
Artificial Intelligence 152 (2004) 47–104

www.elsevier.com/locate/artint

Towards a general theory of topological maps

Emilio Remolina a,∗, Benjamin Kuipers b,1

a Stottler Henke Associates, Inc., 951 Mariners Island Blvd. #360, San Mateo, CA 94404, USA
b Computer Science Department, The University of Texas at Austin, Austin, TX 78712, USA

Received 25 March 2002

Abstract

We present a general theory of topological maps whereby sensory input, topological and local
metrical information are combined to define the topological maps explaining such information.
Topological maps correspond to the minimal models of an axiomatic theory describing the
relationships between the different sources of information explained by a map. We use a
circumscriptive theory to specify the minimal models associated with this representation.

The theory here proposed is independent of the exploration strategy the agent follows when
building a map. We provide an algorithm to calculate the models of the theory. This algorithm
supports different exploration strategies and facilitates map disambiguation when perceptual aliasing
arises.
 2003 Elsevier B.V. All rights reserved.

Keywords: Topological maps; Causal maps; View graph; Spatial representations; Map building; Cognitive
robotics; Spatial semantic hierarchy (SSH); Nested abnormality theories (NATs)

1. Introduction

Topological maps are graph-like spatial representations. Nodes in such a graph often
represent states in the agent’s configuration space and edges represent system trajectories
that take the agent from one state to another. A hierarchical structure can be accommodated
on top of this “behavior graph”, where nodes at one level of the hierarchy represent

* Corresponding author.
E-mail addresses: eremolin@stottlerhenke.com (E. Remolina), kuipers@cs.utexas.edu (B. Kuipers).

1 This work has taken place in the Intelligent Robotics Lab at the Artificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Intelligent Robotics Lab is supported in part by the Texas Higher
Education Coordinating Board, Advanced Technology Program (grant 003658-0656-2001), NSF grants IRI-
9504138 and CDA 9617327, by funding from Tivoli Corporation, and by an IBM Faculty Research Award.

0004-3702/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0004-3702(03)00114-0

48 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

sets of nodes in lower levels. Despite their common use, there is no consensus about

what topological maps are, or how they are built. The meanings of nodes and edges in
a topological map varies according to the application as well as the algorithms used to
build them. Richer structures than the graph-like description above are sometimes adopted
as part of what a topological map is. Nevertheless, there are common elements to most
of the topological map descriptions, namely, the use of sensory input descriptions in
order to identify nodes, connectivity relations among nodes in the map, and local metrical
information associated with edges in the map.

In this paper, we present a general theory of topological maps whereby sensory input,
topological and local metrical information are combined to define the topological maps
explaining such information. We take a declarative approach to define what topological
maps are and how they are related to the information used to build them. We distinguish
between the causal graph, which is a transition graph representation of regularities in
action and sensory experience, and the topological map, which represents spatial properties
of actions and of places and paths in the environment. We define topological maps as the
minimal models of an axiomatic theory describing the relationships between the different
sources of information explained by a map. We provide an algorithm to calculate the
models of the theory. This algorithm supports different exploration strategies and facilitates
map disambiguation when perceptual aliasing arises.

The major assumption underlying the topological approach to mapping is that there is
a level of abstraction of the underlying environment at which actions are deterministic.
In the Spatial Semantic Hierarchy [31], this is achieved by defining distinctive states
and actions composed of trajectory-following and hill-climbing control laws such that
actions are functionally deterministic when applied between distinctive states (see Fig. 1).
There are two other assumptions that, when true, allow us to state the axiomatic theory in
simpler terms. These are the assumptions that (a) a path does not intersect itself, and (b) a
distinctive state corresponds to at most one path and one direction on that path. Section 5.3
describes the more elaborate default theory required to handle environments that violate
these assumptions.

2. Related work

Causal and topological maps have been mainly studied by cognitive theories of space
and robotics. Cognitive theories of space are interested in the cognitive map, the human
knowledge of large-scale space. Robotics is interested in representations of space that can
be used (and learned) by an autonomous robot.

Computational theories of the cognitive map have been proposed in [9,21,23,30,34,40,
44]. These theories account for incomplete knowledge of space, use of multiple frames
of reference, qualitative representation of metrical information, and connectivity relations
among landmarks. The theories differ on how sensory information is represented, what a
place is, and how the overall spatial knowledge is structured.

The use of topological maps in robotics varies according to the type of information
used when building such map. The sequence of views and actions generated by the
robot exploration to recover the minimum deterministic automaton consistent with such
information is used in [2,10,11,50]. In these works, actions do not have any spatial

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 49

properties associated with them. Metrical information associated with actions is considered

in [22,53], but there sensory information (views) is not used. The use of both sensory and
metrical information is proposed in [9,16,25,55]. Among these works, [9,25] propose the
use of multiple metrical frames of reference: the places in the topological map are not
necessarily embedded in a single two dimensional Euclidean frame of reference, nor it
is necessary to do so in order to create the topological map. In [28,31] the existence of
topological objects (i.e., paths, regions) is proposed that can explain the agent’s experiences
without relying on metrical information but rather qualitative spatial properties (i.e., travel,
turnRight, turnLeft, turnAround) associated with actions.

In research on physical robots by Lee [33] and Choset and Nagatani [7], effort has been
put on describing how the agent solves the problem of “perceptual aliasing” (i.e., different
places that share the same view). Different exploration strategies as well as different dis-
crimination procedures are proposed to solve this problem. The description of topological
maps is usually closely tied to the algorithms and exploration strategy used by the agent. It
is difficult then to know what topological maps are and how they are related to the agent’s
experiences. The work by Choset and Nagatani [7] exploits the topology of the robot’s free
space to localize the robot on a partially constructed map. The map used in this work is the
generalized Voronoi graph (GVG) which is a topological map that also encodes some met-
ric information about the robot’s environment. Our definition of topological maps includes
but is not limited to GVGs. We propose an axiomatic theory of topological maps. The task
of building the map is stated as an abduction task [47,52] where the agent’s map correspond
to the minimal models among those that explains its observations. Stating the minimality
conditions as well as the ontology of the spatial representation is the content of this paper.

Metrical grid-based maps are another spatial representation used in the robotics
community [4,15,59]. In these approaches the location of objects in a two dimensional
Euclidean space are used to explain the agent’s experiences. Topological maps as described
in this paper can use metrical maps but they are confined to places, paths and local two
dimensional frames of reference associated with regions.

The Spatial Semantic Hierarchy [31] assumes that an agent first builds a network of
places and paths on top of which metrical models are added, rather than to build first a
single metrical map from which a network of places and paths is derived. This assumption
is motivated by research on human cognitive maps [37,46,54]. For the engineering tasks of
robot exploration, mapping, and navigation, we believe that the “topology-first” approach
is more efficient and robust. For example, Thrun et al. [59] propose a method for integrating
topological and metrical paradigms to solve the concurrent mapping and localization
problem studied in the mobile robotics community. The method has two phases. In the
first phase, the topological mapping solves a global position alignment problem between
potentially indistinguishable, significant places. The subsequent metric mapping phase
produces a fine-grained metric map of the environment in high resolution. “This work
illustrates that topological approaches indeed scale up to large and highly ambiguous
environments. The environments tested here are difficult in that they possess large cycles,
and in that local sensor information is insufficient to disambiguate locations” [59].

Finally, there are also feature-based spatial representations [58] where the map is a
graph whose nodes represent observed features and whose edges represent geometric
relationships between these features. Under these approaches the locations of geometric

50 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

features in the environment and the position of the vehicle is jointly estimated in a

stochastic framework. Like grid-based methods, feature-based methods are subject to
cumulative metrical error and the difficulty of properly closing large loops. A major benefit
of topological maps is that the problem of correctly closing large loops is separated from
the problem of metrical mapping of local environments. We refer the reader to Borenstein’s
book [5, Chapter 8] for a review of different approaches to map building.

This article is organized as follows: in Section 3 we define how the agent represents
its experiences in the environment. Section 4 defines the causal map representation. The
topological theory is presented in three parts: Section 5 introduces the main properties of
paths and places. Section 6 adds boundary relations to this representation, and Section 7
defines the use of local metrical information. Section 8 presents our algorithms to build
the topological maps associated with the agent’s experiences. Finally, we present our
conclusions in Section 9.

3. The agent’s experiences in the environment

We assume that the continuous interaction of the agent and its environment is
summarized by a discrete view-action-view sequence of the form

v0, a0, v1, a1, . . . , an−1, vn. (1)

A view represents a sensory description associated with an environment state. Only the
name and not the internal structure of a view matters. The environment states where
the views in sequence (1) were observed are called distinctive states (dstates). Note
that distinctive states represent not only location, but also the agent’s orientation in the
environment. The same view can occur at different distinctive states (perceptual aliasing).
It is possible for the agent to associate different distinctive state names with the same
environment state. This is the case since the agent might not know at which of several
environment states it is currently located. It is the purpose of the causal and topological
theories (Sections 4 and 5) to deduce which of these dstates names refer to the same
environment state.

An action denotes a sequence of one or more control laws [32] that take the agent
from one dstate to the next. For example, in [25,26,31] distinctive states are the result of
following trajectory-following and then hill-climbing control laws. The basin of attraction
of the hill-climbing control laws absorbs accumulated error from each trajectory-following
control law, along each action. Even with realistic levels of accuracy in the control laws, if
the initial basin of attraction is large enough, and the hill-climbing control law is effective
enough, the action become functionally deterministic (Fig. 1).

The sequence (1) is transformed into a set of schemasof the form 〈(vi ,dsi), ai,
(vi+1,dsi+1)〉, where dsi is the dstate name associated with the environment state where
view vi is observed. A schema represents a particular action execution of the agent in the
environment. An action execution is characterized in terms of the distinctive states the
agent was at before and after the action was performed.

Example 1. Consider the environment in Fig. 2. In order to go from distinctive
state ds1 to distinctive state ds2, the agent executes the sequence of control laws

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 51
Fig. 1. Actions between distinctive states are functionally deterministic. The control laws making up an action
have a basin of attraction surrounding the initial distinctive state (ds1). Any trajectory starting in that basin moves
toward the fixed-point of the hill-climbing control law. Since any implementation has finite precision, the action
terminates in a small region around the destination distinctive state (ds2). As long as the final region is small
enough to be contained within the initial basin of attraction of every subsequent action departing from that state,
then actions are functionally deterministic.

Fig. 2. A sequence of control strategies, 〈get_into_corridor, follow_middle_line, localize〉, takes the agent
from distinctive state ds1 to distinctive state ds2. This continuous motion is represented by the schema
〈(v1,ds1), a1, (v2,ds2)〉, where v1 and v2 are the views at ds1 and ds2, and the action symbol a1 represents
the sequence of control laws.

〈get_into_corridor, follow_middle_line, localize〉 where get_into_corridor is a trajectory
following control law that moves the agent from ds1 to a, follow_middle_line is a trajectory
following control law that takes the agent from a to b, and localize is a hill-climbing
control law that takes the agent from b to the distinctive state ds2. Environment states a
and b are not distinctive states. At the distinctive state ds2 the agent is facing the wall
ahead and it is equidistant from this wall and the intersection corners.

Distinctive state ds3 is at the same physical location as ds2 but with a different
orientation. When the robot is at ds3, it is facing the open space (corridor) to the
right of ds2. In order to go from distinctive state ds2 to distinctive state ds3, the agent
executes the sequence of control strategies 〈face_space_on_right, localize〉. The schemas
〈(v1,ds1), a1, (v2,ds2)〉 and 〈(v2,ds2), a2, (v3,ds3)〉 are created, where a1 and a2 are
action symbols representing the respective sequence of control laws.

4. Causal graphs

Schemas summarize the continuous interactions of the agent in the environment. This
is done by storing the initial and final distinctive states (and their corresponding views)
for any action execution. By considering only the views associated with the initial and
final distinctive states of a schema, we define the view graph (Section 4.2.1), which relates
different views by actions linking them. By considering sequences of actions as well as

52 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

views, the agent can further distinguish distinctive states. In Section 4.3 we define the

predicate ceq which is the case for distinctive states that are not distinguishable by actions
and views. We then define the causal graph whose nodes are classes of distinctive states
(classes w.r.t. ceq). This representation is akin to the view graph although it imposes further
refinement in the set of environment states that are consistent with the agent experiences.

4.1. Ontology of the causal theory

We use a first order sorted language in order to describe causal graphs. The sorts of such
language include views, actions, action types, action qualitative descriptions, distinctive
states and schemas. Next we present the predicate symbols and axioms associated with
this ontology.

We use the predicate View(ds,v) to represent the fact that v is the view associated with
distinctive state ds. We assume that a distinctive state has a unique view,2,3

∃!v View(ds, v). (2)

However, we do not assume that views uniquely determine distinctive states (i.e.,
View(ds, v)∧View(ds′, v)
→ ds= ds′). This is the case since the sensory capabilities of an
agent may not be sufficient to distinguish distinctive states.

An action has a unique type, either travel or turn, associated with it.4 These
constant symbols define completely the sort of action_types (Axiom 3). The predicate
Action_type(a, type) represents the fact that the type of action a is type. Formally,

turn
= travel, ∀atype {atype= turn∨ atype= travel}, (3)

∃!type Action_type(a, type). (4)

Turn actions have associated a unique qualitative description. The sort of qualitative
descriptions is completely defined by the constant symbols turnLeft, turnRight and
turnAround (Axioms 5 and 6). We use the predicate Turn _desc(a,desc) to indicate that
desc is the qualitative description of the turn action a. Formally,5

UNA[turnLeft, turnRight, turnAround], (5)

∀desc {desc= turnLeft∨ desc= turnRight∨ desc= turnAround}, (6)

Turn_desc(a,desc)→ Action_type(a, turn), (7)

Action_type(a, turn)→∃!desc Turn_desc(a,desc). (8)

A schemarepresents a particular action execution of the agent in the environment. We
use the following predicates to represent information associated with a schema: action(s, a),

2 Throughout this paper we assume that free variables in formulas are universally quantified.
3 The formula ∃!v P (v) means “there exists a unique v s.t. P (v)”. Formally, ∃v∀x [P (x)≡ x = v].
4 The type of an action will be important in the topological theory (Section 5). For completeness of the

presentation we introduce this concept here.
5 The notation UNA[t1, . . . , tn] represents the uniqueness of names axioms for the grounded terms t1, . . . , tn .

These axioms require that ti
= tj for i
= j .

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 53

action a is the action associated with schema s; context(s, ds), ds is the starting distinctive

state associated with the action execution represented by schema s; and result(s, ds), ds is
the ending distinctive state associated with the action execution represented by schema s.
While we require a unique context and action associated with a schema, the result of
a schema is optional (but unique if it exists):

∃!a action(s, a), ∃!ds context(s,ds), result(s,ds)∧ result(s,ds′)→ ds= ds′. (9)

Most often we are interested in complete schemas: those for whom the resulting distinc-
tive state exists. Nevertheless, incomplete schemas allow the representation to account for
common states of incomplete knowledge like “I could take you there, but I cannot tell you
how” [31]. We use the (Causal Schema) predicate CS(s,ds, a,ds′) defined as

CS(s,ds, a,ds′)≡def context(s,ds)∧ action(s, a)∧ result(s,ds′) (10)

to express the fact that schema s represents an execution of action a which took the agent
from distinctive state ds to distinctive state ds′.

An action execution also has metrical information associated with it. This metrical
information represents an estimate of, for example, the distance or the angle between
the distinctive states associated with the action execution. We defer the study of metrical
information associated with schemas until Section 7.

While schemas are explicit objects of our theory, it is convenient to leave them implicit.
We introduce the following convenient notation:6

〈ds, a,ds′〉 ≡def ∃s CS(s,ds, a,ds′),
〈v, a, v′〉 ≡def ∃s,ds,ds′

{
CS(s,ds, a,ds′)∧ View(ds, v)∧ View(ds′, v′)

}
,

〈(v,ds), a, (v′,ds′)〉 ≡def ∃s
{
CS(s,ds, a,ds′)∧ View(ds, v)∧ View(ds′, v′)

}
,

〈ds, type,ds′〉 ≡def ∃s, a
{
CS(s,ds, a,ds′)∧ Action_type(a, type)

}
,

〈ds,desc,ds′〉 ≡def ∃s, a
{
CS(s,ds, a,ds′)∧ Turn_desc(a,desc)

}
.

4.2. The E formulae

The agent’s experiences in the environment, E, are described in terms of CS, View,
Action_type and Turn_desc formulae. Associated with E we have the sets S(E), DS(E),
V(E), A(E) of schemas, distinctive states, views and action constant symbols occurring in
E. We require all these symbols to be different (i.e., uniqueness of names assumption) and
to completely define their corresponding sorts (domain closure assumption):

UNA[s1, . . . , sk], si ∈ S(E), UNA[ds1, . . . ,dsl], dsi ∈DS(E),
UNA[a1, . . . , an], ai ∈A(E), UNA[v1, . . . , vm], vi ∈ V (E), (11)

∀s
∨

si∈S(E)
s = si , ∀ds

∨
dsi∈DS(E)

ds= dsi ,

∀a
∨

ai∈A(E)
a = ai, ∀v

∨
vi∈V (E)

v = vi .

6 Notice that we have “overloaded” the bracket notation depending on the type of its arguments.

54 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
Fig. 3. The agent moves among corridor intersections that have the same view v+. a, b and c are the distinctive
states where this view is observed at.

The axioms above are not only required from a logical point of view, but make sense
from the knowledge representation point of view. Domain closure axioms prevent models
from including objects different from those experienced (named) by the agent. Each of
the agent schemas represents a different experience and the agent names them with a
different schema constant symbol. Different view symbols represent different sensory
input. This is the case since the agent decides what view to associate with a sensory input.
Different distinctive state constant symbols might represent the same environment state.
Nevertheless, we assume that different distinctive state symbols are interpreted by different
elements of the sort of distinctive states and we use the predicate ceq (Causally Equal) to
indicate whether two distinctive states represent the same environment state (Section 4.3).

Finally, the type of actions as well as the qualitative description of turn actions have to
be specified as part of the formulae E:

Action_type(a, type)≡
∨

Action_type(ai ,typei)∈E
[a = ai ∧ type= typei], (12)

Turn_desc(a,desc)≡
∨

Turn_desc(ai ,desci)∈E
[a = ai ∧ desc= desci]. (13)

Definition 1. Given a set E of CS, View, Action_type and Turn_type formulae,

COMPLETION(E)

denotes the union of E with Axioms (11)–(13).

Example 2.Consider the set of experiences E gathered by the agent while navigating the
environment in Fig. 3. The agent moves among intersections by performing action ml. The
sensory input at the different intersections is very similar, and the agent associates the view
v+7 with the different distinctive states it found (i.e., a, b and c).

The elements of E are as follows: Action_type(ml, travel), CS(s1, a,ml, b), CS(s2, b,
ml, c), View(a, v+), View(b, v+), and View(c, v+).

The uniqueness of names axioms associated with E are s1
= s2 and a
= b ∧ a
=
c ∧ b
= c. The domain closure axioms associated with E are ∀s {s = s1 ∨ s = s2},
∀ds {ds= a ∨ ds= b ∨ ds= c}, ∀a {a =ml} and ∀v {v = v+}.

Finally, we also have the axioms ∀a,desc {Turn_desc(a,desc) ≡ false} and ∀a, type
{Action_type(a, type)≡ [a =ml ∧ type= travel]}.

7 As with any other symbol name, the view name is arbitrary. The + in the view name is used to indicate
that the view corresponds to a four corridor intersection. Later we use the symbol ❂ to indicate that the view
corresponds to an end of corridor.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 55

4.2.1. The view graph

The view graph associated with a set of experiences E is the labeled graph 〈Nodes,

Edges,Labels〉 such that:

• Nodes = V (E), Labels = A(E).
• Edges = {(v, a, v′): COMPLETION(E) |= 〈v, a, v′〉}.

When the same view occurs at different environment states, the view graph is not
very informative. The agent has to use information other than the views alone in order
to distinguish different environment states (see next section and Section 5). However,
should the agent have enough sensory capabilities as to distinguish distinctive states by
their views, then the view graph becomes a powerful spatial representation for reliable
navigation. Work in [17,38,51,57] shows how the view graph is consistent with human
navigation abilities.

4.3. The causal theory

We use the predicate ceq(ds,ds′) to denote the fact that distinctive states ds and ds′ are
causally indistinguishable. (In Section 5 we define when distinctive states are topologically
indistinguishable.) Informally, ceq(ds,ds′) is the case whenever distinctive states ds and ds′
are indistinguishable by the actions and views in a given set of experiences E. The theory
CT(E) below defines the extent of the predicate ceq.

The causal theory associated with a set of experiences E, CT(E), is the following nested
abnormality theory (NATs) [36] (see Appendix A):

CT(E) = (14)

COMPLETION(E),

Axioms (2)–(10),

〈ds, a,ds′〉 ∧ 〈ds, a,ds′′〉 → ds′ = ds′′, (15)

CEQ_block = (16)

{ max ceq:
ceq(ds1,ds1),

ceq(ds1,ds2)→ ceq(ds2,ds1),

ceq(ds1,ds2)∧ ceq(ds2,ds3)→ ceq(ds1,ds3),

ceq(ds1,ds2)→ View(ds1, v)≡ View(ds2, v), (17)

ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′2) (18)

}
Axiom (15) states our assumption that actions are deterministic. Axiom (17) states that

indistinguishable distinctive states have the same view. Axiom (18) states that if distinctive
states ds and ds′ are indistinguishable, and action a is performed for both ds and ds′, then

56 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

the resulting distinctive states must also be indistinguishable. Axioms (17) and (18) allow

us to prove that if ds and ds′ are two indistinguishable distinctive states, then any sequence
of actions executed at ds and ds′ will render the same sequence of views.

Given an action symbolA and distinctive state ds, A(ds)= ds′ if the schema 〈ds,A,ds′〉
has been observed, otherwise, A(ds) =⊥. Moreover, A(⊥) =⊥. The definition is then
extended to action sequences in the standard way. Notice that A(ds) is well-defined given
our assumption that actions are deterministic (Axiom (15)).

Lemma 1. Let A denote a sequence of action symbols. Let A(ds) denote the distinctive
state symbol resulting from executing the sequence A starting at distinctive state ds, or ⊥
if A is not defined for ds. Then,

ceq(ds1,ds2)∧A(ds1)
=⊥ ∧A(ds2)
=⊥→ View(A(ds1), v)≡ View(A(ds2), v).

There is a special case in which ceq is an equivalence relation without explicitly stating
the axioms requiring so. This is the case when the result of every action at every distinctive
state is known.

Definition 2. A set of experiences E is completewhenever

E |= ∀a, ds∃ds′〈ds, a,ds′〉.

Theorem 1. Let E be a complete set of experiences and let CEQ_block be defined as
follows:

{ max ceq:
ceq(ds1,ds2)→ View(ds1, v)≡ View(ds2, v),

ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′2)
}

Then, the predicate ceq is an equivalence relation.

Proof. See Appendix B. ✷
When a set of experiences is complete the predicate ceq captures the idea that two

distinctive states are the same if they render the same views under any sequence of actions.

Theorem 2.Let E be a complete set of experiences. Then,

ceq(ds1,ds2)≡ ∀A,v
[
View(A(ds1), v)≡ View(A(ds2), v)

]
.

Proof. See Appendix B. ✷
Example 3. Consider the set of experiences E as in Example 2 (see Fig. 4(a)). Since
the same view is experienced at a, b and c, the extent of ceq is maximized by declaring

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 57
(a) (b)

Fig. 4. (a) Distinctive states a, b and c cannot be causally distinguished. Topological information is needed in
order to distinguish them (see text) (b) a, b and c are distinguished given the new information 〈c, travel, d〉.

Fig. 5. The agent visits the different distinctive states in the order suggested by their numbers. The same view
occurs at the different corners (i.e., view(1) = view(4) = view (8)). Three different causal models can be associated
with the agent exploration of this T-environment (see text).

ceq= true (i.e., ∀x, y ceq(x, y)). Notice that axiom (18) is trivially satisfied since no action
has been executed at c.

Although a, b and c were experienced at different environment states, they are declared
causally indistinguishable. This happens because neither the actions nor the views in E
provide enough information to distinguish them. By using topological information (i.e., the
concepts of path and place, see Section 5) we will be able to distinguish these distinctive
states (see Example 5).

Suppose the agent continues exploring the environment and gets the new information
View(d, v ❂), CS(s3, c,ml, d), as suggested in Fig. 4(b). In virtue of Lemma 1, it can be
seen that ceq(ds,ds′)≡ ds= ds′, and consequently the agent concludes that all distinctive
states refer to different environment states.

Different models of CT(E) generally arise when the set of experiencesE is incomplete
(i.e., the agent has not completely explored the environment) or when weak sensors
determine the same view at different environment states.

Example 4. Consider the environment depicted in Fig. 5. The agent visits the different
distinctive states as suggested by their numbers in the figure. The same travel action
ml is performed when traveling from a corner to the intersection (i.e., 〈1,ml,2〉) and
vice versa (e.g., 〈4,ml,5〉). A turn around action is performed when reaching a corner
(e.g., 〈3, change_path_direction,4〉, 〈7, change_path_direction,8〉, etc.). Assume that the
different corners have the same views (i.e., view(1) = view(4) = view(8), view(3) =
view(7)= view(11)), and views associated with the other distinctive states are different.

Three models of CT(E) can be associated with the explorationE of the T-environment:

58 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
(a) (b) (c)

Fig. 6. (a)–(b). Causal graphs associated with the set of experiences in Figs. 4(a) and 4(b). (c) View graph
associated with the set of experiences in Fig. 4(b). Notice that the causal and view graphs associated with the
experiences in Fig. 4(a) are isomorphic.

1. Model 1: ceq(8,12), ceq(12,8), ceq(x, x).8

2. Model 2: ceq(1,12), ceq(12,1), ceq(x, x).
3. Model 3: ceq(4,12), ceq(12,4), ceq(3,11), ceq(11,3), ceq(2,10), ceq(10,2),

ceq(x, x).

In all the models above, ¬ceq(1,4), ¬ceq(1,8), ¬ceq(4,8). For instance, from
〈1,ml,2〉, 〈4,ml,5〉, and view(2)
= view(5) we conclude that ¬ceq(1,4). Although dstate
12 is at the same environment state as dstate 4, it is possible that ceq(1,12) or ceq(8,12).
This is the case since no action has been performed at dstate 12.

Notice that the models of CT(E) are maximal with respect to the set inclusion for ceq.
The number of elements in the possible extents of ceq could vary, and consequently the
number of different environment states represented by the models of CT(E) will also vary.
For instance, the three models above represent 11, 11 and 9 environment states respectively.

Finally, notice that all the models above are possible since at the causal level turn and
travel actions do not bear any spatial meaning. When we consider topological information,
only model 3 above will be possible (see Example 10).

4.4. The causal graph

The causal graph associated with a set of experiences E is the labeled graph
〈Nodes,Edges,Labels〉 such that:

• Nodes = DS(E)/ceq, Labels = A(E),
• Edges = {([ds], a, [ds]′): COMPLETION(E) |= 〈ds, a,ds′〉}

where DS(E)/ceq denotes the set of equivalence classes of DS(E) modulo ceq, and [ds]
denotes the equivalence class of ds given ceq.

The problem of distinguishing environment states by outputs (views) and inputs
(actions) has been studied in the framework of automata theory [1,2,20,50]. In this
framework, the problem we address is the one of finding the minimum automaton (w.r.t. the
number of states) consistent with a given set of input/output pairs. Without any particular

8 The extent of ceq in model 1 is defined by {(8,12), (12,8)} ∪ {(x, x): x = 1, . . . ,12}.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 59

assumptions about the environment or the agent’s perceptual abilities, the problem of

finding this smallest automaton is NP-complete [1,20].

5. Topological maps

Actions in the causal theory convey patterns of experience but not spatial configuration.
Spatial configuration is considered by the topological theory where actions are categorized
into two classes: turns and travels. Turns and travels are explained by a new ontology, that
of places and paths. Turn actions leave the agent at the same place. Travel actions move
the agent to a new place along a path.

Grouping places into regions allows an agent to reason efficiently about its spatial
knowledge. Regions themselves can be grouped to form new regions forming a spatial
abstraction hierarchy. (In this article we do not consider this hierarchy.) In Section 6 we
define boundary regions associated with paths. Informally, a path has associated three
disjoint regions: the set of places in the path, the set of places to the left of the path, and
the set of places to the right of the path. Boundary regions allow the agent to distinguish
distinctive states, for two distinctive states can be considered different if they are in
different boundary regions of the same path (see Example 17).

Local metrical information derived during action execution is considered in the
topological theory. For instance, the distances among places on a path or the angles among
paths intersecting in a place can be accommodated in the topological map. We study the
use of metrical information in Section 7.

5.1. Ontology of the topological theory

The main purpose of the topological theory TT(E) is to minimize the set of topological
paths and topological places consistent with the given experiencesE. The concepts of path
and place are used to distinguish environment states that are not distinguishable by actions
and views alone. We use the predicate teq(ds,ds′) to indicate that distinctive states ds and
ds′ are topologically indistinguishable. This will be the case, when in addition to not being
distinguishable by views and actions, ds and ds′ are at the same place facing the same
direction along the same path.

Within the sort of places, we distinguish between topological places and regions.
A topological place is a set of distinctive states linked by turn actions. A region is a set
of places. We use the predicates tplaceand is_regionto identify these subsorts.

A path defines an order relation among places connected by travel with no turn actions.
They play the role of streets in a city layout. Among paths, topological paths correspond
to those paths whose places are topological places. We use the predicate tpath to identify
these paths. A path connecting regions is called a route. A path has two directions, pos and
neg, which can be thought of as referring to “upstream” and “downstream” in the order of
places on the path. The path direction also serves as a frame of reference for specifying
the boundary regions describing places to the left and right of the path (see Section 6). The
sort of path directions is completely defined by pos and neg. For a direction dir, −dir is
defined such that −pos= neg and −neg= pos.

60 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
Fig. 7. Dependency among predicates in TT(E). Labels on the graph’s arrows refer to the axioms relating
the predicates pointed by the arrows. Distinctive states related by turns modulo teq (turn_eq) must be at the
same topological place (tplace). Distinctive states related by travels modulo teq (travel_eq) are along the same
topological path (tpath). Knowing at which places and along which paths distinctive state are, determines what
places are on what paths. The order of places on a path is derived from travels among distinctive states along a
path. Since the extents of travel_eq and turn_eq must be defined in order to determine places and paths, one has
to know what distinctive states are teq. The arrows pointing to teq on the top of the diagram indicate that among
the possible interpretations for teq, the preferred models of the theory select those that lead to a map where a
minimum set of paths and places are needed to explain the schemas at the bottom of the diagram.

The relations among distinctive states, places and paths are characterized in terms of
the following predicates: on(pa, p), place p is on path pa; order(pa, dir, p, q) , place p
is before place q , when facing direction dir on path pa; at(ds, p), distinctive state ds is
at place p; and along(ds, pa, dir), distinctive state ds is along path pa in direction dir.
Fig. 7 summarizes the dependencies among the above predicates. Section 5.2 formalizes
these relationships.

Since a map can be arbitrarily large, no finite domain can be adequate and so we
require the sorts of places and paths to be contably infinite. This is not to say that the
topological map has infinite number of places or paths. Given a model of the theory,
the topological map corresponds to the submodel obtained by restricting the different
predicates to topological places, regions, topological paths and routes. Since topological
places are identified with finite sets of distinctive states and topological paths are identified
with finite sequences of distinctive states, the topological map associated with a finite set
of schemas (and so a finite set of distinctive states) has a finite number of topological
places and topological paths. We require infinite sorts of places and paths to avoid models
being non-comparable due to a mismatch in the cardinalities of the sorts, as illustrated in
Example 16.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 61

5.2. The topological theory
The topological theory associated with E, TT(E) , is the following nested abnormality
theory (NATs) [36] (see Appendix A): (the condition that the sorts of places and paths are
countably infinite is formalized by asserting the existence of a bijection between these sorts
and the natural numbers)

TT(E)= (19)

there exist countably infinitely many places,

there exist countably infinitely many paths,

¬∃p[tplace(p)∧ is_region(p)
]
,

¬∃pa[tpath(pa)∧ route(pa)
]
,

COMPLETION(E),

Axioms (2)–(10),

〈ds, a,ds′〉 ∧ 〈ds, a,ds′′〉 → ds′ = ds′′, (Axiom (15))

T_block,

AT_block.

The block T_block defines the properties of the predicates t̂urn, t̂ravel, and �travel. t̂urn
is the equivalence closure of the schemas 〈·, turn, ·〉; t̂ravel and �travel are the equivalence
and transitive closure of the schemas 〈·, travel, ·〉 respectively (Appendix D).

The block AT_block is the heart of our theory. It defines how the agent groups
distinctive states into places, and how places are ordered by paths. The purpose of this
block is to define the extent of the predicates tpath, tplace, at, along, order, on and teq.
The block has the associated circumscription policy

circ tpath� tplace var �SSHpred

stating that a minimum set of topological paths is preferred to a minimum set of topological
places. The symbol � indicates prioritized circumscription (see Appendix A). �SSHpred
stands for the tuple of predicates 〈at, along, order, on, teq, turn_eq, travel_eq〉. The
predicates travel_eq and turn_eq are “auxiliary” predicates used in our topological theory.
Although they are completely defined in terms of teq, t̂urn and t̂ravel, they need to vary in
the circumscription policy. The block AT_block is defined as follows:

AT_block = (20)

{max teq:
teq(ds,ds),

teq(ds1,ds2)→ teq(ds2,ds1),

teq(ds1,ds2)∧ teq(ds2,ds3)→ teq(ds1,ds3), (21)

teq(ds1,ds2)→ View(ds1, v)≡ View(ds2, v), (22)

teq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ teq(ds′1,ds′2), (23)

62 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

teq(ds1,ds2)→∀p[at(ds1,p)≡ at(ds2,p)
]∧ (24)
∀pa,dir
[
along(ds1,pa,dir)≡ along(ds2,pa,dir)

]
,

〈ds, turn,ds′〉→ ¬teq(ds,ds′), (25)

〈ds, turnAround,ds′〉 ∧ 〈ds, turnAround,ds′′〉 → teq(ds′,ds′′), (26)

〈ds1, turnAround,ds2〉 ∧ 〈ds2, turnAround,ds3〉→ teq(ds1,ds3), (27)

at(ds,p)→ tplace(p), (28)

∃!p at(ds,p), (29)

turn_eq(ds1,ds2)≡ ∀p
[
at(ds1,p)≡ at(ds2,p)

]
, (30)

{min turn_eq: (31)

teq(ds1,ds2)∧ teq(ds3,ds4)∧ t̂urn(ds2,ds3)→ turn_eq(ds1,ds4),

turn_eq(ds1,ds2)∧ turn_eq(ds2,ds3)→ turn_eq(ds1,ds3)

}
along(ds,pa,dir)→ tpath(pa), (32)

{min along: (33)

〈ds, travel,ds′〉 → ∃pa, dir
[
along(ds,pa,dir)∧ along(ds′,pa,dir)

]
, (34)

〈ds, turnAround,ds′〉→ along(ds,pa,dir)≡ along(ds′,pa,−dir), (35)

teq(ds1,ds2)→ along(ds1,pa,dir)≡ along(ds2,pa,dir) (36)

}
along(ds,pa,dir)∧ along(ds,pa1,dir1)→ pa= pa1∧ dir= dir1, (37)

at(ds1,p)∧ at(ds2,p)∧ along(ds1,pa,dir)∧
along(ds2,pa,dir)→ teq(ds1,ds2), (38)

[〈ds, turn_desc,ds′〉 ∧ turn_desc
= turnAround ∧ (39)

along(ds,pa,dir)∧ along(ds′,pa1,dir1)
]→ pa
= pa1,

{min order: (40)[〈ds, travel,ds′〉 ∧ at(ds,p)∧ at(ds′, q)∧ (41)

along(ds,pa,dir)∧ along(ds′,pa,dir)
]→ order(pa,dir,p, q),

order(pa,pos,p, q)≡ order(pa,neg, q,p), (42)

order(pa,dir,p, q)∧ order(pa,dir, q, r)→ order(pa,dir,p, r) (43)

}
¬order(pa,dir,p,p), (44)

{min on: at(ds,p)∧ along(ds,pa,dir)→ on(pa,p) } (45)

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 63

on(pa,p)∧ on(pa, q)∧ tpath(pa)→ (46)
∃ds1,dir1,ds2,dir2
[
at(ds1,p)∧ along(ds1,pa,dir1)∧ at(ds2, q)∧
along(ds2,pa,dir2)∧ travel_eq(ds1,ds2)

]
,

{min travel_eq: (47)

t̂ravel(ds1,ds2)→ travel_eq(ds1,ds2),

〈ds1, turnAround,ds2〉→ travel_eq(ds1,ds2)∧ travel_eq(ds2,ds1)

teq(ds1,ds2)∧ teq(ds3,ds4)∧ travel_eq(ds2,ds3)→ travel_eq(ds1,ds4),

travel_eq(ds1,ds2)∧ travel_eq(ds2,ds3)→ travel_eq(ds1,ds3)

}

circ tpath� tplace var �SSHpred (48)

}
We discuss these axioms in turn.
Predicate teq is an equivalence relation. It stands for topologically equal. Whenever

teq(ds1,ds2) is the case, we can consider ds1 and ds2 as denoting the same environment
state: ds1 and ds2 cannot be distinguished by views and actions (Axioms (22) and (23)),
they are at the same place, and they are along the same paths (Axiom (24)).

Axiom (25) states that a turn action takes the agent from one distinctive state to a
different one. In particular we assume that a schema of the form 〈ds,Turn,ds〉 is not
included in the agent’s experiences. Axiom (26) states that there is a unique (modulo teq)
distinctive state resulting from performing a turn around action. After two turn around
actions the agent is back to the same dstate (Axiom (27)). Turn around actions are
special since they link distinctive states along the same path but in opposite directions
(Axiom (35)).

Axioms (29) and (30) state how the agent groups distinctive states into places. Every
distinctive state is at a unique topological place (Axiom (29)). Whenever the agent turns,
it stays at the same topological place (Axiom (30)). Distinctive states grouped into a
topological place should be turn connected (modulo teq) (Axiom (30)). Block (31) states
that the predicate turn_eq corresponds to the relation t̂urn modulo teq.

Travel actions among distinctive states are abstracted to topological paths connecting
the places associated with such distinctive states. Travel axioms are explained in terms of
the two related predicates, along and order. Both of these predicates are the minimum ones
explaining travel actions and satisfying other properties included in Blocks (33) and (40),
respectively.

Block (33) defines the predicate along. Whenever an agent turns around, it stays in the
same path but facing the opposite path’s direction (Axiom (35)). Axiom (36) is a trivial
consequence of the definition of teq but it has to be included in the block so that the
interpretation of along has tuples other than the ones explicitly derived from schemas (see
Example 7).

There are further restrictions on the properties of along. For instance, a distinctive state
is along at most one path (Axiom (37)). Since Axiom (37) provides “negative” information

64 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

about along, it does not need to be included in Block (33) (see [35, Proposition 4]). Ax-

iom (37) prevents the existence of different paths that converge to the same distinctive state
(in Section 5.3 we will make this axiom a default). Finally, Axiom (38) states that there
exist at most one distinctive state indicating a path’s direction at a given place on the path.

Turn actions other than turnAround change the path the initial and final distinctive states
linked by the action are along (Axiom (39)). This axiom allows the agent to conclude the
existence of different paths once it turns right or left at a place (see Example 9). This axiom
prevents the existence of self-intersecting paths (Fig. 15).

Block (40) defines the predicate order. In addition to explaining travel actions, order
defines an order among the places on a path satisfying the following two properties: (i) the
order of places in a given path direction is the inverse of the order of places in the other path
direction (Axiom (42)), and (ii), the order of places in a path is transitive (Axiom (43)).

There are further restrictions on the properties of order: (i) the order of places in
a path should be non-reflexive (Axiom (44)), and (ii) the agent has to have traveled
among the places on the same path (Axiom (46)). Since these requirements provide
“negative” information about order, they do not need to be included in Block (40) (see
[35, Proposition 4]). Notice that we rule out the existence of circular paths (Axiom (44)).
In Section 5.3 we will make this axiom a default.

Axiom (46) requires the agent to have traveled among the places on the same path.
travel_eq defines when two distinctive states are linked by travel actions without turns
(except for turnAround actions) (see Block (47)). Example 8 illustrates how by using
travel_eq the agent can minimize the set of topological paths.

Remark. We will be using the following properties of our theory. Axiom (37) in
combination with Axioms (34), (41), and (44), imply that whenever the agent has directly
traveled between two distinctive states, the places associated with these distinctive states
are different.

Corollary 1. �travel(ds,ds′)→ place(ds)
= place(ds′), where place(ds) denotes the unique
topological place that distinctive state ds is at (Axiom (29)). Moreover, consecutive travels
among distinctive states occur along the same topological path.

Corollary 2.

�travel(ds,ds′)→∃!pa,dir
[
order(pa,dir,place(ds),place(ds′))∧ along(ds,pa,dir)

∧along(ds,pa,dir)
]
.

In order to prove that distinctive states ds1 and ds2 are at different topological places,
one has to prove that ¬turn_eq(ds1,ds2). The following theorem states a strong condition
for when this is the case. Given an equivalence relation R, [x]R denotes the equivalence
class of x according to R.

Theorem 3.Let ds1 be a distinctive state symbol such that

∀ds2 /∈ [ds1]t̂urn, [ds2]teq ∩ [ds1]t̂urn = ∅.
Then, ∀ds2 /∈ [ds1]t̂urn, place(ds2)
= place(ds1).

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 65
Fig. 8. Distinctive states a, b and c cannot be distinguished at the causal level (see Example 3). Using the concepts
of paths and places these dstates are distinguished.

Proof. See Appendix C. ✷
Recall that the interpretations for tpath and tplace are finite. Our circumscription policy

48 and the fact that the sorts of paths and places are infinite implies the following fact:

Theorem 4. Any two models of the SSH topological theory have the same number of
topological paths and the same number of topological places.

Proof. See Appendix C. ✷
However, Theorem 4 does not mean that a unique map is necessarily associated with a

set of schemas. As shown in Example 13 the SSH topological theory could have more than
one non-isomorphic model.

The next examples illustrate the interplay among the axioms in AT_block.

Example 5. Consider the set of experiences E

〈(a, v+), travel, (b, v+)〉, 〈(b, v+), travel, (c, v+)〉
as in Example 3, Fig. 8. From Corollary 1 we deduce that place(a), place(b) and place(c)
are all different places. From Corollary 2, the topological map associated with E has
one topological path and three topological places. Distinctive states a and b can be
distinguished though they are “causally indistinguishable” (i.e., ceq(a, b)∧¬teq(a, b)).

Only distinctive states linked by turn actions can be grouped into a topological place
(Axiom (30)). Under incomplete information this constraint could imply the existence of
more places than the ones needed in a map.

Example 6.Consider the set of experiences E indicated by the formulae

〈a, travel, b〉, 〈b, turnAround, c〉, 〈c, travel, d〉,
in addition to the views associated with the distinctive states. Moreover, assume that views
uniquely distinguish the different distinctive states. The model for TT(E) is presented in
Fig. 9(c). The model has three places and one path. Not having a turn action relating a
and d prevents the agent from grouping these distinctive states into the same place, as
suggested in Fig. 9(b). Next we show why this is the case.

Since views uniquely distinguish distinctive states, then teq(x, y) ≡ x = y . From
the definition of turn_eq (Block (31)), it follows then that turn_eq = t̂urn. Since the
only turn action mentioned in E is the one in schema 〈b, turnAround, c〉, we deduce

66 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
(a) (b) (c)

Fig. 9. (a) The agent navigates a rectangle environment getting the experiences 〈a, travel, b〉, 〈b, turnAround, c〉,
and 〈c, travel, d〉. The corresponding topological map has three places and one path (c) rather than two places
and one path (b). Distinctive states a and d cannot be grouped into the same topological place since they are not
linked by turn actions. Notice that the order of places in the path is not total. Should the agent turn around and
experience the schema 〈d, turnAround, a〉, it will consider (b) as the topological map and disregard (c).

Fig. 10. The agent moves back and forth from one intersection to the other. The second time the agent visits
distinctive states a and b, it gives the names a′ and b′ . From the topological theory it follows that these names
correspond to the previously visited a and b.

that t̂urn(ds,ds′) ≡ [ds = ds′ ∨ {ds = b ∧ ds′ = c} ∨ {ds = c ∧ ds′ = b}]. In particular,
¬turn_eq(a, d). In virtue of Axiom (30) we cannot conclude that a and d are at the same
topological place.

The next example shows the interplay between teq and along as well as the effect of
maximizing teq.

Example 7. Consider the set of schemas 〈a, turnRight, b〉, 〈b, travel, c〉, 〈c, turnAround, d〉,
〈d, travel, e〉, 〈e, turnRight, a′〉, 〈a′, turnRight, b′〉 consistent with an agent going from one
four-way intersection to another (Fig. 10). Let us consider the models of these schemas.
From our axioms, at least one path and three places must exist:

Places Paths
P = {a, b} Pa: b−c d−e
Q= {c, d}
R = {e, a′, b′}
Along teq
along(b,Pa,dir),along(c,Pa,dir) ¬teq(a, b), ¬teq(c, d)
along(d,Pa,−dir),along(e,Pa,−dir) ¬teq(e, a′), ¬teq(a′, b′)

We know that P
= Q and Q
= R. By having teq(a, a′), we can complete the model
such that P = R. The maximization of teq will force the model to have teq(b, b′). By
including Axiom (36) in the Block (33) we are allowed to have a model in which teq(b, b′)
is the case. Notice that a travel action has not been performed at b′ and so the schemas do
not support a tuple of the form along(b′,•,•).

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 67
(a) (b)

Fig. 11. By requiring the agent to have traveled among the places on a same path (Axiom (46)), different paths
can be identified. (a) The agent visits the different distinctive states in the order ds1,ds2, . . . ,ds6; (b) depicts the
topological map associated with (a). Three paths instead of only two are required to explain the agent experiences
(see text).

Example 8.Consider the extension of the previous example where the schema 〈b′, travel,
c′〉 is obtained. Axiom (46) requires the agent to have traveled among places on the same
path. As for places, we check this requirement “modulo” teq, since teq plays the role of
equality in our theory. In this example, the agent concludes that teq(c, c′). Notice that
¬t̂ravel(b, c′) and travel_eq(b, c′) are the case.

By requiring the agent to have traveled among the places on a same path (Axiom (46)),
different paths can be identified. The next example illustrates the case.

Example 9. Suppose the agent explores the environment depicted in Fig. 11(a) obtaining
the following schemas:

〈ds1, travel,ds2〉〈ds2, turnRight,ds3〉〈ds3, travel,ds4〉
〈ds4, turnLeft,ds5〉〈ds5, travel,ds6〉.

We assume that the agent associates different views with the different distinctive states in
the example. Axiom (29) implies that there exist places A, B , C and D (see Fig. 11(b))
such that

at(ds1,A), at(ds2,B), at(ds3,B), at(ds4,C), at(ds5,C), at(ds6,D).

Moreover, Corollary 1 implies that A
= B, B
= C, C
=D. Under our assumption that all
distinctive states in the example have different views, it follows that teq(ds1,ds2)≡ ds1 =
ds2 and thus t̂urn = turn_eq. Since ¬t̂urn(ds1,ds3), ¬t̂urn(ds1, d5) and ¬t̂urn(ds2,ds6)
are the case, A, B , C and D are all different. Axiom (34) implies that there exist paths
Pa, Pa1, Pa2, and directions dir, dir1, dir2, such that:

order(Pa,dir,A,B), along(ds1,Pa,dir), along(ds2,Pa,dir),
order(Pa1,dir1,B,C), along(ds3,Pa1,dir1), along(ds4,Pa1,dir1),
order(Pa2,dir2,C,D), along(ds5,Pa2,dir2), along(ds6,Pa2,dir2).

Schemas 〈ds2, turnRight,ds3〉 and 〈ds4, turnLeft,ds5〉, and Axiom (39) implies that Pa
=
Pa1, Pa1
= Pa2. Since teq(ds1,ds2) ≡ ds1 = ds2 and there is not turnAround schemas
in E, then t̂ravel = travel_eq. Consequently ¬t̂ravel(ds1,ds4) and ¬t̂ravel(ds1,ds5) are
the case, and in virtue of Axiom (46) it follows that Pa
= Pa2.

68 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
Fig. 12. The agent visits the different distinctive states in the order suggested by their numbers. The
same travel action ml is performed when traveling from a corner to the intersection (i.e., 〈1,ml,2〉)
and vice versa (i.e., 〈4,ml,5〉). A turn around action is performed when reaching a corner (i.e.,
〈3, turnAround,4〉, 〈7, turnAround,8〉, etc.). Assume that the different corners have the same views (i.e.,
view(1) = view(4) = view(8), view(3) = view(7) = view(11)), and views associated with the other distinc-
tive states are different. Three different causal models can be associated with the agent exploration of this
T-environment but only one of them is consistent with topological information (see text).

Example 10.Consider the same T-environment exploration presented in Example 4 (see
Fig. 12). When using only causal information, three possible models are associated with
the exploration. When using topological information, only one of these models is possible
as illustrated next.

The three causal models associated with T-environment are:

1. Model 1: ceq(8,12), ceq(12,8), ceq(x, x).
2. Model 2: ceq(1,12), ceq(12,1), ceq(x, x).
3. Model 3: ceq(4,12), ceq(12,4), ceq(3,11), ceq(11,3), ceq(2,10), ceq(10,2),

ceq(x, x).

We are to show that only model 3 above is consistent with topological information.
For this we show the following three facts: (i) any model must have at least 2 tpaths and
5 tplaces (since there is not a turn action between dstates {5,6} and dstates {2,9,10},
these dstates are not at the same topological place, as suggested by Fig. 12) (ii) there is a
model with 2 tpaths and 5 tplaces (this is the intended model), (iii) a model of ¬teq(2,10)
must have at least 6 tplaces. This last statement implies that models 1 and 2 above are not
consistent with topological information.

From 〈1, travel,2〉 and 〈2, travel,3〉, Corollary 2 implies that there exist a path Pa1 and
direction dir1 such that

along(1,Pa1,dir1), along(2,Pa1,dir1), along(3,Pa1,dir1).

Moreover, Corollary 1 implies that

place(1)
= place(2), place(2)
= place(3), place(1)
= place(3).

From 〈3, turnAround,4〉, 〈4, travel,5〉, Axiom (35) and Corollary 2, it is the case that
along(4,Pa1,−dir1), along(5,Pa1,−dir1). Similarly, from 〈5, turnLeft,6〉, 〈6, travel,7〉,
〈7, turnAround,8〉, 〈8, travel,9〉 we conclude that there exist a path Pa2 and direction dir2
such that Pa1
= Pa2 (Axiom (39)) and

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 69

place(5)
= place(8), along(6,Pa2,dir2), along(7,Pa2,dir2),
along(8,Pa2,−dir2), along(9,Pa2,−dir2).

From 〈9, turnRight,10〉, 〈10, travel,11〉, 〈11, turnAround,12〉, there exist path Pa3 and
direction dir3 such that Pa2
= Pa3 and

along(10,Pa3,dir3), along(11,Pa3,dir3), along(12,Pa3,−dir3).

Theorem 3 allow us to conclude that place(5) /∈ {place(1),place(2),place(3)}. The same
argument shows that place(8) /∈ {place(1),place(2),place(3),place(5)}. Consequently, a
minimal model of the theory must have at least two tpaths and five tplaces.

Notice that in the intended model of the T-environment, Pa1 = Pa3, dir1 = dir3,
teq(2,10), teq(3,11) and teq(4,12). This model is indeed a model of TT(E) since at least
two topological paths and five topological places are needed to explainE, and consequently
any model must have two topological paths and five topological places (Theorem 4).

If ¬teq(2,10) were the case, then Theorem 3 allows to conclude that place(9) /∈
{place(1),place(2),place(3),place(5),place(8)} and so the model will have at least six
tplaces. Consequently teq(2,10) has to be the case in a minimal model of the theory.

Example 11.Consider an extension of the previous example where we have the additional
schemas 〈9, turnLeft,5′〉, 〈5′, turnRight,9〉. In this case, the intended model has four places
and two paths. Notice that now the agent can conclude that place(5)= place(2) by making
teq(5′,5) and so turn_eq(5,2).

The theory does not assume a “rectilinear” environment where paths intersect at most
in one place. Consider the next example.

Example 12.Suppose the agent explores the environment depicted in Fig. 13 obtaining the
following schemas:

〈ds1, turnAround,ds2〉 〈ds2, turnAround,ds1〉 〈ds1, travel,ds3〉
〈ds3, turnRight,ds4〉 〈ds4, turnLeft,ds3〉 〈ds3, travel,ds6〉
〈ds6, turnLeft,ds7〉 〈ds7, travel,ds4〉
〈ds4, turnRight,ds5〉 〈ds5, travel,ds2〉.

We assume that views uniquely distinguish the different distinctive states. From
Corollary 1 there exist the different places A, B , and C suggested in the figure. In ad-

Fig. 13. The environment in (a) illustrates a case where different paths intersect at more than one
place. Suppose the agent explores the environment by visiting the different distinctive states in the order
ds1,ds2,ds1,ds3,ds4,ds3,ds6,ds7,ds4,ds5,ds2; (b) depicts the topological map associated with this environ-
ment.

70 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

dition, Corollary 2 implies the existence of a path, Pa, and direction, say pos, such that

order(Pa,pos,A,B), order(Pa,pos,B,C), order(Pa,pos,A,C). Moreover, from sche-
mas {〈ds7, travel,ds4〉, 〈ds5, travel,ds2〉} and Axiom (34), there exist paths Pa1, Pa2, and
directions dir1, dir2, such that

order(Pa1,dir1,C,B)∧ along(ds7,Pa1,dir1)∧ along(ds4,Pa1,dir1),

order(Pa2,dir2,B,A)∧ along(ds5,Pa2,dir2)∧ along(ds2,Pa2,dir2).

Since along(ds6,Pa,pos), from Axiom (39) and schema 〈ds6, turnLeft, ds7〉 we
conclude that Pa
= Pa1. Since we are minimizing paths, by setting Pa2 = Pa and dir2 =
neg, we obtain a minimal model for E. Notice that in this model, places B and C belong
to two different paths, Pa and Pa1.

There are some patterns of experience in which our theory is not applicable. In
particular, Axiom (44) rules out circular paths and Axiom (37) rules out experiences
where different paths merge into the same distinctive state. In Section 5.3 we extend the
topological theory to deal with these type of paths.

Since the positive and negative direction of a path are chosen arbitrarily (Axiom (34)),
there is not a unique minimal model for TT(E). Given any model M of TT(E) one could
define another model M ′ of TT(E) by choosing a path pa in M and reversing the roles of
the directions pos and neg for pa. We will consider these “up to path direction isomorphic”
models to be the same. However, no “up to path direction isomorphic” topological maps
can explain the same pattern of experience. This happens because the experiences are
incomplete, or the agent’s sensors are weak.

Example 13. Assume that the agent visits places A,B,C,D,E,F,C in the order
suggested by Fig. 14. Assume also that intersections look alike. In particular, places B
and C look alike. Given this information, the agent is not able to decide whether it is
back to B or C and consequently two minimal models can be associated with the set of
experiences in this environment (Figs. 14(b), (c)).

Metrical information can be used to deduce the correct topology (see Example 18).
However, if the agent accumulates more information, by turning at C and traveling to D,
then topological information suffices to deduce that the topology of the environment is the
one in Fig. 14(b). This is the case since the views at C and D are different.

(a) (b) (c)

Fig. 14. (a) The agent goes around the block visiting places A,B, . . . ,F,C in the order suggested in the
figure. Intersections B and C look alike to the agent. (b) and (c) represent two possible representations for the
environment in (a). Topological information is not enough to decide whether the agent is back to B or C .

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 71
(a) (b)

Fig. 15. (a) Self-intersecting paths. (b) Convergent paths.

5.3. Coping with self intersecting paths

The topological theory presented in the previous section is adequate for representing
environments where “complex” paths configurations do not occur. In particular, we assume
that self-intersecting and convergent paths do not exist (Fig. 15). In this section we
extend our theory to deal with these types of paths. Converging paths are the standard
counterexample for the axiom stating that distinctive states are along a unique path
(Axiom (37)). We replace Axiom (37) by the block

{min convergent_paths:[
along(ds,pa,dir)∧ along(ds,pa1,dir1)

∧¬[pa= pa1∧ dir= dir1]]→ convergent_paths(pa,pa1)

}
Self-intersecting paths are the standard counterexample for the axioms stating that turning
changes the path (Axiom (39)), at a place there is at most one distinctive state along a path
direction (Axiom (38)), and the order of places in a path is not reflexive (Axiom (44)). We
replace these axioms by the block

{min self _intersecting:

order(pa,dir,p,p)→ self _intersecting(pa),[〈ds, turn_desc,ds′〉 ∧ turn_desc
= TurnAround∧ along(ds,pa,dir)

∧along(ds′,pa,dir1)
]→ self _intersecting(pa),[

at(ds1,p)∧ at(ds2,p)∧ along(ds1,pa,dir)∧ along(ds2,pa,dir)

∧¬teq(ds1,ds2)
]→ self _intersecting(pa)

}
While we have defined convergent and self-intersecting paths, we still need to state that

by default these kind of paths do not exist. This is accomplished by giving priority to the
minimization of these two predicates over any other predicate. The new circumscription
policy associated with our theory becomes

circ self _intersecting� convergent_paths� tpath� tplacevar �SSHpred. (49)

The new theory is a conservative extension of our previous theory, since any topological
map with respect to our previous theory is a topological map according to the new theory.
In particular, the maps associated with Examples 5–12 are still valid maps for the new
theory. Next we study some cases we could not handle before.

72 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
Fig. 16. Distinctive state a is along two different paths. These two paths are declared convergent paths in the
model of our theory.

Example 14.Suppose the agent has experienced the following schemas (Fig. 16):

〈b, travel, d〉 〈d, turnAround, c〉 〈c, turnRight, e〉
〈e, travel, a〉 〈a, turnAround, b〉.

From Axiom (34) we know that exist paths Pa, Pa1 and directions dir, dir1 such
that along(b,Pa,dir), along(d,Pa,dir), along(e,Pa1,dir1) and along(a,Pa1,dir1) are
the case. Moreover, from Axiom (35) it follows that along(b,Pa1,−dir1). We have two
possible models for these schemas:

• Model 1. In this model Pa
= Pa1. Consequently, self _intersecting = false and
convergent_paths(Pa,Pa1) are the case.

• Model 2. In this model Pa= Pa1. Consequently, self _intersecting(Pa) and
convergent_paths= false are the case.

We prefer model 1 over model 2 according to the circumscription policy (49).

Example 15.Consider the set of experiences E

〈(a, v+), travel, (b, v+)〉, 〈(b, v+), travel, (c, v+)〉
as in Example 3. In the intended minimal model there are one path and three places. There
are however other interpretations for the schemas. For example, the agent traveled from a

to b along path Pa and then “changed” paths to travel from b back to a along path Pa1. In
this “model” we have teq(a, c), Pa
= Pa1 and convergent_paths(Pa,Pa1). The model has
two paths and two places (less places than the intended model). By prioritizing paths over
places we get rid of this model. The prioritization conveys the heuristic that “paths help
to determine places”. In general if “concept X helps to determine concept Y ” then X has
higher priority than Y in our circumscription policy.

Our requirement of infinite places and paths allow us to compare any two models of the
theory (see Theorem’s 4 proof). This requirement also allow us to deal with unexpected
models as illustrated in the next example.

Example 16.Consider the schema 〈a, travel, b〉 where a and b have the same view. The
intended model has one topological path and two topological places. One expects that the
path is not circular (self-intersecting), and so the existence of two places. However, without
requiring the existence of enough places, the following model is also possible:

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 73

places = {A}, tplace = {A} paths= {Pa}, tpaths= {Pa}

teq(a, b) self _intersecting(Pa)
at(a,A),at(b,A) along(a,Pa,pos),along(b,Pa,pos)

order(Pa,pos,A,A)

In this model, self _intersecting(Pa) must be the case, since the universe of places only
has one place. Notice that when comparing two models according to the circumscription
policy (49), the universe of paths and places in the models has to be the same. One can
vary the interpretation of tpath, tplace, and so on, but not the universe of paths and places.
The model above is ruled out by requiring the universe of places to have enough (infinite)
places.

6. Boundary regions

Topological paths play the role of streets in a city layout map. Streets are often used as
a reference for specifying the location of a given place: a place will be either on the given
street or in one of the “two sides” —left or right—of the street.

Mathematically, the concept of left and right of a topological path is related to the
topological one of the interior and exterior of a curve. While not all curves have a well
defined interior and exterior (for example, consider a spiral, or a fractal curve), closed
not self-intersecting curves—Jordan curves—do have associated interior and exterior sets:
when the curve is removed, the plane is divided into two disjoint connected sets [3].
Moreover, in order to go from the interior to the exterior (or vice versa) of the curve γ ,
one has to cross γ . Our analogy of topological paths and mathematical curves breaks down
because in general the agent might be able to travel from one side of the path to the other
without crossing the path. This can happen because of the agent’s inability to detect that
it has crossed the path, or (more often) because paths are not long enough to divide the
environment into two regions (for example, consider a dead-end street).

In order to determine boundary relations—the location of a place with respect to a
path—we formally state the following heuristic. Suppose the agent is at an intersection
on a given path, and it then turns right. If the agent now travels, any place it finds while
traveling with no turns will be on the right of the starting path. While this heuristic draws
the correct conclusion in a rectilinear environment, it may draw incorrect conclusions when
paths are not straight. Consequently, we state our heuristic as a “defeasible” rule so as not
to conclude a boundary relation when inconsistent sources of information exist (Fig. 17).

TurnRight and turnLeft actions are used to define the relative orientation between paths
at a given place (Section 6.1), relations that are then used to infer whether a place is on the
left or the right of a given path (Section 6.2). The boundary relations inferred by an agent
may not be complete: the agent does not necessarily know the location of each place with
respect to each path. Nevertheless, the boundary relations inferred by the agent are useful
to distinguish places otherwise not distinguishable by the topological maps as described so
far (see Example 17).

74 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
(a) (b) (c)

Fig. 17. Different environments illustrating how our default to determine boundary relations work. In (a) we
conclude by default that place C is to the left of the path from A to B. In (b) we conclude nothing about the
location of place D with respect to this path. In (c) we conclude that place C is to the left of the path from A to
B. This is the case since there is no information to conclude otherwise.

6.1. Qualitative orientation of paths at a place

We extend the topological level in order to represent the relative orientation among paths
that intersect at a given place. We use the predicates

totheLeftOf (p,pa,dir ,pa1,dir1), totheRightOf(p,pa,dir ,pa1,dir1)

to represent the facts that (i) p is a place on both paths, pa and pa1, and (ii), when the agent
is at place p facing on the direction dir of pa, after executing a turn left (right) action, the
agent will be facing on the direction dir1 of pa1 (see Fig. 18).

The predicates totheLeftOf and totheRightOf are derived from the actions performed
by the agent at a place:

{min totheRightOf , min totheLeftOf : (50)[〈ds, turnRight,ds1〉 ∧ at(ds,p)∧ along(ds,pa,dir)∧ along(ds1,pa1,dir1)
]

→ totheRightOf (p,pa,dir,pa1,dir1),[〈ds, turnLeft,ds1〉 ∧ at(ds,p)∧ along(ds,pa,dir)∧ along(ds1,pa1,dir1)
]

→ totheLeftOf (p,pa,dir,pa1,dir1).

}

6.2. Left and Right of a path

A path has associated two regions: the places to the left of the path and the places to
the right of the path. We use the predicates leftOf (pa,dir , lr) and rightOf (pa,dir , rr) to
denote that region lr (rr) is the left (right) region of path pa with respect to the path’s
direction dir. The properties of these predicate are as follows:

∃!lr{leftOf (pa,dir, lr)}, ∃!rr{rightOf (pa,dir, rr)}, (51)

leftOf (pa,dir, r)≡ rightOf (pa,−dir, r), (52)

{min is_region: LeftOf (pa,dir, lr)→ is_region(lr)}, (53)

leftOf (pa,dir, lr)∧ leftOf (pa1,dir1, lr)→ pa= pa1. (54)

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 75
Fig. 18. Path Pa1 is to the right of path Pa at place p1. Place p is after place p1 on path pa1. By default, we
conclude that place p is to the right of path pa.

Axiom (51) states the existence and uniqueness of a path’s left/right regions. The domain
of leftOf is restricted by Block (53) and Axiom (54). Since left/right regions of a path
interchange when changing the path direction (Axiom (52)), constraining the domain of
leftOf imposes similar constraints on the domain of rightOf .

We use the predicate in_region(p,r) to indicate that place p is in region r . The domain
of in_region is constrained by Axiom (55). The properties of in_region are defined in Block
(56). A path has associated three disjoint set of places: the places on the path, and the places
to the left/right of the path (Axioms (58) and (59)). Boundary relations are derived accord-
ing to Axioms (60) and (61) (see Fig. 18): (the symmetry between leftOf and rightOf
defined by Axiom (52) let us write our axioms in terms of only one of these predicates)

in_region(p, r)→ is_region(r), (55)

{min in_region: (56)

{ in_region: (57)

on(pa,p)∧ leftOf (pa,dir, lr)→¬in_region(p, lr), (58)[
leftOf (pa,dir, lr)∧ rightOf (pa,dir, rr)∧ (59)

in_region(p, lr)
]→¬in_region(p, rr),[

totheRightOf (p1,pa,dir,pa1,dir1)∧ order(pa1,dir1,p1,p)∧ (60)

rightOf (pa,dir, rr)∧¬Ab(pa,p)
]→ in_region(p, rr),[

totheLeftOf (p1,pa,dir,dir1,pa1)∧ order(pa1,dir1,p1,p)∧ (61)

leftOf (pa,dir, lr)∧¬Ab(pa,p)
]→ in_region(p, lr)

}
}

Block (56) defines the extent of the predicate in_region. The outer preference minimizes
in_region, so its positive instances only reflect actual observations. Normally boundary
relations are false. This is the case since by default the agent does not know the location
of a place with respect to a given path. The inner block (57) states under what conditions
the agent can derive a boundary relation. For instance, according to Axiom (60), if at place
p1 path pa1 is to the right of path pa, and place p is after p1 on path pa1, then normally
it is the case that p is on the right of pa (see Fig. 18). The predicate Ab inside Block
(57) is the auxiliary “abnormality” predicate associated with a NAT block (Appendix A).

76 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

(See [36] for a similar formalization of the standard example: objects normally do not fly;

birds normally do.) Some sufficient conditions for whenAb is the case can be derived from
Block (57) as follows.

Let leftOf ′ and rightOf ′ denote the following abbreviations:

leftOf ′(p,pa,dir)≡ ∃lr
{
leftOf (pa,dir, lr)∧ in_region(p, lr)

}
,

rightOf ′(p,pa,dir)≡ ∃rr
{
rightOf (pa,dir, rr)∧ in_region(p, rr)

}
,

which allow us to implicitly refer to the left and right regions associated with a path (these
abbreviations make sense given Axiom (51)). Axioms inside Block (57) can be rewritten
as follows:

on(pa,p)→¬ leftOf ′(p,pa,dir) ∧ ¬ rightOf ′(p,pa,dir),

leftOf ′(p,pa,dir)→¬ rightOf ′(p,pa,dir),[
totheRightOf (p1,pa,dir,pa1,dir1)∧ order(pa1,dir1,p1,p)∧
¬rightOf ′(p,pa,dir)

]→ Ab(pa,p),[
totheLeftOf (p1,pa,dir,dir1,pa1)∧ order(pa1,dir1,p1,p)∧
¬ leftOf ′(p,pa,dir)

]→ Ab(pa,p).

Using this rewriting of Block (57), one can derive the following (among others)
sufficient conditions to deduce Ab:

on(pa,p)∧ [totheRightOf (p1,pa,dir,pa1,dir1)∧ (62)

order(pa1,dir1,p1,p)
]→ Ab(pa,p),[

totheRightOf (p1,pa,dir,pa1,dir1)∧ order(pa1,dir1,p1,p)∧ (63)

totheLeftOf (p2,pa,dir,pa2,dir2)∧ order(pa2,dir2,p2,p)
]

→ Ab(pa,p),[
totheRightOf (p1,pa,dir,pa1,dir1)∧ order(pa1,dir1,p1,p)∧ (64)

totheRightOf (p2,pa,−dir,pa2,dir2)∧ order(pa2,dir2,p2,p)
]

→ Ab(pa,p).

Conditions (62)–(64) show sufficient conditions for when Ab is the case, and
consequently when the agent should not deduce boundary relations. (Condition (64) uses
the symmetry between leftOf ′ and rightOf ′ defined by Axiom (52).) These conditions are
in terms of predicates others than in_region, leftOf and rightOf whose extent is the purpose
of Blocks (56) and (57).

6.3. Adding boundary relations to the topological map

We update the topological theory by including Axioms (50)–(61) inside the block
AT_block (Section 5.2), and the new circumscription policy becomes

circ¬in_region� tpath� tplace var �newSSHpred

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 77

where �newSSHpred stands for the tuple of predicates
〈 at, along, order, on, teq, turn_eq, travel_eq,

totheRightOf, totheLeftOf, leftOf , rightOf , is_region

〉.
The circumscription policy states that Axioms (60) and (61) should be used to draw
conclusions even at the expense of having more paths or more places on the map. This
is achieved by maximizing in_region over tpath in the circumscription policy. This policy
also prevents the theory from preferring pathological tpaths and tplaces. By maximizing
the extent of in_region at the expense of having possibly more paths or more places,
boundary relations determine distinctions among environment states that could not be
derived from the connectivity of places alone. The next example illustrates the case.

Example 17.Consider an agent visiting the different corners of a square room in the order
suggested by Fig. 19(a). In addition, suppose the agent’s sensory apparatus allows it to
define views by characterizing the direction of walls and open space. Accordingly, the
agent experiences four different views, v1–v4, in this environment.

The agent’s experiences, E, in this environment are:

View(ds1, v1), View(ds2, v2), View(ds3, v1), View(ds4, v2), View(ds5, v1),

〈ds1, turnRight,ds2〉, 〈ds2, travel,ds3〉, 〈ds3, turnRight,ds4〉, 〈ds4, travel,ds5〉.
Suppose that the agent does not use boundary regions when building the topological

map. From 〈ds3, turnRight,ds4〉 and Axiom (39) we can deduce that Pa
= Pb in Fig. 19(b).
Then the minimal topological model associated with E has two paths and two places. In
this model, teq(ds1,ds5) is the case. The environment looks perfectly symmetric to the
agent (Fig. 19(b))!!

Suppose now that the agent relies on boundary regions. Let P , Q, R, be the topological
places associated with d1, d3 and d5 respectively. From Axiom (34), let Pa, Pb, dira and
dirb be such that

order(Pa,dira,P,Q), along(ds2,Pa,dira), along(ds3,Pa,dira),

order(Pb,dirb,Q,R), along(ds4,Pb,dirb), along(ds5,Pb,dirb),

(a) (b) (c)

Fig. 19. (a) Sequence of actions followed by an agent while navigating a square room. Starting at distinctive
state ds1, distinctive states are visited in the order suggested by their number. (b) and (c) depict the resulting
topological map without and using boundary regions, respectively.

78 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

are the case. From Block (50) we conclude that totheRightOf (Q,Pa,dira,Pb,dirb). In the

proposed model, the extent of in_region is maximized by declaring Ab= false inside Block
(57) and consequently (Axiom (60)) in_region(R, right(Pa,dira)) where right(Pa,dira)
denotes the right region of Pa when facing dira (Axiom (51)). Moreover, from Block (56)
we deduce in_region(p, r)≡ [p =R ∧ r = right(Pa,dira)]. Finally, from Axiom (58) we
conclude P
= R since on(Pa,P) is the case. The resulting topological map is depicted in
Fig. 19(c).

Boundary relations are in general not enough to distinguish different environment states.
This is the case when the agent has weak sensors, the environment is symmetric, or the
agent’s experiences are incomplete (see Example 19). The use of local metrical information
could help on those cases although metrical uncertainty could render this extra information
useless. We discuss this issues in the next section.

7. Using local metrical information

Action executions have associated metrical information representing the observed
magnitude of the action. For instance, after traveling the agent may have an estimate of
the distance between the “end places” of the travel action, and after turning, the agent
may have an estimate of the angle turned. Different kind of metrical estimates could be
associated with a travel or turn action. For example, the agent could measure the arc length
associated with a travel action. In addition, it could measure the minimum distance to an
object on the left and the right sides at each point along the trajectory associated with a
travel action [31].

Action’s executions local metrical information is integrated into frames of reference
associated with topological objects:

• Each path has associated a one dimensional frame of reference which assigns a position
to each place in the path.

• Each place has associated a radial frame of reference which assigns a heading (angle)
to each path the place belongs to.

• Regions or places might have associated two dimensional frames of reference which
assign real valued tuples to certain places. Local analog maps [4,15,60] can also be
associated with places [31].

As positions and headings are derived from noisy data, there is uncertainty associated
with their real values. Different representations for this uncertainty are possible: intervals,
probability distribution functions, etc. As the agent repeatedly navigates among the same
places and paths, new measure estimates are taken into account to update the uncertainty
associated with positions and headings. In order to propagate uncertainty about the real
value of positions and headings we use the compound and merge operations [56]. These
operations take different forms depending on how one represents uncertainty as well as
on the dimensionality of the variables’ domains. In our current work we use intervals to
represent uncertainty in position and headings, and the compound and merge operations

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 79

correspond to add and intersect intervals, respectively. Nevertheless, the discussion in this

section applies to other forms of representing uncertainty as long as the compound and
merge operations are provided for that representation.

We use the predicate action_execution(s, Int) to state that the interval Int represents
an estimate of the metrical information about the execution of the action associated with
schema s. We use the notation 〈ds, (type Int),ds′〉, where type is travel or turn, as an
abbreviation for the formula

∃s, a {CS(s,ds, a,ds′)∧ action_type(a, type)∧ action_execution(s, Int)
}
.

How the estimates are to be interpreted depends on the type of action (turn or travel) the
schema refers to. In the next sections we will describe how to do so.

7.1. One dimensional frames of reference

A path has associated a one dimensional frame of reference which assigns a location
to each place on the path. This location is a real number, representing the “distance” with
respect to an arbitrary but fixed place on the path. This real value represents a quantity
whose magnitude is derived by the robot while navigating the environment. The units of
this quantity can be meters, feet, or number of wheel rotations. Hereafter, we assume that
all quantities are given in the same units.

The distance among places on a path are derived from estimates acquired when traveling
among places on the path. These estimates have to be consistent so that positions can be
associated with places. Next we formalize these ideas.

The position of a place on a path is represented by the predicate position1(path,place,
position). Positions along a path are unique and only assigned to places belonging to the
path:

position1(pa,p,pos)∧ position1(pa,p,pos′)→ pos= pos′, (65)

position1(pa,p,pos)→ on(pa,p). (66)

The distance between two places in a path is defined as the absolute value of the differ-
ence between their corresponding positions on the path. The predicate path_distance(pa,
p,q,d) represents the fact that the distance between places p and q on path pa is d. The
predicate path_distance is defined as follows:

path_distance(pa,p, q, d)≡ (67)

∃posp, posq
{
position1(pa,p,posp)∧ position1(pa, q,posq)∧
d = |posp − posq |

}
.

Estimates of the distance between places on a path are gathered while the agent
navigates the environment. The predicate path_distance≈(pa,p,q, I d) represents the fact
that the closed interval Id is an estimate of the distance between places p and q on path pa.
Distance estimates are derived from experiences of the robot in the environment. Distance
estimates are “compounded” to derive new estimates from known ones. Formally,

80 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

{min path_distance≈:
[〈ds, (travel Id),ds′〉 ∧ at(ds,p)∧ at(ds′, q)∧ along(ds,pa,dir)∧ (68)

along(ds′,pa,dir)
]→ path_distance≈(pa,p, q, Id),[

order(pa,dir,p, q)∧ order(pa,dir, q, r)∧ path_distance≈(pa,p, q, Ipq)∧ (69)

path_distance≈(pa, q, r, Iqr)
]→ path_distance≈(pa,p, r, Ipq + Iqr)

}
where the addition of intervals is defined in the usual way: [a, b]+ [c, d] = [a+ c, b+ d].
Finally, distance estimates are “merged” in order to have the “best” estimate associated
with a distance. The predicate path_distance⊗(pa,p, r, Id) denotes the merging of distance
estimates:

path_distance⊗(pa,p, r, I)≡def I =
⋂
{Iest: path_distance≈(pa,p, q, Iest)}. (70)

The distance between places on a path must be compatible with all of its estimates.
Formally,

path_distance⊗(pa,p, q, Id)→∃d ∈ Id path_distance(pa,p, q, d). (71)

When the agent has distance estimates available, path_distance⊗(pa,p, q, Id) is always
the case for some interval Id . In a topological map Id
= ∅ (Axiom (71)) and it should be
possible to assign locations to places on a path as specified by Axiom (67). The actual
values of positions are not that important (there could be many ways to satisfy the metrical
constraints). Their main use is to rule out possible interpretations of the theory where such
positions do not exist given Axiom (71).

7.2. Radial frames of reference

Each place has a local frame of reference w.r.t. which path headings are associated.
This information is represented by the predicate radial(p,pa,dir ,h) denoting the fact
that when the agent is located at place p, path pa could be followed in direction dir by
facing the heading h w.r.t. the radial frame of reference local to p. Headings take values
in [0,2π). The formalization of radial frames of reference follows the same steps as for
one dimensional frames of reference. Estimates of the angle between paths at a place are
gathered from turn actions. Angle estimates are compounded and merged as we did for
distances among places in a path. We use the predicates angle(p,pa,dir ,pa1,dir1 ,ang),
ang is the angle the agent will have to turn to face path pa1 in direction dir1 when it is
at place p facing path pa in direction dir; angle≈(p,pa,dir ,pa1,dir1 , I ang), Iang is an
estimate of the angle at place p between path pa in direction dir and path pa1 in direction
dir1.

7.3. Two dimensional frames of reference

While radial and one dimensional frames of reference are associated with any place
and path, respectively, there is not a general topological theory asserting when to create

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 81

a two dimensional frame of reference, what places should be included in a such frame

of reference, or how to assign place locations consistent with the estimates of distances
and angles gathered by the agent. Having a global frame of reference including all places
in the map is usually inappropriate since the uncertainty associated with some places’
locations in such a frame of reference may not allow the agent to draw useful conclusions.
Instead, the agent can have multiple frames of reference as well as relations among the
different frames of reference [31,40]. As the agent explores the environment, new frames
of reference are created when the current’s location uncertainty with respect to the current
frame of reference is larger than a given threshold [16,41].

The problem of assigning locations to places given some metrical constraints can
be solved by borrowing methods from different fields. For example, estimation theory
tells us how to estimate the true value of a given set of variables given noisy
observations of the relations between those variables [18,56]. The robotics community has
developed algorithms to solve a network of spatial relations [12–14,41]. Techniques from
multidimensional scaling [6] and nonlinear programming [45] can also be used.

A topological map does not explicitly represent the distance or direction between two
arbitrary places. In order to do so, distances between places on a path as well as the angles
between paths at a place must be combined. We use the predicate location2(p,q, l) to
indicate that the location of place q with respect to the two dimensional frame of reference
associated with place p is l (a real valued pair).

When restricted to environments with “straight” paths, it is possible to state when a two
dimensional frame of reference is compatible with the actual experiences of the robot. The
next axioms state this requirement:

location2(p,p1, lp1)∧ location2(p,p2, lp2)∧ path_distance⊗(pa,p1,p2, Id)

→ |lp1 − lp2| ∈ Id , (72)[
location2(p,p1, lp1)∧ location2(p,p2, lp2)∧ location2(p,p3, lp3)∧ (73)

order(pa,dir,p1,p2)∧ order(pa′,dir′,p2,p3)∧
angle⊗(p2,pa,dir,pa′,dir′, Iang)

]
→ angle(− �lp2lp1, �lp2lp3) ∈ Iang,

where angle(�v, �w) denotes the angle in [0,2π) from vector �v to vector �w. When curved
paths are possible, the predicate path_distance represents distance along the path, not
straight-line distance between end point. To handle curved paths, we have to separate those
two concepts, or have estimates of both types of “distances”.

Axioms (72) and (73) assume that paths are straight. In order to deal with more
general paths, one should include some parameters describing the shape of the path, or
at least an estimate of the change in heading while traveling [27,42]. For instance, in
[27] travel actions were represented as 〈ds, (travel dist"θ),ds′〉, where dist corresponds
to the distance between the places associated with ds and ds′, and "θ corresponds to the
change of orientation while traveling. However, there is not a statement of how this extra
information is used or whether it suffices to describe appropriate metrical constraints for
two dimensional frames of reference. While a more detailed account of the use of metrical

82 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

information is desirable, including representing and reasoning about a path’s shape, we

have left this description outside the scope of this work.

Using different metrical estimation approaches requires a reworking of the axioms in
this section. In such case, the compound and merge operations (Axioms (68)–(70)) should
be described differently. It is not difficult to define compound and merge operations for
Gaussian representations of metrical uncertainty. More care will be required to update
Axiom (71) which is used to refute inconsistent hypotheses, since no combination of
Gaussians is logically inconsistent. A greater change will be needed in order to take
into account the shape of paths when creating two dimensional frames of reference.
Nevertheless, the presented axiomatization defines where in the theory the metrical
information comes into place and suggests the type of axioms that need to be added.

7.4. Combining topological and metrical information

In this section we formally state what it means for the topological map to be consistent
with a given set of frames of reference. In order to do so, given distinctive states
ds,ds1, . . . ,dsn, we introduce the notation 〈ds : ds1, . . . ,dsn〉 to state that the places
associated with the different dsi have a location in the two dimensional frame of reference
associated with ds’s place,

Definition 3. Let ds,ds1, . . . ,dsn be a set of distinctive states. By definition,

〈ds: ds1, . . . ,dsn〉 ≡def (74)

∃p
{

at(ds,p)∧
n∧
i=1

∃pi, li
[
at(dsi , pi)∧ location2(p,pi, li)

]}
.

By 2D_Frames we denote the formula specifying any two dimensional frames of
reference used by the agent. Without loss of generality, we require two dimensional frames
of reference to be specified as in definition (74). We require any model of the SSH to have
only the two dimensional frames of reference specified in 2D_Frames. In addition, the
places belonging to a frame of reference should be only those explicitly stated in (74).
These last two requirements can be stated as follows:

{min location2: 2D_Frames}. (75)

The topological theory includes local metrical information by adding Axioms (65)
to (75) inside the block AT_block (Block (20)). The priority of predicates in the
circumscription policy associated with AT_block remains the same. The predicates varied
in the circumscription policy now include those predicates use to describe metrical
information: radial, position1, position2, path_distance, path_distance≈, path_distance⊗,
angle, angle≈ and angle⊗.

The next examples illustrate how metrical information is used to disambiguate the
topological map.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 83
(a) (b) (c)

(d)

Fig. 20. (a) The robot goes around the block visiting distinctive states ds1 to ds11 in the order suggested by
the figure. Distinctive state ds11 is observed at the same environment state as ds4. Assume distinctive states
ds1 and ds4 look alike to the agent. (b) and (c) represent two possible topological maps for the environment
in (a) (see Example 13). The model in (c) can be discarded as it is not consistent with the available metrical
information. (d) With ±10◦ noise associated with turn actions, the agent cannot use metrical information to
discard the environment depicted in (c).

Example 18.Consider Example 13 where two topological maps are consistent with the
agent’s experiences (see Fig. 20). Suppose that “perfect” metrical information is available
to the agent.

How does the agent figure out that it is back to ds4 rather than to ds1? As claimed
in Example 13 both options teq(ds4,ds11) and teq(ds1,ds11) are topologically possible
(Figs. 20(b), (c)). However, given the metrical information above, only the assumption
teq(ds4,ds11) is a consistent one. To deduce this fact, the agent includes the frame of
reference 〈ds4: ds1, . . . ,ds11〉 in E, which renders impossible teq(ds4,ds11).

Should the metrical information have been less precise, the agent might not benefit
from this extra metrical information. For example, suppose that instead of sharp 90◦ turn
angles, there exists a±10◦ uncertainty associated with the turn actions above (i.e., consider
replacing 〈ds1, (turn − 90◦),ds2〉 by 〈ds1, (turn [−110◦,−80◦],ds2〉).9 In this case the
agent cannot use metrical information to deduce that it is back to ds4 and it will have two
topological maps consistent with its information.

The example above may suggest that metrical information is used to check whether
an already built topological map is consistent with metrical information. However, by
including Axioms (65)–(75) inside AT_block, metrical information is used while building
the topological map. As the next example illustrates, this may imply that the agent identifies
more places than it does when not using metrical information.

9 Whenever we use a number x instead of an interval, it is an abbreviation for [x,x].

84 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
(a) (b) (c)

Fig. 21. (a) The agent visits distinctive states ds1 to ds7 by the order suggested in the figure. Suppose all corners
look alike to the agent. In particular, ds1 and ds7 share the same view. (b) Topological map associated with (a)
when metrical information is not available. (c) Topological map associated with (a) when metrical information is
available. In this case, the places associated with ds1 and ds7 are different (P
= S).

Example 19.Consider an agent visiting the different corners of a square room in the order
suggested by Fig. 21(a). In addition, suppose the agent’s sensory apparatus allows it to
define views by characterizing the direction of walls and open space so that all corners
look alike to the agent (see Example 17). Suppose the agent has access to perfect metrical
information and uses it while building the metrical map.

In order to decide whether the agent is back to ds1, the frame 〈ds1: ds1, . . . ,ds7〉 is
created. Given the available metrical estimates it is not possible to have teq(ds1,ds7) while
satisfying the metrical constraints. Consequently, the topological map will have four places
instead of three, as illustrated in Fig. 21(c).

While in the examples above all visited distinctive states were included in a two
dimensional frame of reference, this is in general not the case. In the presence of metrical
uncertainty, a global frame of reference may not provide useful information to determine
whether two places are the same, or to estimate the distance between two arbitrary places.

8. Algorithms

In this section we present an algorithm for calculating the topological maps associated
with a set of experienceE. The models associated with the causal theory (Section 4) can be
calculated as the answer sets [19] of a logic program. This logic program is implemented
in Smodels [43] as illustrated in [48]. It is possible to calculate the topological maps by
a similar logic program. However, the number of grounding rules associated with such a
program turns out to be prohibitive for practical applications.

The algorithm for calculating topological maps (the models of TT(E)) is stated as a
“best first” search. A search state is implemented by a partial model, pmodel. A partial
model of TT(E) is a model of TT(E′), for some E′ ⊆ E (Section 8.1). Branches in the
search are represented by creating extensions for the current search state (pmodel). That
pmodel′ is an extension of pmodel implies that pmodel′ inherits from pmodel all known
objects and facts.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 85

Find-Models(S)

{

;; S = s0, . . . , sn; sequence of schemas such that result(si)= context(si+1)

queue =∅; models= ∅;
pmodel = create-new-pmodel(S); insert(pmodel,queue);
while queue
= ∅ do

begin
pmodel = get-next-pmodel(queue);
s = get-next-schema(pmodel);
Explain(pmodel, s);
if (inconsistent(pmodel) ∨ has-extensions(pmodel)) then skip;
else if total-model(pmodel) then insert(pmodel, models);
else insert(pmodel,queue);

end
return models;

}

Fig. 22. Best first search algorithm used to calculate the models of TT(E). The queue contains consistent partial
models (pmodels) to be expanded. At each step of the search, a minimal partial model is picked and the next
schema from its list of associated schemas is explained. A pmodel has extensions when a branch has been created
while explaining a schema. A pmodel is a total-model when it has no more schemas to explain. Fig. 23 defines
how a pmodel explains a schema and when extensions are created.

At each step of the search a schema 〈ds, a,ds′〉 has to be explained. Either the identity
of ds′ can be proved or a search branch is created for every previously known distinctive
state ds′i that cannot be proven to be different from ds′. The identity of the schema’s context
(i.e., ds in 〈ds, a,ds′〉) is known at each step in the search.

In the branch where teq(ds′i ,ds′) is the case, ¬teq(ds′j ,ds′), i
= j are also asserted.
An additional branch is created where ¬teq(ds′,ds′j) are asserted. This branch represents
the possibility that ds′ is indeed different from previously known dstates. The next state to
explore is the one that is minimal according to the order associated with the circumscription
policy for TT(E). This search algorithm is described in Figs. 22 and 23.

The three key steps in the search are (Fig. 23): creating a set of possible candidates
to branch (possible-equal-dstates), generating a set of extensions when needed (create-
possible-extensions), and explaining a schema in a given partial model (assert-schema).
Another important issue is to detect when a partial model becomes inconsistent. We use
the predicate inconsistent(pmodel) to denote this fact and the rules

x
pmodel= y ∧ x

pmodel

= y→ inconsistent(pmodel),

teq(x, y) ∈ pmodel∧¬teq(x, y) ∈ pmodel→ inconsistent(pmodel).

In the next sections we will show how to rewrite the axioms in the topological theory so
they can be fed to a theorem prover to deduce equality and inequality relations. We use
the rule-based system Algernon [8] as our theorem prover. In Section 8.2 we present an
illustrative trace of the algorithm.

86 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

Explain(pmodel, s)

{ ;; s is a schema 〈ds, a,ds′〉

candidates = {};
if known-result(pmodel, s)
then Assert-schema(pmodel, s);
else begin

candidates = possible-equal-dstates(pmodel, s);
if candidates
= {}

then create-possible-extensions(pmodel, s, candidates)
else Assert-schema(pmodel, s)

end
}
Known-result(pmodel, s)
{ ;; s is a schema 〈ds, a,ds′〉

;; The notation obj ∈ pmodel indicates that object obj is
;; known in the partial model pmodel.
return ds′ ∈ pmodel ∨ ∃ds∗,ds′∗ ∈ pmodel [〈ds∗, a,ds′∗〉 ∈ pmodel ∧ teq(ds∗,ds)];

}
Assert-schema(pmodel, s)
{ ;; s is a schema 〈ds, a,ds′〉. ds is known in pmodel

assert s ∈ pmodel;
if ¬ known-result(pmodel, s)

then begin
assert ds′ ∈ pmodel;
Create places and paths needed to explain s.

end
else begin
pick ds′∗ s.t. ∃ds∗ ∈ pmodel

[
teq(ds∗,ds)∧ 〈ds∗, a,ds′∗〉 ∈ pmodel

]
;

assert ds′ pmodel= ds′∗ in pmodel;
end

}

Fig. 23. Explaining a schema. known-result(pmodel, s = 〈ds, a,ds′〉) is the case when the equality class for ds′
can be deduced in the partial model pmodel. Possible-equal-dstates(cntx, s) returns dstates known in pmodel,
having the same view as ds′ and that cannot be proven different from ds′ in pmodel. For each ds′′ ∈ candidates,
create-possible-extensions(pmodel, s, candidates) creates an extension of pmodel where teq(ds′,ds′′) is the case.
If the identity of ds′ can be established, then s is asserted in pmodel. This declares ds′ to be known in pmodel and
creates the places and paths that explain s according to the axioms of the topological theory TT(E).

8.1. Implementation

Our logic for partial models takes the basic ideas developed in the area of formal
reasoning about contexts [39]. In addition to a list of schemas to explain, a partial model has
associated a set of objects (i.e., distinctive states, schemas, places, paths) that are known in
the model. The basic relation among pmodels is the one of extensions. That pmodel′ is an
extension of pmodel implies that all known objects and facts in pmodel are known objects
and facts in pmodel′ (i.e., pmodel′ inherits from pmodel all known objects and facts). This

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 87

inheritance property of extensions can be implemented in Algernon by rules like the next

one:

at(ds,place,pmodel)∧ extension(pmodel,pmodel1)→ at(ds,place,pmodel1).

Create candidates. Possible-equal-dstates(pmodel,s= 〈ds, a,ds′〉) returns a list of states
that are possible equal to ds′. These are dstates known in pmodel, having the same view as
ds′ and that cannot be proven different from ds′ in pmodel. Given s, we filter out ds′′ as
equal to ds′ using rules including:

s = 〈ds, turn,ds′〉 ∧ at(ds,p)∧ at(ds′′, q)∧ p
= q→¬teq(ds′,ds′′) (76)[
s = 〈ds, travel,ds′〉 ∧ along(ds,pa,dir)∧ along(ds′′,pa1,dir1)∧
¬[pa= pa1∧ dir= dir1

]]→¬teq(ds′,ds′′)[
s = 〈ds, travel,ds′〉 ∧ along(ds,pa,dir)∧ at(ds,p)∧ at(ds′′, q)∧
order(pa,dir, q,p)

]→¬teq(ds′,ds′′).

The rules above are derived from the axioms in our theory. For instance, rule (76)
is derived from the fact that each distinctive state is at a unique place, and distinctive
states that are related by turn actions are at the same place. In the implementation, all the
topological predicates have a last extra argument for a pmodel. For instance, instead of
writing at(ds,p) we write at(ds,p,pmodel). at(ds,p,pmodel) is the case when at(ds,p)
is true in the partial model pmodel (i.e., pmodel |= at(ds,p)).

Equality relations among topological objects (i.e., dstates, places, paths) are proved
using rules derived by rewriting topological axioms. These rules include:

view(ds1, v1)∧ view(ds2, v2)∧ v1
= v2 →¬teq(ds1,ds2) (77)

〈ds, turn,ds′〉 →¬teq(ds,ds′), (78)

order(pa,dir,p, q)→ p
= q, (79)

radial(p,ds1, h1)∧ radial(p,ds2, h2)∧ h1
= h2→ ds1
= ds2, (80)

position1(pa,dir,p1,pos1)∧
position1(pa,dir,p2,pos2)∧ pos1
= pos2→ p1
= p2, (81)

leftOf (pa,dir,p)∧ on(pa, q)→ p
= q, (82)

leftOf (pa,dir,p)∧ on(pa1,p)→ pa
= pa1, (83)

at(ds,p)∧ at(ds, q)→ p = q, (84)

along(ds,pa,dir)∧ along(ds,pa1,dir1)→ pa= pa1∧ dir= dir1. (85)

Rules (77) and (78) rely on the fact that dstates have a unique view and turn actions
link different distinctive states (Axioms (22) and (39)). Rule (79) uses the fact that paths
are not circular in order to conclude that if p is before q then p and q must be different
(Axiom (44)). Rules (80) and (81) use radial and one dimensional frames of reference to
conclude inequality of dstates and places, respectively (Axiom (65)). Rules (82) and (83)

88 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
(a) (b)

Fig. 24. (a) Numbers identify the dstates created by the map building algorithm. Views associated with dstates
are also shown. Dstates 1 and 9 are at the same environment location. (b) Places and dpaths created by the map
building algorithm. Notice that P 1 and P 5 are two names for the same place.

use boundary relations in order to distinguish places and paths respectively (Axiom (58)).10

Rules (84) and (85) state that each distinctive state is at a unique place, along a unique path
direction (Axioms (29) and (37)).

Assert schema. Assert-schema(pmodel, s) creates the places and paths needed to explain
s. Instead of asserting s = 〈ds, a,ds′〉 in pmodel, the algorithm asserts s∗ = 〈ds∗, a,ds′∗〉
where ds∗ and ds′∗ are the representatives in pmodel for the teq equivalence classes
of ds and ds′. Asserting a schema in Algernon corresponds to creating the frame
(object) representing the schema. Forward and backward chaining rules derived from
the topological theory are then evaluated, and places and paths needed to explain s are
created.

8.2. Trace example

We illustrate the topological map building algorithm with the environment of Fig. 24(a).
Distinctive states are visited in the order suggested by the figure. Distinctive state 9 is at
the same environment location as dstate 1. However, two topological map are possible:
either the agent is back to dstate 1 or dstate 0 (this is Example 13). After traveling from
dstate 9 to dstate 10, only one topological map is possible (Fig. 24(b)). Fig. 25 illustrates
the use of the topological rules to distinguish distinctive states that share the same view.
Fig. 26 shows when branches in the search are created and how they can be refuted as more
information becomes available to the agent.11

10 leftOf (pa,dir,p) in the implementation is an abbreviation for Section 6.2’s longer expression
leftOf (pa,dir, lr)∧ in_region(p, lr).

11 In the implementation, dpaths represent ordered dstates linked by travel actions. Dpaths correspond to paths
that only have one direction associated with them. Paths are created when the agent has traveled in both direction
of a path. At that time, two dpaths are associated with the path, one for each path’s direction.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 89
Fig. 25. (a) When the agent reaches dstate 4, the same view v1 has been observed at dstate 2. Since dstate
2 is along dpath-0 and dstate 4 will be along dpath-1 (the agent just traveled from dstate 3 along dpath-1),
dstate 4 and 2 are proven different. Dpaths 0 and 1 are different since there is a turnRight action relating them
(Axiom (39)). Place P 3 is created to be the place dstate 4 is at (Axiom (29)). Place P 3 is proven different
from place P 2 since P 2 is before P 3 along dpath-1 (Corollary 1). Consequently, dstates 5 and 3 are proven
different. There are however two possible models depending whether P 3 is to the right or not of dpath-0.
Our boundary regions circumscription policy (Section 6.3) prefers PMODEL-0 in which P 3 is to the right of
dpath-0 over PMODEL-001 in which no boundary relations exist. In this example, the search will never explore
further the branch associated with PMODEL-001 because the branch associated with PMODEL-0 leads to a
consistent map for the given experiences. (b) The agent travels to dstate 6 along dpath-2. Because P 3 is to the
right of dpath-0, dpath-2 cannot be the same as dpath-0, which makes PMODEL-1 and PMODEL-2 inconsistent.
The only remaining (and hence minimal) model is PMODEL-0, in which dstate 6 is different from dstates 0
and 1.

90 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104
Fig. 26. By the time the agent reaches dstate 8, six places (not five) are part of the map. Places P 5 and P 1 are not
equal since the dstates are these places are not yet turn related (Axiom (30)). Turning from dstate 8 to 9 leaves the
agent with the three possibilities: (pmodel-3) dstates 9 and 1 are equal (and so P 1= P 5, or (pmodel-4) dstates
9 and 0 are equal (and so P 0 = P 1), or (pmodel-6) dstate 9 is a new different dstate. That dstates 9 and 6 are
different follows from the fact that places P 4 and P 5 are different. Pmodels 3 and 4 are minimal according to the
topological theory circumscription policy. Pmodel-6 is not, but is left as a possible state in the search should new
information render the other models inconsistent. The new schema 〈9,ML,10〉 will render pmodel-4 inconsistent.
Since actions are deterministic and dstates 0 and 9 are equal in this model, so should dstates 1 and 10. However,
these dstates have different views so they cannot be equal. Pmodel-3 will then be the only map associated with
the set of experiences.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 91

9. Conclusions
What have we accomplished? We have taken an informal description of the theory
of topological maps and provided a formal account of the theory. In addition, we have
extended the theory to handle perceptual aliasing, to describe environments with self
intersecting and convergent paths, and to deal with local metrical information including
uncertainty. The topological theory is independent of the agent’s exploration strategy and of
the algorithms used to build topological maps. We have taken the theory as a specification
for a program able to keep track of different topological maps consistent with the agent’s
experiences in the environment. This program supports different exploration strategies as
well as facilitates map disambiguation when the case arises.

A logical account of the causal, topological and local metrical theories was given using
Nested Abnormality Theories. The minimality conditions embedded in the formalization
define the preferred models associated with the theories. In Sections 4–7 we illustrated
the main properties of the theories. In particular we showed how the minimal models
associated with these theories are adequate models for the spatial knowledge an agent
has about its environment. We also demonstrated how the causal, topological, and local
metrical levels of the representation assume different spatial properties of the actions
performed by the agent. This provides an increasingly refined ability to infer or refute
equality relations (ceq and teq) among experienced environment states. By clarifying the
ontology of causal and topological maps, and determining the dependency structure of the
non-monotonic theory, we provide a solid foundation for general-purpose strategies for
exploring unknown environments, or for disambiguating cases of perceptual aliasing.

The circumscription priority ordering embedded in the theory is a result of our research,
as we experimented with various orders to determine which ordering defined models that
corresponded to what is intuitively the “correct map” of the environment. Because we have
no formal definition of what the correct map is, it is impossible to prove mathematically
that the circumscription priority ordering is the correct one. Possibly future research can
provide such a formal definition, but the difficulties arise from handling partial experience
in the environment, or highly symmetrical environments with a great deal of perceptual
aliasing.

How useful is this theory? This work defines topological maps independently of the
algorithms used to create such maps. The theory is general in that it covers the major
ideas in the field of spatial representation using topological maps. The theory is useful in
that it specifies the minimal set of objects and relationships any topological map building
implementation should have. Although our theory covers most of the known ideas about
topological maps, it is not just a union of previous work in a common framework. The
theory defines different spatial ontologies (causal, topological, metrical), illustrates what
spatial knowledge is captured by each ontology, and then shows the relationships among
these ontologies. The theory shows how the combined spatial knowledge associated with
the different ontologies results in a different “map” from the one associated with each
independent ontology.

The axiomatic theory has practical value. It has been used to build cognitive maps
by both physical and simulated robots. [24,29,49] explicitly use the axiomatic theory
described in this paper as well as the implemented algorithms in order to build topological

92 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

maps. [49] shows how a wheelchair robot builds the topological map of a building’s floor.

The major focus of this work was on testing the applicability and correctness of the axioms
and algorithms here described.

In [24] topological maps are built as a mean to disambiguate distinctive states with the
same view. The map provides an unambiguous assignment of distinctive states to views,
which can then used by the robot to “refine its views” so that it is possible to distinguish
distinctive states from sensory information alone. “Lassie (the robot). . . collected 240
images from 20 distinctive states. The topological map linking them contained seven
places and four paths. . . . By building the causal and topological map the robot is able
to disambiguate all twenty distinctive states, even though there are only ten different
views. . .” [24].

Finally, Fig. 9 in [29] describes experimental results where a simulated agent builds
a topological map and learns boundary relations for grid-like environments. This work
presents a computational hypothesis that describes how the “skeleton” of major paths
emerges from the interaction of three factors: “(i) the topological map is represented as
a bipartite graph of places and paths, where a path is a one-dimensional ordered set of
places, (ii) a traveler incrementally accumulates topological relationships, including the
relation of a place to a path serving as a dividing boundary separating two regions; and
(iii) the wayfinding algorithm prefers paths rich in boundary relations so they are likely
to acquire more boundary relations. This positive-feedback loop leads to an oligarchy of
paths rich in boundary relations (i.e., the skeleton in the cognitive map)” [29].

Acknowledgements

We are grateful to Vladimir Lifschitz for his valuable feedback during this work. We
also thanks the anonymous referees for their helpful questions and suggestions.

Appendix A. Nested abnormality theories

In this appendix we define circumscription and nested abnormalities theories following
[35,36]. The main idea of circumscription is to consider, instead of arbitrary models of
an axiom set, only the models that satisfy a certain minimality condition (usually set
inclusion).

Definition A.1 (Circumscription). Let A(P,Z1, . . . ,Zm) be a sentence containing a
predicate constant P and object, function and/or predicate constants Z1, . . . ,Zm (and
possibly other object, function and predicate constants). The circumscription of P in A
with varied Z1, . . . ,Zm is the sentence

A(P,Z1, . . . ,Zm)∧¬∃p, z1, . . . , zm
[
A(p, z1, . . . , zm)∧ p < P

]
(A.1)

where p < P denotes the formula

∀x {
p(x)→ P(x)

} ∧ ∃x{¬p(x)∧ P(x)}.
We denote formula (A.1) by CIRC[A;P ;Z].

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 93

Intuitively, the models of CIRC[A;P ;Z] are the models of A in which the extent of

P cannot be smaller without losing the property A, even at the price of changing the
interpretations of the constants Z.

It is often convenient to arrange different defaults by assigning priorities to them. Next
we define two extensions to the basic definition of circumscription: parallel and prioritized
circumscription.

Definition A.2 (Parallel circumscription). The parallel circumscription

CIRC
[
A;P 1, . . . ,P n;Z]

is the sentence A(P,Z) ∧ ¬∃p, z[A(p, z) ∧ p ≺ P], where P stands for the tuple of
predicates P 1, . . . ,P n and p ≺ P stands for the formula ∀1 � i � npi � P i ∧ ∃1 �
i � npi < P i .

Definition A.3 (Prioritized circumscription). The prioritized circumscription

CIRC
[
A;P 1 � · · · � Pn;Z]

is the sentence A(P,Z) ∧ ¬∃p, z[A(p, z) ∧ p ≺ P], where P stands for the tuple of
predicates P 1, . . . ,P n and p ≺ P stands for the formula

n∨
i=1

(
i−1∧
j=1

(
pj = Pj)∧ (pi < P i)).

The formula p ≺ P defines a lexicographic order among the predicates in p and P .
Proposition 15 in [35] shows that prioritized circumscription can be reduced to parallel
circumscription as follows:

Theorem A.1.The circumscription CIRC[A;P 1 � · · · � Pn;Z] is equivalent to

n∧
i=1

CIRC
[
A;P i;P i+1, . . . ,P n,Z

]
.

Notation A.1. CIRC[A;P 1 � . . .¬Pi . . .� Pn;Z] stands for the formula

CIRC
[
A∧ not_Pi ≡¬Pi;P 1 � . . .not_Pi . . .� Pn;Z,Pi

]
where not_Pi is a new constant predicate not occurring in A.

A.1. Nested abnormality theories (NATs)

Nested abnormality theories allows one to apply the circumscription operator to a subset
of axioms, by structuring the knowledge base (the theory) into blocks. Each block can be
viewed as a group of axioms that describes a certain collection of predicates and functions,
and the nesting of blocks reflects the dependence of these descriptions on each other.

94 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

Definition A.4 (NATs). Consider a second-order language L that does not include Ab

among its symbols. For every natural number k, by Lk we denote the language obtained
from L by adding Ab as a k-ary predicate constant. Blocks are defined recursively as
follows: For any k and any list of function and/or predicate constants C1, . . . ,Cm of L,
if each of A1, . . . ,An is a formula of Lk or a block, then {C1, . . . ,Cm: A1, . . . ,An} is a
block. The last expression reads: C1, . . . ,Cm are such that A1, . . . ,An. About C1, . . . ,Cm
we say that they are described by this block.

The semantics of NATs is characterized by a map ϕ that translates blocks into sentences
of L. It is convenient to make ϕ defined also on formulas of the languagesLk . If A is such a
formula, then ϕ(A) stands for the universal closure of A. For blocks we define, recursively:

ϕ{C1, . . . ,Cm :A1, . . . ,An} = ∃ab CIRC[ϕA1, . . . , ϕAn : ab :C1, . . . ,Cm].

Most often, it is desirable not to mention the predicate Ab at all. We will adopt the
following notations:

• {C1, . . . ,Cm,minP :A1, . . . ,An} stands for

{C1, . . . ,Cm,P :P(x)→Ab(x), A1, . . . ,An}
• {C1, . . . ,Cm,maxP :A1, . . . ,An} stands for

{C1, . . . ,Cm,P :¬Ab(x)→ P(x), A1, . . . ,An}.

Definition A.5. We extend the definition of blocks as follows: if A is a block, so is
CIRC[A;P 1 � · · · � Pn;Z]. The semantics of NATs is extended such that

φCIRC
[
A;P 1 � · · · � Pn;Z]= CIRC

[
φA;P 1 � · · · � Pn;Z].

As the next theorem shows, in some cases prioritized circumscription can be expressed
using NAT’s. In these cases however, the notation for prioritized circumscription is more
compact than its equivalent NAT’s. This motivates our previous definition.

Theorem A.2.Let A be a sentence such that Ab does not occur in A. Then,

CIRC[A;P �Q;Z] = {Z, minQ : {Z, Q,minP : A} }.

Appendix B. ceq properties

In this appendix we provide proofs for the different properties of the predicated ceq
defined in Section 4.

Theorem 1. Let E be a complete set of experiences and let CEQ_block be defined as
follows:

{max ceq:
ceq(ds1,ds2)→ View(ds1, v)≡ View(ds2, v),

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 95

ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′2)

}

Then the predicate ceq is an equivalence relation.

Proof. LetM1 be a model for the axioms inside the CEQ_block as well as the other axioms
of CT(E). Let M2 be a structure identical to M1 except that

ceqM2(ds,ds′)≡ ceqM1(ds,ds′)∨ ds= ds′.

We are to prove that M2 is a model for the axioms inside the CEQ_block and consequently
CEQ_block |= ceq(ds,ds).12 Indeed,

• M2 |= ceq(ds,ds′)→ ceq(ds′,ds). In fact,

ceqM2(ds,ds′)≡ ceqM1(ds,ds′)∨ ds= ds′

→ ceqM1(ds′,ds)∨ ds′ = ds

≡ ceqM2(ds′,ds).

• M2 |= ceq(ds,ds′)∧ ceq(ds′,ds′′)→ ceq(ds,ds′′). In fact,

ceqM2(ds,ds′)∧ ceqM2(ds′,ds′′)
≡ (ceqM1(ds,ds′)∨ ds= ds′

)∧ (ceqM1(ds′,ds′′)∨ ds′ = ds′′
)

≡ (ceqM1(ds,ds′)∧ ceqM1(ds′,ds′′)
)∨ (ds= ds′ ∧ ceqM1(ds′,ds′′)

)∨(
ceqM1(ds,ds′)∧ ds′ = ds′′

)∨ (ds= ds′ ∧ ds′ = ds′′)
→ ceqM1(ds,ds′′)∨ (ds= ds′ ∧ ds′ = ds′′)
≡ ceqM2(ds,ds′′).

• M2 |= ceq(ds,ds′)→ View(ds, v)≡ View(ds′, v). In fact,

ceqM2(ds,ds′)≡ ceqM1(ds,ds′)∨ ds= ds′

→ ∀v[View(ds, v)≡ View(ds′, v)
]∨ ds= ds′

→ ∀v[View(ds, v)≡ View(ds′, v)
]∨ ∀v[View(ds, v)≡ View(ds′, v)

]
≡ View(ds, v)≡ View(ds′, v).

• M2 |= ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′′2). In fact,

ceqM2(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉
≡ (ceqM1(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉

)∨(
ds1 = ds2 ∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉

)
→ ceqM1(ds′1,ds′2)∨

(〈ds1, a,ds′1〉 ∧ 〈ds1, a,ds′2〉
)

12 M2 satisfies the other axioms in CT(E) since ceq does not occur in them.

96 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

(15)→ ceqM1(ds′ ,ds′)∨ ds′ = ds′
1 2 1 2

≡ ceqM2(ds′1,ds′2).

Let us prove that CEQ_block |= ceq(ds,ds′) → ceq(ds′,ds). Let M2 be a model
identical to M1 except that

ceqM2(ds,ds′)= ceqM1(ds,ds′)∨ ceqM1(ds′,ds).

By definition, ceqM2 is symmetric. We need to prove that M2 satisfy the axioms inside
CEQ_block:

• M2 |= ceq(ds,ds′)→ View(ds, v)≡ View(ds′, v). In fact,

ceqM2(ds,ds′)≡ ceqM1(ds,ds′)∨ ceqM1(ds′,ds)

→∀v[View(ds, v)≡ View(ds′, v)
]∨ ∀v[View(ds′, v)≡ View(ds, v)

]
≡ View(ds, v)≡ View(ds′, v).

• M2 |= ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′2). In fact,

ceqM2(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉
≡ [ceqM1(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉

]∨[
ceqM1(ds2,ds1)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉

]
→ ceqM1(ds′1,ds′2)∨ ceqM1(ds′2,ds′1)
≡ ceqM2(ds′1,ds′2).

Finally, let us prove that CEQ_block |= ceq(ds,ds′)∧ ceq(ds′,ds′′)→ ceq(ds,ds′′). Let
M2 be a model identical to M1 except that

ceqM2 = transitive_closure(ceqM1).

By definition, ceqM2 is transitive. If ceqM1 is reflexive and symmetric, so is ceqM2 . We
need to prove that M2 satisfies the axioms inside CEQ_block:

• M2 |= ceq(ds,ds′)→ View(ds, v)≡ View(ds′, v). In fact,

ceqM2(ds,ds′)
≡ ∃ds0,ds1, . . . ,dsn

[
ds= ds0, ds′ = dsn, ceqM1(dsi ,dsi+1), 0 � i < n

]
→∃ds0,ds1, . . . ,dsn[

ds= ds0, ds′ = dsn, View(dsi , v)≡ View(dsi+1, v), 0 � i < n
]

→∃ds0,dsn
[
ds= ds0, ds′ = dsn,View(ds0, v)≡ View(dsn, v)

]
≡ View(ds, v)≡ View(ds′, v).

• M2 |= ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′2). In fact,

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 97

ceqM2(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉

≡ ∃dsi (1 � i � n)

[
ds1 = ds1, ds2 = dsn, ceqM1(dsi ,dsi+1), 1 � i < n

]∧
〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉

hyp.→ ∃dsi∃〈dsi , a,dsi
′ 〉[

ds1 = ds1,ds2 = dsn,ds′1 = ds1′ ,ds′2 = dsn
′
, ceqM1(dsi ,dsi+1),

1 � i < n
]

→∃dsi
′[

ds′1 = ds1′ , ds′2 = dsn
′
, ceqM1(dsi

′
,ds(i+1)′), 1 � i < n

]
≡ ceqM2(ds′1,ds′2). ✷

When a set of experiences is complete the predicate ceq captures the idea that two
distinctive states are the same if they render the same views under any sequence of actions.
Assume that E is complete and let A= a1, . . . , an denote a sequence of actions. The term
A(ds) denotes the distinctive state resulting from executing A starting at ds. By definition,
A(ds)= ds if n= 0, A(ds)= ds′ such that E |= 〈 〈a1, . . . , an−1〉(ds), an,ds′〉. Notice that
the definition of A(ds) makes sense since E is complete and actions are deterministic.

Theorem 2.Let E be a complete set of experiences. Then,

ceq(ds,ds′)≡ ∀A,v[View(A(ds), v)≡ View(A(ds′), v)
]
.

Proof. LetM1 be a model for the axioms inside the CEQ_block as well as the other axioms
of CT(E). Let M2 be a model identical to M1 except that

ceqM2(ds,ds′)≡ ∀A,v [View(A(ds), v)≡ View(A(ds′), v)
]
.

By induction in the length of action sequences on can prove that ceqM1 ⊆ ceqM2 . Our
proof is complete by showing that M2 satisfies the axioms inside CEQ_block:

• M2 |= ceq(ds,ds′)→ View(ds, v) ≡ View(ds′, v). In fact, suppose M2 |= ceq(ds,ds′)
and consider the empty sequence of actions, A= {}, A(ds)= ds. Then

View(ds,V)≡ View(A(ds), v)≡ View(A(ds′), v)≡ View(ds′, v).

• M2 |= ceq(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉→ ceq(ds′1,ds′2). In fact,

ceqM2(ds′1,ds′2) ≡ ∀A,v
[
View(A(ds′1), v)≡ view(A(ds′2), v)

]
←〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉 ∧
∀A,v [View(aA(ds1), v)≡ View(aA(ds2), v)

]
← ceqM2(ds1,ds2)∧ 〈ds1, a,ds′1〉 ∧ 〈ds2, a,ds′2〉. ✷

98 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

Appendix C. teq properties
In this appendix we prove some properties of the SSH topological theory. Recall the
SSH topological theory is defined as follows:

TT(E) =
there exist infinitelymany places,

there exist infinitelymany paths,

¬∃p[tplace(p)∧ is_region(p)
]
,

¬∃pa[tpath(pa)∧ route(pa)
]
,

COMPLETION(E),

Axioms (2)–(10),

〈ds, a,ds′〉 ∧ 〈ds, a,ds′′〉 → ds′ = ds′′, (Axiom (15))

T _block,

AT_block= (C.1)

{max teq:
Γ

circ tpath� tplace var �SSHpred (C.2)

}
where Γ is the set of axioms defined on Block (20) (Section 5.2), and �SSHpred stands for
the tuple of predicates 〈at, along, order, on, teq, turn_eq, travel_eq〉.

Proposition C.1.Let M be a model of TT(E). Then,

• M |= ∀pa, [tpath(pa)≡ ∃ds,dir along(ds,pa,dir)].
• M |= ∀p, [tplace(p)≡ ∃ds at(ds,p)].

Proof.

CIRC[Γ ; tpath� tplace;SSHpred]
≡ {Proposition 15 in [35]}
CIRC[Γ ; tpath; tplace,SSHpred] ∧CIRC[Γ ; tpath, tplace;SSHpred]
→ {def. of circumscription}
CIRC[Γ ; tpath].

Since Γ = Γ ′(tpath) ∧ [along(ds,pa,dir)→ tpath(pa)] where Γ ′(tpath) is negative,
then

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 99

CIRC[Γ ; tpath]

≡
CIRC

[
Γ ′(tpath)∧ [along(ds,pa,dir)→ tpath(pa)]; tpath

]
≡ {Proposition 4 in [35]}
Γ ′(tpath)∧ CIRC

[
along(ds,pa,dir)→ tpath(pa); tpath

]
→ {Proposition 1 in [35]}[∃ds,dir along(ds,pa,dir)

]≡ tpath(pa).

Similarly, Γ = Γ ′ ∧ [at(ds,p)→ tplace(p)] where tpath does not occur in Γ ′. Then,

CIRC[Γ ; tpath� tplace;SSHpred]
→ {see above}
CIRC[Γ ; tpath, tplace;SSHpred]
→ {def. parallel circumscription}
CIRC[Γ ; tpath, tplace]
→ {def. parallel circumscription}
CIRC

[
Γ ′ ∧ [at(ds,p)→ tplace(p)]; tplace

]
≡ {Propositions 1 and 4 in [35]}
Γ ′ ∧ [∃ds,at(ds,p)

]≡ tplace(p). ✷
Proposition C.2.The topological map associated with a finite set of experiences E has a
finite number of topological paths and a finite number of topological places.

Proof. Since a distinctive state is along at most one topological path (Axiom (37)),
Proposition C.1 implies that for any model M of TT(E) there is an injection from tpathM

into distinctive-statesM . Since distinctive-statesM is finite so is tpathM .
Similarly, since distinctive states are at a unique topological place (Axiom (29)), from

Proposition C.1 we conclude that the set of topological places in a model of TT(E) is
finite. ✷
Theorem 3.Let ds1 be a distinctive state symbol such that

∀ds2 /∈ [ds1]t̂urn, [ds2]teq ∩ [ds1]t̂urn = ∅. (C.3)

Then

∀ds2 /∈ [ds1]t̂urn, place(ds2)
= place(ds1).

Proof. The hypothesis of the theorem implies that

∀ds2 /∈ [ds1]t̂urn, ¬turn_eq(ds2,ds1).

Indeed,

100 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

turn_eq(ds1,ds2)≡ ∃b0, . . . , bn, b0′, . . . , bn′ s.t.
• b0 = ds2, bn′ = ds1,

• teq(bi, bi′), i = 0, . . . , n

• t̂urn(bi′ , bi+1), i = 0, . . . , n− 1 .

Let 1 � j � n such that [∀j � k � n, bk′ ∈ [ds1]t̂urn] and b(j−1)′ /∈ [ds1]t̂urn. Notice that
such a j exists since ds1 = b0′ /∈ [ds1]t̂urn and ds1 = bn′ ∈ [ds1]t̂urn. Consequently,

turn_eq(ds1,ds2)

→
bj ′ ∈ [ds1]t̂urn

→ {teq(bj , bj ′)}
[bj]teq ∩ [ds1]t̂urn
= ∅
→ {C.3}
bj ∈ [ds1]t̂urn

→ {t̂urn(b(j−1)′, bj)}
b(j−1)′ ∈ [ds1]t̂urn

→
false.

Thus ¬turn_eq(ds2,ds1) should be the case. ✷
Theorem 4. Any two models of the SSH topological theory have the same number of
topological paths and the same number of topological places.

Proof. In order to prove that two models M1 and M2 of TT(E) have the same number of
topological paths (tpaths) and the same number of topological places (tplaces), it is enough
to show that this is the case for models of the AT_block (Block (C.1)). Suppose that tpathM1

has less elements than tpathM2 , and so there exists an injection φ : tpathM1 → tpathM2 . One
can extend φ to define an isomorphism from M1 into M ′

2, such that M ′
2 ≺M2, where ≺ is

the order defined by the circumscription policy C.2. This proves that M1 and M2 have the
same number of topological paths. In fact,

• Let φ : tplaceM1 → placesM2 be an injection. Such an injection exists since tplaceM1

is finite and placesM2 is infinite.
• Let φ :SM1 → SM2 be the identity over the sorts (S) of distinctive states, actions, views,

schemas, path types and path directions. Recall we assumed a Herbrand interpretation
for these sorts, where the corresponding universes are defined by the constant symbols
in E.

The function φ above defines an isomorphic embedding from M1 into M2 in the
standard way. In fact, φ(M1)=M ′

2 is defined as follows:

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 101

• tpathM
′
2 = φ(tpathM1), tplaceM

′
2 = φ(tplaceM1).
• teqM
′
2 = φ(teqM1)= {teq(ds1,ds2): M1 |= teq(ds1,ds2)} = teqM1 .

• atM
′
2 = φ(atM1)= {at(ds, φ(p)): M1 |= at(ds,p)}.

• alongM
′
2 = φ(alongM1)= {along(ds, φ(pa),dir): M1 |= along(ds,pa,dir)}.

• orderM
′
2 = φ(orderM1)= {order(φ(pa),dir, φ(p),φ(q)): M1 |= order(pa,dir,p, q)}.

• onM
′
2 = φ(onM1)= {on(φ(pa),φ(p)): M1 |= on(pa,p)}.

• turn_eqM
′
2 = φ(turn_eqM1)= turn_eqM1.

• travel_eqM
′
2 = φ(travel_eqM1)= travel_eqM1.

Notice that the language of Γ is defined by {tpath, tplace} ∪ SSHpred. Thus M1 |= Γ
implies φ(M1) |= Γ . Notice that the circumscription policy varies all predicates in the
language of Γ , and φ is the identity over all constant symbols in the theory, for otherwise,
φ(M1) |= Γ is not necessarily the case. In general the interpretations of an unary predicate
(set) under a circumscriptive theory do not have the same number of elements. For example,
consider the models of CIRC[(P (0) ∧ P(1)) ∨ P(2);P], where the interpretation of P
could have one or two elements (this example is due to Vladimir Lifschitz).

Since φ(tpathM1) ⊂ tpathM2 , then φ(M1) ≺ M2, and so M2 is not minimal, and is
therefore not a model of TT(E). It follows that M1 and M2 have the same number of
topological paths.

Similar argument shows that M1 and M2 have the same number of topological places.
If not, there would exists φ : tpathM1 → tpathM2 a bijection and φ : tplaceM1 → tplaceM2

an injection that allows us to apply the same argument as above. ✷

Appendix D. Theory axioms

The block T_block inside Block (19) in Section 5.2 defines the properties of the
predicates t̂urn, t̂ravel, and �travel. t̂urn is the equivalence closure of the schemas 〈·, turn, ·〉;
t̂ravel and �travel are the equivalence and transitive closure of the schemas 〈·, travel, ·〉
respectively.13

T _block= { min t̂urn,min t̂ravel,min �travel:
〈ds, turn,ds′〉 → t̂urn(ds,ds′),
〈ds, travel,ds′〉 → t̂ravel(ds,ds′)∧ �travel(ds,ds′),

t̂urn(ds,ds),

t̂urn(ds,ds′)→ t̂urn(ds′,ds),

t̂urn(ds,ds′)∧ t̂urn(ds′,ds′′)→ t̂urn(ds,ds′′),

13 A block of the form {C1, . . . ,Cn, minP1, . . . ,minPk : A1, . . . ,Am} denotes the set of blocks {C1, . . . ,Cn,

minP1: A1, . . . ,Am}, . . ., {C1, . . . ,Cn, minPk : A1, . . . ,Am}.

102 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

t̂ravel(ds,ds),
t̂ravel(ds,ds′)→ t̂ravel(ds′,ds),

t̂ravel(ds,ds′)∧ t̂ravel(ds′, dr)→ t̂ravel(ds, dr),

�travel(ds,ds′)∧ �travel(ds′,ds′′)→ �travel(ds,ds′′)
}

References

[1] D. Angluin, On the complexity of minimum inference of regular sets, Inform. and Control 39 (1978) 337–
350.

[2] K. Basye, T. Dean, L.P. Kaelbling, Learning dynamics: System identification for perceptually challenged
agents, Artificial Intelligence 72 (1) (1995) 139–171.

[3] A.F. Beardon, Complex Analysis, Wiley, New York, 1979.
[4] J. Borenstein, Y. Koren, The vector field histogram—Fast obstacle-avoidance for mobile robots, IEEE J.

Robotics and Automation 7 (3) (1991) 278–288.
[5] J. Borenstein, H.R. Everett, L. Feng, Navigating Mobile Robots: Systems and Techniques, A.K. Peters,

Wellesley, MA, 1996.
[6] I. Borg, P. Groenen, Modern Multidimensional Scaling: Theory and Applications, Springer, New York, 1997.
[7] H. Choset, K. Nagatani, Topological simultaneous localization and mapping (SLAM): Toward exact

localization without explicit localization, IEEE Trans. on Robotics and Automation 17 (2) (2001) 125–137.
[8] J. Crawford, B. Kuipers, Algernon: A tractable system for knowledge representation, SIGART Bull. 2 (3)

(1991) 35–44.
[9] E. Davis, The MERCATOR representation of spatial knowledge, in: A. Bundy (Ed.), Proc. IJCAI-83,

Karlsruhe, Germany, Morgan Kaufmann, Los Altos, CA, 1983, pp. 295–301.
[10] T. Dean, K. Basye, L. Kaelbling, Uncertainty in graph-based map learning, in: J.H. Connell, S. Mahadevan

(Eds.), Robot Learning, Kluwer Academic, Dordrecht, 1993, pp. 171–192.
[11] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction, IEEE Trans. on

Robotics and Automation 7 (6) (1991) 859–865.
[12] H.F. Durrant-Whyte, Consistent integration and propagation of disparate sensor observations, Internat. J.

Robotics Res. 6 (3) (1987) 3–24.
[13] H.F. Durrant-Whyte, Integration, Coordination and Control of Multisensor Robot Systems, Kluwer

Academic, Boston, MA, 1988.
[14] H.F. Durrant-Whyte, Uncertain geometry in robotics, IEEE J. Robotics and Automation 5 (6) (1988) 23–31.
[15] A. Elfes, Sonar-based real-world mapping and navigation, IEEE J. Robotics and Automation 3 (3) (1987)

249–265.
[16] S.P. Engelson, D.V. McDermott, Error correction in mobile robot map learning, in: Proc. IEEE International

Conference on Robotics and Automation, Nice, France, 1992, pp. 2555–2560.
[17] M. Franz, B. Schölkopf, H.A. Mallot, H.H. Bülthoff, Learning view graphs for robot navigation,

Autonomous Robots 5 (1998) 111–125.
[18] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.
[19] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation

Computing 9 (1991) 365–385.
[20] E. Mark Gold, Complexity of automaton identification from given data, Inform. and Control 37 (1978)

302–320.
[21] S. Gopal, R.L. Klatzky, T.R. Smith, Navigator: A psychologically based model of environmental learning

through navigation, J. Environmental Psychology 9 (1989) 309–331.
[22] S. Koenig, R. Simmons, Passive distance learning for robot navigation, in: Proceedings of the Thirteenth

International Conference on Machine Learning (ICML), Bari, Italy, 1996, pp. 266–274.

E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104 103

[23] D. Kortenkamp, E. Chown, S. Kaplan, Prototypes, locations, and associative networks (PLAN): Towards a

unified theory of cognitive mapping, Cognitive Sci. 19 (1995) 1–51.

[24] B. Kuipers, P. Beeson, Bootstrap learning for place recognition, in: Proc. AAAI-02, Edmonton, AB, AAAI
Press, 2002, pp. 174–180.

[25] B. Kuipers, Y.T. Byun, A robust qualitative method for robot spatial learning, in: Proc. AAAI-88, St. Paul,
MN, 1988, pp. 774–779.

[26] B. Kuipers, Y.T. Byun, A robot exploration and mapping strategy based on semantic hierarchy of spatial
representations, Robotics Autonomous Syst. 8 (1991) 47–63.

[27] B. Kuipers, T. Levitt, Navigation and mapping in large-scale space, AI Magazine 9 (2) (1988) 25–43.
[28] B. Kuipers, R. Froom, W.Y. Lee, D. Pierce, The semantic hierarchy in robot learning, in: J. Connell, S.

Mahadevan (Eds.), Robot Learning, Kluwer Academic, Dordrecht, 1993, pp. 141–170.
[29] B. Kuipers, D. Tecuci, B. Stankiewicz, The skeleton in the cognitive map: A computational and empirical

exploration, Environment and Behavior 35 (1) (2003) 80–106.
[30] B. Kuipers, Modeling spatial knowledge, Cognitive Sci. 2 (1978) 129–153.
[31] B. Kuipers, The spatial semantic hierarchy, Artificial Intelligence 119 (2000) 191–233.
[32] B.C. Kuo, Automatic Control Systems, Fifth Edition, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[33] W.Y. Lee, Spatial semantic hierarchy for a physical mobile robot, PhD Thesis, The University of Texas at

Austin, 1996.
[34] D. Leiser, A. Zilbershatz, THE TRAVELLER: A computational model of spatial network learning,

Environment and Behavior 21 (4) (1989) 435–463.
[35] V. Lifschitz, Circumscription, in: Handbook of Logic in Artificial Intelligence and Logic Programming,

Vol. 3, Oxford University Press, Oxford, 1994, pp. 297–352.
[36] V. Lifschitz, Nested abnormality theories, Artificial Intelligence 74 (2) (1995) 351–365.
[37] K. Lynch, The Image of the City, MIT Press, Cambridge, MA, 1960.
[38] H.A. Mallot, S. Gillner, Route navigating without place recognition: What is recognized in recognition-

triggered responses? Perception 29 (2000) 43–55.
[39] J. McCarthy, S. Buvač, Formalizing context (expanded notes), in: A. Aliseda, R.J. van Glabbeek, C.

Westerstähl (Eds.), Computing Natural Language, in: CSLI Lecture Notes, Vol. 8L, 1998, pp. 13–50.
[40] D.V. McDermott, E. Davis, Planning routes through uncertain territory, Artificial Intelligence 22 (1984)

107–156.
[41] P. Moutarlier, R. Chatila, Stochastic multisensory data fusion for mobile robot location and environment

modelling, in: Proc. 5th International Symposium on Robotics Research, 1989, pp. 85–89.
[42] A. Musto, K. Stein, K. Schill, A. Eisenkolb, W. Brauer, Qualitative motion representation in egocentric and

allocentric frames of reference, in: Proc. Fourth International Conference on Spatial Information Theory
(COSIT’99), Springer, Berlin, 1999.

[43] I. Niemelä, P. Simons, Smodels—An implementation of the stable model and well-founded semantics for
normal logic programs, in: Proc. 4th International Conference on Logic Programming and Nonmonotonic
Reasoning, in: Lecture Notes in Computer Science, Vol. 1265, Springer, Berlin, 1997, pp. 420–429.

[44] M. O’Neill, A biologically based model of spatial cognition and wayfinding, J. Environmental Psychol-
ogy 11 (1991) 299–320.

[45] A.L. Peressini, F.E. Sullivan, K.J. Uhl, The Mathematics of Nonlinear Programming, Springer, New York,
1988.

[46] J. Piaget, B. Inhelder, The Child’s Conception of Space, Norton, New York, 1967, First published in French,
1948.

[47] E. Remolina, B. Kuipers, Towards a formalization of the Spatial Semantic Hierarchy, in: Proc. Fourth
Symposium on Logical Formalizations of Commonsense Reasoning, London, 1998.

[48] E. Remolina, B. Kuipers, A logical account of causal and topological maps, in: Proc. IJCAI-01, Seattle, WA,
AAAI Press, Menlo Park, CA, 2001, pp. 5–11.

[49] E. Remolina, A logical account of causal and topological maps, PhD Thesis, The University of Texas at
Austin, 2001.

[50] R.L. Rivest, R.E. Schapire, A new approach to unsupervised learning in deterministic environments, in:
Proceedings of the Fourth International Workshop on Machine Learning, 1987.

[51] B. Schölkopf, H. Mallot, View-based cognitive mapping and path planning, Adaptive Behavior 3 (1995)
311–348.

104 E. Remolina, B. Kuipers / Artificial Intelligence 152 (2004) 47–104

[52] M.P. Shanahan, Noise and the common sense informatic situation for a mobile robot, in: Proc. AAAI-96,

Portland, OR, 1996, pp. 1098–1103.

[53] H. Shatkay, L. Kaelbling, Learning topological maps with weak local odometry information, in: Proc. IJCAI-
97, Nagoya, Japan, 1997.

[54] A.W. Siegel, S. White, The development of spatial representations of large-scale environments, in: H. Reese
(Ed.), Advances in Child Development and Behavior, Vol. 10, Academic Press, New York, 1975, pp. 9–55.

[55] R. Simmons, S. Koenig, Probabilistic robot navigation in partially observable environments, in: Proc. IJCAI-
95, Montreal, Quebec, 1995.

[56] R. Smith, P. Cheeseman, On the representation of and estimation of spatial uncertainty, Internat. J. Robotics
Res. 5 (1986) 56–68.

[57] S.D. Steck, H.A. Mallot, The role of global and local landmarks in virtual environment navigation,
Presence 9 (1) (2000) 69–83.

[58] J. Tardos, J. Neira, P. Newman, J. Leonard, Robust mapping and localization in indoor environments using
sonar data, Internat. J. Robotics Res. 21 (6) (2002) 311–330.

[59] S. Thrun, S. Gutmann, D. Fox, W. Burgard, B. Kuipers, Integrating topological and metric maps for mobile
robot navigation: A statistical approach, in: Proc. AAAI-98, Madison, WI, 1998, pp. 989–995.

[60] S. Thrun, Learning metric-topological maps for indoor mobile robot navigation, Artificial Intelligence 99 (1)
(1998) 21–71.

