesPi�1 andPi.17

Definition 5 (�R)

Given a route R,R = P0 S0 P1 : : : Sn�1 Pn, an initial headingH0, an initial vectorV0, an
initial locationL0, and locationsLi�1 andLi for placesPi�1 andPi, respectively,�R is

17Special cases will be considered for the locations ofP0 andP1.
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defined as follows (see Figure 7.3):

(V0; H0) �R (P0; L0) =

Rect(fb + �V0� : b 2 L0; � 2 Id; path distance
(S0; P0; P1; Id);

� = H0 � h; radial(P0; S0; d0; h)g)

(Pi�1; Li�1) �R (Pi; Li) =

Rect(fb + �(
b� a

jb� aj
)� : a 2 Li�1 ; b 2 Li; a 6= b;

� 2 Id; path distance
(Si; Pi; Pi+1; Id);

� 2 Iang; angle
(Pi; Si�1; di�1; Si; di; Iang) g)

fend of definitiong

In order to assign locations to the places in a route one starts withP0 in L0 and
applies�R recursively until finding a location forPn. Definition 6 illustrates this case. It
is also possible to use�R to combine locations along multiple routes as defined in the next
section.

Definition 6 (Route Vector Addition)

Given a route R,R = P0 S0 P1 : : : Sn�1 Pn, an initial headingH0, an initial vector
V0, and an initial locationL0, we defineLoc(Pi; R), the location ofPi according to route
R, as follows:

1. If Pi = Pn = P0 thenLoc(Pn; R) = Loc(P0; R) = L0.

2. If Pi = P1 thenLoc(P1; R) = (V0;H0) �R (P0; L0).

3. Otherwise,Loc(Pi; R) = (Pi�2; Loc(Pi�2; R)) �R (Pi�1; Loc(Pi�1; R))

fend of definitiong

7.4.4 Combining information from multiple routes

Information from multiple routes can be used to further constrain the location of a place
P with respect to a reference placeP0. For example, in figure 7.4 information from two
different routesR1 andR2 further constrain the location of placesD andE with respect to
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Figure 7.4:(a) RouteR1 and the associated locations for placesB andD. Location of places is indicated

by a rectangle. (b) RouteR2 and the associated locations for placesC, D andE. (c) The location of placeD

is changed by intersecting its locations with respect to routesR1 andR2. The new location is then propagated

to updateE’s location.

placeA.

A constraint propagation algorithm is proposed to mix information from various
routes. The basic idea of this algorithm is as follows. Given a set of routesSR, we asso-
ciate a directed graphG with SR. The nodes ofG are the places inSR. An edge (P ,Q)
belongs toG if there exists a route in SR such thatQ is immediately afterP . Whenever the
location of a placeP is changed, this location is used to update the location of the neighbor
places ofP according toG. A place location is changed by intersecting its previous location
with a new one. The algorithm ends when there is no place whose location must be changed.

Let SR =fR1; : : : ; Rng be a set of routes, all of which start at the same placeP0.
Let P laces(SR) denote the set of places belonging to the routes inSR. Given a placeP
in P laces(SR), we are to defineLoc(P; SR), the location ofP given the routes inSR.
As explained above, in order to associate locations to places, we have to specify an initial
headingH0, an initial vectorV0, and a locationL0. Loc(P; SR) depends on these parame-
ters. Next we describe how the propagation algorithm works.

Initially the location of all the places, exceptP0, is set toR2 (sinceR2 is the identity
for the intersection of locations). The location ofP0 is set toL0.
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ProcedureInitialization
empty(Queue);
for each place p2 Places(SR) do

Loc(p; SR) = R2;
Loc(P0; SR) = L0;
push(P0,Queue)

fend of procedureg

The algorithm keeps a priority queueQueuewhere nodes whose location has changed
is kept. We will explain later how places are added toQueue. To calculate the location of
the different places inSR, the procedurecompute closureis called.

ProcedureCompute Closure
whileQueue 6= ; do

begin
p = pop(Queue);
Propagate(p);

end
fend of procedureg

Whenever the location of a place is changed, its new location is propagated to its
neighbor places. We use the predicateNext(SR;R; p; q) to denote the fact thatR is inSR,
and placeq is immediately after placep in routeR. Given a new location forp, we define
the new location ofq to be the intersection of its current location according toSR (i.e.
Loc(q; SR)) and the location ofq according toR given the new location ofp (as defined
by the operator�R, definition 5). Since the new location of a place is always a subset of its
previous location, we decide whether the location ofq has changed by comparing the area
of its previous and new location (see definition 8, page 11018).

18We consider special cases when a location is a “degenerate” rectangle, like a line segment or a point.
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ProcedurePropagate (p)
for each placeq such thatNext(SR;R; p; q) do

begin
if 9p0; (p0; p; R)

then New :=Loc(q; SR) \ (p0; Loc(r; SR)�R (p; Loc(p; SR))

else New :=Loc(q; SR) \ (V0; H0)�R (p; Loc(p; SR))

if New = ;
then signal contradiction
if Change(New,Loc(q; SR))

then
begin

add q toQueue
Loc(q; SR) := New

end
end

fend of procedureg

The next example illustrates how the algorithm works to combine the information
from the routes in figure 7.4.

Example 27

Consider the routesR1 andR2 depicted in figure 7.4. We start the algorithm by calling the
procedure initialization, after which we have that19

Loc(A) = {(0,0)}, Loc(B) = Loc(C) = Loc(D) = Loc(E) = Rˆ2
Queue = [A]

The procedure Compute Closure is then invoked, A is removed fromQueue, and the proce-
durePropagate(A) is called. New locations for placesB andC are then calculated. The
new locations become:

Loc(A) = {(0,0)}, Loc(B) = L1, Loc (C) = L2, Loc(D)=Loc(E) = Rˆ2

Queue = [B,C]

whereL1 andL2 are the locations calculated forB andC respectively. NowB is taken
from QueueandPropagate(B) is called, after which we have that

Loc(A) = {(0,0)}, Loc(B)= L1, Loc (C)= L2, Loc(D)= L3, Loc(E) = Rˆ2
Queue = [C,D]

Propagate(C) will be called and the location ofD is changed by intersecting information
from both routes,

19We will omit the parameterSR in Loc(p; SR) and writeLoc(p).
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Loc(A) = {(0,0)}, Loc(B) = L1, Loc (C) = L2, Loc(D)= L3 inter L3’

Loc(E) = Rˆ2

Queue = [D]

L3 and L3’ are the location ofD according to routeR1 andR2, respectively. Finally,
Propagate(D) is called which will give a value for the location ofE.
fend of exampleg

In the example above, we did not propagate the location of any place twice. In
general this is not the case, and we need to be more strict on how places are taken from
Queue whenPropagate is called. In order to do so, we impose an order,beforeSR(p; q),
among the places inSR. Next we definebeforeSR(p; q).

Definition 7 (beforeSR(p; q))

Given a set of routesSR, placesp andq in P laces(SR), we say that placep is before place
q according toSR, beforeSR(p; q), if (i) there exists a routeR in SR such thatp is before
q in R, and (ii) there does not exist a routeR in SR such thatq is beforep in R.
fend of definitiong

The relationbeforeSR defines a partial order among the places inSR. We use it to
prioritize the places in Queue, such that wheneverbeforeSR(p; q) is the case, the priority
of p is greater than the priority ofq.

In order to decide whether the location of a place has changed, we compare the
areas between the new and the old place location, as stated in the next definition.

Definition 8 (Change(new,old))

Given two locations,new andold, such thatnew � old, change(new,old)is true if and
only if one of the following conditions is true

1. old =R2 and new6= R2.

2. both old and new are rectangles and[area(old) � area(new)] > �, for a given
� > 0.

3. old is a rectangle and new is a line segment or a point.

4. both old and new are line segments and[length(old) � length(new)] > �, for a
given� > 0.
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5. old is not a point and new is a point.

fend of definitiong

The proposed algorithm assigns locations to places in a “liberal” way.20 By choos-
ing an arbitrary point from a place’s location as the actual place position, the resulting as-
signment of positions does not necessarily satisfy the distance and angle constraints among
places. However, any assignment of places’ positions satisfying these constraints is cov-
ered by the places’ locations produced by our algorithm. Should the application at hand
require such assignment of positions, starting from the locations assigned by our algorithm
one could use Monte Carlo or hill-climbing algorithms to find such assignment (if exists)
[McDermott and Davis, 1984].

Possible applications of our algorithm include answering queries about the spatial
layout and visualization of the topological map:

� Answering some queries about the spatial layout can be rendered to check some prop-
erties in the location assigned to places. For example, to answer whether placeA is
to the left or right of placeB, when facing heading� atB, the following procedure
is used. Find a route fromB to A. Let P0 beB, H0 = � andV0 = (0; 1). A is to
the left of B if the location ofA is contained inf(x; y) : x < 0)g. A is to the right
of B if the location ofA is contained inf(x; y) : x > 0)g. Otherwise the agent does
not decide whetherA is to the left or right ofB. Notice that given the uncertainty
associated with distances and angles, the proposed method is partially conclusive: it
could answeryes, noor maybe.

� Displaying the layout of places in a computer screen is important for a robot-human
interface. Having pre-defined two dimensional frames of reference allows one to
quickly display a region or neighborhood, a display that is useful for specifying nav-
igation goals as well as generating explanations of the robot’s navigation plans.

7.5 Summary

In this chapter we have defined different kinds of frames of reference considered in the
SSH: one dimensional frames of reference which assign positions to places on a path, ra-
dial frames of reference that assign angles to the different paths that intersect at a given

20We borrow this term from[McDermott and Davis, 1984]. In a “liberal” map, the location of places grants
as much freedom as possible to each place even though not every coordinates we pick within a place location
will satisfy all metrical constraints. This would be the case in a “conservative” map.
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place, and two dimensional frames of reference which assign positions to arbitrary set of
places. Our formalization describes how uncertainty associated with metrical information
is taken into account when creating these frames of reference. In particular, we have de-
scribed how to represent different metrical measurement estimates, how to combine them,
and how to represent the constraints they impose on the metrical relations among different
objects referenced by a frame of reference.

Uncertainty in metrical information has been represented by one and two dimen-
sional rectangles. This representation is adequate for most practical uses. However, more
sophisticated representations of uncertainty are compatible with our methods. For example,
probability density functions (such as Gaussians) can be used to represent uncertainty on
the distances between places in a path.

The SSH theory does not specify when to create two dimensional frames of refer-
ence. We have described particular instances when this should be done: in order to disam-
biguate places or when uncertainty in a place location is “high”. Given that the actual formal
treatment of uncertainty propagation is outside the scope of this work, we have provided
pointers to the relevant fields where such studies are done (see section 7.4.1). Nevertheless,
we have described a constraint propagation algorithm to integrate multiple frames of ref-
erence while assigning locations to places in a given set of routes. Locations are assigned
such that they preserve the estimated distance and relative orientation between consecutive
places in a path (see section 7.4.3).

Finally, we have pointed out that our current description of two dimensional frames
of reference assumes environments where paths are straight. Nevertheless, our current pre-
sentation of the SSH metrical level illustrates the main considerations in order to represent
and use metrical information. A more detailed account of the use of metrical information,
possibly by reasoning about the shape of paths, is suggested as future work.
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Chapter 8

Regions

As the agent explores its environment, the number of places it identifies grows. Conse-
quently, the topological map, as described until now, might have so much information that
it will be cumbersome (i.e. time-consuming) to use for future navigation or for a human
level interface.1 It is useful then to define a hierarchical representation that simplifies some
details in the topological map. The basic abstraction method we use is to groupplaces into
regions. As for topological places, regions are ordered along routes, and in turn they can be
grouped to form new regions, giving the representation a powerful mechanism of abstrac-
tion. Metrical information about regions, like their distance along a route or their relative
direction, can be derived from the corresponding metrical relations among the places in the
regions. In this chapter we state how to represent regions in the SSH as well as the prop-
erties of the hierarchical representation associated with them. We also illustrate the use of
regions for hierarchical planning and qualitative reasoning about space.2 Finally, we also
provide some criteria for automatically identifying regions and creating their associated
hierarchy.

8.1 Including regions in the SSH topological level

Regions are sets of places.Regions themselves can be grouped to form new regions.
Since regions can be seen as places, we have not added a new sortregions to the SSH

1Similar problem occurs when a QSIM behavior graph has many states. A way to simplify these behaviors
graphs is to abstract together adjacent states that, by according to a user’s criteria, need not be distinguished
[Mallory et al., 1996].

2Further uses of regions can be found in section A.3, page 209 (hierarchical plan execution).
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topological level ontology. We use the predicate3

in region(p; r)

to denote thatplacep is in region r. Recall that the sort of places contains the subsorts of
topological paths and regions. In chapter 5 we required that (see axiom 5.4, page 39)

:9p [tplace(p) ^ is region(p)]

wherep is a variable taking values in the sort ofplaces. Similarly, in chapter 6 we restricted
the domain ofin regionsuch that (see axiom 6.6, page 80)

in region(p; r)! is region(r) :

We require that the transitive closure ofin region defines a DAG4. Formally, we
restrict our attention to models of the following formulae:

:in region�(r; r);

f min in region� :

in region(p; r)! in region�(p; r);

in region�(p; q) ^ in region�(q; r)! in region�(p; r)

g

where in region� denotes the transitive closure ofin region. Equality among
regions is defined as expected: two regions are equal whenever they represent the same set
of places. Formally,

is region(r) ^ is region(r0)! r = r0 � 8p fin region�(p; r) � in region�(p; r0)g

Once places have been arranged into regions, we must define connectivity relations
among them. We do so bylifting the order relation among places in a path to their corre-
sponding regions. The next section presents how to do so.

8.1.1 Defining paths among regions

Recall that the sort of paths contains the subsorts of topological paths and routes, as stated
by axiom 5.5 in chapter 5 (see page 39):

:9pa [tpath(pa) ^ route(pa)] ;
3This predicate has been used in the previous chapters. Here we will define the minimum constraints on this

predicate.
4Directed Acyclic Graph.
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wherepa is a variable taking values in the sort of paths.

Routes are to topological paths what regions are to topological places. In order to
describe abstract relations among paths we use the predicate

lifted to(pa; pa1)

to represent that routepa1 is an abstraction of pathpa.5 The predicatelifted to plays the
same role the predicatein region does in the context of regions. Consequently we restrict
our models to those satisfying the following formulae:

lifted to(pa; pa1)! route(pa1);

:lifted to�(pa; pa);

f min lifted to� :

lifted to(pa; pa1)! lifted to�(pa; pa1);

lifted to�(pa; pa1) ^ lifted to�(pa1; pa2)! lifted to�(pa; pa2);

g

The basic rule to lift the order of places in a path to an order among their corre-
sponding regions in a route is defined as follows:

lifted to(pa; pa1)! (8.1)

9dir8p; qf[order(pa; pos; p; q) ^ in region(p; rp) ^

in region(q; rq) ^ rp 6= rq ]! order(pa1; dir; rp; rq)g

Axiom 8.1 takes into account the fact that different paths can be lifted to a same
route. This is accomplished by requiring that the order of places in the positive direction
of the path being lifted corresponds to the order of regions in some direction of the route
the path is being lifted to. Notice that sinceorder(pa; pos; p; q) � order(pa; neg; q; p) we
only need to consider the positive direction of paths in axiom 8.1.

In order for our path lifting method to work, we require a region to be a “path-
convex” set of places, that is,

order(pa; dir; p; s)^order(pa; dir; s; q)^in region(p; r)^in region(q; r)! in region(s; r) (8.2)

The next example illustrates how axiom 8.1 works and why we require regions to
be “path-convex”.

5A route can be an abstraction of a set of paths. See example 29, page 116.
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Example 28

Consider the pathpa depicted in figure 8.1a. Suppose we have the regions,A = fa; bg,
C = fcg andD = fd; e; fg. Let’s consider how to lift pathpa to pathpa1. Since placea
is before placec in pathpa (i.e. order(pa; dir; a; c) is true) then, regionA is before region
C in pathpa1 (i.e. order(pa1; dir; A;C) is true).

pa1

pa
a b c d e

A

f

C DA

C D
pa1

A C A

pa
a b c d e f

A

C

a b

Figure 8.1:(a) Lifting paths. Pathpa is lifted to pathpa1. The order of places in pathpa defines the order

of their corresponding regions in pathpa1. (b) Regions have to be “path-convex” in order for our path lifting

method to work (see text).

Notice that sincea and b belong to the same regionA, it is not the case that
order(pa1; dir; A;A), although it is the case thatorder(pa; dir; a; b).

Let’s consider a different scenario. Suppose we have two regions,A =

fa; b; d; e; fg andC = fcg (figure 8.1b). Assume we lift pathpa to pathpa1. Since
placea is before placec in pathpa, regionA is before regionC in pathpa1. Similarly,
since placec is before placed in pathpa, regionC is before placeA in pathpa1. Since the
order among places in a path is not reflexive, we will have a contradiction.
fend of exampleg

Example 29

Different paths can be lifted to a same route as long as axiom 8.1 is satisfied and the order
of regions in the route defines a partial non-reflexive order. For instance, consider the map
in figure 8.2, whereRA = fa; bg, RB = fc; dg, and pathspa andpa0 are both lifted to
routepa1. In addition, assume thatorder(pa; pos; a; b) andorder(pa0; neg; c; d) are the
case (the positive direction of paths is indicated by arrows in the figure). Then, axiom 8.1
can be satisfied by definingorder(pa1; pos;RA;RB). fend of exampleg
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RA RB

pa1

pa

pa’
dc

RA RB

a b

Figure 8.2:A route can be an abstraction of different paths.

The places at which a path enters or leaves a region are used to translate routes
from one level of the hierarchy to actual behaviors at the SSH control level (page 118).
This in turn implies that we can use hierarchical planning techniques when navigating the
environment (see pages 207 and 209). The predicates

place enter(pa; dir; r; p); path leaves(pa; dir; r; p)

are used to denote thatp is a place at which the pathpa enters (leaves) regionr, when
following pa in directiondir.6 We explicitly define these predicates as follows:

place enter(pa; dir; r; p)
def
� (8.3)

in region(p; r) ^ 8q forder(pa; dir; q; p)! :in region(q; r)g

place leaves(pa; dir; r; p)
def
� place enter(pa;�dir; r; p) (8.4)

The constraints imposed on the hierarchy of regions and paths do not exclude
bizarre structures. Moreover, different hierarchies can be implicitly represented by the
predicatein region. In practice, it is the case that one imposes more structure on the
abstraction hierarchy. In particular, “stratified” hierarchies turn out to be the common ones:

Definition 9 (Stratified hierarchies)

The relationin region defines astratified hierarchyover a set of placesSH if there exist
a natural numbern, and a functionlevel from SH into f0; : : : ; ng such that:

1. p 2 SH ^ tplace(p)! level(p) = 0.

2. p 2 SH ^ r 2 SH ^ in region(p; r)! level(r) = level(p) + 1.

3. p 2 SH ^ q 2 SH ^ on(pa; p) ^ on(pa; q)! level(p) = level(q).
6Given that the order of places is not necessarily a total order, there could exist different places at which a

path enters (leaves) a region.
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4. r 2 SH ^ level(r) < n! 9r0 in region(r; r0).

In addition, we require regions to be connected

p 2 SH^r2SH^q2SH^in region(p; r)^in region(q; r)! connected(r; p; q) (8.5)

were the predicateconnected is such that

f min connected :

in region(p; r)! connected(r; p; p);

order(pa; dir; p; q) ^ in region(p; r) ^ in region(q; r)! connected(r; p; q);

connected(r; p; q) ^ connected(r; q; s)! connected(r; p; s)

g

fend of definitiong

Regions in a stratified hierarchy are connected sets of places, such that it should
be possible to go from one place to another in a region by only visiting places inside that
region.7 The connectedness property will ensure that a route at any level of a stratified
hierarchy has an associated route at level zero of the hierarchy. This property in turns
implies that “navigation plans” described at different levels of detail can be translated to
actual behavior. The actual behavior is found by repeatedly refining a route at levelk; k > 1,
to a route at levelk � 1, until finding a route at level0. Next we define what a refinement
for a route is.

Notation 1

A route from regionR0 to regionRn in a stratified hierarchy is denoted by a sequence

R0; (Pa0; dir0); R1; : : : ; (Pan�1; dirn�1); Rn

such that (i)level(Ri) = level(Rj); 0 � i; j;� n, and (ii) order(Pai; diri; Ri; Ri+1);

0 � i < n.
fend of notationg

Definition 10 (Partial refinement)
7Some useful region structures are not connected. For instance, the left and right regions of a path are in

general not connected.
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Given a routeR = R0; (Pa0; dir0); R1; : : : ; (Pan�1; dirn�1); Rn, apartial refinementof
R is a sequence

re0; r
l
0; (pa0; dir

�
0); r

e
1; r

l
1; : : : ; (pan�1; dir

�
n�1); r

e
n; r

l
n

such that (i)in region(rei ; Ri); in region(rli; Ri); 0 � i � n, (ii) lifted to(pai; Pai);

0 � i < n, and (iii) place leaves(pai; dir�i ; Ri; r
l
i); place enters(pai; dir

�
i ; Ri+1; r

e
i+1);

0 � i < n. Notice that the only restrictions onre0 andrln are the ones in (i).
fend of definitiong

A complete refinement for a routeR can be found by finding a partial refinement
for R, and then finding a route, restricted toRi, givenrei andrli. This last route is guarantee
to exist since we require regions to be connected (axiom 8.5).

Definition 11 (Complete refinement)

Given a routeR = R0; (Pa0; dir0); R1; : : : ; (Pan�1; dirn�1); Rn, p such that
in region(p;R0), andq such thatin region(q;Rn), a complete refinement of R, givenp
and q, is a route r0; (pa0; dir

�
0); r1; : : : ; (pam�1; dir

�
m�1); rm such that for eachi; 0 �

i � n, there existi0; i00; 0 � i0 � i00 � m satisfying:

1. r0 = p, rm = q.

2. 00 = 0, n00 = m.

3. r00 ; r000 ; (pa00 ; dir�00); r10 ; r100 ; : : : ; (pa(n�1)0 ; dir
�
(n�1)0 ); rn0 ; rn00 is a partial refine-

ment forR.

4. For allj; i0 � j � i00, rj belongs toRi (i.e in region(rj ; Ri) is the case).

fend of definitiong

The general algorithm for hierarchical planning with stratified hierarchies is shown
in figure 8.3. While our description of refining routes uses a breath-first approach, one
could use depth-first too. When using depth-first, one could interleave planning and plan
execution so that a complete plan is not necessary in order for the agent to start navigat-
ing towards its goal (see page 209). In addition, notice that it is not guaranteed that the
algorithm returns an “optimal” path fromp to q. Further restrictions on how one creates a
refinement and in the hierarchy itself must be imposed for this to be the case. The reader is
referred to[Fernandez, 2000] where a complete analysis of hierarchical planning as well as
extensions to the ideas here presented can be found.
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Procedure Hierarchical planning (p,q)
;;; Assumelevel(p) = level(q),

find r, p0; : : : ; pn, q0; : : : ; qn such that
(i) p0 = p, q0 = q, pn = qn = r,
(i) pi 6= qi, 0 � i < n,
(iii) in region(pi; pi+1); in region(qi; qi+1); 0 � i < n.

route : = findroute(r,pn�1,qn�1);
i = n-2;
while i > level(p) do

begin
route := refine(route,pi,qi);
i: = i-1;

end
return route

fend of procedureg

Figure 8.3: Hierarchical planning algorithm . find route(r; p; q) returns a route fromp to q whose

places belong to regionr. refine(route; pi; qi) returns a complete refinement ofroute, givenpi andqi (see

definition above).

8.1.2 One dimensional frames of reference associated with routes

At the SSH metrical level we have to define the distance between regions and the direction
between routes. Recall that distance between regions is only explicitly defined for regions
in the same route. Direction among routes is derived from the angle between routes at the
regions they intersect. Distance and direction could be defined in different ways for regions
and routes respectively. For example, for each region a place could be chosen as its repre-
sentative, and distance among regions is then defined as distance among representatives. In
the same vein, it is possible to define “the center of mass” of a region, and then define the
distance among regions as the distance among their center of mass.

In the current implementation of the SSH we represent uncertainty on distances by
real number closed intervals. The distance uncertainty between two regions is the minimum
closed interval containing all distances uncertainties between any two places in the regions.
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Formally,8 9

order(pa1; dir; r1; r2) ^ (8.6)

a = minfa0 : 9pa; p; q [lifted to(pa; pa1); in region(p; r1); in region(q; r2);

path distance�(pa; p; q; [a0; b0])]g ^

b = maxfb0 : 9pa; p; q [lifted to(pa; pa1); in region(p; r1); in region(q; r2);

path distance�(pa; p; q; [a0; b0])]g

! path distance�(pa1; r1; r2; [a; b])

8.1.3 Radial frames of reference associated with regions

In order to define the angle between paths at a region, we associate a two dimensional frame
of reference with a region. Each place in the region gets a location with respect to this frame
of reference (see section 7.2.3, page 96). We assume that the center of mass of the different
place locations is(0; 0).10 The angle associated with the locations where a path enters or
leaves a regions are used to assign the respective path headings with respect to the region:

A = fang : 9pa0; pa10; p; q; hp; hq

[lifted to(pa0; pa); lifted to(pa10; pa1);

place leaves(pa; dir; r; p); place leaves(pa10; dir1; r; q);

location2(r; p; lp); location2(r; q; lq)

directed angle(lp; lq) = a]

g ^

ang = min int cover(A)

! angle�(r; pa; dir; pa1; dir1; Iang)

wheremin int cover(A) denotes the minimum angle interval covering all the angles in
the setA. Example 30 (page 122) shows how all the above axioms work in aT like envi-
ronment.

The resulting hierarchical representation is similar to the Hierarchical Graphs (AH-
graphs) representation proposed in[Fernandez and Gonzalez, 1997, Fernandez and Gonza-
lez, 1998, Fernandez, 2000]. They differ in that ours focuses on topological paths (not just

8Notation: Whenever a formula� is a conjunction,� = C1 ^ : : : ^Cn, we will replacê by a comma and
writeC1; : : : ; Cn.

9The predicatepath distance�(pa; p; q; Id) is used to represent the fact that the closed intervalId is an
estimate of the distance between placesp andq on pathpa. See page 93.

10Once a two dimensional frame of reference is created, the center of mass of the different places can be
calculated, and places’ locations can be translated so that their center of mass become(0; 0).

121



edges in a graph), metrical information, and it is defined using an axiomatic theory compat-
ible with the previous description of the SSH. In addition, we have not paid attention to the
optimality conditions the hierarchy should satisfy in order to find optimal navigation paths
at the bottom level of the hierarchy. Nevertheless, our specifications of regions has been
implemented using AH-graphs[Remolinaet al., 1999].

8.2 Creating Regions

While we have described how to represent regions in the SSH, the question of how the
agent learns such regions is not in the scope of this work. Nevertheless, we consider two
general approaches –metrical and topological– that lead to useful hierarchies in office-like
environments. In the metrical approach, places that are close to each other define a region.
In the topological approach, objects or configurations of objects in the topological map
define regions. For instance, in chapter 6 boundary regions were defined by associating
with a path its left and right regions. The basic algorithm to create a region hierarchy is
presented in figure 8.6 (page 125) . Although the algorithm only uses method (8.7) to
create regions, any combination of methods could have been used.

Metrical approach

In this method, a regionr is a set of connected places such that if a placep is in r and the
distance fromp to placeq is less than a given threshold, then placeq is in r. Formally,

in region(p; r) ^ path distance(pa; p; q; d) ^ d � �! in region(q; r) (8.7)

The next example illustrates the use of this technique.

Example 30

Consider the environment in figure 8.4, where the agent has identified placesa throughh.
Notice that placesb; c; e; f; g are very close one from each other. We can automatically set a
threshold such that these places become a region,B. In virtue of axiom 8.7 (and the choice
of our threshold) placea gets associated to a regionA whose only place isa. Similarly,
placesd andh get associated with regionsD = fdg andH = fhg, respectively. Note that
for too large a threshold, or too uniform a distribution of places, all places will fall into the
same region, rendering the resulting region structure not useful.

Once these regions have been created, the pathha; b; e; c; di can be lifted to the path
hA;B;Di and the pathhb; f; g; hi can be lifted to the pathhB;Hi. The resulting topolog-
ical map has two routes and four regions, as illustrated in figure 8.4b. Notice that the path
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(a) (b)
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1
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b1 d [10,13]

Figure 8.4: Placesfb; c; e; f; gg are grouped into regionB. Distance among places is annotated on the

corresponding edges. (b) shows the resulting abstract map associated with (a).

ha; b; e; c; di enters regionB at placeb and leaves it at placec. As for pathhb; f; g; hi it
entersB at placeb and leaves it at placeg.

Let’s suppose that the heading of pathha; b; e; c; di at placec is 0 degrees. A coor-
dinate frame for regionB will indicate then that the heading of pathhb; f; g; hi at place g
is about -90 degrees. Consequently, we can deduce that the angle between pathshA;B;Di

andhB;Hi at placeB is about -90 degrees. The resulting map is indicated in figure 8.4b.
fend of exampleg

Notice that when places are close to each other, it could be the case that the resulting
regions contain places that are very far apart from each other. We can handle this case by
consideringp a constant instead of a variable in axiom 8.7. The resulting method creates
a region around a preselected placep. For example, the region associated with Austin will
correspond to those towns (places) not farther than 30 miles from Austin.

Topological approach

Topological approaches for creating regions identify subgraphs in the topological map that
are “good” candidates for regions. For instance, connected components in the topological
map that will be disconnected when removing a path (bridge) from the map are good can-
didates for regions. Figure 8.5b shows the bridge region map associated with Figure 8.5a.
Each office is represented as a place in Figure 8.5b. Next we illustrate how this transforma-
tion is done in the case of office A.

Consider thetopological pathconnecting places 1 and 6 in figure 8.5a. By removing
this path, the subgraph associated with the set of placesf1,2,3,4,5g (i.e. office A) becomes
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Figure 8.5: (a) Topological map of a two floor building. (b) Bridge region map associated with (a). (c)

Bridge region Map with (b).

disconnectedfrom the rest of the map. This fact implies that any route from a place out-
side A to a place in A necessarily includes place 1. “It makes sense” then to identify all
the places in A with place 1 (i.e. create a region associated with A). Notice that we remove
topological paths and not edges in the graph. For example, in figure 8.5a we do not consider
removing the edge between places 6 and 7. In addition, in order to detect regions we only
remove paths of length one. For example, we do not consider removing the topological path
including nodes6; 7 and8 (i.e. floor 1).11

We still can construct a more abstract map. Notice that removing paths of length one
in the map of Figure 8.5b does not produce new disconnected regions. We then consider
to remove two paths simultaneously with the restriction that the respective ending of the
paths belong to the same other path. For example, consider the pathE (i.e. the elevator)
connecting places 7 and 9, and the pathS (i.e. the stairs) connecting places 8 and 10. The
respective endings of these paths are the set of placesf7,8g andf9,10g. From figure 8.5b
it is clear that places 7 and 8 belong to a same path (i.e. the corridor in floor 1). Similar
conclusion is true for places 9 and 10. By simultaneously removing pathsE and S, the
resulting graph has two connected components (i.e. each floor becomes a component).
These two components give as a result the map in figure 8.5c.

8.3 Using regions to solve spatial problems

Once a region hierarchy is available, some spatial problems among places can be solved by
solving a related problem in terms of the regions associated with these places. For example,
in order to decide whether Austin is south of Boston, we might consider the related problem
“is Texas south of Massachusetts?”. Solving this second problem will be computationally

11It is not clear at this point how to remove this constraint.
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1. places := set of all places at the topological level.
paths := { pa : on(pa,p), p in places}

2. do until |places| in {0,1}
{

regions := emptyset
newpaths := emptyset

do until (places = emptyset) /* create regions */
{

pick p in places
create a new region r. Declare in_region(p,r)
apply (8.7) until no more places can be grouped in r
places := places \ {p: in_region(p,r)}
regions := regions U {r}
Create a frame of reference for r. Assign locations and headings

to places and paths in r.
}

For pa in paths do /* lift paths */
{

if pa has places in at least two different regions
then

{
create a new path pa’. Declare lifted(pa,pa’)
apply lifting axiom (8.1) to path pa’.
newpaths := newpaths U {pa’}

}
}

places := regions
paths := newpaths

}

Figure 8.6:Basic algorithm to create region based topological maps.
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less expensive than solving the original one, once the region hierarchy is created.

The key issue when working with a region hierarchy is to establish what proper-
ties are preserved when moving up and down the hierarchy. These properties will allow
us to establish the soundness of reasoning mechanisms based on regions as well as char-
acterize the typical errors people might make when using regions to infer properties of the
places in them. For instance, in the example above, we assumed that both problems, “is
Austin south of Boston?” and “is Texas south of Massachusetts?”, are equivalent, that is,
our region hierarchy preserves orientation information for places in the regionsTexas and
Massachusetts. Notice that this is not necessarily always the case. For example, infor-
mation of the relative orientation ofTexas andLouisiana does not help to decide whether
“Austin is south of New Orleans”.12

8.4 Summary

In this chapter we extended the SSH topological level ontology to includeregions. Regions
are the basic abstraction mechanism the agent has in order to cope with the large number
of distinctive states (and so topological places) it will identify in the environment. Connec-
tivity relations among regions were defined according to our lifting axiom 8.1, which states
how to abstract the order of places in a path to the order of their corresponding regions in
a route (our name for “abstract” paths). We then defined the distance among regions and
the angle among routes at their intersection places. In both cases, this metrical information
is derived from the metrical information among the places and paths being abstracted to
regions and routes, respectively. In order to do so, we require a region to have a frame of
reference where places in the region are located.

The constraints imposed in the hierarchy of regions and paths do not exclude bizarre
structures. We defined a kind of hierarchies, stratified hierarchies, where it is guaranteed
that any route among regions has associated a sequence of actions at the SSH control level.
We then presented an algorithm to do so.

Finally, we have defined different criteria for automatically creating regions. While
these methods are appropriate for office like environments, we have not addressed the prob-
lem of what criteria should the agent use, when should it use them, and how does the agent

12[Stevens and Coupe, 1978] study illustrates how people incorrectly uses these hierarchies by making con-
clusions like “San Diego is west of Reno NV” since “California is west of Nevada”.
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obtains such criteria. Our approach has been completely pragmatic and the goal has been
to devise criteria and algorithms for use in robotics.
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Chapter 9

Implementation

The goal of this chapter is to illustrate the use of the theoretical ideas presented through this
dissertation, as well as to present some problems and techniques not covered by the theory
but required for its successful implementation (for instance, how to implement control laws,
views, etc.).

Implementing the SSH control level requires one to define a set of control laws and
a transformation from sensory input to views. Once this has been done, a set of schemas can
be generated by exploring the environment. This set of schemas constitutes the input for the
other levels of the SSH. In this chapter we describe the SSH control level implementation,
and describe the learned maps in two particular environments: a rectangular environment
(Section 9.5.1) and Taylor Hall second floor (Section 9.5.2). The first environment illus-
trates how boundary information is used to handle view aliasing. The second environment
illustrates the kind of map learned in a natural office-like environment. In addition, we de-
fine an algorithm to track the different causal and topological maps associated with a set of
experiences (if more than one map exists!).

The SSH’s implementation described in this chapter has been carried out in Vulcan,
our wheelchair robot (Section 9.1). In section 9.2 we describe the control laws used in
our experiments. How to define views is described in section 9.3. Section 9.4 presents
our implementation of the causal and topological levels. Finally, we present a trace of the
exploration of the rectangular and Taylor Hall second floor environments in section 9.5.
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9.1 Vulcan

The experiments and algorithms described in this chapter have been implemented in Vulcan,
our wheelchair robot (Figure 9.1). The wheelchair base is a Tinman II from the KISS In-
stitute for Practical Robotics.1 This is a Vector Velocity wheelchair, retrofitted with twelve
infrared proximity sensors, seven sonars, two laser rangefinders, and a small embedded
computer which manages the drive systems and collects input from the sensors. The prin-
cipal on-board computer is a dual processor Pentium Pro machine running Debian Linux.
Two frame grabber cards allow us to acquire images from dual-monocular or stereo image
processing. User interaction (other than joystick commands) is handled through a laptop,
also running Linux, which is connected to the main computer via an on board Ethernet net-
work. Two CCD cameras provide our system’s visual input, with each camera mounted on
a directed perceptions pan-tilt head.

a b

Figure 9.1:(a) Vulcan, our wheelchair robot. (b) Laser rangefinders configuration.

In the experiments, only the laser rangefinders have been used for sensory in-
put. A laser reading provides information about the actual distance measured by a laser
rangefinder. We assume that the robot has an egocentric frame of reference w.r.t. which the
location of objects is determined. Hereafter, we assume this system of coordinates is such
that the positivex axis extends forward and the positivey axis extends to the left. Thus,
positive angles are to the left, negative angles are to the right, and angle zero is straight
ahead.

1http://www.kipr.org .
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9.2 Control laws

In this section we describe our boundary following and hill climbing control laws. A bound-
ary following control law keeps the robot at a given distance from an object while moving
along the object’s boundary. In our examples, the objects correspond to walls in the envi-
ronment, though the robot does not know of the existence of such objects. Hill climbing
control laws localize the robot within its current local neighborhood (see section 9.2.3, page
134).

Our boundary following control law specifies the value of the controlled variablew

(the robot’s rotational speed) according to the rule

! =
1

v
[�k�v� � kee] (9.1)

where the observed variablese, � andv are defined as follows:e is the difference between
the distance to the object and the desired distance to keep from the object;� is the orientation
w.r.t. the boundary;v is the forward velocity (figure 9.2). The constraint

ke =
k2�
4

guarantees that the system is critically damped.

Yset

Y

X

y

θ

Figure 9.2:The robot is at position(x; y) and orientation�. e = y � yd, whereyd is the desired distance

from the wall.

Rule 9.1 is used to obtain different behaviors: follow a wall, follow a corridor, go
through a doorway, hill climb to a corridor intersection, etc.. In all these cases, a different
observeris used to calculate the values ofe and � needed by 9.1.2 The function of the
observer is twofold: first, it is in charge of filtering noisy data from the sensors, match an
object model (if exists), and calculate the values ofe and�. Second, the observer determines
the applicability associated with the control law. Figure 9.3 illustrates the general observer
architecture we use in our implementation. In the next subsections we describe the wall
following, corridor following, go through doorway and hill climb to intersection behaviors.

2In our implementation the value ofv is kept constant.
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Figure 9.3:Observer architecture.

9.2.1 Following a wall/corridor

In order to calculate the values ofe and� line segment representing the wall(s) are identified
in the rangefinder data. The parameters defining these line segments are used to calculate
e and� (see figure 9.9, page 139).3 In section 9.3.1 we present our algorithm to extract
line segments from rangefinder data. In order to use this algorithm, one specifies the laser
rangefinder angular sector defining the set of scans that will be considered when extracting
a segment. For example, a left wall will be associated with the angular sector(45o; 135o)

while a right wall is associated with(�135o;�45o). Figure 9.4 illustrates how a corridor is
perceived by the robot’s laser scanners.

a b

Figure 9.4:(a) A typical corridor scenario. (b) Two dimensional plot of the laser scan associated with(a)

and its corresponding segments.

In order to initially identify the position of the wall(s) to follow, the robot selects
3Let � and�0 be the parameters defining a line segment as in figure 9.9. Then, when following a boundary

on the robot’s right,e = �� yd and� = ��0, whereyd is the desired distance from the boundary.
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the largest segment on the right (and left) whose angle is about zero and whose distance
from the robot location is less than 2(meters). After that, atracker is assigned to each wall
so that the agent can easily decided when the walls disappear.

Different implementations of the tracker are possible. The simplest one corresponds
to storing the parameters of the line segment representing the wall being tracked, and se-
lecting as the current wall model the “closest” line segment to the stored parameters. In
order to make this implementation more robust, the tracker does not calculatee and� di-
rectly from the segment parameters, but uses these parameters and other information (e.g.
previous values of these parameters, a model of the boundary) to calculate an estimation for
e and�. This estimation can use a median or mean filter in bothe and�4 [Gonzalez and
Woods, 1992] or aKalman filter[Gershenfeld, 1999] associated with rule 9.1.5 In the last
case, this Kalman filter is derived as follows: for small values of� we have that_e = v�,
which allow us to write the dynamical system associated with this controller as"

_�

_e

#
= A

"
�

e

#
(9.2)

A =

"
�k�v �ke

v

v 0

#
(9.3)

We can obtain a discrete system as

xt+Æt = (I +AÆt)xt (9.4)

wherext =

"
�t
et

#
. Moreover, we assume that there is some noise in the process,wt, with

constant distribution processG. Thus, the dynamical model of our Kalman filter is defined
by

xt+Æt = (I +AÆt)xt +Gwt (9.5)

As for the measurement model of the Kalman filter, we assume thate and� can
be observed (since they are derived directly from the line segment parameters), and conse-
quently the reading at timet, zt, obeys the equation

zt = Ixt + vt (9.6)

wherevt is the measurement noise, which we assume has constant covarianceR.

4In our experiments we use a window size of three values, so we store the last two values of (say)e, add a
new one, and output the median (mean) of these three values.

5This filter step is different from the one shown in figure 9.3. There, a filter is applied to the raw laser data,
while here, a filter is applied to the line segment parameters.
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9.2.2 Going through doorways

A doorway can be described by a given configuration of line segments, for instance, two
collinear segments with “open space” between them, or as two perpendicular segments with
“open space” between them. The condition of two segments being collinear or perpendicu-
lar can be checked from the corresponding segment parameters. To check that “open space”
exists between two segments, one has to choose the end points of the segments that define
the doorway, and then to check for “large” rangefinder readings between these two points.
As an example of a doorway described by two perpendicular segments with “open space”
between them, consider a robot facing a door as in figure 9.5. As an example of a doorway
described by two collinear segments with “open space” between them, consider a robot fac-
ing a door as in figure 9.6.

Figure 9.5:The robot is facing a door from inside a room toward a corridor. On the right a two dimensional

plot of the laser scan with an extra line indicating the bisector of the doorway recognized by the robot. The

rightmost figure shows the segments used to detect the doorway. A doorway is recognized by finding two

perpendicular segments with open space between them.

Figure 9.6:The robot is looking inside a room from a corridor. On the right a two dimensional plot of the

laser scan with an extra line indicating the bisector of the doorway recognized by the robot. The rightmost figure

shows the segments used to detect the doorway. A doorway is recognized by finding two collinear segments

with open space between them.
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In order to go through a doorway, the bisector of the doorway is used as the bound-
ary to follow. This idea works not only for doorways but for going through open space in
general: for instance, for the robot to get into a corridor (figure 9.7), the two corners defin-
ing the corridor (which are the two closest minima in the rangefinder readings) can be used
as landmarks such that the bisector of the line connecting them defines the line to follow.

9.2.3 Hill Climbing

Hill climbing strategies localize the robot with respect to its local neighborhood. After
hill climbing the robot will be at the distinctive state associated with the environment state
where the hill climbing was started. Theoretically, this distinctive state corresponds to the
hill climbing control law’s fixed point. However, in practice it is not always possible to
reach the fixed point exactly. An approximation to this fixed point is appropriated as long
as one guarantee that the robot recognizes the same view after hill climbing to the same
distinctive state (see example 31, page 140).

For the purpose of this dissertation we implemented a general hill climbing control
law that place the robot equidistant from three or more objects. The main issue when im-
plementing this control law is that the robot does not know in advance the location of these
objects, nor do these objects necessarily appear in its current sensory horizon (the robot
cannot ”see” all the closest objects at once). Consequently, the robot has to create a local
frame of reference where it localizes (by using odometry) and sensory input is integrated
over time. Next we illustrate the general method in the case where the robot hill climbs to
a corridor intersection after detecting the end of a corridor (see Figure 9.7).

1. A frame of reference is created.

2. The robot orients itself facing in the direction perpendicular to the line segment link-
ing the contact points of the two closest objects. Let�0 denote the resulting orienta-
tion (w.r.t. to the local frame of reference).

3. Sensor readings are integrated into the current frame of reference and the distances
to the closest objects are calculated. If three or more objects are equidistant, then the
robot stops and the algorithm goes to the next step. Otherwise, the robot follows the
perpendicular bisector of the segment linking the contact points of the two closest
objects. The control law used for this purpose is as in equation 9.1. The values of
e and� are calculated from the location of the robot as well as the location of the
contact points of the two closest objects. This location is the one in the local frame of
reference. The robot’s location in the frame of reference is updated using odometry.
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Figure 9.7:Hill climbing to a corridor intersection. The top row illustrates two views of the initial robot

location before hill climbing. The bottom row illustrates the corresponding views after hill climbing.

The robot keeps moving until a third object is detected or until it has traveled more
than a given distance threshold.

4. Once the robot stops, the contact points of the closest equidistant objects are ordered
according to their orientation with respect to the local frame of reference. The angles
(orientation) of these contact points as long as the bisector of the angles between
consecutive contact points are considered, and the robot reorients by facing the angle
closest to�0.

The last step of the algorithm is necessary so that the robot keeps as much as pos-
sible the same orientation as when it started the hill climbing. In office-like environments
this step maximizes the chances that a travel action can be executed from the resulting dis-
tinctive state, and consequently paths with more than two places (i.e. corridors) can be
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identified.6 For instance, when hill climbing in a T intersection as described in figure 9.8,
the robot will change its orientation while localizing the third closest object (cornerB in
the figure). If the robot does not reorient, a distinctive state will be created with the robot
facing directly into cornerB. No travel action can be executed from this distinctive state
and consequently no corridor will be identified.

A

B

A A

BB

(b)(a) (c)

W W W

Figure 9.8:Hill climbing in a T intersection. The robot starts having as reference object cornerA and wallW.

While keeping equidistant from these two objects, it detects cornerB. The robot proceeds until it is equidistant

from objectsW, A andB. Finally, the robot reorients facing the bisector of the angle determined by objectsW

andB, which is the closest orientation to the one when starting the hill climbing.

In the algorithm implementation, an object corresponds to a line segment extracted
from the local map created while doing the hill climbing. The local map is implemented
as an occupancy grid[Elfes, 1987, Thrun, 1998]. The robot location as well as the sensory
integration is done according to the standard occupancy grid equations[Thrun, 1998]. In
order to extract line segments (features) from the local map, a Hough transform method was
used[Vandorpeet al., 1996, Anousaki and Kyriakopoulos, 1999]. This method is widely
used in image processing in order to extract the edges from a camera image[Gonzalez and
Woods, 1992].

The general hill climbing strategy overcomes some of the limitations of the hill
climbing implementation proposed by Lee[Lee, 1996]. In Lee’s work, an automata de-
scribes local environment transitions as sensory information (sonar readings) become avail-
able to the robot. The final states of such automata correspond to the “type” of local envi-
ronments the robot can recognize. The method here proposed does not assumes particular
types of local environments, but rather assumes the existence of more powerful sensors
(laser rangenfinders), which combined with standard techniques to represent local environ-

6This last reorient step was missing in Lee’s SSH implementation[Lee, 1996].
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ments allow the robot to keep track of objects not visible in the current sensory image.
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9.3 Views

Each distinctive state has associated a view symbol representing what the distinctive state
“looks like”. In order to create such view the agent examines the sensory input associated
with the distinctive state neighborhood. Views are created by considering the set of seg-
ments associated with the rangefinder scan at the agent environment location.7 Next we
describe our implementation and provide some experimental results (see example 31, page
140) showing the appropriateness of the method.8

Each laser scan has associated a sequence of line segments(ls1; : : : ; lsn) which
constitutes its view representation. This sequence of segments is found by extracting the set
of line segments associated with the scan (see Section 9.3.1), and ordering them according
to their angle.

The problem of finding how similar two scans are is reduced to the one of finding
how similar two finite sequences of line segments are. Anembeddingfrom (ls11; : : : ; ls1n)

into (ls21; : : : ; ls2m) is an increasingfunction from a set inchoose(min(n;m); n)9 into
f1; : : : ;mg. The goodness of an embeddinge is defined as follows:

Goodness(e) =
1

n

min(n;m)X
i=1

sim(ls1i; ls2e(i)) (9.7)

wheresim(l1; l2) is a positive function returning a value in[0; 1] indicating how similar
line segmentsl1 andl2 are. We will provide a definition forsim later.

The similarity ofs1 = (ls11; : : : ; ls1n) w.r.t. s2 = (ls21; : : : ; ls2m) is given by

Sim(s1; s2) = max
e

Goodness(e) ;

the value of the best embedding ofs1 into s2. Finally, the match betweens1 ands2 is given
by

match(s1; s2) = min(Sim(s1; s2); Sim(s2; s1)) :

In order to calculatematch(s1; s2) an adaptation of thelongest common subse-
quencesalgorithm can be done[Cormenet al., 1993]. Next we define how to compare line

7Different methods can be considered to create such view: create an occupancy grid of the dstate neigh-
borhood, train a neural net, etc.. See[Duckett and Nehmzow, 2000] for a comparative study of these different
methods.

8The work in this section is joint effort with Micheal Hewett.
9Choose(k,n) denotes the subsets off1; : : : ; ng that havek elements.
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segments.

Each line segment is described by four parameters(�; �; l;mp) where� is the angle
in [��; �] of the line normal measured with respect to thex axis,� is the signed distance of
the line to the origin (see figure 9.9),l denotes the length of the segment, andmp denotes
the midpoint coordinates of the segment.

Y

X

x1,y1

x2,y2

θ

ρ

Figure 9.9:�-� representation of a line.

The similarity between two line segmentsl1 = (�1; �1; l1;mp1) andl2 = (�2; �2; l2;mp2),
sim(l1; l2), is defined as follows:

sim(l1; l2) = mean(fa(a1; a2)) ; a 2 f�; �; l;mpg (9.8)

where the different functionsfa are normal distributions functions, each with their own
mean and standard deviation:

fa(x; y) = N(�a; �a)(x� y) :

In general it is the case that the robot is off by an angle every time it hill climbs to
the same distinctive state. Consequently, two configurations of segments associated with a
distinctive state neighborhood will have to be rotated before the view matching described
above. We take into account this rotation by considering the function

match�(s1; s2) = min(Sim�(s1; s2); Sim�(s2; s1)) ;

where
Sim�(s1; s2) = maxe;�Goodness

�(e; �) ;
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Goodness�(e; �) =
1

n

min(n;m)X
i=1

sim(ls1�i ; ls2e(i)) ;

and l� denotes the line segment resulting of rotatingl by an angle�. The next example
illustrates the appropriateness of the view matching defined in this section.

Example 31

Figure 9.10 illustrates different segment configurations associated with the distinctive state
resulting of hill climbing to a corridor intersection (see figure 9.7, page 135). Table 9.11
shows the similarity values for these different configurations.

The values in table 9.11 represent the intraclass similarity corresponding to the view
(class) associated with the distinctive state. In this table, scan 3 is taken at the ideal distinc-
tive state location: the wheelchair perfectly aligns with the corridors (see figure 9.7, page
135). Notice how the similarity values decrease as the orientation changes with respect to
scan 3. For instance, scans 1 and 5 differ by about10Æ and their similarity value is only0:58.

While not shown, we have found that for most of our experiment0:6 is an appropri-
ate threshold for deciding whether two segment configurations correspond to the same view
(class). As illustrated in section 9.5.2 (page 176), this threshold is way above the similarity
values obtained for scans taken at different distinctive states (i.e. extra-class similarities).
While it is an interesting problem to formulate how the agent learns this threshold, or for
that matter, how it decides how many classes (views) should be associated with its sensory
input at distinctive states, that learning task is out the scope of this work.
fend of exampleg
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Figure 9.10:Different laser range-finder images at the same distinctive state neighborhood associated with

a corridor intersection (figure 9.7, page 135).
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Scan 1 2 3 4 5 6 7 8 mean
1 1.0 0.86 0.76 0.78 0.58 0.75 0.71 0.71 0.65
2 0.86 1.0 0.77 0.77 0.56 0.73 0.78 0.67 0.66
3 0.76 0.77 1.0 0.87 0.81 0.71 0.62 0.63 0.69
4 0.78 0.77 0.87 1.0 0.77 0.65 0.57 0.60 0.64
5 0.58 0.56 0.81 0.77 1.0 0.61 0.59 0.69 0.66
6 0.75 0.73 0.71 0.65 0.61 1.0 0.80 0.86 0.64
7 0.71 0.78 0.62 0.57 0.59 0.80 1.0 0.76 0.64
8 0.71 0.67 0.63 0.60 0.69 0.86 0.76 1.0 0.63

Figure 9.11:Similarity values for each pair of configurations in figure 9.10.

9.3.1 Line segment extraction

In this section we describe our algorithm to extract line segments from a laser rangefinder
scan. Letr denote a laser reading. We use the following notation to refer to the information
associated withr: range(r) denotes the value (distance) returned by the laser rangefinder,
angle(r)denotes the angle in the robot’s egocentric frame of reference associated with the
rangefinder location, andpoint(r) denotes the(x; y) coordinates in the robot’s egocentric
frame of reference associated with the vector defined byrange(r) andangle(r). A laser
scanis an ordered sequence of laser readings. The readings in a laser scans are ordered
such that theangle(s(i)) < angle(s(i+ 1)). That is to say, readings in a scan are ordered
right to left w.r.t. the robot’s frame of reference.10 A line segment lsis represented by its
pair of extreme points(p1(ls); p2(ls)).

Our algorithm to find the set of segments associated with a laser scan is as follows:

1. Identify qualitative clusters in the scan ranges.

2. Associate a segment with each identified cluster.

3. Merge consecutive collinear segments.

4. Remove segments whose length is less than a given thresholdk min segment length.

5. Merge consecutive collinear segments.

Qualitative clusters in a laser scan are identified by finding discontinuities, local
maxima and local minima in the scan ranges. Noise in the laser data is taken in account

10The readings in a scan could have been ordered left to right. The important assumption is that they are
ordered.
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when identifying these clusters. Discontinuities are detected by finding laser readings that
are close in the angle dimension but whose ranges are farther apart than a given threshold
k discontinuity jump.

Local maxima and minima are detected by considering the range of a laser read-
ing as a function of the angular sector’s length associated with the scan. In order to identify
monotonic (i.e. increasing, decreasing, or constant) regions in the data we adapted the qual-
itative filtering algorithm proposed in[Kay et al., 1999, Rinner and Kuipers, 1999]. This
algorithm uses a window ofk window size consecutive readings to determined the differ-
ent trends in the data. Whether a trend is declared to be increasing, decreasing or constant,
is determined by comparing the slope of points in a window against a thresholdk std dev.

For each cluster in the laser scan, a segment is created by finding the least square fit-
ting of the two dimensional set of points associated with the readings in the cluster. Clusters
are ordered by the angle associated with their corresponding laser readings. The segments
associated with each cluster preserve this order. This order is important since at the merg-
ing step of the algorithm we merge consecutive collinear segments, rather than arbitrary
collinear segments.

Consecutive close collinear segments are merged to form new segments.
Collinear segments whose distance is less than a given thresholdk merge distance

are merged. A tolerance in the angle (k collinear angle threshold) and distance from
the origin(k collinear range threshold) are used to decide whether two segments are
collinear.

Once segments have been created, we remove those whose length is less than
k min segment length. It is possible that by removing a segment two different segments
become consecutive collinear segments. To care for this case, we apply the merging step
one more time.

Example 32

Suppose the robot is facing a wall straight ahead as indicated in figure 9.12a. When
plotting the laser readings in a two dimensional plane we can observe three segments defin-
ing the local environment of the robot (see figure 9.12b).
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a b

Figure 9.12:(a) The robot is facing a wall straight ahead. There is an artificial wall on the left and a book

shelve on the right (not seen in the picture). (b) On the left a two dimensional plot of the laser rangefinder scan

associated with the environment in a. On the right, the corresponding four segments extracted from the laser

scan.

Figure 9.13a shows the result of plotting left to right the laser readings. The cor-
responding trends associated with this data are shown in figure 9.13b. In the laser range
domain the left wall is sensed by a decreasing trend in the range (laser indexes 10 to 25),
reaching a minimum at the closest point on the robot’s left (laser indexes 26 to 28) , follow
by an increasing trend in the range which ends at the corner between the left and front wall
(laser indexes 28 to 100).
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Figure 9.13:(a) Laser readings associated with the robot location in 9.12. (b) Clusters associated with the

laser readings.

Once the different trends in the ranges are detected, their boundaries define clus-
ters to which line segment are associated. These line segments are usually part of a final
segment to be extracted. The algorithm’s merging step puts these different parts together.
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For example, the left wall in figure 9.12 has associated three clusters indicated by the laser
indexes 10, 25, 28 and 100. The resulting segments associated with these clusters are all
collinear, and consequently merged into one segment.
fend of exampleg

Example 33

In order to identify qualitative clusters in the scan ranges, first we detect discon-
tinuities (jumps) in the data. These discontinuities define clusters of readings on which
decreasing, increasingor constanttrends are detected. These trends are the only patterns
in the data used to define segments. While example 32 may suggest that it is possible to
associate a segment with more complex patterns in the data (e.g. “U” patterns), this is not
necessarily the case. For instance consider the case in which the robot has partial access
to different rooms (figure 9.14a). Figure 9.14b shows the laser rangefinder data and the
segments found by the algorithm.

As shown in figure 9.15a, the laser ranges have discontinuities and some walls are
not perceive in a “U” pattern as in example 32. However, the different up, down, and con-
stant trends in the data do define part of the segments to be extracted. Whether two trends
are part of a same line segment is decided by assigning line segments to each trend and then
checking for these segments to be collinear.
fend of exampleg
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a b

Figure 9.14:(a) A robot has partial access to different rooms. (b) The extracted segments.
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Figure 9.15:(a) Laser readings associated with the robot location in 9.14a. (b) Clusters associated with the

laser readings.
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9.4 Causal/Topological/Metrical levels

In this section we present an implementation for calculating the SSH causal and topologi-
cal maps (i.e. models of the theoriesCT (E) andTT (E) respectively). The SSH metrical
level algorithms were presented in chapter 7.11 A logic program implementing the circum-
scriptive theory defining the SSH causal level (Chapter 4) is presented in section 9.4.1. It
is possible to calculate the models ofTT (E) by a logic program similar to the one used
for CT (E). However, the number of grounding rules associated with such a program turns
out to be prohibited for practical applications. Fortunately, the problem of calculating the
models ofTT (E) can be stated as a“best first” search. In section 9.4.2 (page 152) we
present this algorithm.

9.4.1 Using Logic Programming to implement the SSH causal level

Given a set of experiencesE, the models of the theoryCT (E) ( Chapter 4, page 26) indicate
under what circumstances it is possible to consider two distinctive states as referring to the
same environment state. In order to calculate these models, we define a logic program
whose answer sets[Gelfond and Lifschitz, 1991] are in a one to one correspondence with
the models ofCT (E).12 Recall that the theoryCT (E) is defined as follows:

COMPLETION(E) ;

Axioms 4:1� 4:22 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00

CEQ block =

f max ceq :

ceq(ds; ds);

ceq(ds1; ds2)! ceq(ds2; ds1);

ceq(ds1; ds2) ^ ceq(ds2; ds3)! ceq(ds1; ds3);

ceq(ds1; ds2)! V iewAt(ds1; v) � V iewAt(ds2; v);

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2)

g

The logic program� we will consider is defined as follows:

p(X;Y;X; Y )  :

p(X;Y;X2; Y 1)  p(X;Y;X1; Y 1); ceq(X1; X2):

11The use of metrical information while building the topological map is illustrated in section 9.5.1, page 169.
12The logic program is implemented in Smodels[Niemel�a and Simons, 1997]. The output produced by

Smodels is parsed in order to keep track of the different SSH causal models associated with a set of schemas.
See an illustrative trace in example 34.
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p(X;Y;X1; Y 2)  p(X;Y;X1; Y 1); ceq(Y 1; Y 2):

p(X;Y;X2; Y 2)  p(X;Y;X1; Y 1); cs(X1; A;X2); cs(Y 1; A; Y 2):

p(X;Y; Y 1; X1)  p(X;Y;X1; Y 1):

p(X;Y;X1; Y 2)  p(X;Y;X1; Y 1); p(X;Y; Y 1; Y 2):

dist(X;Y )  p(X;Y;X1; Y 1); viewAt(X1; V ); not viewAt(Y 1; V ):

dist(X;Y )  p(X;Y;X1; Y 1); not viewAt(X1; V ); viewAt(Y 1; V ):

 not ceq(X;X): (9.9)

 ceq(X;Y ); not ceq(Y;X): (9.10)

 ceq(X;Y ); ceq(Y; Z); not ceq(X;Z): (9.11)

 ceq(X;Y ); viewAt(X;V ); not viewAt(Y; V ): (9.12)

 ceq(X;Y ); not viewAt(X;V ); viewAt(Y; V ): (9.13)

 not ceq(X1; Y 1); ceq(X;Y ); cs(X;A;X1); cs(Y;A; Y 1): (9.14)

 not ceq(X;Y ); not dist(X;Y ): (9.15)

where the variablesX andY range over distinctive states and the variableV ranges over
views. Rules 9.9-9.11 requireceq to be an equivalence class. Rules 9.12-9.14 are the coun-
terpart of the axioms insideCEQ block. In order to define the maximality condition ofceq,
the auxiliary predicatep(X;Y;X1; Y 1) is introduced. This predicate reads as“If X and
Y were the same, thenX1 andY 1 would be the same”. The predicatedist(X;Y ) defines
when distinctive statesX andY are distinguishable. Constraint 9.15 establishes the maxi-
mality condition onceq: ceq(X;Y ) should be the case unlessX andY are distinguishable.
In appendix F (page 236) we prove that the answer sets of this logic program represents the
different SSH causal models.

Example 34

Consider the environment depicted in Figure 9.16. The agent visits the different distinctive
states as suggested by their numbers in the figure. Assume that the different corners have
the same views (i.e. view(1) = view(4)=view(8), view(3) = view (7) = view (11)). Be-
low we show a trace of our algorithm illustrating how we keep track of all possible worlds
consistent with the agent’s experiences. Recall thatthis algorithm uses only causal infor-
mation. The building of the topological map will be described in section 9.4.2 (page 152).
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For the purpose of the example, we generate a new distinctive state every time the agent
experiences a view (for instance, distinctive states10 and2 both occur at the same physical
environment state).
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Figure 9.16: T-environment used to illustrate how the different SSH causal models evolve as the agent

navigates the environment. The numbers shown are the dstates, not the views.

break[9]=>(set! tour3 ’(v1 ml v2 ml v3 turn-a v1 ml v4 turn-l v5
ml v3 turn-a v1 ml v6 turn-r v2 ml v3 turn-a v1))

break[10]=>(process-tour tour3)

Adding new Schema <SCHEMA-1:: (DS-1,v1), ml, (DS-2,v2)>
Checking for Inconsistent worlds

- [world:: ] << Causally consistent >>

Current Worlds

1 [world:: ]

For each world we only show theceq equivalence classes that contain more than
one distinctive state. In particular,[world:: ] denotes the world where all distinctive
states are different.

Adding new Schema <SCHEMA-2:: (DS-2,v2), ml, (DS-3,v3)>
Checking for Inconsistent worlds

- [world:: ] << Causally consistent >>

Current Worlds
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1 [world:: ]

Adding new Schema <SCHEMA-3:: (DS-3,v3), turn-a, (DS-4,v1)>
Checking for Inconsistent worlds

- [world:: ] << Causally consistent >>

Current Worlds

1. [world:: (DS-4 DS-1)]

At this point the agent cannot distinguishDS-1 from DS-4 , and so the agent has
only one model of the world where these two distinctive states are the same.

Adding new Schema <SCHEMA-4:: (DS-4,v1), ml, (DS-5,v4)>

Checking for Inconsistent worlds

- [world:: (DS-4 DS-1)] << Causally Inconsistent >>
>> Not Eq relations learned >>> {not-eq:{DS-1:: (DS-4)} {DS-4:: (DS-1)}}

Current Worlds

1 [world:: ]

Once the agent travels fromDS-4 to DS-5 and observes viewV 4, distinctive states
DS-1 andDS-4 become distinguishable, since executingml starting atDS-1 takes the
agent to a distinctive state with viewV 2 which is different fromV 4. In addition, the agent
learns that in any possible world,DS-1neqDS-4 .

Adding new Schema <SCHEMA-5:: (DS-5,v4), turn-l, (DS-6,v5)>

Checking for Inconsistent worlds

- [world:: ] << Causally consistent >>

Current Worlds

1 [world:: ]

Adding new Schema <SCHEMA-6:: (DS-6,v5), ml, (DS-7,v3)>

Checking for Inconsistent worlds
- [world:: ] << Causally consistent >>

Current Worlds
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1 [world:: (DS-7 DS-3)]

Adding new Schema <SCHEMA-7:: (DS-7,v3), turn-a, (DS-8,v1)>

Checking for Inconsistent worlds
- [world:: (DS-7 DS-3)] << Causally consistent >>

Current Worlds

1 [world:: (DS-8 DS-4)(DS-7 DS-3)]
2 [world:: (DS-8 DS-1)]

Notice that multiple possible worlds are created once the agent reachesDS-8 . In
the model in whichDS-7=verb+DS-3+, verb+DS-8+ has to beceq to verb+DS-4+ since
actions are deterministic.

Adding new Schema <SCHEMA-8:: (DS-8,v1), ml, (DS-9,v6)>
Checking for Inconsistent worlds

- [world:: (DS-8 DS-4)(DS-7 DS-3)] << Causally Inconsistent >>
>> Not Eq relations learned >>> {not-eq:{DS-4:: (DS-8)} {DS-8:: (DS-4)}}

- [world:: (DS-8 DS-1)] << Causally Inconsistent >>

>> Not Eq relations learned >>> {not-eq:{DS-1:: (DS-8)} {DS-8:: (DS-1)}}

Current Worlds

1 [world:: ]

Once the agent travels toDS-9 only one world is possible, the one in which all
distinctive states are indeed different.!!

Adding new Schema <SCHEMA-9:: (DS-9,v6), turn-r, (DS-10,v2)>

Checking for Inconsistent worlds
- [world:: ] << Causally consistent >>

Current Worlds

1 [world:: (DS-10 DS-2)]

Adding new Schema <SCHEMA-10:: (DS-10,v2), ml, (DS-11,v3)>
Checking for Inconsistent worlds

- [world:: (DS-10 DS-2)] << Causally consistent >>
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Current Worlds

1 [world:: (DS-11 DS-3)(DS-10 DS-2)]

2 [world:: (DS-11 DS-7)]

Adding new Schema <SCHEMA-11:: (DS-11,v3), turn-a, (DS-12,v1)>
Checking for Inconsistent worlds

- [world:: (DS-11 DS-3)(DS-10 DS-2)] << Causally consistent >>

- [world:: (DS-11 DS-7)] << Causally consistent >>

Propagate-not-eq

Current Worlds

1 [world:: (DS-12 DS-8)(DS-11 DS-7)]

2 [world:: (DS-12 DS-1)]
3 [world:: (DS-12 DS-4)(DS-11 DS-3)(DS-10 DS-2)]

All the models above are possible since at the causal level turn and travel actions do
not convey any spatial meaning. Should we consider topological information, only model
3 above will be possible (see example 15, page 53).
fend of exampleg

9.4.2 Calculating the models of TT(E)

The algorithm for calculating the models ofTT (E) can be stated as a“best first” search.13

The states of the search correspond to partial models ofTT (E).14 At each step of the
search a schemah ds; a; ds0 i has to be explained. Either the identity ofds0 can be proved
or a search branch is created for every previously known distinctive stateds0i that can-

not be proven to be different fromds0.15 In the branch whereds0i
teq
= ds0 is the case,

ds0j
teq

6= ds0; i 6= j are also asserted.16 An additional brach is created whereds0
teq

6= ds0j are
asserted. This branch represents the possibility thatds0 is indeed different from previously

13The models ofTT (E) correspond to the topological maps associated with a set of experiencesE. See
chapter 5, page 36.

14A partial model ofTT (E) is a model ofTT (E0), for someE0 � E.
15We assume that at each state of the search, the identity of the schema’s context (i.e.ds in hds; a; ds0 i) is

known.
16The notationds1

teq
= ds2 states thatds1 andds2 are “equal” according to the equivalence relationteq.

Recall thatteq plays the role of equality in the theoryTT (E).
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known dstates. The next state to explore is the one that is minimal according to the order
associated with the circumscription policy forTT (E). This search algorithm is described
in figures 9.17 and 9.18.17

Find-Models (Schemas S)
f

;; S =s0; : : : ; sn ; sequence of schemas such that
;; result(si) = context(si+1)
;;
;; pmodels-to-explore = ordered queue of partial models to explore.
;; models = list of total models for S.
pmodels-to-explore =; ;
models =; ;
pmodel = create-new-pmodel(S);
insert(pmodel,pmodels-to-explore) ;
while pmodels-to-explore6= ; do
begin
pmodel = get-next-pmodel(pmodels-to-explore);
s = get-next-schema(pmodel);
Explain(pmodel,s) ;
if (inconsistent(pmodel)_ has-extensions(pmodel)) then skip;
else if total-model(pmodel) then insert(pmodel, models);
else insert(pmodel,pmodels-to-explore);

end
return models;
g

Figure 9.17: Best first search algorithm used to calculate the models of TT(E). The ordered queue

pmodels-to-explorecontainsconsistentpartial models (pmodels) to be expanded. At each step of the search, a

minimal partial model is picked and the next schema from its list of associated schemas is explained. A pmodel

has extensions when a branch has been created while explaining a schema. A pmodel is atotal-modelwhen it

has no more schemas to explain. Figure 9.18 defines how a pmodel explains a schema and when extensions are

created.

17A search state is implemented by a partial model,pmodel. Branches in the search are represented by
creatingextensionsfor the current search state (pmodel). Thatpmodel0 is an extension ofpmodel implies that
pmodel0 inherits frompmodel all known objects and facts. Partial models are described in page 155.
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Explain (pmodel, s)
f ;; s is a schemah ds; a; ds0 i

candidates =fg;
branches = false;
if : known-result(pmodel,s)
then begin

candidates = possible-equal-dstates(pmodel,s);
if candidates6= fg
then branches = create-possible-extensions(pmodel,s,candidates)

end
if : branches then Assert-schema (pmodel,s);
g
Known-result(pmodel, s)
f ;; s is a schemah ds; a; ds0 i

;; The notationobj 2 pmodel indicates that objectobj is
;; known in the partial modelpmodel.

returnds0 2 pmodel _ 9 ds� 2 pmodel
h
h ds�; a; ds0� i 2 pmodel ^ ds�

teq
= ds

i
;

g
Assert-schema (pmodel, s)
f ;; s is a schemah ds; a; ds0 i. ds is known inpmodel

asserts 2 pmodel;
if : known-result(pmodel,s)
then begin
assertds0 2 pmodel;
Create places and paths needed to explains.

end
else begin

pick ds0� s.t.9ds� 2 pmodel
h
ds�

teq
= ds ^ h ds�; a; ds0� i 2 pmodel

i
;

assertds0
pmodel
= ds0� ;

end
g

Figure 9.18:Explaining a schema. known-result(pmodel,s =h ds; a; ds0 i) is the case when the equality

class fords0 can be deduced in the partial modelpmodel. Possible-equal-dstates(cntx,s)returns dstates known

in pmodel, having the same view asds0 and that cannot be proven different fromds0 in pmodel. For each

ds00 2 candidates, create-possible-extensions(pmodel,s,candidates)creates an extension ofpmodel where

ds0
teq
= ds00 is the case. If some of these extensions are consistent, thencreate-possible-extensionsalso creates

an extension whereds0 is different from the dstates incandidates. In this last case the function returnsfalse

otherwise it returnstrue. If not extension is created, thens is asserted inpmodel. This accounts to declareds0

to be known inpmodel and create the places and paths that explains according to the axioms of the topological

theoryTT (E).
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The three key steps in the search are (figure 9.18): creating a set of possible can-
didates to branch (possible-equal-dstates), generating a set of extensions when needed
(create-possible-extensions), and explaining a schema in a given partial model (assert-
schema). Another important issue is to detect when a partial model becomes inconsistent.
We use the predicateinconsistent(pmodel) to denote this fact and the rule18

x
pmodel
= y ^ x

pmodel

6= y ! inconsistent(pmodel) :

In the next sections we will show how to rewrite the axioms in the topological theory so
they can be fed to a theorem prover to deduce equality and inequality relations.19 In section
9.4.3 (page 161) we present an illustrative trace of the algorithm.

Partial Models

In addition to a list of schemas to explain, a partial model has associated a set of SSH
objects (i.e. distinctive states, schemas, places, paths) that are known in the model. We
use the relationknown objects(pmodel; obj) to indicate thatobj belongs to the known
objects ofpmodel. We also denote this relation byobj 2 pmodel. From a formal point of
view, the objects known in a partial model define the set of constant symbols used in the
topological language associated with such pmodel.

That two objects, obj1 and obj2, are equal or different in a
pmodel is represented by the relationsequal objects(obj1; obj2; pmodel) and
not equal objects(obj1; obj2; pmodel) respectively. We also use the convenient no-

tationsobj1
pmodel
= obj2 and obj1

pmodel

6= obj2. The equality relation among distinctive
states corresponds to when two distinctive states are topologically equal. When the model
is understood, we just use the notationobj1 = obj2 instead ofobj1

cntx
= obj2.

The basic relation among pmodels is the one ofextensions. That pmodel0 is an
extension ofpmodel implies that all known objects and facts inpmodel are known objects
and facts inpmodel0.20

In the implementation, all the topological predicates arerelativizedwith respect to a
pmodel. In order to do so, all the predicates in the topological theory have a last extra argu-
ment for a pmdodel. For instance, instead of writingat(ds; p)we writeat(ds; p; pmodel).21

18The notationx
pmodel
= y is an abreviation for(x 2 pmodel) ^ (y 2 pmodel) ^ x = y.

19Our “theorem prover” in this case is Algernon[Crawford and Kuipers, 1991].
20pmodel0 inherits frompmodel all known objects and facts. See page 157.
21When the pmodel is understood we drop it from the predicate arguments.

155



at(ds; p; pmodel) is the case whenat(ds; p) is true in the partial modelpmodel (i.e.
pmodel j= at(ds; p)).

Our logic for partial models takes the basic ideas developed in the area of formally
reasoning about contexts[McCarthy and Buva�c, 1998]. We do not provide a formal account
of contexts, but rather use the notations and conventions mentioned above.

Create candidates

Possible-equal-dstates(pmodel,s=h ds; a; ds0 i) returns a list of dstates that are possible equal

(
teq
= ) tods0. These are dstates known inpmodel, having the same view asds0 and that cannot

be proven different fromds0 in pmodel. We use the predicateno possible(s; ds00; pmodel)
to indicate thatds0 cannot be equal tods00 in the partial modelpmodel.22 In order to filter
outds00 we use the following rules:23

s = h ds; turn; ds0 i ^ at(ds; p) ^ at(ds00; q) ^ p 6= q ! no possible(s; ds00) (9.16)

[s = h ds; travel; ds0 i ^ along(ds; pa; dir) ^ along(ds00; pa1; dir1)^

: [pa = pa1 ^ dir = dir1]]! no possible(s; ds00)

[s = h ds; travel; ds0 i ^ along(ds; pa; dir) ^ at(ds; p) ^ at(ds00; q)^

order(pa; dir; q; p)]! no possible(s; ds00)

[s = h ds; (turn �); ds0 i ^ at(ds; p) ^ at(ds00; p) ^ radial(p; ds; h)^ (9.17)

radial(p; ds00; h1) ^ h1 6= (h+ � (mod 360Æ))]! no possible(s; ds00)

The rules above are derived from the axioms in our theory. For instance, rule 9.16
is derived from the fact that each distinctive state is at a unique place, and distinctive states
that are related by turn actions are at the same place. As for rule 9.17, distinctive states
have a unique heading at the radial frame of reference associated with a place. We have
simplified the presentation of the rule and assume that the headings of dstates at places can
be calculated by adding anglesmod 360Æ. In a robust implementation of these rules, un-
certainty associated with metrical information should be taken into account.

In order to use the rules above, other rules are needed to determine that two SSH
objects (i.e. dstates, places, paths) are different. These rules include:

view(ds1; v1) ^ view(ds2; v2) ^ v1 6= v2 ! ds1 6= ds2 (9.18)
22Recall we assume thatds0 is not known inpmodel. When generating candidates, in order to rule outds00

we prove the stronger assumption

8x 2 pmodel
�
s = h ds; a; x i ! x 6= ds

00
�

:

no possible(s; ds00) is understood to represent this last formula.
23Recall that rules arerelativizedto a particular partial model.
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h ds; turn; ds0 i ! ds 6= ds0 (9.19)

order(pa; dir; p; q) ! p 6= q (9.20)

radial(p; ds1; h1) ^ radial(p; ds2; h2) ^ h1 6= h2! ds1 6= ds2 (9.21)

position1(pa; dir; p1; pos1)^ position1(pa; dir; p2; pos2)^pos1 6=pos2! p1 6=p2 (9.22)

LeftOf(pa; dir; p) ^ on(pa; q)! p 6= q (9.23)

LeftOf(pa; dir; p) ^ on(pa1; p)! pa 6= pa1 (9.24)

Rules 9.18 and 9.19 rely on our basic assumption that dstates have a unique view
and turn actions link different distinctive states. Rule 9.20 uses the fact that paths are not
circular in order to conclude that ifp is beforeq thenp andq must be different. Rules
9.21 and 9.22 use radial and one dimensional frames of reference to conclude inequality
of dstates and places, respectively. Rules 9.23 and 9.24 use boundary relations in order to
distinguish places and paths respectively.24

Finally, rules to prove equality among SSH objects include:

at(ds; p) ^ at(ds; q)! p = q (9.25)

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1 ^ dir = dir1 (9.26)

The rules to derive equality and inequality relations are not necessarilycompletein
the following sense. It is possible thatno possible(s; ds00) cannot be proved, and sods00

will be a valid candidate. A new extension ofpmodel will be created in whichds0
teq
= ds00 is

asserted. However, when assertings in that extension, it can then be proved thatds0
teq

6= ds00.
We further discuss this issue in the next section.

Creating extensions

For eachds0i 2 candidates, create-possible-extensions(pmodel,s=h ds; a; ds0 i,candidates)

creates a possible extension forpmodel whereds0
teq
= ds0i is the case. If some of these ex-

tensions are consistent, thencreate-possible-extensionsalso creates an extension whereds0

is known and different from the dstates incandidates. In this last case the function returns
24In Algernon[Crawford and Kuipers, 1991] some of these rules are implemented asforward-chaining (if-

added)rules (e.g. rules 9.18 and 9.19) and others asbackward-chaining (if-needed) rules(e.g. rules 9.23
and 9.24). The problem with if-added rules is that they could derive a large number of useless truths. For
instance, if rule 9.23 were implemented as an if-added rule, Algernon’s engine will prove that placesp andq
are different for any placeq on a pathpa and placep to the left ofpa. While this is the case, in general we want
to use boundary relations to derive inequalities among particular pairs of places rather than indiscriminately
between all pair of places. Algernon should not (try to) prove at front inequalities among all places in the map!.
We provide no further discussion on this issue which applies in general to rule base systems that use forward
chaining rules.
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false otherwise it returnstrue.

Givends0i 2 candidates, a new extensionpmodel0i is created whereds0
pmodel0

i= ds0i

is the case. In addition,ds0
pmodel0i
6= ds0j is also asserted fords0j 2 candidates; ds0j 6= ds0i.

The extension(pmodel; pmodel0i) relation among partial models is then asserted. That
pmodel0i is an extension ofpmodel implies that all known objects and facts inpmodel

are known objects and facts inpmodel0i. This inheritance property of extensions can be
implemented in Algernon by rules like the next ones:

extension(pmodel; pmodel1)^ known objects(pmodel; obj)

! known objects(pmodel1; ojb)

extension(pmodel; pmodel1)^ equal objects(pmodel; obj1; obj2)

! equal objects(pmodel1; obj1; obj2)

extension(pmodel; pmodel1)^ not equal objects(pmodel; obj1; obj2)

! not equal objects(pmodel1; obj1; obj2)

at(ds; place; pmodel)^ extension(pmodel; pmodel1)! at(ds; place; pmodel1)

: : :

In addition to state thatextension(pmodel; pmodel0i) is the case,s becomes the
next schema that has to be explained bypmodel0i. It is possible that by explainings at this
point (by assertings in pmodel0i), pmodel0i becomes inconsistent and so it should not be
considered further in the search.25 Shouldpmodel0i become inconsistent, then one has to
delete theextension(pmodel; pmodel0i) relation. We calllook aheadto this extra step of
explainings in pmodel0i (see figure 9.19).

Assert schema

Assert-schema(pmodel, s)creates the places and paths needed to explains. An example of
the rules used to explains is presented in figure 9.20.

Instead of assertings = h ds; a; ds0 i in pmodel, the algorithm assertss� = h ds�; a; ds0� i

whereds� and ds0� are the
teq
= representatives for the equality classes ofds and ds0 in

pmodel. Asserting a schema in Algernon corresponds to creating the frame (object) repre-
senting the schema. Forward and backward chaining rules derived from the SSH topological
theory are then evaluated, and places and paths needed to explains are created (see figure
9.20).

25This could be the case since rules to filter out candidates may not be complete. See previous section.
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(defunssh-assert-extension(pmodel pmodel1 equality
&key (next-experience nil) (look-ahead *ssh-look-ahead*))

(tell ‘((:the ?pm (name ?pm ,pmodel) (isa ?pm ssh-pmodels))
(:the ?pm1 (name ?pm1 ,pmodel1) (isa ?pm1 ssh-pmodels))
(extension ?pm ?pm1)
(extension-of ?pm1 ?pm)

))

;;; The above statement will fire Algernon rules to inherit
;;; objects and facts from pmodel to pmodel1.

(ssh-assume-equals pmodel1 (car equality) (cdr equality))
(if next-experience (ssh-set-next-pmodel-experience pmodel1 next-experience))
;;; thelook ahead step
(when (and look-ahead next-experience)

(ssh-inherit-from-sub-model pmodel1)
(ssh-assert-experience pmodel1 next-experience)
(cond
((ssh-is-inconsistent pmodel1)

(tell ‘((:the ?pm (name ?pm ,pmodel) (isa ?pm ssh-pmodels))
(:the ?pm1 (name ?pm1 ,pmodel1) (isa ?pm1 ssh-pmodels))
(:delete (extension ?pm ?pm1))
(:delete (extension-of ?pm1 ?pm))))

(ssh-remove-pmodel pmodel1))
(t (ssh-get-next-pmodel-experience pmodel1))

;; remove next-experience from the list of schemas
;; to be explained by pmodel1.

)
)

)

Figure 9.19:Assert-extension. Given an equality(ds0:ds0i), pmodel1 is an extension ofpmodel where

ds0
pmodel1

= ds0i is the case. When look ahead is used, the next schema associated withpmodel is asserted in

the extensionpmodel1. Should this renderpmodel1 inconsistent, theextension relation is deleted from the

database. The functionssh-remove-pmodelupdates the search queue by removingpmodel1 from it.
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(defunssh-assert-experience(pmodel e)
(let ( schema ds-context ds-result act)

(setf schema
(first (ask ‘((:the ?e (name ?e ,e) (isa ?e experiences))

(E-context-ds ?e ?ds) (E-result-ds ?e ?ds1) (E-action ?e ?a))
:collect ’(?ds ?a ?ds1))))

(setf ds-context (ssh-find-or-create-equal pmodel (first schema)))
(setf ds-result (ssh-find-or-create-equal pmodel (third schema)))

;;; ssh-find-or-create-equal will ensure that ?ds and ?ds1 are known in pmodel

(setf act (second schema))
(create-schema :pmodel pmodel

:initial-ds ds-context :result-ds ds-result
:action act)

)

(defunCreate-Schema(&key (pmodel nil)(action nil)
(initial-ds nil) (result-ds nil))

;; create frame representing schemahinitial-ds, action, result-dsi.
)

;;; Example of Algernon rules used to explain schemas.

(tell ’((:rules Schemas
((S-action ?s ?a) (A-type ?a turn) (S-context-ds ?s ?dsc ?cntx)

(S-result-ds ?s ?dsr ?pmodel)
(at ?dsc ?p ?pmodel) ;;; create place if necessary
! ;;; turning keeps the agent in the same place
(at ?dsr ?p ?pmodel)

))
’((:rules distinctive-states

((at ?ds ?p ?pmodel)
 ;;; a distinctive state is always at a place
;;; check that ?ds is not at a place already
(:fail (:boundp ?p)) (:boundp ?pmodel) (:fail (:retrieve (at ?ds ?a-p ?pmodel)))
;;; if so then create place
(:bind ?p (Create-place (ssh-create-place-name) :pmodel ’?pmodel))

))
)

Figure 9.20:Asserting a schema in Algernon corresponds to creating the frame (object) representing the

schema. Forward and backward chaining rules derived from the SSH topological axioms will then be evaluated,

and places and paths needed to explains will be created (if needed).
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Figure 9.21:(a) The agent goes around the block visiting placesB,: : :,F ,C in the order suggested in the

figure. IntersectionsB andC look alike to the agent. (b) and (c) represent two possible topological maps for

the environment in (a).

9.4.3 Trace example

We illustrate the topological map building algorithm with the environment of figure 9.21 in
which the robot goes around a block and finds itself with two posibilities for the topologi-
cal map (this is example 19, page 59). For the purpose of the example,the robot start the
navigation at placeB instead of placeA.

The set of schemas associated with this environment are defined as follows:26

;; action definitions

(create-action :name ’ml :type ’travel
:measurement-type ’interval-measurement)

(create-action :name ’tr :type ’turn

:measurement-type ’interval-measurement)

;; view definitions

(setf v (create-view ’v))
(setf v1 (create-view ’v1))

(setf v2 (create-view ’v2))

(setf v3 (create-view ’v3))
(setf v4 (create-view ’v4))

;; view-action-view-sequence

26Here we show the actual input file used to generate the trace.
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(setf tour-views

(list v ’(ml (:lb 0.8 :ub 1.2))

v ’(ml (:lb 0.8 :ub 1.2))
v1 ’(tr (:lb 260 :ub 280))

v2 ’(ml (:lb 0.8 :ub 1.2))
v1 ’(tr (:lb 260 :ub 280))

v ’(ml (:lb 0.8 :ub 1.2))
v ’(tr (:lb 260 :ub 280))

v3 ’(ml (:lb 0.8 :ub 1.2))

v4 ’(tr (:lb 260 :ub 280))
v ’(ml (:lb 0.9 :ub 1.1)) ;;; use a different measurement

v1))

;; Convert view-action-view sequence to schemas. By default, the program

;; creates a new distinctive state for each view occurrence in such sequence.

(setf tour-experiences (ssh-create-experiences tour-views))
(ssh-worlds-add-experiences tour-experiences)

;;; invoke the map building function.

(ssh-find-maps)

The functionssh-find-mapsimplements the building of the topological map. Ex-
planations of why two objects are proven equal or different are generated by the program.
Here is the trace generated for this example.

Current partial model PMODEL-0 <NIL -- schemas[0], paths[0], dpaths[0],
places[0], dstates[0]>

>> Considering experience <(DS-0 V),ML[10],(DS-1 V)>
PMODEL-0 |= -(DS-0 = DS-1) {dstates distance 10 on dpath DPATH-0}

PMODEL-0 |= -(PLACE-0 = PLACE-1) {place distance 10 on dpath DPATH-0}

In addition to the model name, a list of assumed equalities (NIL in the example
above) as well as the number of different SSH objects represented by the partial model are
printed. The number of SSH objects in a partial model is used to order the search process
according to the circumscription policy associated withTT (E). Figure 9.22 shows the
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dstates, places and dpaths created by the map building algorithm.27 The next interesting
development occurs when the agent reaches placeE and observesV 1 again.

0 1,9

3

56

7

8 2,10

4

0 2
dpath−0

dpath−1

dpath−2
3

dpath−3

4

1,5

(b)(a)

Figure 9.22:Dstates, places and dpaths created by the map building algorithm for the exploration of the en-

vironment in figure 9.21. (a) Numbers identify the dstates created by the map building algorithm. (b) Numbers

identify places. Notice that PLACE-1 and PLACE-5 are two names for the same place.

Current partial model PMODEL-0 <NIL -- schemas[1], paths[0], dpaths[1],

places[2], dstates[2]>

>> Considering experience <(DS-1 V),ML[10],(DS-2 V1)>
PMODEL-0 |= -(DS-1 = DS-2) {dstates distance 10 on dpath DPATH-0}

PMODEL-0 |= -(PLACE-1 = PLACE-2) {place distance 10 on dpath DPATH-0}

Current partial model PMODEL-0 <NIL -- schemas[2], paths[0], dpaths[1],

places[3], dstates[3]>

>> Considering experience <(DS-2 V1),TR[-90],(DS-3 V2)>

PMODEL-0 |= -(DS-2 = DS-3) {dstates linked by turn action}
PMODEL-0 |= -(DPATH-1 = DPATH-0) {dpaths related by turn action}

Current partial model PMODEL-0 <NIL -- schemas[3], paths[0], dpaths[2],

27In the implementation,dpathsrepresent ordered dstates linked by travel actions. Dpaths correspond to
paths that only have one direction associated with them. Paths are created when the agent has traveled in both
direction of a path. At that time, two dpaths are associated with the path, one for each path’s direction.
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dpath−0 = dpath−2dpath−0 = dpath−2
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dpath−1
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dpath−2 = dpath−3

3=5

(c)(a)

1 1 1

Figure 9.23:Detecting inconsistent maps by looking ahead when branching. When the agent reaches

placeF (figure 9.21), viewV is observed again (it was observed atDS-0, DS-1andDS-5, figure 9.22). The

maps associated with the equalitiesDS � 0
PMODEL�1

= DS � 6 andDS � 1
PMODEL�2

= DS � 6 are

depicted in (a) and (b). These two maps are detected inconsistent in the look ahead step of our map building

algorithm (see figure 9.19).

The second time the agent reaches placeC, it turns right, and observesV . Again, the look ahead step detects

that the equalityDS � 9
PMODEL�5

= DS � 5 leads to the inconsistent map depicted in (c).

places[3], dstates[4]>

>> Considering experience <(DS-3 V2),ML[10],(DS-4 V1)>

Filtering possible alternatives for DS-4 : =? (DS-2)

>> FILTER OUT (DS-4 = DS-2) in PMODEL-0
{dstates along different dpaths DPATH-1, DPATH-0}

PMODEL-0 |= -(DS-3 = DS-4) {dstates distance 10 on dpath DPATH-1}

PMODEL-0 |= -(PLACE-2 = PLACE-3) {place distance 10 on dpath DPATH-1}

When the agent reaches placeE (see figure 9.21), viewV 1 is observed again (it
was observed atDS-2). The program concludes thatDS-4(the current distinctive state) and
DS-2are different, and consequently, filters outDS-2 from the list of dstates that can be
equal toDS-4. The next interesting development occurs when the agent reaches placeF

and observesV again.

Current partial model PMODEL-0 <NIL -- schemas[4], paths[0], dpaths[2],
places[4], dstates[5]>

>> Considering experience <(DS-4 V1),TR[-90],(DS-5 V)>
Filtering possible alternatives for DS-5 : =? (DS-0 DS-1)

164



PMODEL-0 |= -(PLACE-3 = PLACE-0)

{PLACE-3 is to the right of DPATH-0, PLACE-0 is on dpath DPATH-0}

>> FILTER OUT (DS-5 = DS-0) in PMODEL-0
{dstates at different places PLACE-3, PLACE-0}

PMODEL-0 |= -(PLACE-3 = PLACE-1)
{PLACE-3 is to the right of DPATH-0, PLACE-1 is on dpath DPATH-0}

>> FILTER OUT (DS-5 = DS-1) in PMODEL-0
{dstates at different places PLACE-3, PLACE-1}

PMODEL-0 |= -(DS-4 = DS-5) {dstates linked by turn action}

PMODEL-0 |= -(DPATH-2 = DPATH-1) {dpaths related by turn action}

Current partial model PMODEL-0 <NIL -- schemas[5], paths[0], dpaths[3],
places[4], dstates[6]>

>> Considering experience <(DS-5 V),ML[10],(DS-6 V)>
Filtering possible alternatives for DS-6 : =? (DS-0 DS-1 DS-5)

>> FILTER OUT (DS-6 = DS-5) in PMODEL-0
{DS-5 is before DS-6 in dpath DPATH-2}

>> Creating possible extensions

- PMODEL-0 + {DS-0 = DS-6} --> PMODEL-1

PMODEL-1 |= DPATH-0 = DPATH-2 {dstate DS-0 along both dpaths}
PMODEL-1 |= DPATH-2 = DPATH-0 {dstate DS-5 along both dpaths}

PMODEL-1 |= -(DPATH-0 = DPATH-2)
{PLACE-3 is to the right of DPATH-0 and on dpath DPATH-2}

LOOK AHEAD --> PMODEL-1 **** INCONSISTENT ****

- PMODEL-0 + {DS-1 = DS-6} --> PMODEL-2

PMODEL-2 |= DPATH-0 = DPATH-2 {dstate DS-1 along both dpaths}

PMODEL-2 |= DPATH-2 = DPATH-0 {dstate DS-5 along both dpaths}
PMODEL-2 |= -(DPATH-0 = DPATH-2)

{PLACE-3 is to the right of DPATH-0 and on dpath DPATH-2}

LOOK AHEAD --> PMODEL-2 **** INCONSISTENT ****

PMODEL-0 |= -(PLACE-3 = PLACE-4) {place distance 10 on dpath DPATH-2}

When the agent reaches placeF (see figure 9.21), viewV is observed again (it was
observed atDS-0, DS-1andDS-5) at dstateDS-6. The program deduces thatDS-6 is dif-
ferent fromDS-5. Two extensions ofPMODEL-0are created to explore the possibilities
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DS�6
teq
= DS�0 andDS�6

teq
= DS�1. The look ahead step right away concludes that

these equalities render the corresponding extensions inconsistent, and consequently,DS-6
is different from the previously seen dstates (see figure 9.23).PMODEL-0continues to be
the only possible model. The next interesting development occurs when the agent reaches
placeC, turns right, and observes viewV again.

Current partial model PMODEL-0 <NIL -- schemas[6], paths[0], dpaths[3],
places[5], dstates[7]>

>> Considering experience <(DS-6 V),TR[-90],(DS-7 V3)>

PMODEL-0 |= -(DS-6 = DS-7) {dstates linked by turn action}

PMODEL-0 |= -(DPATH-3 = DPATH-2) {dpaths related by turn action}

Current partial model PMODEL-0 <NIL -- schemas[7], paths[0], dpaths[4],
places[5], dstates[8]>

>> Considering experience <(DS-7 V3),ML[10],(DS-8 V4)>
PMODEL-0 |= -(DS-7 = DS-8) {dstates distance 10 on dpath DPATH-3}

PMODEL-0 |= -(PLACE-4 = PLACE-5) {place distance 10 on dpath DPATH-3}

Current partial model PMODEL-0 <NIL -- schemas[8], paths[0], dpaths[4],
places[6], dstates[9]>

>> Considering experience <(DS-8 V4),TR[-90],(DS-9 V)>
Filtering possible alternatives for DS-9 : =? (DS-0 DS-1 DS-5 DS-6)

>> FILTER OUT (DS-9 = DS-6) in PMODEL-0
{dstates at different places PLACE-5, PLACE-4}

>> Creating possible extensions

- PMODEL-0 + {DS-0 = DS-9} --> PMODEL-3

PMODEL-3 |= -(DS-8 = DS-0) {dstates linked by turn action}
PMODEL-3 |= -(DPATH-0 = DPATH-3) {dpaths related by turn action}

PMODEL-3 |= -(PLACE-5 = PLACE-1) {place distance 10 on dpath DPATH-0}

PMODEL-3 |= PLACE-0 = PLACE-5 {dstate DS-0 at both places}

- PMODEL-0 + {DS-1 = DS-9} --> PMODEL-4
PMODEL-4 |= -(DS-8 = DS-1) {dstates linked by turn action}

PMODEL-4 |= -(DPATH-0 = DPATH-3) {dpaths related by turn action}

PMODEL-4 |= -(PLACE-5 = PLACE-2) {place distance 10 on dpath DPATH-0}
PMODEL-4 |= -(PLACE-0 = PLACE-5) {place distance 10 on dpath DPATH-0}

PMODEL-4 |= PLACE-1 = PLACE-5 {dstate DS-1 at both places}
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- PMODEL-0 + {DS-5 = DS-9} --> PMODEL-5

PMODEL-5 |= -(DS-8 = DS-5) {dstates linked by turn action}
PMODEL-5 |= PLACE-3 = PLACE-5 {dstate DS-5 at both places}

PMODEL-5 |= -(PLACE-5 = PLACE-3)
{PLACE-5 is to the right of DPATH-2, PLACE-3 is on dpath DPATH-2}

LOOK AHEAD --> PMODEL-5 **** INCONSISTENT ****

- PMODEL-0 + {DS-9 = DS-9} --> PMODEL-6

PMODEL-6 |= -(DS-8 = DS-9) {dstates linked by turn action}
PMODEL-6 |= -(DPATH-4 = DPATH-3) {dpaths related by turn action}

PMODEL-0 ***** EXPLORED *****

When the agent reaches placeC again (see figure 9.21), it turns right, and observes
V . In this situation, the current distinctive stateDS-9can be equal toDS-0, equal toDS-1
or a new distinctive state (see figure 9.23 for whyDS-96=DS-5). Three new extensions are
created,PMODEL-3, PMODEL-4, PMODEL-6, to explore these alternatives.PMODEL-
3 and PMODEL-4correspond to the maps (c) and (b) in figure 9.21. Given the set of
experiences explained up to this point,PMODEL-6 is not a minimal topological map for
these experiences. However, the program generates this alternative in case the other two
eventually fail. PMODEL-0becomes explored as some extensions has been created. The
search continue by picking a minimal model, in this case eitherPMODEL-3or PMODEL-4.

Current partial model PMODEL-3 <(DS-0 DS-9) -- schemas[9], paths[0],

dpaths[4], places[5], dstates[9]>

>> Considering experience <(DS-9 V),ML[10],(DS-10 V1)>

PMODEL-3 |= -(DS-1 = DS-10) {dstates have different views.}

PMODEL-3 |= (DS-10 = DS-1)
{deterministic actions: <(DS-9 V),ML[10],(DS-10 V1)> ,

<(DS-0 V),ML[10],(DS-1 V)>}

PMODEL-3 <(DS-0 DS-9) -- schemas[9], paths[0], dpaths[4],

places[5], dstates[9]> **** INCONSISTENT ****
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Once the agent travels from placeC to placeD again (see figure 9.21),PMODEL-3

becomes inconsistent. This is the case since in this modelDS � 0
teq
= DS � 9 and so after

performingml in DS � 0 the map predicts viewV but the actual experience renders view
V 1. This is just the assumption that actions are deterministic. The algorithm then con-
sidersPMODEL-4, which successfully explain the schemah (DS�9V ); ML[10]; (DS�

10V 1) i and becomes a minimal map since no more experiences must be explained.PMODEL-
4 is depicted in figures 9.21b and 9.22b.

Current partial model PMODEL-4 <(DS-1 DS-9) -- schemas[9], paths[0],

dpaths[4], places[5], dstates[9]>

>> Considering experience <(DS-9 V),ML[10],(DS-10 V1)>

PMODEL-4 |= (DS-10 = DS-2)

{deterministic actions: <(DS-9 V),ML[10],(DS-10 V1)> ,

<(DS-1 V),ML[10],(DS-2 V1)>}

PMODEL-4 **** IS A MINIMAL MAP ****
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9.5 Map building examples

In this section we describe two examples where a physical robot (Vulcan) builds a SSH map.
The purpose of these examples is to illustrate how the concepts in the previous section apply
in office like environments. The first example (Section 9.5.1), shows how the agent using
the concept of boundary regions can distinguish otherwise identical distinctive states. In the
second example (Section 9.5.2), Vulcan explores Taylor’s second floor defining distinctive
states at the different corridor intersections.

9.5.1 Rectangular environment

This section shows the SSH map learned by the wheelchair (Vulcan) while exploring a sym-
metric environment (namely, a rectangular room). Symmetric environments are particularly
difficult to handle as the same view might occur at different distinctive states, and the SSH
causal level is not enough to distinguish some distinctive states. By using topological and
metrical information the agent can distinguish the different places of the environment.

The environment to explore is a 3m� 8m rectangle, as illustrated in Figure 9.24.
The exploration strategy was set to execute a forward action when possible, otherwise turn
right, and stop when back to a previously visited distinctive state. Notice that the exploration
strategy is defined in terms of the causal language actionsForward andTurn Right. The
robot chose the most appropriate control law associated with the causal command, which
in this case werefollow left wall andalign to the right w.r.t. the front wallrespectively. As
illustrated in Figure 9.24, different distinctive states look alike (i.e. share the same view).
For example, distinctive statesDS-1andDS-5share the same viewVIEW-1.
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DS-1! VIEW-1 DS-2! VIEW-2

DS-3! VIEW-3 DS-4! VIEW-4

DS-5! VIEW-1 DS-6! VIEW-2

DS-7! VIEW-3 DS-8! VIEW-4

Figure 9.24:Rectangular room exploration. For each visited distinctive state the figure shows its corre-

sponding view. The same view occurs at different corners. For instance,VIEW-1occurs at distinctive states

DS-1, DS-5andDS-8. Using topological and local metrical information, the robots concludes thatDS-16=DS-5

andDS-1=DS-8.
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Next we provide a commented trace of the different steps and reasoning the robot
used during the exploration. At each step the robot continues the exploration by performing
an action (forward or turn right) and identifying a distinctive state once the action is per-
formed.

Initially, the robot starts at one of the corners of the environment and creates a
distinctive state. Here is the program output associated with this step:

-----------------------------
Finding current place.

Finding view.

No matching view.
+ Creating new view.

> View found: VIEW-1.
Finding distinctive state.

+ Creating new d-state DS-1.

> Distinctive state found: DS-1.
> Place found: A.

-----------------------------

Since at this point the robot has no stored views, it gives a new name (VIEW-1) to
its current view. A new distinctive state (DS-1) is created and associated with this view.
The place at which this distinctive state is located is created and calledA (see Axiom 5.16,
page 41).

-----------------------------
Performing action: Forward.

Control law: Follow left wall
Executing Follow left wall ... Done.

-----------------------------

Finding current place.
Finding view.

No matching view.
+ Creating new view.

> View found: VIEW-2.

Finding distinctive state.
+ Creating new d-state DS-2.

> Distinctive state found: DS-2.
> Place found: B.

-----------------------------

The view observed at this point does not match a known view and consequently a
new one is created. Since the view is new, so is the current distinctive state. This is the case
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since a distinctive state has associated a unique view (Axiom 4.7). A new placeB is created
since the robot executed a travel action which by definition changes the place the robot is at
(Corollary 1, page 46).

-----------------------------

Performing action: Right.
Control law: Turn right (ref = front wall)

Executing Turn right (ref = front wall) ... Done.
-----------------------------

Finding current place.
Finding view.

No matching view.

+ Creating new view.
> View found: VIEW-3.

Finding distinctive state.
+ Creating new d-state DS-3.

> Distinctive state found: DS-3.

> Place found: B.
-----------------------------

Notice that since the robot performed aTurn action, it is still at the same placeB
(Axiom 5.17), although at a different distinctive stateDS-3.

-----------------------------

Performing action: Forward.

Control law: Follow left wall
Executing Follow left wall ... Done.

-----------------------------
Finding current place.

Finding view.

No matching view.
+ Creating new view.

> View found: VIEW-4.
Finding distinctive state.

+ Creating new d-state DS-4.

> Distinctive state found: DS-4.
> Place found: C.

-----------------------------

Since the robot performed aTravelaction, it is at different place fromB. Since the
view is new, it creates a new distinctive state and a new placeC. The robot does not check
whether it is back atA, since it has not experienced the current view at placeA.
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-----------------------------

Performing action: Right.

Control law: Turn right (ref = front wall)
Executing Turn right ... Done.

-----------------------------
Finding current place.

Finding view.
Views matching with score > 0.7:

1. VIEW-1 (score = 0.8)

> View found: VIEW-1.
Finding distinctive state.

D-states associated with VIEW-1:
1. DS-1

- Topology excludes these d-states:

1. DS-1 (right of current path)
+ Creating new d-state DS-5.

> Distinctive state found: DS-5.
> Place found: C.

-----------------------------

At the current physical location the robot environment looks as in VIEW-1. The
only known distinctive state associated withVIEW-1is DS-1, which is at placeA. The robot
determines that the current place (C) is to the right of the path (boundary) from placeA to
placeB. Consequently, the robot cannot be at placeA, and so it cannot be atDS-1. A new
distinctive stateDS-5is then created.

-----------------------------
Performing action: Forward.

Control law: Follow left wall

Executing Follow left wall ... Done.
-----------------------------

Finding view.
Views matching with score > 0.7:

1. VIEW-2 (score = 0.8)

> View found: VIEW-2.
Finding distinctive state.

D-states associated with VIEW-2:
1. DS-2

- Topology excludes these d-states:
1. DS-2 (right of current path)

+ Creating new d-state DS-6.

> Distinctive state found: DS-6.
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> Place found: D.

-----------------------------

By a reasoning similar to the one used to distinguishDS-1from DS-5, the robot can
distinguish the current distinctive state (DS-6) from DS-2. Notice that this time the robot
knows that it is not at placeC (since it just traveled from it, lemma 1) and it is not at place
B, since the current place (D) is on the right of the path fromB to C.

-----------------------------
Performing action: Right.

Control law: Turn right (ref = front wall)
Executing Turn right (ref = front wall) ... Done.

-----------------------------

Finding current place.
Finding view.

Views matching with score > 0.7:
1. VIEW-3 (score = 0.799264)

> View found: VIEW-3.
Finding distinctive state.

D-states associated with VIEW-3:

1. DS-3
- Topology excludes these d-states:

1. DS-3 (right of boundary)
+ Creating new d-state DS-7.

> Distinctive state found: DS-7.

> Place found: D.

-----------------------------
Performing action: Forward.

Control law: Follow left wall

Executing Follow left wall ... Done.
-----------------------------

Finding current place.
Finding view.

Views matching with score > 0.7:
1. VIEW-4 (score = 0.710665)

> View found: VIEW-4.

Finding distinctive state.
D-states associated with VIEW-4:

1. DS-4
- Topology excludes these d-states:

1. DS-4 (right of current path)
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+ Creating new d-state DS-8.

> Distinctive state found: DS-8.

> Place found: E
-----------------------------

At the current physical location the robot environment looks similar to VIEW-4.
The only known distinctive state associated withVIEW-4is DS-4. A similar argument that
allows the agent to differentiateDS-3from DS-4allows it to differentiateDS-4from DS-8.
Notice that the agent does not know that it is back to placeA, and it creates a new place for
DS-8, placeE.

-----------------------------
Performing action: Right.

Control law: Turn right (ref = front wall)

Executing Turn right (ref = front wall) ... Done.
-----------------------------

Finding current place.
Finding view.

Views matching with score > 0.7:

1. VIEW-1 (score = 0.742667)
> View found: VIEW-1.

Finding distinctive state.
D-states associated with VIEW-1:

1. DS-1

2. DS-5
- Topology excludes these d-states:

1. DS-5 (right of current path)
+ Geometry is compatible with:

1. DS-1 at 0.796978 m., 18.8011 deg.
> Distinctive state found: DS-1.

> Place found: A.

-----------------------------

Since the topology cannot rule out the possibility of being atDS-1, the agent uses
metrical information to check whether it might be back toDS-1. In order to do so, it finds
a path fromDS-01to the current distinctive state, and creates a two dimensional frame of
reference with the places on that path. It finds that the current distinctive state is0:79m

apart fromDS-01and that its direction toDS-01is about18deg. Given our current metrical
error tolerance, the robot accepts the hypothesis that it is back toDS-1. Should the agent not
rely on metrical information, the hypothesis of being back toDS-1will be accepted right
away since it is consistent with our minimality criteria when building the topological map.
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9.5.2 Taylor’s Second floor

In this experiment we illustrate the map building process while navigating the second floor
of Taylor Hall. Figure 9.25 shows a footprint of this environment with the different dis-
tinctive states identified after exploration. Figure 9.26 shows the views associated with the
distinctive states in this environment. Table 9.27 shows the view matching values associ-
ated with the different distinctive states in Taylor 2nd floor.
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Figure 9.25: Footprint of Taylor’s second floor and the distinctive states found while ex-
ploring this environment.

The exploration strategy for the environment is such that when arriving to a dis-
tinctive state, the robot checks whether it has been there before. If it has, then it checks
what action has not been performed and performs it. If the distinctive state is new, the
robot rotates360o left identifying other distinctive states in the same place. If a trajectory
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ds-1 ds-2 ds-3 ds-4

ds-5 ds-6 ds-7 ds-8

ds-9 ds-10 ds-11 ds-12

ds-13 ds-14 ds-15 ds-16

ds-17 ds-18

Figure 9.26:Views associated with the distinctive states in Taylor 2nd floor.

177



1 2 3 4 5 6 7 8 9
1 100 7 44 6 0 0 0 13 7
2 7 100 4 3 17 24 24 29 23
3 44 4 100 4 18 0 0 0 0
4 6 30 4 100 0 21 23 38 6
5 0 17 18 0 100 0 0 0 0
6 0 24 0 21 0 100 0 0 15
7 0 24 0 23 0 0 100 0 25
8 13 29 0 38 0 0 0 100 3
9 7 23 0 6 0 15 25 36 100
10 8 0 21 0 15 12 35 0 8
11 12 12 5 0 23 8 0 9 15
12 11 11 0 13 25 0 0 42 0
13 0 29 7 0 23 0 18 43 20
14 39 23 39 0 27 14 0 27 21
15 9 37 5 30 25 34 0 47 42
16 0 23 4 21 0 16 33 22 24
17 14 37 5 42 0 26 55 58 37
18 9 42 0 40 17 14 17 26 22

10 11 12 13 14 15 16 17 18
1 8 12 11 0 39 9 0 14 9
2 0 12 11 29 23 37 23 37 42
3 21 5 0 7 39 5 4 5 0
4 0 0 13 0 0 30 21 42 40
5 15 23 25 23 27 25 0 0 17
6 12 8 0 0 14 34 16 26 14
7 35 0 0 18 0 0 33 55 17
8 0 9 42 43 27 47 22 58 26
9 8 15 0 20 21 42 24 37 22
10 100 7 21 13 46 17 16 0 0
11 7 100 0 13 7 10 18 7 7
12 21 0 100 0 20 23 0 0 17
13 13 13 0 100 0 32 19 35 0
14 46 7 20 0 100 19 19 0 26
15 17 10 23 32 19 100 0 90 15
16 16 18 0 19 19 0 100 14 21
17 0 7 0 35 0 90 14 100 14
18 0 7 17 0 26 15 21 14 100

Figure 9.27: Similarity values among the different views associated with the distinctive states
identified in Taylor’s second floor. Scale is 0 to 100.
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following strategy can be applied, the robot does so. Otherwise it rotates right to the clos-
est distinctive state, where the procedure is repeated. Using this strategy the order in which
distinctive states are visited for the environment of figure 9.25 is summarized in figure 9.28.

For the experiment we used a threshold value of0:6 in order to decide whether two
list of segments correspond to the same view. This value is consistent with the intraclass
similarity value provided by our view matcher, as discussed in example 31 (page 140).
Accordingly, in the Taylor second floor environment the robot experiences sensory aliasing
for distinctive states ds-15 and ds-17 (see figures 9.26 and 9.27). However, these distinctive
states are along the same path at different places, and topological information is enough to
distinguish them (see figure 9.28).
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Actions Distinctive Explanation
states

Reach ds-1 and turn in place1, 2, 3, 4, 1
Follow corridor until ds-5 5, 6, 7, 8, 5 ds-5 has a view not seen so far.
Rotate in place
Rotate right until follow 8,7
corridor is applicable.
Follow corridor to ds-3 3 view at ds-3 has been seen before at only

one distinctive state. The experiences
are consistent with being at ds-3

Follow corridor to ds-9 9,10,11,12, ds-9 to ds-12 have views
Rotate in place 9,10 not seen so far.
Rotate right until follow
corridor is applicable.
Follow corridor until ds-13 13,14,13 ds-13 and ds-14 have views

not seen so far.
Rotate right until follow 14
corridor is applicable.
Follow corridor to ds-12. 12 view at ds-12 has been seen before at

only one distinctive state.
The experiences are consistent with
being at ds-12.

Rotate left until follow 11 Since the robot already turned right
corridor is applicable. at ds-12,it nows turns left.
Follow corridor to ds-1 view at ds-1 has been seen before at only

one distinctive state. The experiences
are consistent with being at ds-1.

Rotate left until follow 2 Since the robot already followed the
corridor is applicable. corridor from ds-1,it nows turns left.
Follow corridor to ds-15. 15,16,15,16 ds-15 has a view not seen so far.
Rotate in place.
Rotate right until follow
corridor is applicable.
Follow corridor to ds-4 view at ds-4 has been seen before at only

one distinctive state. The experiences
are consistent with being at ds-4.

Follow corridor to ds-17 17 view at ds-17 has been seen before
(at ds-15). Topological information
indicates that the robot is not at ds-15,
since the place of ds-15 is before the
current place in the current path.

Rotate in place 18,17,18,2 view at ds-2 has been seen before at only
Follow corridor to ds-2 one distinctive state. The experiences

are consistent with being at ds-2.

Figure 9.28:Summary of exploration for Taylor’s second hall.
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9.6 Summary

We have presented the main issues of a particular implementation of the SSH using Vulcan.
At the SSH control level, an observer architecture is used to implement trajectory follow-
ing and hill climbing control laws. The same control law (equation 9.1, page 130) used in
conjunction with differentmodel trackers(figure 9.3, page 131) produces most of Vulcan’s
behaviors (for instance, follow a corridor, go through doorways, hill climb to a corridor
intersection, etc.). The implementation satisfies the SSH control level guarantees: the robot
behaviors start and terminate in the neighborhood of the fixed points associated with hill
climbing strategies. While the focus of this dissertation has not been on the SSH control
level, it is worthwhile noticing that in general implementing the control level in a physical
robot is half of the battle when implementing the SSH.

Views at the causal level were defined in terms of segments extracted from a laser
scan at the particular robot location (section 9.3, page 138). The results in example 31 and
section 9.5.2 (pages 142 and 178) show that this method is adequate in office like envi-
ronments: the views there defined have a well defined discriminant boundary among the
different view classes identified by the robot. Our method uses one laser scan to define a
view. Other methods exist where more than one laser scan (or multiple sensors) are used to
define a view ([Duckett and Nehmzow, 2000]). No attempt has been done to compare our
method to these other ones.

The implementation of the causal, topological and metrical levels has focussed on
identifying and keeping track of the different maps consistent with the agent’s experiences.
A logic program derived from the circumscriptive theory defined in chapter 4 was defined
for calculating the causal models associated with a set of experiences (section 9.4.1, page
147). The same technique unfortunately does not scale up when building the topological
map. The problem of building a topological map was stated then as a“best first” search
problem. The states of the search correspond to partial models ofTT (E). At each step
of the search a schemah ds; a; ds0 i has to be explained. Either the identity ofds0 can be
proved or a search branch is created for every previously known distinctive stateds00 that

cannot be proven to be different fromds0. In each branch the assumptionds00
teq
= ds0 will

be the case. The next state to explore is the one that is minimum according to the order as-
sociated with the circumscription policy forTT (E). This search algorithm was described
in section 9.4.2 (page 152).

While not explicitly described in this chapter, the robot exploration strategy is such
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that should more than one map be consistent with the robot experiences, the robot tries
immediately to distinguish among the different alternatives (i.e. the robot performs the re-
hearsal procedure). The knowledge base is such that one could query for a sequence of
actions (and so observations) that will distinguish among the possible map alternatives.

Metrical information has been used torefutea given topological map by showing
that it is impossible to project the map into a two dimensional space preserving the esti-
mated distance and relative orientation between consecutive places in a path (chapter 7,
page 90). A more sophisticated use of metrical information has not been explored in the
implementation (for instance, occupancy models associated with a place has not been im-
plemented). Sections 9.4.3 (page 161) and 9.5.1 (page 169) illustrate the use of metrical
information while building the topological map.
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Chapter 10

Related Work

In this section we review some of the relevant literature in the different areas comprising
this work. These areas include: cognitive robotics, qualitative reasoning, robotics and map
building.

10.1 Cognitive theories of space representation

Human knowledge of large-scale space is sometimes called thecognitive map.1 The cog-
nitive map serves two functions with regard to wayfinding: representing environments, and
the corresponding ability to use the representation to move from place to place within the
mapped environment[Kortenkampet al., 1995]. Among the main characteristics of the
cognitive map we have: the use of multiple frames of reference, qualitative representa-
tion of metrical information, and connectivity relations among landmarks. Next we re-
view the computational theories of the cognitive map that are closest to our current work.
Some other systems can be found in[Leiser and Zilbershatz, 1989, Gopalet al., 1989,
Gopal and Smith, 1990, O’Neill, 1991, Engelson and McDermott, 1992a, Yeap, 1988].

10.1.1 PLAN

Kortenkamp et al.[Kortenkampet al., 1995] have developed an integrated representation
of large-scale space called PLAN (Prototypes, Location and Associative Networks). In this

1Large-scale space is defined as space whose structure is at a much larger scale than the sensory horizon
of the agent. Thus, to learn a map, the agent must travel through the space, gathering local observations and
inferring their global relationships from the actions linking them[Kuipers, 2000].
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theory, landmarks function as a kind of environmental index. Recognizing nearby land-
marks is enough to tell one where one is in a familiar environment. Objects (landmarks) are
represented byprototypes.2 A network of landmarks is created as the agent travels the en-
vironment. In this network, nodes represent landmarks and edges between nodes represent
the agent’s ability to go between two proximate landmarks[J., 1991, Sch�olkopf and Mallot,
1995]. Edges in the network have variable strength values associated with them.3

Directional space is represented by alocal map. A local map provides the relative
change in orientation for any neighboring target landmark. A local map is represented
by a combination of a 2-D grid and a sectoring information with respect to a normalized
viewpoint.4 Local maps are created atgateways: places were a route choice point had
been reached and a new landmarks could be seen. A network of local maps is then created
associated with the corresponding network of landmarks.

10.1.2 McDermott and Davis

McDermott and Davis have developed a theory where objects other than paths are repre-
sented in the cognitive map[McDermott, 1980, McDermott and Davis, 1984, Davis, 1993].
In addition to topological information, a “fuzzy map” is created for representing metrical
information. A fuzzy map captures facts about objects by recording their relative positions,
orientations, and scales in convenient frames of reference. Uncertainty in metrical informa-
tion is represented by numerical intervals. Assimilation of new information might constrain
the uncertainty on metrical information. Hill climbing or Monte Carlo techniques are used
for propagating metrical constraints[McDermott and Davis, 1984].

The MERCATOR program[Davis, 1993] constructs a cognitive map from a se-
quence of scene descriptions. Objects are represented by sets of polygons. The relative
positions of objects are determined by connecting edges. The space representation accounts
for uncertainty on position and distance between objects, multiple shape description of the
same object, and representation of partial knowledge about objects spatial properties. In
addition, operations on the map are justified by a formal semantics. In Appendix G we
describe MERCATOR’s ontology as well as its associated semantics.

2Prototypes are generalizations derived from a range of experience. In such a generalization the features
that occur most often come to represent the prototype, whereas features that occur less often are weaker, giving
the prototype a statistical nature, reflecting experience[Kortenkampet al., 1995].

3Using fixed links to connect adjacent landmarks yields an inadequate model of human wayfinding. Familiar
routes are naturally easier to remember; routes that have only been traversed once or twice are going to be
difficult to re-create[Kortenkampet al., 1995].

4The representation of orientation information is similar to the one used by Hernandez[Hernandez, 1994].
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10.2 Cognitive Robotics

The area of Cognitive Robotics studies the knowledge representation and reasoning prob-
lems faced by an autonomous agent in a dynamic and incompletely known world. The goal
is to develop an understanding of the relationship between the knowledge, the perception,
and the action of such agent. With respect to robotics, the goal is ahigh level robotic con-
trol: develop a system that is capable of generating actions in the world that are appropriate
as a function of some current set of beliefs and desires. Most of the work in this area aims
for a logical account for the sort of high level cognitive skills listed above. Robots whose
design is based on logical representation have the virtue of producing behavior which can be
accounted for in terms ofcorrect reasoningandcorrect representation[Sandewall, 1996].
Logics for reasoning about actions and planning are used in order to describe the actions of
the robots as well as its environment[Shanahan, 1997b, Sandewall, 1994]. Formal specifi-
cations are then used as a base to program robots[Lesperanceet al., 1994, Sandewall, 1997,
Shanahan, 1998]. Next we summarize two of the main works in the area: the work done at
the University of Toronto (by Reiter and et al.) and the work done by Murray Shanahan.

10.2.1 GOLOG

The Cognitive Robotics project at the University of Toronto is concerned with endowing
robotic or software agents with higher level cognitive functions that involve reasoning, for
example, about goals, perception, actions, the mental states of other agents, collaborative
task execution, etc. To do this, they describe, in a language suitable for automated reason-
ing (GOLOG), enough of the properties of the robot, its abilities, and its environment, to
permit it to make high-level decisions about how to act. The situation calculus[McCarthy
and Hayes, 1969] has been taken as the underlying language for reasoning about the pre-
requisites and effects of actions, perception, knowledge-producing actions, natural events
and actions by other agents[Reiter, 1996]. These methods have been incorporated into a
logic programming language for agents called GOLOG (alGOl in LOGic).

GOLOG is a high-level programming language suitable for declaratively defining
complex behaviors. In GOLOG[Lesperanceet al., 1994],

“The user provides a specification of the robot’s basic actions (their precon-
ditions and effects on the environment) as well as of relevant aspects of the
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environment, in an extended version of the situation calculus. He can then
specify robot behaviors in terms of these actions in a programming language
that allows references to world conditions (e.g.if 9c(pop can(c)^on table(c))

then pick up(c)). The programs can be executed to drive the robot. The inter-
preter automatically maintains the world model required to execute programs
based on the specification. The theoretical framework includes a solution to
the frame problem and is very general (it handles dynmaic and incompletely
known worlds, as well as perception actions). Given this kind of domain spec-
ification, it is also possible to support more sophisticated reasoning, such as
task planning at run-time. The specification can also be used to prove the robot
control programs correct”.

Recently, GOLOG has been extended to CONGOLOG (CONcurrent GOLOG)[De Gi-
acomoet al., 1997] which includes facilities for concurrent execution, interrupting the exe-
cution when certain conditions become true, and dealing with exogenous actions.

10.2.2 Shanahan’s Work

Shanahan[Shanahan, 1996, Shanahan, 1997a] proposes a logic-based framework in which
a robot constructs a model of the world through an abductive process whereby sensor data
is explained by hypothesising the existence, locations, and shapes of objects. In[Shanahan,
1998] this work is augmented by an account forplanningas well as an implementation of
these ideas via an abductive logic programming metainterpreter. Next we summarize the
main points of these formalizations.

Given a stream of sensor data, represented as the conjunction� of a set of observation
sentences, the task is to find an explanation of� in the form of a logical description (a
map)�M of the initial locations and shapes of a number of objects, such that,

KB ^�M j= �

whereKB is a theory comprising axioms for change, action, space, relations between
movements of objects and robot’s sensor data, the movements executed by the robot, etc.5

Thesemanticsof an agent’s space representation,M , is a formula,�(M), in the language
of KB, such that�(M) postulates the initial locations and shapes of a number of objects.
As an agent travels through its environment, it executes a set of actions,A, and experiences

5KB is expressed in the circumpscritive event calculus[Shanahan, 1997b].
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a set of observations�. As a result, the agent constructs its own space representation,M .
We defineM to becorrect with respect to (A,�) if

KB ^A ^�(M) j= �

Note thatA and� are expressed in the language ofKB whileM is expresed in the agent’s
language.

Shanahan’s space formalization only asks for the locations and shapes of objects. In Shana-
han’s work, space is considered a real-valued coordinate system6, shape is represented as a
collection of straight lines, and the set of agent’s actions isfgo,stop,rotate(r)g. KB is based
on these choices to represent space, shape and actions. It does not specify what the behavior
of the agent should be: it specifies what space information can be derived from the actual
behaviour and observations of the agent.

Planning can be thought of as the inverse operation to temporal projection, and
temporal projection in the event calculus is naturally cast as a deductive task. Consequently,
planning in the event calculus can be considered as an abductive task. Given a domain
description�, a conjunction� of goals, and a description of the initial situation,�N , a
plan is a consistent conjuction�p of Happensand a temporal ordering formulae such that

� ^�N ^�p j= �:

This logical characterization of the event calculus planning is analgous to Green’s logical
characterization of situational calculus planning[Green, 1969].

10.3 Qualitative Representation of Space

Qualnav model [Kuipers and Levitt, 1988, Levitt and Lawton, 1990]. The Qualnav
model provides a computable theory that integrates qualitative, topological representations
of large-scale space with quantitative, metric ones. A difference from the TOUR model,
Qualnav considers unstructured environments, with significant perceptual events, called
landmarks, scattered throughout this two-dimensional space.

Qualitative navigation is carried out by identifiyinglandmark-pair boundaries(LPBs)
between landmarks. Roughly speaking, a LPB between landmarksL1 andL2 is a virtual
line betweenL1 andL2. This line divides the space into two distinct regions. If the agent

6He does not rule out the adoption of qualitative approaches to spatial reasoning.
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can observe the landmarks, it can decide then which side of this line it is on. LPBs give rise
to a topological division of the ground surface into observable regions of localization,the
orientation regions. Crossing boundaries between orientation regions leads to a qualitative
sense of path planning based on perceptual information. As a landmark-recognizing vision
system moves through large-scale space, it builds a visual memory of the interlocking se-
quence of orientation regions it has traversed through. Adjacency of orientation regions in
visual memory can be determined by sharing a common but opposite orientation LPB. If
two regions have a common boundary, it is possible to move between them by tracking the
landmarks as the agent moves towards the boundary. Thus,visual memory is an undirected
graph where nodes are orientation regions, and arcs join adjacent regions.

Hernandez[Hernandez, 1994] provides a model for the qualitative representation
of positional information in 2-D space based on topological and orientation relations. Us-
ing Freska’s notion ofconceptual neighborhood for qualitative relations[Freksa, 1992],
algorithms for transforming between explicit reference frames and a canonical one, as well
as for composing spatial relations are defined. In addition,[Hernandez, 1994] presents a
variety of mechanisms to reason with qualitative representations in general, and qualitative
representations of 2-D positional information in particular. These mechanisms are based on
the idea of modifying domain independentconstraint satisfactiontechniques to account for
the particular constraints of the spatial domain. Moreover, special data structures are used
for improving the efficiency of the algorithms. In particular,abstract maps, are introduced,
containing for each object in a scene a data structure with the same neighborhood structure
as the domain requires for the task at hand. A change of view, for example, can then easily
accomplished diagrammatically by “rotating” the labels of the orientation with respect to
the intrinsic one.

Hernandez[Hernandez, 1994] presents an extensive review of the different ap-
proaches to the representation of spatial knowledge (see chapter eight). The integration
of metric and path knowledge with qualitative representations of space is not covered in
this work. As for path knowledge, Hernandez states that

“the positional information implicitly contained in paths can be gradually as-
similated in form of topological and orientation relations by a process in which
positional relations are established for the (virtual) places at which directional
change occur. The positions of the actual objects in the scene are then derived
by constraint propagation”.
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10.4 Robotics

Two main areas of robotics are primarily related to our work: map building and autonomous
navigation. The map building problem refers as to how the robot creates a spatial represen-
tation of its enviroment. Two common spatial representations are geometric and topological
maps. A geometric map represents objects according to their absolute geometric relation-
ships (more later). In contrast, a topological map records the geometric relationships be-
tween the observed features rather than their absolute position with respect to an arbitrary
coordinate frame of reference (see 10.1). The problem of robot navigation corresponds to
reliably go from one place to another in the environment. During the navigation, the robot
uses its sensors to create a map of its local environment. This local map is then compared to
a global spatial representation in order to calculate its position in the environment. We are
interested in how the spatial representation supports the “sense-plan-act” navigation cycle.
Next we review some of the work we have borrowed ideas from. We refer the reader to
Kortenkamp et al.’s book[Kortenkampet al., 1998] for an extensive review of AI mobile
robot systems and techniques.

10.4.1 Metrical maps

The most common representation of geometric map data is acertainty grid [Elfes, 1987,
Borestein and Koren, 1991]. In a certainty grid approach, sensor readings are placed into the
grid by using probability profiles that describe the algorithm’s certainty about the existence
of objects at individual grid cell. When positioning with respect to a metrical map, sensor
derived geometric maps must be matched against a global map of a large area. This is often
a formidable difficulty because of the robot’s position error. Using topological information
has proven be useful in order to reduce the effect of position error when constructing a
metrical map[Thrun, 1998, Thrunet al., 1998]. We refer the reader to Borestein’s book
[Borensteinet al., 1996] (Chapter 8) for a review of the problems and advantages using
metrical maps as well as a description of several systems using this spatial representation.

10.4.2 Fuzzy control

Konolige et al. [Konolige et al., 1995] propose an approach for integrating planning and
control based onbehavior schemas, which link physical movements to abstract action de-
scriptions. Behavior schemas describe behaviors of an agent, expressed as trajectories of
control actions in an environment, and goals can be defined as predicates on these trajecto-
ries. The proposed methodology is summarized as follows[Konoligeet al., 1995]:
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“Our approach to integrating planning and control has focussed on grounding
the ingredients of planning in physical actions, using the tools of multivalued
logics. We started from the definition of basic types of movements, orcontrol
schemas, and of the way they can be combined or blended to form complex
behaviors. Then we have “lifted” control schemas to the level of abstract ac-
tions in the environment. Here, we have used two key notions: the notion of
embeddingin the environment, by anchoring the agent’s internal state to ex-
ternal objects through perception, and the notion ofcontext, or circumstances
of execution. Finally, we have linked behaviors to goals, expressed as sets of
satisfactory executions. The good behaviors for a goal are those that, when ex-
ecuted in the appropriate context, produce executions that satisfy the goal. And
we have proven, under certain hypotheses, that composing behaviors creates a
new behavior that is good for the composition of the corresponding goals. This
result is the basis for automatic planning of complex behavior, and we have
shown how traditional AI techniques for deliberation and means-ends analysis
can be readily adapted to generate complex controllers for given goals”.

10.4.3 Probabilistic navigation

In probabilistic navigation, the location of a robot is represented by a probability distri-
bution over the possible locations of the robot. The robot’s position is updated based on
the actions it executed as well as observations gathered during navigation. The method
takes into account various sources of uncertainty, including approximate knowledge of the
environment, and actuator and sensor uncertainty[Simmons and Koening, 1995, Koening
and Simmons, 1998, Nourbakhsh, 1998]. A partially observable Markov decision process
(POMDP)7 model is constructed from topological information about the connectivity of the
environment, approximate distance information, plus sensor and actuator characteristics.

7See section A.1.2, page 203.
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Chapter 11

Conclusions and Future Work

What have we done?. We have taken an informal description of the SSH[Kuipers and Byun,
1988, Kuipers and Byun, 1991, Kuipers, 2000] and given a formal account of some aspects
of this theory. In addition, we have extended the theory to handle perceptual aliasing, envi-
ronments with self intersecting and convergent paths, as well as to deal with local metrical
information uncertainty. The new description of the SSH is independent of the agent’s ex-
ploration strategy and the possible implementations of the theory. This in contrast to the
previous SSH descriptions as well as applications of topological maps in robotics[Choset
and Nagatani, 2001]. Nevertheless, we have taken the new SSH description as a specifi-
cation for a program able to keep track of different topological maps consistent with the
agent’s experiences in the environment. This program supports different exploration strate-
gies as well as facilitating map disambiguation when the case arises.

A logical account of the SSH causal, topological and local metrical theories was
given using Nested Abnormality theories[Lifschitz, 1995]. The minimality conditions em-
bedded in the formalization defined the preferred models associated with the theories. In
chapters 4 through 8 we illustrated the main properties of the new theories. In particular we
showed how the minimal models associated with these theories are adequate models for the
spatial knowledge an agent has about its environment. We also illustrated how the different
levels of the representation assume different spatial properties about both the environment
and the actions performed by the agent. These spatial properties play the role of “filters”
the agent applies in order to distinguish the different environment states it has visited.

In the process of formalizing the SSH we have improved the theory in the following
aspects:

� Extended the SSH ontologies to include distinctive states, explicitly mention actions
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at the topological level, and deal with local metrical information uncertainty.

� Handled perceptual aliasing.

� Associated a spatial representation with the SSH causal level.

� Defined the models of the SSH causal and topological theories.

� Added a theory of regions.

� Extended the topological theory to handle environments with convergent and self
intersecting paths.

Distinctive states have been included as explicit objects in the theory. The predi-
catesceq andteq (chapters 4 and 5) were introduced to denote when two distinctive states
are equal given causal and topological information, respectively. Local metrical informa-
tion imposes further constraints on distinctive states (chapter 7). Having distinctive states
as objects allows the theory to deal with perceptual aliasing (i.e. environment states that
look the same). Once perceptual aliasing is introduced, more than one model of the theory
could explain a given set of experiences. In such cases, new information could prove envi-
ronment states to be different although they were previously believed equal, and viceversa.
Our theory captures this non-monotonicity property of map building.

At the SSH causal level we introduced a spatial representation, that of the causal
graph. A causal graph is a deterministic finite automaton (DFA) where states areceq equiv-
alence classes. Actions at the causal level convey patterns of experience, but no spatial
configuration. At the SSH topological level, qualitative spatial information in terms ofturn
andtravel actions is explained in terms of places, paths and regions. Local metrical infor-
mation associated with action execution is explained in terms of distance among places on a
path and angle among paths that intersect at a place. While the ontology of the topological
and metrical levels is more elaborated than the one for the causal level, it is easier to build
this representation than it is to distinguish environment states based only on view-action-
view sequences.

We studied the appropriateness as well as the limitations of the theory. In particular,
we illustrated how when sensor information is weak or the environment is symmetric, the
SSH topological map may not have the same structure as the “real environment”. In such
cases, the topological map has fewer places and paths than the ones one would expect (see
page 24). Nevertheless, the model is sound in that any view-action-view sequence it pre-
dicts will indeed be attainable in the environment.
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From a pragmatical point of view, we illustrated how different navigation architec-
tures are supported by the SSH (appendix A) and we tested these architectures in simulation
and the physical robot Vulcan (chapter 9). Although for map building purposes actions are
considered deterministic, during navigation errors in action execution occur. We defined
different approaches that the SSH can accommodate in order to deal with errors in action
executions and location uncertainty. Similarly, we defined how the SSH representation can
be used for planning, in particular, how regions support hierarchical planning and execution.

In summary, we have defined the SSH models associated with a set of experi-
ences. The resulting theory exhibits some of the agent’s map building characteristics: non-
monotonicity, use of different sources of information, multiple models when using weak
sensors or when the environment is symmetric. The theory’s implementation supports dif-
ferent robot exploration strategies and navigation strategies. It is our aim, that this theory as
well as the algorithms proposed will constitute the standard for map building applications
based on topological maps.

11.1 Future work

There are several different areas of future research linked to this work. These areas include:
extensions of the theory, dealing with non-structured (open) environments, and reasoning
with multiple spatial representations. We discuss these areas in turn.

11.1.1 Extension for the current theory

Our theory assumes static environments. This assumption is embedded in two axioms: ac-
tions are deterministic and distinctive states have a unique view. The first axiom relies on
the control level satisfying the SSH closure properties. The second axiom relies on the
agent having perceptual recognition abilities such that the same view is associated with any
environment state “close enough” to a given distinctive state. However, actions could fail
(i.e. miss a distinctive state) and environment states could have different views associated
with then (e.g. a door being closed or opened). How should the theory be extended to deal
with non-static environments?. Should probabilistic modeling be used instead of the current
logical approach?.

A major point of the SSH theory is that the topological map can be built even in
the presence of no metrical information. Nevertheless, whenever the agent decides to cre-
ate a region and assign locations to places in that region, path shapes should be taken into
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account. How should a path’s shape be represented and reasoned about?. Are qualitative
description of path shape enough?

11.1.2 Learning the control level

While the SSH control level implementation was not the focus of this dissertation, many
interesting questions need to be solved to carry on such implementation. First at all, one
has to translate sensory input into views. Views are then seen as classes describing sensory
input. How does a robot learns these classes? How many classes should it learn?. Second,
the agent control laws are predefined. Different representations of the same environment
result from using different sets of views and control laws. How does the agent decides what
set of control laws are appropriate for exploring the environment?1. Third, the control level
has to render actions deterministic. While we rely on control theory to satisfy this require-
ment, learning control law parameters could benefit from machine learning techniques. In
particular, as the agent repeatedly explores the environment, one expects a more reliable
execution of control laws.

11.1.3 Open environments

We have tested the SSH in office-like environments and simulation. What does it take to
have a SSH robot navigating non-structured open environment, say a university campus?
or a museum? Will the current theory be useful? How much does one have to engineer the
control level to define the “right” set of actions to handle each environment? Certainly being
able to learn the control level (as stated above) will greatly simplify the task of exploring
these environment. We also anticipate that the use of different topological hierarchies (see
11.1.4) as well as the representation of local space will be important for these tasks.

In order to engineer a SSH robot, local representations of space should be incor-
porated. For example, it is easier to navigate a cluttered room based on a reactive vision
module or an occupancy metrical representation, than it is in terms of control laws mov-
ing the robot between distinctive states. Techniques to do this navigation exists, and the
SSH incorporates these local space representations, but the question remains of when these
changes of representation occur, and how the agent keeps the relations among these repre-
sentations.

1See 11.1.4 below.
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11.1.4 Reasoning with multiple spatial representations

The SSH is a hierarchy of coexisting spatial representations. At the same time, the SSH
topological level admits a hierarchical representation based on regions. There are other
kind of topological hierarchies based on scale granularity or relations among actions. These
approaches admit building more detailed maps based on a existing map. For instance,
the agent first builds the map using a general control law (likefollow-corridor) which is
then refined when executing a particular instance of such control law (likefollow-corridor-
stopping-at-doorways). From the relation among the actions, one could relate both repre-
sentations. The question remains of how/why an agent builds such hierarchies, how they
are related, and how/when an agent uses them for spatial reasoning?

195



Appendix A

Using the SSH

The appropriateness of the SSH representation derives from how well it supports large scale
navigation. Navigation is understood here as the task of getting from one place to another.
This process involves three main aspects: localization, planning, and plan execution. Lo-
calization is the process of knowing the current location of the agent in the environment.
Planning is determining the actions that should be executed to get to the destination place,
and plan execution is the process of carrying out these actions.

Different architectures exist for implementing robot navigation. The major goal of
these architectures is to show how the agent reaches its destination place despite errors in
action execution as well as noise in sensory input. They vary on how the cycle of local-
ization, planning and plan execution is carried out, as well as on the kind of information
the spatial representation should provide for their success. In this chapter we show how
the SSH is suitable as the spatial representation for different navigation architectures.Our
goal is to show how the spatial representation (the SSH) is used by different existing
navigation architectures rather than to define “the” SSH navigation architecture.

This chapter is organized as follows. Section A.1 illustrates how uncertainty about
the agent’s location can be represented in the context of the SSH. In section A.2 we show
how SSH topological paths and regions are used when planning a route to a goal location.
Different navigation architectures supported by the SSH are presented in section A.3.

A.1 Location

The locationof the agent in the environment is described in terms of theregion, place, and
thepath the agent is at.We assume that a map of the environment is given to the agent.
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The agent may not know its actual location w.r.t. this map as actions may fail or views
are not enough to discern the location. Consequently, the agent has to represent the uncer-
tainty associated with its current location and act according to it. Next we will present two
different representations of uncertainty that can be accommodated when using the SSH: in
the first one, a set of locations represents the possible locations the agent is at; in the sec-
ond representation, a probability distribution is kept over the universe of locations. In both
cases, one has to provide astate transition functiondefining the effect of actions when exe-
cuted at particular states (locations), as well as to provide anobservation modeldescribing
the effect of making a particular observation at a particular state.

A.1.1 Representing location knowledge

Suppose the agent’s current location is represented by a set of locations (states),�, the
agent believes it may be at. Under this representation, given an actiona, one has to specify
the effect ofa on�, which we will denote by�a. By definition,

�a =
�
s0 : 9s 2 � ; h s; a; s0 i

	
(A.1)

whereh s; a; s0 i denotes the fact that states0 is a possible result of executing actiona on
states. The tuplesh s0; a; s0 i define the possible state transitions associated with the agent
actions. Different languages can be used to specify these transitions. For example, STRIPS
([Fikes and Nilsson, 1971]), AC ([Baral and Gelfond, 1997]), C ([Giunchiglia and Lifs-
chitz, 1998]).1

Definition A.1 is akin to the one given by Bacchus, Halpern and Levesque in the
context of reasoning about knowledge in the situation calculus ([Bacchuset al., 1999], page
182). They in turn draw in Moore’s work[Moore, 1979, Moore, 1985] on usingpossible
world semanticsto formally reason about knowledge and actions. Here we have adapted
their definition in the context of transition based approaches to reason about actions ([Gel-
fond and Lifschitz, 1998, Son and Baral, 2001, Loboet al., 1997]). Example 35 (page 200)
illustrates how definition A.1 works. In particular, we will show how as the agent executes
actions and makes observations, the set� captures the agent’sknowledgeabout its actual
location. A formal study of how the knowledge of the agent changes as it performs actions
is outside the scope of this work. The reader is referred to[Moore, 1979, Moore, 1985,
Scherl and Levesque, 1993, Bacchuset al., 1999, Son and Baral, 2001] for formal accounts
of how to reason about actions and knowledge.

1We will useC to illustrate the concepts presented in this section.
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We use the languageC ([Giunchiglia and Lifschitz, 1998]) to describe the effect
of actions on the agent’s location. The fluentloc(p,pa,dir) is used to represent that
the agent is atplace pfacing directiondir of path pa.2 Constraints between the different
elements describing a location can be derived from the SSH topological axioms (see chapter
5). For example, if the agent is at placep on pathpa, it should be the case thatp belongs to
pathpa (i.e. on(pa; p) is true). The topological map is described in terms of the following
predicates (see chapters 5,6,8):

� on(pa,p) : placep is on pathpa.

� order(pa,dir,p,q) : placeq is after placep on directiondir of pathpa.

� nextPlace(pa,dir,p,q) : placeq is the next place after placep on pathpa.

� viewsAt(p,v) : v is a view occurring at placep.

� totheRightOf(p,pa,dir,pa1,dir1), totheLeftOf(p,pa,dir,pa1,dir1)

: if the agent is placep facing on directiondir of pathpa, after executing a turn right
(left) action, the agent will be facing on directiondir1 of pathpa1.

Views at the SSH causal level (chapter 4) are associated with places and used as
evidence for the agent to be at a given place. We use the predicateviewsAt(p,v) to
represent that viewv occurs at placep. Whether a view occurs at a place can be determined
from the distinctive states associated with the place. Formally,

viewsAt(p; v) � 9ds fat(ds; p) ^ view(ds; v)g :

In addition to moving in the environment the agent cansensethe environment and deter-
mine the view at its current location. The transitions needed by equation A.1 are described
by the following theory:3

Notice that we assume actions to be deterministic during map building, and explic-
itly model action errors during navigation. Think of this as somebody giving you a map of
a city, and you using it for navigation. While visiting the city, you might get lost or miss
an intersection. You use the map as a reference to deduce where you may be at given that
these errors occurred.Errors in travel actionsare modeled by considering a travel action as
a non-deterministic action, whose effect is to move the agent along the same path but to a

2In this presentation we do not include regions in the agent’s location.
3The theory is expressed in the languageC [Giunchiglia and Lifschitz, 1998] augmented with sorts as

recognized by Ccalc[McCain, 1999].
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:- sorts paths; path_dir ; places; views ; action >> (sensingAction ; genericAction).
:- variables

DIR, DIR1 :: path_dir;
GA, GA1 :: genericAction; SA, SA :: sensingAction;
V :: views; PA, PA1 :: paths; P, Q :: places.

:- constants
pos, neg :: path_dir ;
loc(places,paths,path_dir) :: inertialFluent;
travel, turnRight, turnLeft, turnAround :: genericAction;
observe_view, observe(views) :: sensingAction.

% locations have to be consistent with the map
% The agent cannot be at two different locations at the same time
always loc(P,PA,DIR) ->> on(PA,P).
caused -loc(Q,PA1,DIR1) if loc(P,PA,DIR) & -(P=Q && PA=PA1 && DIR=DIR1).

% Effect of travel and turn
travel may cause loc(Q,PA,DIR) if loc(P,PA,DIR) & placeAfter(PA,P,DIR,Q).
turnRight causes loc(P,PA1,DIR1) if loc(P,PA,DIR) & nextRight(P,PA,DIR,PA1,DIR1).
turnLeft causes loc(P,PA1,DIR1) if loc(P,PA,DIR) & nextLeft(P,PA,DIR,PA1,DIR1).
turnAround causes loc(P,PA,neg) if loc(P,PA,pos).
turnAround causes loc(P,PA,pos) if loc(P,PA,neg).

% Action preconditions. The symbols \/Q... means exists Q ...
nonexecutable travel if loc(P,PA,DIR) & -(\/Q:placeAfter(PA,DIR,P,Q)).
nonexecutable turnRight if loc(P,PA,DIR) & -(\/PA1:nextRight(P,PA,DIR,PA1,DIR1)).
nonexecutable turnLeft if loc(P,PA,DIR) & -(\/PA1:nextLeft(P,PA,DIR,PA1,DIR1)).

% sensing actions.
nonexecutable observe(V) if loc(P,PA,DIR) & -viewsAt(P,V).
nonexecutable observe_view if -(\/V:o(observe(V))).
nonexecutable observe(V) if -o(observe_view).

% do not allow concurrent generic actions
nonexecutable GA & GA1 if (GA @< GA1).

% D. not allow concurrent sensing and generic actions. Recall that sensing actions
% (see observe_view) aremodeled by concurrent actions.
nonexecutable SA & GA.

Figure A.1: Theory describing a transition model associated with equation A.1. Errors when traveling are

modeled by non-deterministic actions. Sensing actions are modeled by concurrent actions not affecting any

fluent in the theory and indicating the conditions under which they are executable.
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place after the place in which the action is performed.4 Sensing actions(i.e. observe view,
observe(V )) are modeled by not affecting any fluent in the theory and by indicating the
conditions under which they are executable (e.g. it is possible to observe a viewV in the
current place only ifV is associated with the place). We model the action of sensing a view,
observe view, as aconcurrentaction:observe view is executed if and only if at least one
of the actionsobserve(V ) is executed.5 The next example illustrates how these ideas work.

Example 35

d

a

f e

b c

Figure A.2:. The agent visits placesa; b; : : : ; f; a in the order suggested by the arrows. Cornersa andd look

alike to the agent. Cornersc andf look alike to the agent. Placesb ande have unique views that differentiate

them from the other places.

Consider the environment depicted in figure A.2, whose topological map is de-
scribed by the following Prolog program:6

viewsAt(a,va). viewsAt(b,vb). viewsAt(c,vc).
viewsAt(d,va). viewsAt(e,ve). viewsAt(f,vc).
nextPlace(pa,pos,a,b). nextPlace(pa,pos,b,c). nextPlace(pa1,pos,c,d).
nextPlace(pa2,pos,d,e). nextPlace(pa2,pos,e,f). nextPlace(pa3,pos,f,a).
totheRightOf(c,pa,pos,pa1,pos). totheRightOf(d,pa1,pos,pa2,pos).
totheRightOf(f,pa2,pos,pa3,pos).
nextRight(c,pa,pos,pa1,pos). nextRight(d,pa1,pos,pa2,pos).
nextRight(f,pa2,pos,pa3,pos). nextRight(a,pa3,pa).

nextPlace(PA,neg,P,Q) :- nextPlace(PA,pos,Q,P).
totheLeftOf(P,PA,DIR,PA1,DIR1) :- totheRightOf(P,PA1,DIR1,PA,DIR).
order(PA,DIR,P,Q) :- nextPlace(PA,DIR,P,Q).
order(PA,DIR,P,Q) :- nextPlace(PA,DIR,P,R), order(PA,DIR,R,Q).
on(PA,P) :- nextPlace(PA,P,Q) ; nextPlace(PA,Q,P).

4See “effect of travel” clause in the program.
5As a result of performingobserve view the agent gets a viewV . We model this fact by saying that the

agent performs concurrently the set of actionsfobserve view; observe(V )g. See “sensing actions” clauses
in the program.

6The consequences of this program correspond to the topological map we are describing.
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According to our theory on page 199, part of the transition diagram associated with
this map is depicted on figure A.3.7

observe(vc)

observe(va)
travel observe(vc)

turnRight
observe(vc)

observe(vb)

traveltravel

travel

travel

turnRight

travel

travel loc(d,pa2)loc(e,pa2)loc(f,pa2)

loc(f,pa3)

loc(a,pa3)

loc(b,pa) loc(c,pa)

loc(c,pa1)

loc(d,pa1)

travel

turnRight

observe(vc)
observe(ve)

observe(vc) observe(va)

observe(va)

observe(va)
turnRight

loc(a,pa)

Figure A.3:Transition diagram associated with the environment in figure A.2.

Notice that transitions labeled by sensing actions (i.e.observe(V )) leave the system
in the same state. Moreover, no transition labeledobserve(V)exists from a state whose
place does not haveV associated with it. Sensing actions are knowledge producing actions
as illustrated next. Suppose the current agent location belief is the set

� = floc(a; pa; pos); loc(b; pa; pos)g :

Suppose the agent makes an observation and obtains viewva. Then, according to definition
A.1 and the transition diagram in figure A.3,

�fobserve view;observe(va)g = floc(a; pa; pos)g :

Having observedva, the agent has ruled outloc(b,pa,pos)as a possible location, and it now
knows that it is atloc(a,pa,pos).

7For readability we have omitted the complete transition diagram. For instance, some transitions are not rep-
resented in the diagram (transitions associated withturnLeft andturnAround actions). Only locations along
the positive direction of paths are represented (i.e.loc(p; pa) should be readloc(p; pa; pos) in the diagram).
Finally, transitions labeled byobserve(V ) actions should be labeled by the setfobserve view; observe(V )g.
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The execution of actions other than sensing actions may provide information to
the agent. Consider the following example. Suppose the agent initially does not know its
location, and performs the sequence of actions

travel ; travel :

The agent’s initial location belief is represented by the set

floc(a; pa3; pos) ; loc(a; pa; pos) ; loc(b; pa; pos) ; loc(c; pa; pos) ; loc(c; pa1; pos) ;

loc(d; pa1; pos) ; loc(d; pa2; pos) ; loc(e; pa2; pos) ; loc(f; pa2; pos) ; loc(f; pa3; pos)g

After performing the first travel action, the new location belief becomes

floc(a; pa3; pos) ; loc(b; pa; pos) ; loc(c; pa; pos) ; loc(d; pa1; pos)

loc(e; pa2; pos) ; loc(f; pa2; pos)g :

Finally, after the second travel action, the current location belief becomes

floc(c; pa; pos) ; loc(f; pa2; pos)g :

Either the agent is atloc(c,pa,pos)or at loc(f,pa2,pos). Notice that the execution of travel
actions has restricted the possible locations the agent might be at. The agent will have to
execute the actions

turnRight ; travel ; turnRight ; travel ; observe view

to disambiguate its location.

“Reasoning” back on time is done by considering the history of location believes
�0;�1; : : : ;�n, where,�i = �i�1;ai ,

8 and the operator��1a defined as follows:

��1a =
�
s : 9s0 2 � hs; a; s0i

	
: (A.2)

One then considers the sequence�00;�
0
1; : : : ;�

0
n, where�0n = �n and�0i�1 = �i�1 \

(�0i)
�1
ai

. For example, froma0 = travel, a1 = travel,

�2 = floc(c; pa; pos) ; loc(f; pa2; pos)g ;

and

�1 = floc(a; pa3; pos) ; loc(b; pa; pos) ; loc(c; pa; pos)

loc(d; pa1; pos) ; loc(e; pa2; pos) ; loc(f; pa2; pos)g
8The initial belief�0 is given.
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as above, we conclude

�01 = floc(b; pa; pos) ; loc(e; pa2; pos)g :

By a further application of equation A.2 the agent concludes that its initial location before
executingtravel; travel was eitherloc(a,pa,pos)or loc(d,pa2,pos).
fend of exampleg

A.1.2 Probabilistic representations of location

Under the probabilistic approach to representing location uncertainty, a probability distri-
bution is kept over the universe of locations. Transition and observation models have to be
provided defining the effect of actions on the different states. Based on these models, a rule
has to be defined on how to update the probability distribution after an action is executed.
Next we illustrate the use of POMDP9 in the context of the SSH. The reader is referred to
[Shafer, 1976, Duboi and Prade, 1988, Bacchuset al., 1999] for other possible approaches.

A POMDP is a tuple (S,A,T,�,O) 10 where:S is a finite set of states,A is a finite
set of actions,T is a state transition modelof the environment, which is a function mapping
elements from SxA into discrete probability distributions over S,� is a finite set of possi-
ble observations, andO is an observation function mapping AxS into discrete probability
distributions over�.

We writeP (s0ja; s) for the probability that the environment will make a transition
from states to states0 when actiona is executed. By definitionP (s0ja; s) = T (s; a; s0).
We writeP (oja; s) for the probability of making observationo after having executed action
a and ended in states. By definition,P (oja; s) = O(a; s; o).

According to Bayes rule, given a current distributionPprior, an actiona, and an ob-
servationo, we can calculate the distribution after performinga and observingo , Pposterior,
as follows:

Pposterior(s
0) = Pr(s0ja; o; Pprior) (A.3)

9POMDP stands for Partially Observable Markov Decision Process.
10A POMDP includes also a reward function mapping SxA to the real numbers that specify the instantaneous

reward that the agent derives from taking an action in a state (see[Puterman, 1994]).
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=
Pr(ojs0; a; Pprior)Pr(s

0ja; Pprior)

Pr(oja; Pprior)

=
P (oja; s0)

P
s2S P (s

0ja; s)Pprior(s)

Pr(oja; Pprior)

wherePr(oja; Pprior) is a normalizing factor defined as

Pr(oja; Pprior) =
X
s02S

P (oja; s0)
X
s2S

P (s0ja; s)Pprior(s) :

Example 36

Consider the same environment as in example 35 (figure A.2, page 200). The POMDP
associated with this environment is such that its states are the set of possible locations, ac-
tions are SSH actions (i.e. travel, turnRight, turnLeft), observations are the SSH views, and
the transition and observation models are derived from the transition diagram illustrated in
figure A.3 augmented with probabilities. The actual values of these probabilities have to
be learned by the agent as it explores the environment (see[Simmons and Koening, 1995,
Basyeet al., 1995, Koenig and Simmons, 1996, Engelson and McDermott, 1992b]). In
this example we have assigned these probabilities by assuming thatPr(V j loc(p; pa)) =

Pr(V j loc(p0; pa0)) for all p andp0 such thatviewAt(p; V ) � viewAt(p0; V ).11 As for
the transition model, we have assumed that after traveling it is more probable to be in the
next place in the current path that in any other place on the path. Figure A.4 illustrates the
corresponding transition model.

Suppose the agent does not know its current location. This fact is represented by a
uniform distribution over the set of possible locations. After performing atravel action,
the new distribution is:

Pr(loc(a,pa)) = 0, Pr(loc(a,pa3)) = 1/6,

Pr(loc(b,pa)) = 2/15, Pr(loc(c,pa)) = 1/5,

Pr(loc(c,pa1)) = 0, Pr(loc(d,pa1)) = 1/6,

Pr(loc(d,pa2)) = 0, Pr(loc(e,pa2)) = 2/15,

Pr(loc(f,pa2)) = 1/5, Pr(loc(f,pa3)) = 0.

Notice that the agent’s most probable states are eitherloc(c; pa) or loc(f; pa2). Suppose
now that the agent observes viewvc. The new distribution becomes:

11To simplify the example we only consider the positive direction of paths in a location, and writeloc(p; pa)
instead ofloc(p; pa; pos). Moreover, we assume that the observation function depends only on the state and
not in the executed action that brought the agent to this state.
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loc(a,pa) loc(b,pa)

loc(a,pa3)

loc(f,pa3)

loc(f,pa2) loc(d,pa2)

loc(d,pa1)

loc(c,pa1)

loc(c,pa)

travel, 0.2.

turnRight, 1.0.

turnRight, 1.0.

travel, 0.2.

travel, 1.0.

turnRight, 1.0

travel, 0.8. travel, 1.0.

travel, 1.0.

travel, 1.0.
loc(e,pa2)

travel, 0.8.

turnRight, 1.0.

Figure A.4:POMDP transition model associated with the environment in figure A.2.

Pr(loc(a,pa)) = 0, Pr(loc(a,pa3)) = 0,

Pr(loc(b,pa)) = 0, Pr(loc(c,pa)) = 1/2,

Pr(loc(c,pa1)) = 0, Pr(loc(d,pa1)) = 0,

Pr(loc(d,pa2)) = 0, Pr(loc(e,pa2)) = 0,

Pr(loc(f,pa2)) = 1/2, Pr(loc(f,pa3)) = 0.

fend of exampleg

In summary, the SSH representation can accommodate different representations of
the agent’s location. The SSH topological map was used to define state transition models
used during navigation. In these models, action’s errors were accounted for. Views at the
causal level were used to provide evidence of whether the agent is at a given place. Different
theories to reason about the effect of actions and observations in the agent’s location were
discussed in association with these models.
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A.2 Planning

The problem of finding a sequence of actions that takes the robot from placep to place
q can be reduced to a graph search problem. This does not come as a surprise given the
graph-like structure of the SSH topological map. Paths and regions at the SSH topological
level are used to expedite the search for a route to a goal destination. Next we illustrate
how tailored planners can be defined to efficiently use paths and regions for route finding.
Generic planners can also be used with the SSH (section A.2.3).

A.2.1 Using topological paths for planning

Two basic search graphs can be associated with the SSH topological map. The first one is
defined as follows:

� The nodes of the graph are the places of the topological map.

� An edge with labelpa,dir from placep to placeq exists wheneverorder(pa; dir; p; q)
is the case.

The second one is a bipartite graph such that:

� Nodes correspond to the union of places and paths in the topological map.

� An edge exists from placep to pathpa wheneveron(pa; p) is the case.

Notice that a path in the graphs above does not completely specify the sequence of
actions to get to the goal. However, enough information exists in the SSH to derive such
actions. A path on the graphs above can be easily converted to a route description, or used
as a plan skeleton during navigation.

Example 37

Consider finding a plan to go from placea to placed in the environment of figure
A.5. A shortest path between these two places will be

(a; c; pa) ; (c; d; pa1) :

This path can be interpreted as the planfollow path pa until place c, then take path pa1
and follow it until place d. Each of the edges in this path represents a sequence of actions:
for example, the labeled edge(a; c; pa) represents the sequence of actionstravel ; travel.
Turn actions need to be included in the plan when a change of path is required. For exam-
ple, at placec, to turn from pathpa to pathpa1, the actionturnRightshould be executed.
fend of exampleg
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Figure A.5: (b) Search graph associated with the environment ina. (c) Bipartite search graph associated

with the environment ina.

A.2.2 Using regions for planning

In chapter 8 we introduced regions in the context of the SSH. Regions were defined to be
sets of places with a containment hierarchy among them. Connectivity relations between
regions are derived from connectivity relations between places in the regions. This require-
ment allows us to define a hierarchical route planner as defined in chapter 8 (page 120).

Example 38

Consider the same scenario as in our previous example (page 206). Suppose we have the
regionsR1, R2, andRsuch thatR = fR1; R2g, R1 = fa; b; cg andR2 = fd; e; fg

In order to find a path from placea to placee the hierarchical planner finds first a
route from regionR1to regionR2. This path specifies that the edge(c; d; pa1) will be part
of the plan.12 Recursively, the planner finds a route inR113 from a to c as well as a path in
R2 from d to e. The paths(a; b; pa); (b; c; pa) and(d; e; pa2) are returned respectively and
a complete path will then be derived. Note that the route found may be sub-optimal as in
this case.
fend of exampleg

12A nondeterministic choice will be done in case different edges connectR1andR2.
13A path whose places belong toR1.
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A.2.3 Conventional planners

While the two sections above show how tailored planners can be used with the SSH, it
is possible to use more generic planners. For example, a modification of the causal theory
presented in page 199 can be used as input for Ccalc[McCain, 1999] in order to do planning.
When planning, we do not model action errors as part of the theory nor do we include
sensing actions.14 We replace the rule

loc(Q;PA;DIR) caused after travel & loc(P; PA;DIR) & order(PA;DIR; P;Q)

by

loc(Q;PA;DIR) caused after travel & loc(P; PA;DIR) & nextP lace(PA;DIR; P;Q)

in our causal theory. Action errors will be detected and handled by the navigation system,
as described in section A.3.

A.3 Navigation

A navigation architecture defines how the agent integrates sensing, planning, and acting
within a single system. Such an architecture has to deal with key issues such as uncertainty
(in both sensing and action), reliability, and real-time response ([Kortenkampet al., 1998]).
The SSH can be used as the spatial representation for different navigation architectures.
Next we outline how the SSH can be used byobserve-plan-actarchitectures as well as
for architectures based on hierarchical planning and execution. The reader is referred to
([Kortenkampet al., 1998]) for the state of the art of working mobile robot architectures.

Observe-plan-act architectures

Most navigation architectures follow aobserve-plan-act loop. They vary on how
often each step in the loop is run as well as the actual order and implementation of the steps
in the loop. Theobservestep of the loop helps to determine the agent’s location as well as
to detect failures in the execution of actions. Theplan step determines what the next action
(actions) to execute should be. Theactstep corresponds to carrying out the action (actions)
determined in the plan step. Depending on the representation chosen for the agent’s loca-
tion, different schemas are used to implement theobserve-plansteps.

Under the probabilistic representation of the agent’s location (section A.1.2) an ac-
tion is chosen by assuming that the agent is at the most probable location. A deterministic

14The agent will sense the environment as part of its navigation strategy. Our causal theory in page 199
defines how the output of these sensing actions affects the knowledge state of the agent.

208



plan is then generated from that location to the goal destination. The first action of such
plan is executed. Observations are made and the agent location is updated according to
equation A.3. The loopobserve-plan-actcontinues until the most probable location is the
destination goal.

The description above assumes that the probability distribution has a “clear” most
probable state. Whenever this is not the case, the agent could change its goal from going to
a given destination to gathering relevant information that allows it to localize better. Once
the agent is better localized, navigation continues to the destination goal ([Simmons and
Koening, 1995, Koening and Simmons, 1998]).

When the agent’s location is represented by a set of possible locations (section
A.1.1), the next action to execute is found by selectingl from the set of possible locations,
and generating a deterministic plan froml to the destination. The first action of this plan is
executed, observations are made and the agent’s location is updated according to equation
A.1. In order to select the new current location the agent uses equation A.1 applied to
the setflg. If the result is the empty set, a new location is selected at random, otherwise
a location from this set is chosen as the current location and the loopobserve-plan-act
continues until the set of possible locations is a subset of the set of locations satisfiying
the goal. The reader is referred to[Nourbakhsh and Genesereth, 1996, Nourbakhsh, 1998,
Baral and Gelfond, 1999] for details on how to implement these ideas.

Hierarchical planning and execution

Hierarchical planning as described in section A.2.2 can be interleaved with plan execution
to efficiently accommodate errors in actions and sensing as well as incomplete information.
Instead of generating a detailed plan, thehierarchical plannerrepresents a plan by a tree
whose nodes get expanded as the plan is executed. This tree is traversed in a depth first
fashion so that actions for the robot can be generated as soon as possible.

Each node of the plan tree represents a plan step that theplannertells thesequencer
to execute. The sequencer either executes this plan step and notifies the planner it did so
or asksthe planner for more information on how to carry on the step. On receiving a no-
tification from the sequencer, the planner either tells the agent to execute the next step in
the plan (if the sequencer successfully executed the previous step) or search for a new plan
to achieve the goal. On being asked for more information about a plan step, the planner
expands the plan step and tells the sequencer to execute a new (probably more refined) step
in the plan. The net result of thetell/ask interaction between the planner and the se-
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quencer is that we have hierarchical planning and execution. The example below illustrates
these ideas.

Consider the scenario in which a robot is turned on and asked to go to the chair-
man’s office (see figure A.6). First notice that the agent does not necessarily know where
it is.15 Consequently, a sensible plan will include actions to decide where it is (possibly by
asking the driver).

Suppose the robot decides that it is at the lab (either by asking or by using the last
location it was at) as its current location. Once a location has been associated with “the
chairman’s office”, a plan can be derived from the topological map depicted in figure A.6.

2m

FLOOR 2

2m2m
1m 1m

1m

follow corridor
STAIRS

lounge

ELEVATOR Chaiman’s office

FLOOR 4

STAIRS BATHROOM

go−throuhg−door1m
follow corridor

1m get−into−elevator

go
OFFICE LAB OFFICE ELEVATOR−55

trhough

2m

door 1m

take−elevator−to−floor−2

take−stairs−to−floor−2

Figure A.6: Going to the chairman’s office. Floors are represented as regions in the SSH topological map.

These regions are connected by(take-elevator-to-floor ?x) actions.

The general plan will be

go-to(elevator-55)

take-elevator-to(floor-2)

go-to(chairman-office)

Notice that the last step of the plan is the same as the original goal. However,
by the time the robot executes this step, the robot will be at floor 2 and consequently
closer to the chairman’s office. The planner now proceeds in a depth first fashion to ex-
pand the plan above. A new plan (restricted to floor 4) will be then generated for the goal
go-to(elevator-55) . In this case the planner uses the map associated withfloor-4

to solve this problem and finds the plan:
15It’s safe to assume that it remembers the last place it was at before being shutdown!
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go-through-door

follow-corridor for about 2m

follow-corridor for about 1m

Whether the robot should go left or right at the corridor after going through the door
is not explicitly mentioned in the plan. That information will be made explicit during the
plan execution. In order to execute the plan above, the planner tells the sequencer to execute
each plan step as follows:16

(define-sequencer-task (step-go-through-door)

(if (succeed (go-through-door))

(notify-planner success)

(ask-planner expand-step))

)

The (notify-planner success) call allows the planner to monitor the ex-
ecution of the plan. As steps are executed, the robot’s location in the map is updated. On
receiving a notification of step execution success, the planner will invoke the execution of
the next step in the plan (by generating a plan step similar to the one above).

When the planner is asked toexpanda plan step, it uses a more detailed map to
carry out the step. If this is not possible, a failure in the plan is detected. Failures are taken
into account by indicating that either a place or path in the topological map cannot be used
for future plans.17 For example, if the plan step(go-through-door) fails, then the
robot should conclude that it is still at the lab, and that the path connecting the lab with the
corridor should not be used for future plans.

The actiongo-through-door looks like

(define-sequencer-task (go-through-door)

(if (look-and-found? ?door)

((get-close-to ?door) (pass-through ?door))

(return failure)

)

)
16For the purpose of the examples we made up a language to specify the tasks the sequencer should carry on.

Special purpose languages exist to specify these tasks: RAPS[Firby, 1994], ESL[Gat, 1996]. See[Kortenkamp
et al., 1998].

17This implies that the planner has a local memory to indicate changes in the representation.
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The action(look-and-found? ?door) will use the sensory system to look
for the door. The result of executing this action will be toanchorthe door so that a reactive
procedure can be performed to get to the door. The action(get-close-to ?door)

will make the robot navigate towards the door. Notice that this procedure can be compli-
cated and might involve planning or using a local map.

If the door is not found, the sequencer will ask the planner how to get to the door.
The planner finds a plan by using a map of the lab (plus knowing where in the lab the robot
is) as depicted in figure A.7. The resulting plan will be{follow-wall until at(door-at-lab); get -

go−to−door

turn−left

middle−line

ELEVATORLAB

door

get−through−door

follow−wall

turn−right turn−rightturn−left

get−into−elevator

Figure A.7:Detailed maps for the lab, the corridor and the elevator.

A.4 Summary

In this chapter we have shown how the SSH is a suitable spatial representation for naviga-
tion. For each of the sub problems associated with navigation, localization, planning, and
plan execution, we discussed different approaches supported by the SSH representation.

In order to take into account errors while navigating the environment (e.g. miss-
ing an intersection), the SSH supports two different approaches to represent location un-
certainty: representing disjunctive location knowledge and probabilistic representations of
location. In the former, location is represented by a set of possible states. In the latter,
location is represented by a distribution over possible states. In both cases, we defined the
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transition and observation models associated with the corresponding approaches.

In order to solve planning problems (i.e. finding a route to a goal destination), the
SSH supports the use of standard planners as well as special purpose planners exploiting
paths and regions at the SSH topological level. We defined the corresponding algorithms
for this later case.

Finally, we discussed different navigation architectures supported by the SSH. In
addition to observe-plan-act architectures, we defined an architecture combining hierarchi-
cal planning and execution. In this architecture, instead of generating a detailed plan, a
hierarchical planner represents a plan by a tree whose nodes get expanded as the plan is
executed. This tree is traversed in a depth first fashion so that actions for the robot can be
generated as soon as possible. We illustrated how this architecture can accomodate recur-
sive plans (i.e. in order to go home, leave the office and go home) as well as recover from
errors in action execution.

The different methods described in this chapter illustrate how the SSH supports
navigation. In addition, the methods illustrate how the different SSH levels are combined
during localization, planning and plan-execution.
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Appendix B

Topological Level Properties

In this appendix we prove some properties of the SSH topological theory. Recall the SSH
topological theory is defined as follows:

TT (E) =

there exist infinitely many places ;

there exist infinitely many paths ;

:9p [tplace(p) ^ is region(p)] ;

:9pa [tpath(pa) ^ route(pa)] ;

Axioms 5:1� 5:2 ;

COMPLETION(E) ;

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 4:22)

T block ;

f min is region; min route :

AT block = (B.1)

f max teq :

�

circ tpath � tplace var ~SSHpred (B.2)

g

g

where� is the set of axioms defined in page 41, and ~SSHpred stands for the tuple of pred-
icateshat; along; order; on; teq; turn eq; travel eq; i.

The properties of the SSH topological theory proved in this appendix are listed
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below. LetM be a model forTT (E), then

� M j= 8pa; [tpath(pa) � 9ds; dir along(ds; pa; dir)].

� M j= 8p; [tplace(p) � 9ds at(ds; p)].

� The topological map associated with a finite set of experiencesE has a finite number
of topological paths and a finite number of topological places.

� Any two models of the SSH topological theory have the same number of topological
paths and the same number of topological places.

Theorem 8 LetM be a model ofTT (E). Then,

� M j= 8pa; [tpath(pa) � 9ds; dir along(ds; pa; dir)].

� M j= 8p; [tplace(p) � 9ds at(ds; p)].

Proof.

CIRC[�; tpath � tplace;SSHpred]

� fproposition 15 in [Lifschitz; 1994]g

CIRC[�; tpath; tplace; SSHpred] ^ CIRC[�; tpath; tplace;SSHpred]

! fdef: of circumscriptiong

CIRC[�; tpath]

Since� = �0(tpath) ^ [along(ds; pa; dir) ! tpath(pa)] where�0(tpath) is neg-
ative, then

CIRC[�; tpath]

�

CIRC[�0(tpath) ^ [along(ds; pa; dir)! tpath(pa)]; tpath]

� fproposition 4 in [Lifschitz; 1994]g

�0(tpath) ^ CIRC[along(ds; pa; dir)! tpath(pa); tpath]

! fproposition 1 in [Lifschitz; 1994]g

[9ds; dir along(ds; pa; dir)] � tpath(pa)

Similarly, � = �0 ^ [at(ds; p) ! tplace(p)] wheretpath does not occur in�0.
Then,

CIRC[�; tpath � tplace;SSHpred]
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! fsee aboveg

CIRC[�; tpath; tplace;SSHpred]

! fdef: parallel circumscriptiong

CIRC[�; tpath; tplace]

! fdef: parallel circumscriptiong

CIRC[�0 ^ [at(ds; p)! tplace(p)]; tplace]

� fpropositions 1 and 4 in [Lifschitz; 1994]g

�0 ^ [9ds; at(ds; p)] � tplace(p)

2

Theorem 4. The topological map associated with a finite set of experiencesE has
a finite number of topological paths and a finite number of topological places.

Proof. Since a distinctive state is along at most one topological path (axiom 5.24,
page 42), theorem 8 implies that for any modelM of TT (E) there is an injection from
tpathM into distinctive-statesM . Sincedistinctive-statesM is finite so istpathM .

Similarly, since distinctive states are at a unique topological place (axiom 5.16, page
41), from theorem 8 we conclude that the set of topological places in a model ofTT (E) is
finite. 2

Theorem 5. Any two models of the SSH topological theory have the same number
of topological paths and the same number of topological places.

Proof. In order to prove that two modelsM1 andM2 of TT (E) have the same
number of topological paths (tpaths) and the same number of topological places (tplaces), it
is enough to show that this is the case for models of theAT block (block B.1). Suppose that
tpathM1 has less elements thantpathM2 , and so there exists an injection� : tpathM1 !

tpathM2 . One can extend� to define an isomorphism fromM1 into M 02, such thatM 02 �
M2, where� is the order defined by the circumscription policy B.2.1 In fact,

� Let � : tplaceM1 ! placesM2 be an injection. Such an injection exists since
tplaceM1 is finite andplacesM2 is infinite.

� Let � : SM1 ! SM2 be the identity over the sorts (S)of distinctive states, actions,
1This proves thatM1 andM2 have the same number of topological paths.
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views, schemas, path types and path directions. Recall we assumed aHerbrand in-
terpretation for these sorts, where the corresponding universes are defined by the
constant symbols inE.

The function� above defines an isomorphic embedding fromM1 into M2 in the
standard way. In fact,�(M1) =M 02 is defined as follows:

� tpathM
0

2 = �(tpathM1), tplaceM
0

2 = �(tplaceM1).

� teqM
0

2 = �(teqM1) = fteq(ds1; ds2) : M1 j= teq(ds1; ds2)g = teqM1 .

� atM
0

2 = �(atM1) = fat(ds; �(p)) : M1 j= at(ds; p)g.

� alongM
0

2 = �(alongM1) = falong(ds; �(pa); dir) : M1 j= along(ds; pa; dir)g.

� orderM
0

2 =�(orderM1 ) =forder(�(pa); dir; �(p); �(q)) :M1 j= order(pa; dir; p; q)g.

� onM
0

2 = �(onM1 ) = fon(�(pa); �(p)) : M1 j= on(pa; p)g.

� turn eqM
0

2 = �(turn eqM1) = turn eqM1.

� travel eqM
0

2 = �(travel eqM1) = travel eqM1.

Notice that the language of� is defined byftpath; tplaceg [ SSHpred. Thus
M1 j= � implies�(M1) j= �.2 Since�(tpathM1) � tpathM2 , then�(M1) � M2, and
soM2 is not minimal, and is therefore not a model ofTT (E). It follows thatM1 andM2

have the same number of topological paths.

Similar argument shows thatM1 andM2 have the same number of topological
places. If not, there would exists� : tpathM1 ! tpathM2 a bijection and� : tplaceM1 !

tplaceM2 an injection that allows us to apply the same argument as above.2

Theorem 6. Let ds1 be a distinctive state symbol such that

8ds2 62 [ds1]dturn; [ds2]teq \ [ds1]dturn = ; : (B.3)

Then
8ds2 62 [ds1]dturn; place(ds2) 6= place(ds1) :

2Notice that the circumscription policy varies all predicates in the language of�, and� is the identity
over all constant symbols in the theory, for otherwise,�(M1) j= � is not necessarily the case. In general
the interpretations of a unary predicate (set) under a circumscriptive theory do not have the same number of
elements. For example, consider the models ofCIRC[(P (0)^ P (1)) _ P (2);P ], where the interpretation of
P could have one or two elements (this example is due to Vladimir Lifschitz).
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Proof. The hypothesis of the theorem implies that

8ds2 62 [ds1]dturn; :turn eq(ds2; ds1) :

Indeed,

turn eq(ds1; ds2)

�

9b0; : : : ; bn; b00 ; : : : ; bn0 s:t:

� b0 = ds2; bn0 = ds1 ;

� teq(bi; bi0); i = 0; : : : ; n

� dturn(bi0 ; bi+1); i = 0; : : : ; n� 1 :

Let 1 � j � n such that
h
8j � k � n; bk0 2 [ds1]dturni andb(j�1)0 62 [ds1]dturn.

Notice that such aj exists sinceds1 = b00 62 [ds1]dturn and ds1 = bn0 2 [ds1]dturn.
Consequently,

turn eq(ds1; ds2)

!

bj0 2 [ds1]dturn
! fteq(bj ; bj0)g

[bj ]teq \ [ds1]dturn 6= ;
! fB:3g

bj 2 [ds1]dturn
! fdturn(b(j�1)0 ; bj)g
b(j�1)0 2 [ds1]dturn
!

false

Thus:turn eq(ds2; ds1) should be the case.2
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Appendix C

Nested Abnormality theories

In this appendix we define circumscription and nested abnormalities theories following
[Lifschitz, 1994, Lifschitz, 1995].

The main idea of circumscription is to consider, instead of arbitrary models of an
axiom set, only the models that satisfy a certain minimality condition (usually set inclu-
sion). Mathematically, circumscription is defined as a syntactic transformation of logical
formulas. It transforms a sentenceA into a stronger sentenceA�, such that the models of
A� are precisely the minimal models ofA.

Definition 12 (Circumscription)

LetA(P;Z1; : : : ; Zm) be a sentence containing a predicate constantP and object, function
and/or predicate constantsZ1; : : : ; Zm (and possibly other object, function and predicate
constants). Thecircumscription of P in A with variedZ1; : : : ; Zm is the sentence

A(P;Z1; : : : ; Zm) ^ :9p; z1; : : : ; zm [A(p; z1; : : : ; zm) ^ p < P ] (C.1)

wherep < P denotes the formula

8x fp(x)! P (x)g ^ 9x f:p(x) ^ P (x)g :

We denote formula C.1 byCIRC [A;P ;Z].
fend of definitiong

Intuitively, the models ofCIRC [A;P ;Z] are the models ofA in which the extent
of P cannot be smaller without losing the propertyA, even at the price of changing the
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interpretations of the constantsZ. In order to make this claim precisely, the following
order,�P ;Z, is defined among structures of the language ofA.

Definition 13 (�P ;Z)

Let M1 andM2 be two structures for a given one-sorted language. ThenM1 �
P ;Z M2

whenever

� jM1j = jM2j,1

� M1 [C] = M2 [C],2 for every constantC which is different fromP and does not
belong toZ,

� M1 [P ] �M2 [P ]

fend of definitiong

In other words,M1 �
P ;Z M2 means thatM1 andM2 differ only in how they

interpretP andZ, and the extent ofP in M1 is a subset of its extent inM2. Proposition 1
in [Lifschitz, 1994] states that

Theorem 9 A structureM is a model ofCIRC [A;P ;Z] if and only if M is minimal
relative to�P ;Z.

Example 39

Circumscription is usually used in order to formalize default associated with an axiomatic
theory. Suppose the we would like to represent the default “Normally a block in on the
table”. Suppose blockB1 is not on the table and letB2 denotes another block. The circum-
scriptive theory below allow us to concludeOntable(B2):

Block(x) ^ :Ab(x)! Ontable(x) (C.2)

:Ontable(B1) (C.3)

Block(B1); Block(B2); B1 6= B2 (C.4)

circ Ab var Ontable (C.5)

where we have extended our notation such that the above should be understood as

CIRC [C:2 ^ C:3 ^ C:4;Ab;Ontable] :

1For a structureM , jM j denotes the universe ofM .
2M [C] denotes the interpretation ofC in M .
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In the above theory, it is the case thatAb(x) � x = B1, and consequentlyOntable(B2)

follows. The role of the predicateAb is to single out the blocks that are“abnormal” relative
to the default (C.2).
fend of exampleg

It is often convenient to arrange different defaults by assigning priorities to them.
For example, consider formalizing the enhancement of the theory above in which “Blocks
are usually heavy”, and “heavy block are usually not in the table”. Next we define two ex-
tensions to the basic definition of circumscription: parallel and prioritized circumscription.

Definition 14 (Parallel Circumscription)

Theparallel circumscription

CIRC
h
A;P 1; : : : ; P n;Z

i
is the sentence

A(P;Z) ^ :9p; z [A(p; z) ^ p � P ] ;

whereP stands for the tuple of predicatesP 1; : : : ; P n andp � P stands for the formula
8 1 � i � n pi � P i ^ 9 1 � i � n pi < P i

fend of definitiong

The parallel circumscription of several predicates has a simple model theoretics
characterization, similar to the one presented by theorem 9. WhenP is a tupleP 1; : : : ; P n,
the relationM1 �

P ;Z M2 between structuresM1 andM2 is defined as before, except that
the conditionM1 [P ] �M2 [P ] is replaced byM1

�
P i
�
�M2

�
P i
�

for all i = 1; : : : ; n.

Definition 15 (Prioritized Circumscription)

Theprioritized circumscription

CIRC
h
A;P 1 � : : : � P n;Z

i
is the sentence

A(P;Z) ^ :9p; z [A(p; z) ^ p � P ] ;

whereP stands for the tuple of predicatesP 1; : : : ; P n andp � P stands for the formula

n_
i=1

0@i�1̂

j=1

(pj = P j) ^ (pi < P i)

1A :
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fend of definitiong

The formulap � P defines alexicographicorder among the predicates inp andP .
Whenk = 1 it becomesp < P ; if k = 2, it becomes

(p1 < P 1) _ ((p1 = P 1)! (p2 < P 2)) :

Proposition 15 in[Lifschitz, 1994] shows that prioritized circumscription can be reduced to
parallel circumscription as follows:

Theorem 10 The circumscriptionCIRC
�
A;P 1 � : : : � P n;Z

�
is equivalent to

n̂

i=1

CIRC
h
A;P i;P i+1; : : : ; P n; Z

i
:

Notation 2

CIRC
�
A;P 1 � : : ::Pi : : : � P n;Z

�
stands for the formula

CIRC
h
A ^ not Pi � :Pi;P

1 � : : : not Pi : : : � P n;Z;Pi
i

wherenot Pi is a new constant predicate not occurring inA. fend of notationg

C.1 Nested Abnormality theories (NAT’s)

Nested abnormality theories allows one to apply the circumscription operator to a subset
of axioms, by structuring the knowledge base (the theory) into blocks. Each block can be
viewed as a group of axioms that describes a certain collection of predicates and functions,
and the nesting of blocks reflects the dependence of these descriptions on each other.

Definition 16 (NAT’s)

Consider a second-order languageL that doesnot includeAb among its symbols. For ev-
ery natural numberk, by Lk we denote the language obtained fromL by addingAb as a
k-ary predicate constant.Blocksare defined recursively as follows: For anyk and any list
of function and/or predicate constantsC1; : : : ; Cm of L, if each ofA1; : : : ; An is a formula
of Lk or ablock, thenfC1; : : : ; Cm : A1; : : : ; Ang is ablock. The last expression reads:
C1; : : : ; Cm are such thatA1; : : : ; An. AboutC1; : : : ; Cm we say that they aredescribed
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by this block.

The semantics of NAT’s is characterized by a map' that translates blocks into
sentences ofL. It is convenient to make' defined also on formulas of the languagesLk. If
A is such a formula, then'(A) stands for the universal closure ofA. For blocks we define,
recursively:

' fC1; : : : ; Cm : A1; : : : ; Ang = 9ab CIRC ['A1; : : : ; 'An : ab : C1; : : : ; Cm] :

fend of definitiong

Example 40

Consider the standard example: objects normally don’t fly: birds normally do; canaries are
birds; Tweety is a canary. These assertions can be formalized as the NAT whose only axiom
is

fF lies :

F lies(x)! Ab(x);

f F lies :

Bird(x) ^ :Ab(x)! F lies(x);

Canary(x)! Bird(x);

Canary(Tweety)

g

g

The outer block describe the ability of objects to fly; the inner block gives more specific in-
formation about the ability ofbirds to fly. Each occurrence of the predicateAb is “local” to
its block, and so, the two occurrences of the predicateAb refer two “unrelated” predicates
though we use the same name.
fend of exampleg

Most often, it is desirable not to mention the predicateAb at all. We will adopt the
following notations:

� fC1; : : : ; Cm;min P : A1; : : : ; Ang stands for

fC1; : : : ; Cm; P : P (x)! Ab(x); A1; : : : ; Ang
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� fC1; : : : ; Cm;max P : A1; : : : ; Ang stands for

fC1; : : : ; Cm; P : :Ab(x)! P (x); A1; : : : ; Ang

Using this notation, we could rewrite our previous example as

fmin F lies :

f F lies :

Bird(x) ^ :Ab(x)! F lies(x);

Canary(x)! Bird(x);

Canary(Tweety)

g

g

where we dispense the occurrence of oneAb predicate. The reader is referred to
[McCarthy, 1980, McCarthy, 1986, Lifschitz, 1994, Lifschitz, 1995] for a complete survey
of the uses and properties of circumscriptions and NATs.

Definition 17

We extend the definition ofblocksas follows: ifA is a block, so isCIRC[A;P 1 � : : : �

P n;Z]. The semantics of NATs is extended such that

�CIRC[A;P 1 � : : : � P n;Z] = CIRC[�A;P 1 � : : : � P n;Z] :

fend of notationg

As the next theorem shows, in some cases prioritized circumscription can be ex-
pressed using NAT’s. In these cases however, the notation for prioritized circumscription is
more compact than its equivalent NAT’s. This motivates our previous definition.

Theorem 11 LetA be a sentence such thatAb does not occur inA. Then,

CIRC[A;P � Q;Z] = fZ; min Q : fZ; Q; min P : A g g :

Proof.

fZ; minQ : fZ; Q; minP : A g g
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� Proposition 1 in[Lifschitz; 1995]

fZ; minQ : CIRC[A;P ;Z;Q]g

� Proposition 1 in[Lifschitz; 1995]

CIRC[CIRC[A;P ;Z;Q];Q;Z]

� CIRC 0s definition

CIRC[A;P ;Z;Q] ^ :9q; zfA(P; q; z) ^ :9p; q0; z0[A(p; q0; z0) ^ p < P ] ^ q < Qg

� logic

CIRC[A;P ;Z;Q] ^
�
:9p; q0; z0[A(p; q0; z0) ^ p < P ]! :9q; zfA(P; q; z) ^ q < Qg

�
� CIRC 0s definition and logic

CIRC[A;P ;Z;Q] ^ :9q; zfA(P; q; z) ^ q < Qg

� CIRC 0s definition and logic;

CIRC[A;P ;Z;Q] ^ CIRC[A;Q;Z]

� Proposition 10

CIRC[A;P � Q;Z]

2
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Appendix D

Answer Sets

In this appendix we defined the answer set semantics for a logic program as defined in[Lif-
schitz, 1999, Gelfond and Lifschitz, 1991].

Consider a set of propositional symbols, calledatoms. A literal is an expression
of the formA or :A, whereA is an atom (we call the symbol: “classical negation”,
to distinguish it from the symbolnot used for negation as failure). A rule element is an
expression of the formL or notL, whereL is a literal. Arule is an ordered pair

Head  Body (D.1)

whereHead andBody are finite sets of rule elements. If

Head = fL1; : : : ; Lk; not Lk+1; : : : ; not Llg

and

Body = fLl+1; : : : ; Lm; not Lm+1; : : : ; not Lng

(n � m � l � k � 0) then we write (D.1) as

L1; : : : ; Lk;notLk+1; : : : ; not Ll  Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln :

A rule (D.1) is aconstraint if Head = ;. A program is a set of rules.
The notion of an answer set is defined first for program that do not contain negation

as failure (l = k andn = m in every rule of the program). Let� be such program, and
let X be a consistent set of literals. We say thatX is closedunder� if, for every rule in
�, Head \ X 6= ; wheneverBody � X. We say thatX is ananswer setof � if X is
minimal among the sets closed under� (relative to set inclusion).
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Example 41

The program

p; q  

:r  p

has two answer sets:fp;:rg andfqg. If we add the constraint

 q

to this program, we will get a program whose only answer set isfp;:rg (see theorem 12
below).fend of exampleg

To extend the definition of an answer set to programs with negation as failure, take
any program�, and letX be a consistent set of literals. Thereduct �X of � relative toX
is the set of rules

L1; : : : ; Lk; Ll+1; : : : ; Lm ;

for all rules (D.1) in� such thatX contains all the literalsLk+1; : : : ; Ll but does not contain
any of theLm+1; : : : ; Ln. Thus�X is a program without negation as failure. We say that
X is ananswer setfor � if X is an answer set for�X .

Example 42

The program

p not q

q  not p

has two answer sets:fpg andfqg. fend of exampleg

Adding a constraint to a program affects its collection of answer sets by eliminating
the answer sets that “violate” this constraint. Next we prove this property of answer sets.

Theorem 12 Let�1 and�2 be logic programs such that�2 is obtained from�1 by adding
a set of constraintsC (i.e. �2 = �1 [ C). LetX be a consistent set of literals. ThenX
is an answer set for�2 if and only ifX is an answer set for�1 such that for each rule
 L1; : : : ; Lm; not Lm+1; : : : ; not Ln 2 C, fL1; : : : ; Lmg 6� X wheneverX does not
contain any ofLm+1; : : : ; Ln.
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Proof. LetX andY be consistent sets of literals. LetCX(Y ) denote the fact
that Y does not violates any constraint inCX , that is, if L1; : : : ; Lm 2 CX then
fL1; : : : ; Lmg 6� Y . In particular,

Y � X ^ CX(X)! CX(Y ) (D.2)

Moreover, it is the case that

CX(Y ) � Y is closed under CX (D.3)

In fact, if Y is closed underCX and L1; : : : ; Lm 2 CX , thenfL1; : : : ; Lmg 6� Y for
otherwiseY \ ; 6= ;. Conversely, ifCX(Y ) is the case, it is easy to see thatY is closed
underCX . From the definition of reduct we have that�X

2 = �X
1 [ C

X . Using (D.2) it is
then the case that

fY : closed�X
2
(Y )g = fY : closed�X

1
(Y ) ^ CX(Y )g (D.4)

From facts (D.2) and (D.4) the theorem follows:

X answer set for �2

� X answer set for �X
2

� X minimal of fY : closed�X
2
(Y )g

(D:4)
� X minimal of fY : closed�X

1
(Y ) ^CX(Y )g

� CX(X) ^ 8Y
�
Y 6= X ^ Y � X ^ CX(Y )! :closed�X

1
(Y )

�
(D:2)
� CX(X) ^ 8Y

�
Y 6= X ^ Y � X ! :closed�X

1
(Y )

�
� CX(X) ^X answer set for �X

1

� CX(X) ^X answer set for �1

2
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Appendix E

Ceq Properties

In this appendix we provide proofs for the different properties of the predicatedceq defined
in chapter 4 (Page 26). We start by proving that predicateceq is indeed an equivalence
relation.1 We then illustrate that it in general it is necessary to explicitly askceq to be sym-
metric and transitive.2 We show that have the agent completely explored the environment,
then the maximization principle definingceq will guaranty thatceq is an equivalence re-
lation without explicitly requiring so (Page 232). Moreover, we show that in this case the
predicateceq captures the idea that two distinctive states are the same if they render the
same views under any sequence of actions.

Theorem 1. The predicate ceq is an equivalence relation.
Proof. For the purpose of the proof next we reproduce the definition of the theoryCT(E):

CT (E) =

COMPLETION(E) ;

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 4:22)

CEQ block =

f max ceq :

ceq(ds; ds0)! ceq(ds0; ds);

ceq(ds; ds0) ^ ceq(ds0; ds00)! ceq(ds; ds00);

ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v);

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2)

1Seeceq’s definition below.
2The maximization associated withceq’s definition does not guaranty these properties.

229



g

We need to prove thatceq(ds; ds) is the case. LetM1 be a model for the axioms
inside theCEQ blockas well as the other axioms ofCT (E). LetM2 be a structure identical
toM1 except that

ceqM2(ds; ds0) � ceqM1(ds; ds0) _ ds = ds0 :

Our theorem follows once we prove thatM2 is a model for the axioms inside theCEQ block.3

Next we show why this is the case:

� M2 j= ceq(ds; ds0)! ceq(ds0; ds). In fact,

ceqM2(ds; ds0)

� ceqM1(ds; ds0) _ ds = ds0

! ceqM1(ds0; ds) _ ds0 = ds

� ceqM2(ds0; ds)

� M2 j= ceq(ds; ds0) ^ ceq(ds0; ds00)! ceq(ds; ds00). In fact,

ceqM2(ds; ds0) ^ ceqM2(ds0; ds00)

�
�
ceqM1(ds; ds0) _ ds = ds0

�
^
�
ceqM1(ds0; ds00) _ ds0 = ds00

�
�

�
ceqM1(ds; ds0) ^ ceqM1(ds0; ds00)

�
_
�
ds = ds0 ^ ceqM1(ds0; ds00)

�
_�

ceqM1(ds; ds0) ^ ds0 = ds00
�
_
�
ds = ds0 ^ ds0 = ds00

�
! ceqM1(ds; ds00) _

�
ds = ds0 ^ ds0 = ds00

�
� ceqM2(ds; ds00)

� M2 j= ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v). In fact,

ceqM2(ds; ds0)

� ceqM1(ds; ds0) _ ds = ds0

! 8v
�
V iew(ds; v) � V iew(ds0; v)

�
_ ds = ds0

! 8v
�
V iew(ds; v) � V iew(ds0; v)

�
_ 8v

�
V iew(ds; v) � V iew(ds0; v)

�
� V iew(ds; v) � V iew(ds0; v)

3M2 satisfies the other axioms inCT (E) sinceceq does not occur in them.
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� M2 j= ceq(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i ! ceq(ds01; ds

00
2). In fact,

ceqM2(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i

�
�
ceqM1(ds1; ds2) ^ hds1; a; ds

0
1i ^ hds2; a; ds

0
2i
�
_�

ds1 = ds2 ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i
�

! ceqM1(ds01; ds
0
2) _

�
hds1; a; ds

0
1i ^ hds1; a; ds

0
2i
�

(4:22)
! ceqM1(ds01; ds

0
2) _ ds

0
1 = ds02

� ceqM2(ds01; ds
0
2)

2

Axiom 4.22 (i.e. actions are deterministic) is fundamental in the proof above. With-
out this axiom, we could have a set of experiences like

Action type(ml; travel) ;

CS(s1; a;ml; b) ; CS(s2; a;ml; c) :

V iew(a; v) ; V iew(b; v1) ; V iew(c; v2)

for which ceq(a; a) is not the case.

In general it is not possible to remove theceq’s symmetry and transitivity axioms
from insideCEQ block. Consider the following example.

Example 43

LetE be the set defined by the following formulae:

CS(s1; ds1; a1; ds2) ; CS(s2; ds1; a2; ds3) ;

CS(s3; ds2; a3; ds4) ; CS(s4; ds3; a3; ds5) ;

V iew(ds1; v) ; V iew(ds2; v) ; V iew(ds3; v) ;

V iew(ds4; v1) ; V iew(ds5; v2) :

Suppose our definition ofCEQ block were :

CEQ block =

f max ceq :

ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v);

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2)

g
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Sincev1 6= v2 we conclude:ceq(ds4; ds5). This in turn implies:ceq(ds2; ds3).
However, in order to maximizeceq we can makeceq(ds1; ds2)^ceq(ds1; ds3)^ceq(ds2; ds1)^
ceq(ds3; ds1) ^ 8ds ceq(ds; ds) to be the case. In such a model,ceq is not transitive.
fend of exampleg

There is a special case in whichceq is symmetric and transitive without explicitly
tell so. This is the case when the result of every action at every distinctive state is known.
In this case, we said that the set of experiences is complete.

Definition 18

A set of experiencesE is completewhenever

E j= 8a; ds9ds0hds; a; ds0i :

fend of definitiong

Theorem 2. LetE be a complete set of experiences. LetCT(E)be defined as follows:

CT (E) =

COMPLETION(E) ;

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00; (Axiom 4:22)

CEQ block =

f max ceq :

ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v);

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2)

g

Then the predicateceq is an equivalence relation.

Proof. LetM1 be a model for the axioms inside theCEQ blockas well as the other
axioms ofCT (E). We need to prove that it is possible to have a structureM2 identical to
M1 except thatceqM1 � ceqM2 , M2 is a model for the axioms inside theCEQ block, the
other axioms ofCT (E), andceqM2 is an equivalence class. The proof goes along the lines
of theorem’s 1 proof. Indeed, the same proof as in theorem 1 allow us to assume thatM1

is reflexive.
LetM2 be a model identical toM1 except that

ceqM2(ds; ds0) = ceqM1(ds; ds0) _ ceqM1(ds0; ds) :
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By definition,ceqM2 is symmetric. We need to prove thatM2 satisfy the axioms inside (the
new)CEQ block:

� M2 j= ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v). In fact,

ceqM2(ds; ds0)

� ceqM1(ds; ds0) _ ceqM1(ds0; ds)

! 8v
�
V iew(ds; v) � V iew(ds0; v)

�
_ 8v

�
V iew(ds0; v) � V iew(ds; v)

�
� V iew(ds; v) � V iew(ds0; v)

� M2 j= ceq(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i ! ceq(ds01; ds

0
2). In fact,

ceqM2(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i

�
h
ceqM1(ds1; ds2) ^ hds1; a; ds

0
1i ^ hds2; a; ds

0
2i
i
_h

ceqM1(ds2; ds1) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i
i

! ceqM1(ds01; ds
0
2) _ ceq

M1(ds02; ds
0
1)

� ceqM2(ds01; ds
0
2)

Finally, letM2 be a model identical toM1 except that

ceqM2 = transitive closure(ceqM1) :

By definition, ceqM2 is transitive. IfceqM1 is reflexive and symmetric, so isceqM2 . We
need to prove thatM2 satisfies the axioms inside (the new)CEQ block:

� M2 j= ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v). In fact,

ceqM2(ds; ds0)

� 9ds0; ds1; : : : ; dsn
�
ds = ds0; ds0 = dsn; ceqM1(dsi; dsi+1); 0 � i < n

�
! 9ds0; ds1; : : : ; dsn�

ds = ds0; ds0 = dsn; V iew(dsi; v) � V iew(dsi+1; v); 0 � i < n
�

! 9ds0; dsn
�
ds = ds0; ds0 = dsn; V iew(ds0; v) � V iew(dsn; v)

�
� V iew(ds; v) � V iew(ds0; v)

� M2 j= ceq(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i ! ceq(ds01; ds

0
2). In fact,

ceqM2(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i

� 9dsi(1 � i � n)
�
ds1 = ds1; ds2 = dsn; ceqM1(dsi; dsi+1); 1 � i < n

�
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^hds1; a; ds
0

1i ^ hds2; a; ds
0

2i
hyp:
! 9dsi9hdsi; a; dsi

0

ih
ds1 = ds1; ds2 = dsn; ds01 = ds1

0

; ds02 = dsn
0

; ceqM1(dsi; dsi+1); 1 � i < n

i
! 9dsi

0

h
ds01 = ds1

0

; ds02 = dsn
0

; ceqM1(dsi
0

; ds(i+1)
0

); 1 � i < n
i

� ceqM2(ds01; ds
0

2)

2

When a set of experiences is complete the predicateceqcaptures the idea that two
distinctive states are the same if they render the same views under any sequence of actions.
Assume thatE is complete and letA = a1; : : : ; an denote a sequence of actions. The term
A(ds) denotes the distinctive state resulting from executingA starting atds. By definition,
A(ds) = ds if n = 0, A(ds) = ds0 such thatE j= h ha1; : : : ; an�1i(ds); an; ds0i. Notice
that the definition ofA(ds) makes sense sinceE is complete and actions are deterministic.

Theorem 3. LetE be a complete set of experiences. Then,

ceq(ds; ds0) � 8A; v
�
V iew(A(ds); v) � V iew(A(ds0); v)

�
:

Proof. LetM1 be a model for the axioms inside theCEQ blockas well as the other axioms
of CT (E). LetM2 be a model identical toM1 except that

ceqM2(ds; ds0) � 8A; v
�
V iew(A(ds); v) � V iew(A(ds0); v)

�
:

By induction in the length of action sequences on can prove thatceqM1 �

ceqM2 . Our proof is complete by showing thatM2 satisfies the axioms inside (the new)
CEQ block:

� M2 j= ceq(ds; ds0) ! V iew(ds; v) � V iew(ds0; v). In fact, supposeM2 j=
ceq(ds; ds0) and consider the empty sequence of actions,A = fg, A(ds) = ds.
Then

V iew(ds; V ) � V iew(A(ds); v) � V iew(A(ds0); v) � V iew(ds0; v) :

� M2 j= ceq(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i ! ceq(ds01; ds

0
2). In fact,

ceqM2(ds01; ds
0

2)

� 8A; v [V iew(A(ds01); v) � view(A(ds02); v)]

 hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ^

8A; v [V iew(aA(ds1); v) � V iew(aA(ds2); v)]

 ceqM2(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i
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Appendix F

Logic Program Correctness

Given a set of experiencesE, the models of the theoryCT (E) (Page 26) indicate under
what circumstances it is possible to consider two distinctive states as referring to the same
environment state. In order to calculate these models, next we define a logic program such
that its answer sets are in a one to one correspondence with the models ofCT (E).

Recall that the theoryCT (E) is defined as follows:

CT (E) =

COMPLETION(E) ; (F.1)

Axioms 4:1� 4:11 ;

hds; a; ds0i ^ hds; a; ds00i ! ds0 = ds00 (F.2)

CEQ block =

f max ceq :

ceq(ds; ds); (F.3)

ceq(ds; ds0)! ceq(ds0; ds); (F.4)

ceq(ds; ds0) ^ ceq(ds0; ds00)! ceq(ds; ds00); (F.5)

ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v); (F.6)

ceq(ds1; ds2) ^ hds1; a; ds
0

1i ^ hds2; a; ds
0

2i ! ceq(ds01; ds
0

2) (F.7)

g

The logic program� we will consider is defined as follows:

p(X;Y;X; Y )  : (F.8)

p(X;Y;X2; Y 1)  p(X;Y;X1; Y 1); ceq(X1; X2): (F.9)

p(X;Y;X1; Y 2)  p(X;Y;X1; Y 1); ceq(Y 1; Y 2): (F.10)

p(X;Y;X2; Y 2)  p(X;Y;X1; Y 1); cs(X1; A;X2); cs(Y 1; A; Y 2): (F.11)

236



p(X;Y; Y 1; X1)  p(X;Y;X1; Y 1): (F.12)

p(X;Y;X1; Y 2)  p(X;Y;X1; Y 1); p(X;Y; Y 1; Y 2): (F.13)

dist(X;Y )  p(X;Y;X1; Y 1); view(X1; V ); not view(Y 1; V ): (F.14)

dist(X;Y )  p(X;Y;X1; Y 1); not view(X1; V ); view(Y 1; V ): (F.15)

ceq(X;Y );:ceq(X;Y ) : (F.16)

 not ceq(X;X): (F.17)

 ceq(X;Y ); not ceq(Y;X): (F.18)

 ceq(X;Y ); ceq(Y; Z); not ceq(X;Z): (F.19)

 ceq(X;Y ); view(X;V ); not view(Y; V ): (F.20)

 ceq(X;Y ); not view(X;V ); view(Y; V ): (F.21)

 not ceq(X1; Y 1); ceq(X;Y ); cs(X;A;X1); cs(Y;A; Y 1): (F.22)

 not ceq(X;Y ); not dist(X;Y ): (F.23)

where the variablesX andY variable range over distinctive states and the variableV ranges
over views. Rule F.16 states that an answer set of the program should becompletewith re-
spect toceq. Rules F.17-F.19 requireceq to be an equivalence class. Rules F.20 and F.21 are
the counterpart of axiom F.6. Rule F.22 is the counterpart of axiom F.7. In order to define
the maximality condition ofceq, the auxiliar predicatep(X;Y;X1; Y 1) is introduced. This
predicate reads as“If X andY were the same, thenX1 andY 1 would be the same”. The
predicatedist(X;Y ) defines when distinctive statesX andY are distinguishable. Con-
straint F.23 establishes the maximality condition onceq: ceq(X;Y ) should be the case
unlessX andY are distinguishable.

Notation. Given a set of experiencesE, �(E) denotes the grounded
program consisting of the rulesfcs(ds; a; ds0)  : : E j= hds; a; ds0ig,
fview(ds; v)  : : E j= V iew(ds; v)g, and replacing in� the occurrences of the
variablesX; X1; X2; Y; Y 1; Y 2 and V by distinctive states and view symbols inE,
respectively.

Given a modelM for the axioms F.1-F.7,�(E)(ceqM ) denotes the pro-
gram consisting of�(E) and the rulesfceq(a; b)  : : M j= ceq(a; b)g,
f:ceq(a; b) : : M 6j= ceq(a; b)g.

Similarly, �(E)1(ceq
M ) denotes the program resulting by removing from

�(E)(ceqM ) the rules associated with grounding rule F.23. ByAS(�(E)1(ceq
M )) we
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denote the answer set of�(E)1(ceqM ) (see lemma 2, page 239).

We say thatceqM is maximalin M wheneverM is a model forCT (E).1

fend of notationg

Using the notation above we can state our theorem as follows:

Theorem 13 ceqM is maximalin M if and only ifAS(�(E)1(ceqM )) is an answer set for
�(E)(ceqM ).

Notice that theorem 13 establishes a one to one correspondence between the an-
swer sets of�(E) and the models ofCT (E). Given a modelM for CT (E), ceqM is
maximal in M , and soAS(�(E)1(ceqM )) is an answer set for�(E)(ceqM ), thus, an
answer set for�(E).2 Conversely, given any answer setX for �(E), the modelM
defined such thatM j= E and ceqM = f(ds; ds0) : ceq(ds; ds0) 2 Xg, is such that
AS(�(E)1(ceq

M )) = X.3 Consequently,ceqM is maximalin M , that is,M is a model
for CT (E).

Proof of theorem 13.
(a) SupposeceqM is maximal inM andAS(�(E)1(ceqE)) is not an answer set

for �(E)(ceqM ). SinceAS(�(E)1(ceqM )) is an answer set for�(E)1(ceqM ), then
AS(�(E)1(ceq

M )) does not satisfy constraint F.23.4 Consequently, there exist distinctive
statesX andY such that:

1. ceq(X;Y ) 62 AS(�(E)1(ceq
M )), and

2. dist(X;Y ) 62 AS(�(E)1(ceq
M )).

Defineceq1M in M such thatM j= ceq1(a; b) wheneverM j= ceq(a; b) or p(X;Y; a; b) 2
AS(�(E)1(ceq

M )). Symbolically,

ceq1M (a; b) � ceqM (a; b) _ p(X;Y; a; b) :

By definition,ceqM � ceq1M .5 We are to prove thatceq1M satisfies axioms F.3-F.7, which
will contradict the fact thatceqM is maximal inM :

1Recall thatceqM denotes the interpretation ofceq in the structureM .
2Let X be an answer set for�(E)(ceqM) and considerY � X closed under�(E). Then, in virtue of

F.16,Y is closed underceqM and soX = Y .
3Given any program� andX an answer set for�,X is the unique answer set for� [X.
4The answer sets of�(E)(ceqM) are those answer sets of�(E)1(ceq

M ) that satisfy constraint F.23.
5Sincep(X;Y;X; Y ) 2 AS(�(E)1(ceq

M ))
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� By lemma 3,ceq1M is an equivalence relation.

� Suppose thatceq1M (ds; ds0) is the case. IfceqM (ds; ds0) is the case, then
M j= V iew(ds; v) � V iew(ds0; v). If p(X;Y; ds; ds0) is the case, then
V iew(ds; v) � V iew(ds0; v) is the case, since otherwisedist(X;Y ) will belong
toAS(�(E)1(ceq)).6

� Suppose thatM j= ceq1(ds1; ds2) ^ hds1; a; ds
0
1i ^ hds2; a; ds

0
2i. If M j=

ceq(ds1; ds2) is the case, thenM j= ceq(ds01; ds
0
2) is the case. Ifp(X;Y; ds1; ds2)

is the case, by rule F.11,p(X;Y; ds01; ds
0
2) 2 AS(�(E)1(ceq

M )) and soM j=

ceq1(ds01; ds
0
2).

2

(b) Suppose thatAS(�(E)1(ceq)) is an answer set for�(E)(ceqM ) andceqM is
not maximal inM . Then, there existsceq1M , ceqM � ceq1M , ceq1M maximal inM .
Moreover, by the if part of this theorem, (a) above,AS(�(E)1(ceq1

M )) is an answer set
for �(E)(ceq1M ). LetX andY be such that:

1. M j= ceq1(X;Y ),

2. M 6j= ceq(X;Y ), and so (Lemma 2)ceq(X;Y ) 62 AS(�(E)1(ceq
M )).

SinceAS(�(E)1(ceqM )) satisfies constraint F.23, thendist(X;Y ) 2 AS(�(E)1(ceq
M )),

and consequently (rules F.14-F.15) there existX1,Y 1 andV , such that

1. p(X;Y;X1; Y 1) 2 AS(�(E)1(ceq
M )),

2. M j= V iew(X1; V ) 6� V iew(Y 1; V ).

SinceceqM � ceq1M , thenp(X;Y;X1; Y 1) 2 AS(�(E)1(ceq1
M )) (Lemma 4). Since

ceq(X;Y ) 2 AS(�(E)1(ceq1
M )), thenceq(X1; Y 1) 2 AS(�(E)1(ceq1

M )) (Lemma 5)
which is a contradiction sinceAS(�(E)1(ceq1M )) satisfies constraints F.20-F.21.

2

Lemma 2 LetM be a model for axioms F.1-F.7. LetceqM be the interpretation ofceq in
M .7 Then�(E)1(ceqM ) has a unique answer set which we denote byAS(�(E)1(ceq

M )).
Moreover, for any two distinctive statesds and ds0, M j= ceq(ds; ds0) if and only if
ceq(ds; ds0) 2 AS(�(E)1(ceq

M )).
6This is the case according to rules F.14 and F.15, and the fact thatAS(�(E)1(ceq)) is the answer set for

�(E)1(ceq).
7The interpretation ofceq in M is not necessarily maximal.
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Proof. Let�(E)2(ceqM ) denote the program resulting of removing from�(E)1(ceqM )

those constraints resulting from grounding rules F.17-F.22. The answer sets of�(E)1(ceq
M )

are those answer sets of�(E)2(ceq
M ) satisfying constraints F.17-F.22. We are to prove that

�(E)2(ceq
M ) has a unique answer set satisfying constraints F.8-F.15.

Let Facts denote the union of the setsfcs(ds; a; ds0)  : : E j= hds; a; ds0ig,
fview(ds; v)  : : E j= V iew(ds; v)g, fceq(a; b)  : : M j= ceq(a; b)g, and
f:ceq(a; b)  : : M 6j= ceq(a; b)g. Any answer set of�(E)2(ceqM ) containsFacts.
Let X andY denote two possible answer sets for�(E)2(ceq

M ). Then the reduct ofX
andY are the same,�(E)2(ceqM )X = �(E)2(ceq

M )Y , since bothX andY agree on
the literals of the formview(ds; v).8 Consequently,�(E)2(ceqM ) has at most one answer
set. In fact,Cn(�(E)2(ceqM )Facts) is such answer set.9 In particular, ceq(ds; ds0) 2
Cn(�(E)2(ceq

M )Facts) iff ceq(ds; ds0) 2 Facts iff M j= ceq(ds; ds0).
Finally, sinceceqM satisfies axioms F.3-F.7 thenCn(�(E)2(ceqM )Facts) satisfies

constraints F.17-F.22, thus, it is an answer set for�(E)1(ceq
M ). 2

Lemma 3 LetM be a model for axioms F.1-F.7. LetceqM be the interpretation ofceq in
M , and letAS(�(E)1(ceqM )) be the answer set for�(E)1(ceqM ). LetX andY be two
arbitrary distinctive state symbols. Letceq1M inM be such thatM j= ceq1(a; b) whenever
M j= ceq(a; b) or p(X;Y; a; b) 2 AS(�(E)1(ceqM )). Symbolically,

ceq1M (a; b) � ceqM (a; b) _ p(X;Y; a; b) :

Then,ceq1M is an equivalence relation.

Proof.

� ceq1 is reflexive. Indeed,

ceq1M (ds; ds) � ceqM (ds; ds) _ p(X;Y; ds; ds)
F:3
� ceqM (ds; ds) :

� ceq1 is symmetric. Indeed,

ceq1M (ds; ds0) � ceqM (ds; ds0) _ p(X;Y; ds; ds0)
F:4
� ceqM (ds0; ds) _ p(X;Y; ds; ds0)
F:12
� ceqM (ds0; ds) _ p(X;Y; ds0; ds)

� ceq1M (ds1; ds)

8Notice thatview(ds; ds0) 2 X iff view(ds; ds0) 2 Facts.
9
Cn(�) denotes the set of consequences of a logic program without negation as failure.
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� ceq1 is transitive. Indeed,

ceq1M (ds; ds0) ^ ceq1M (ds0; ds00)

� fceqM (ds; ds0) _ p(X;Y; ds; ds0)g ^ fceqM (ds0; ds00) _ p(X;Y; ds0; ds00)g

� fceqM (ds; ds0) ^ ceqM (ds0; ds00)g _ fceqM (ds; ds0) ^ p(X;Y; ds0; ds00)g _

fp(X;Y; ds; ds0) ^ ceqM (ds0; ds00)g _ fp(X;Y; ds; ds0) ^ p(X;Y; ds0; ds00)g
F:5;F:13
! ceqM (ds; ds00) _ fceqM(ds; ds0) ^ p(X;Y; ds0; ds00)g _

fp(X;Y; ds; ds0) ^ ceqM (ds0; ds00)g _ p(X;Y; ds; ds00)
F:9; F:10
! ceqM (ds; ds00) _ p(X;Y; ds; ds00) _ p(X;Y; ds; ds00) _ p(X;Y; ds; ds00)

� ceqM (ds; ds00) _ p(X;Y; ds; ds00)

� ceq1M (ds; ds00)

2

Lemma 4 LetM be a model for axioms F.1-F.7, and letceqM , ceq1M , ceqM � ceq1M ,
be two relations such that both satisfy axioms F.3-F.7. Then,AS(�(E)1(ceq

M )) �

AS(�(E)1(ceq1
M )).

Proof. Let �(E)2(ceqM ) denote the program resulting of removing from
�(E)1(ceq

M ) those constraints resulting from grounding rules F.17-F.22. LetFacts de-
note the union of the setsfcs(ds; a; ds0)  : : E j= hds; a; ds0ig, fview(ds; v)  
: : E j= view(ds; v)g, fceq(a; b)  : : M j= ceq(a; b)g, andf:ceq(a; b)  : :

M 6j= ceq(a; b)g. DefineFacts1 in the same way asFacts but usingceq1 instead
of ceq. Since,ceqM � ceq1M , it is the case thatFacts � Fact1 and consequently
�(E)2(ceq

M ) � �(E)2(ceq1
M ).

Since, Facts and Facts1 agree on literals of the formview(ds; v), it
follows that �(E)2(ceq

M )Facts � �(E)2(ceq1
M )Facts1. It follows then that

Cn(�(E)2(ceq
M )Facts) � Cn(�(E)2(ceq

M )Facts1) � Cn(�(E)2(ceq1
M )Facts1).

In lemma 2 we prove thatAS(�(E)1(ceqM )) = Cn(�(E)2(ceq
M )Facts) and

AS(�(E)1(ceq1
M )) = Cn(�(E)2(ceq

M )Facts1). Therefore,AS(�(E)1(ceqM )) �

AS(�(E)1(ceq1
M )).

2

Lemma 5 Let M be a model for axioms F.1-F.7. IfceqM (ds; ds0) and
p(ds; ds0; ds1; ds10) 2 AS(�(E)1(ceq

M )), thenceqM (ds1; ds10).
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Proof. Consider the program̂�(E)1(ceqM ) resulting from�(E)1(ceq
M ), by re-

moving those instances of rules F.12 and F.13 whereX = ds andY = ds0. LetAS denote
the answer set for̂�(E)1(ceqM ). We are to prove thatAS(�(E)1(ceqM )) = AS, which in
virtue of property F.24, proves our theorem. Notice thatAS(�(E)1(ceq

M )) is closed under
�̂(E)1(ceq

M )), and consequentlyAS � AS(�(E)1(ceq
M )). We need to prove then that

AS is closed under�(E)1(ceqM )).
SinceAS is the answer set for̂�(E)1(ceqM ), p(ds; ds0;X; Y ) 2 AS if and only if

there exist distinctive statesX0; X̂0; Y0; X̂0; : : : ;Xn; X̂n; Yn; X̂n and actionsA0; : : : ; An�1

such that

1. (X0; Y0) = (ds; ds0), (X̂n; Ŷn) = (X;Y ),

2. ceq(Xi; X̂i), ceq(Yi; Ŷi), 0 � i � n.

3. cs(X̂i; Ai;Xi+1), cd(Ŷi; Ai; Yi+1), 0 � i < n.

By induction onn we can prove then that

if p(ds; ds0;X; Y ) 2 AS then ceq(X;Y ) 2 AS: (F.24)

For n = 0 we have that(X0; Y0) = (ds; ds0), (X̂0; Ŷ0) = (X;Y ), ceq(ds;X),
and ceq(ds0; Y ). Sinceceq is an equivalence relation andceq(ds; ds0), it follows that
ceq(X;Y ). Suppose now that(X̂n; Ŷn) = (X;Y ) for somen > 0. By induction hypothe-
sis,ceq(X̂n�1; Ŷn�1). Sinceceq satisfies constraint F.22, it follows thatceq(Xn; Yn) 2 AS.
Sinceceq is an equivalence relation, it follows then thatceq(X̂n; Ŷn).

Using F.24 we prove thatAS is closed under�(E)1(ceqM )). Indeed,

p(ds; ds0; Y;X)
F:10
 p(ds; ds0; Y; Y ); ceq(Y;X)

F:9;F:4
 p(ds; ds0;X; Y ); ceq(X;Y )
F:24
 p(ds; ds0;X; Y ) 2 AS :

p(ds; ds0;X; Z)
F:9
 p(ds; ds0; Y; Z) ^ ceq(Y;X)
F:5
 p(ds; ds0;X; Y ) ^ ceq(X;Y ) ^

p(ds; ds0; Y; Z) ^ ceq(Y;Z)
F:24
 p(ds; ds0;X; Y ) 2 AS ^ p(ds; ds0; Y; Z) 2 AS :

We have proved thatAS is closed under�(E)1(ceqM )). It follows thatAS =

AS(�(E)1(ceq
M )). 2
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Appendix G

MERCATOR’s Ontology and
Semantics

MERCATOR [Davis, 1993] usesclumps , regions, polygons, joints, edges, vertices
andPCOs.1 The basic elements of the representation are straight line segments. The
boundary of an object is represented by a set ofedgesconnectingvertices. Boundary edges
are labeled with directions specifying the direction counter-clockwise around the object.
Such a directed edge is called abound. The interior of an object is represented bypolygons.
A complete shape description, consisting of a set of bounds and a set of polygons, is called
a region.

Local dimensions are recorded in terms of the lengths and orientations of edges
connecting the vertices. Lengths and orientations are not specified precisely. Rather, the
range in which they lie is specified. The measure of the inaccuracy of a region is itsgrain-
size, which is an upper bound on the distance from any point in the region to a point in the
object. The smaller the grain-size, the better the approximation. Also, every bound in a
region has a grain-size which, roughly speaking, is an upper bound on the distance from the
bound to the corresponding part of the boundary.

The overall representation of an object is called aclump; it contains all the regions
of the object, plus descriptions of the properties of the object, and the relations between the
regions. A map is hierarchically arranged by containment. Clumps point to their immediate
containers and contents.

1PCO stands for Partial Circular Ordering.
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Different regions for a clump can be related to one another in three ways. Firstly,
different regions may share one or more edges. Secondly, vertices of different edges may be
connected by edges or joints. Thirdly, the order of the external vertices around the bound-
ary is recorded inpartial circular ordering (PCO). Given two vertices, aPCO expresses
whether they are in clockwise order, counter clockwise order, or unordered.

An objectO is a closed, connected subset ofR2 (the real plane) with a boundary
consisting of a finite number of disjoint simple closed curves. Apropertyis a function from
objects to arbitrary sets. A MERCATOR map describes a set of objects with properties.

Three functions relate the MERCATOR map to the real world: REAL, COOR, and
COVER. REAL maps clumps onto objects. REAL preserves containment (i.e. if CL1
contains CL2, then REAL(CL1) must contain REAL(CL2)) and it takes clumps with stated
properties onto objects with these properties. COOR takes vertices of the map into points
in the plane (even if a pointg represents an object with some extent, COOR (g) is a single
point in the plane). COOR is extended in the natural way to take edges into line segments,
joints into pairs of line segments, polygons of the map into planar polygons, and regions
into unions of polygons. COOR has to satisfy the following conditions:

1. For each edgee,COOR(e) has to have length and orientation within the fuzz ranges
which the map specifies fore. Likewise for joints.

2. For each polygonP in the map,COOR(P ) must define a polygon in the plane.

3. For each regionR, every point inCOOR(R) must be no further than the grain-size
of the interior ofR from the object represented byR.

COVER is a family of functions. COOR, as stated, maps directed edges onto line
segments in the plane. However, we must relate boundary edges to the part of the object
boundary that they represent. Therefore, for each directed edgeb in the boundary of a re-
gion, we define a continuous functionCOV ERb fromCOOR(b) into the object boundary.
COV ERb must satisfy the following conditions:

1. For allx 2 COOR(b), the distance fromx to COV ERb(x) must be less than the
grain-size ofb.

2. If b andc are directed edges from the shell of regionR which meet at a vertexv, and
v is a real bound ofR, thenCOVERb(COOR(v)) = COORc(COOR(v)).

3. The real vertices of a clump map into the boundary of the corresponding object so as
to satisfy the PCOs of the clump.
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The MERCATOR map is valid if it is possible to define REAL, COOR, and COVER so as
to satisfy all these conditions.
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