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Abstract

The question “Have I already been here, or is it the first time I see this place?” offers a paradig-
matic example of thetopologicalspatial uncertainty that may arise when exploring a new en-
vironment. This type of uncertainty concerns both the number of places encountered, and the
order in which they are visited. Its occurrence requires taking into account different hypotheses
about the size and loops of the graph-model of places (nodes) and paths (edges) that abstracts
the space. Because of their limited perceptual mechanisms, modern robotic systems are often
faced with topological ambiguity, which makes the autonomous acquisition of a reliable map of
the environment a particularly difficult task.

A different type of spatial uncertainty regards the exact geometrical layout of the environ-
ment in a single global frame of reference. Most approaches to map-building in robotics are
primarily concerned with this second kind of uncertainty, and look at topological ambiguity as
an additional adversity — thecorrespondenceor data associationproblem — for which they
either assume to be given a solutiona priori, or devisead hocmethods.

The main assumption that drives our work is thatmetrical uncertaintyandtopological am-
biguity factorize the spatial uncertainty arising in the problem of map-building. They can thus
be handled in isolation, but their partial solutions can also take advantage of each other and offer
complementary benefits.

In this direction, we provide theory for combining modern metrical mapping methods,
among the best of the state of the art, along with a customizable system of qualitative biases and
ontological expectations that has proved relevant to topological mapping. The latter has been
previously studied in the framework of theSpatial Semantic Hierarchy(SSH), which plays a
foundational role in this thesis. To this purpose, we make use of probability theory, and in
particular of theBayes Networks, which we believe to account best for the different nature of
metrical and topological uncertainty. We show experimentally the advantages of the approach.
In the spirit of the SSH ontology, we also study the dramatic reduction of topological ambiguity
that follows from enforcing the planarity constraint, which is adequate in many real-world cases.
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Chapter 1

Introduction

1.1 Motivations and Contributions

While trying to build a map of an unknown environment under exploration, the place being
currently visited may seem identical to one (or more) encountered earlier. When this is the case,
a paradigmatic question arises: “Have I already been here (was this a loop), or is it the first
time I see this place?”. Obviously, the occurrence and extent of this ambiguity depend both
on the perceptual processes employed, and the environment at hand. This problem is indeed a
case ofperceptual aliasingoccurring overlarge-scale space. Perceptual aliasing regards two
distinct entities when they cannot be distinguished by the perceptual mechanisms. “Large-scale”
connotes a space that cannot be observed at once from a single viewpoint, and implies that its
global description can be only built out of many observations collected over time1.

The problem simply defined by the question above seriously affects the process of assim-
ilating purposeful spatial representations of physical environments. Unfortunately, it has so
far proved very hard for modern robotic systems, partially due to the their limited perceptual
capabilities. Unless strong assumptions are made on the environment and the sensing model,
for example the presence of properly located landmarks that are pairwise distinguishable, any
kind of approach to map-building is prone to perceptual aliasing and must deal with large-scale
spatial ambiguity.

This type of uncertainty istopological, in that it concerns the graph-model of places (nodes)
and paths (edges) that abstracts the space. In particular, the number of places and the order in
which they have been visited, which makes the loops of the graph, are uncertain. To deal with
topological ambiguity, more hypotheses need to be explicitly considered. Unfortunately, the

1Quoting from Kuipers (1977, chapt. 1): “Large-scale space is defined by the perceptual mechanisms for explor-
ing the space, rather than by its physical size. A large-scale space is defined as a space which cannot be perceived at
once: its global structure must be derived from local observations over time. For example, a drawing is a large-scale
space when viewed through a small movable hole, while a city can be small-scale when viewed from an airplane.”

13
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(a)

(b)

Figure 1.1:Topological Search.(a) The environment. The exploration considered is A-B-C-D.
Assume the robot is able to follow corridors (lines) and recognize the corners as places. All the
places are perceptually aliased as they appear identical (a corner). (b) Topological hypotheses
from the exploration. Solid-filled points are the places assumed in each map. A little closed-
headed arrow points to the assumed current place in each map.

space of hypotheses can grow exponentially, as shown in the simple case in Figure 1.1. This
happens, for example, in the relevant class of environments whose topological abstraction is a
grid-like pattern. In this case, discarding wrong models turns out to be particularly hard due to
the symmetrical layout of perceptually aliased places, as illustrated in Figure 1.2.

Most current approaches to robotic map-building are primarily concerned with another kind
of spatial uncertainty, about the precise geometrical layout of particular landmarks and features,
or of any obstacle at a pixel resolution, in a single global frame of reference. The hard problem
here is to enforce global metrical consistency despite the inevitable sensing and odometrical
error, especially because the latter tends to scale up dramatically with the dimensions of the
environment. Such approaches look at topological uncertainty as an additional adversity, usually
referred to as thedata associationor correspondenceproblem. When they do not assume to be
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given a solution for that in advance, these approaches devisead hocmethods to deal with it.
Sometimes a huge number of hypotheses are examined as samples of a probability distribution
over the space of maps, and not directly as natural explanations of perceptual-aliasing events.
A convergence behavior is usually pursued here. In other cases some greedy selection criteria
are employed to overcome the ambiguity as soon as it arises. These techniques do not always
commit to identifying the unique correct solution, and might end up with just an approximated
description of the environment, for example hypothesizing a number of landmarks close to the
correct one.

Our work builds on the idea that topological and metrical uncertainty can be addressed in
isolation, but their partial solutions can take advantage of each other and offer complementary
benefits. We adopt theSpatial Semantic Hierarchy(SSH) as foundational framework. The SSH
represents different kinds of spatial knowledge — encompassing raw sensorimotor information
and qualitative symbolic descriptions — over a hierarchy of ontologically distinct levels. It
has proved relevant to a diverse body of research in the fields of Cognitive Science, Artificial
Intelligence and Robotics, and has led to real robot implementations. A customizable system
of qualitative biases and ontological expectations for typical classes of real-world topological
configurations has been studied in previous work in the SSH. We address the problem of combin-
ing uncertain metrical information with such qualitative criteria, to the purpose of overcoming
topological ambiguity more robustly. We make use of probability theory to provide a formal
account of this integration, and to devise efficient algorithms after suitable approximations.
Physical topological ambiguity is also ambiguity about the correct topology of the conditional
(in)dependence relationships that characterize the probabilistic model for metrical uncertainty.
This is best shown usingBayes Networksas graphical representations of the probabilistic mod-
els at hand. Thus, it can be pointed out that metrical uncertainty is represented within the model,
and can be tackled by probabilistic inference, while topological uncertainty causes the proba-
bilistic model itself to be uncertain, posing a harder challenge. On a more practical side, the
framework proposed is compatible with some of the best modern metrical mapping methods. In
the same spirit of the SSH, we also enhance its system of qualitative preferences studying the
dramatic reduction of topological ambiguity when the planarity constraint — many interesting
real-world environments meet the planarity assumption — is enforced.

In Section 1.2 we introduce the main paradigms of the approaches to the problem of robot map-
building. In 1.3 we outline the organization of the thesis.
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(a)

(b) (c)

Figure 1.2: Topological Ambiguity. Both (b) and (c) are among the consistent topological
hypotheses after the complete physical robot exploration enumerated in (a) (third floor of ACES
building, University of Texas at Austin), and a topological search as in Figure 1.1. Places and
their reliable local perceptual characteristicsat the topological abstraction levelare represented
inside the small circles. Due to perceptual aliasing of places and the symmetrical structure of
the environment, any further exploration will give the same sequence of observations, making
it impossible to discriminate between the two maps. (This very case can be easily solved by
enforcing the planarity constraint, see Chapter 3.)
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1.2 Robot Map-Building

Two paradigms for map-building have been mainly pursued in Artificial Intelligence (AI) and
Robotics, along with their integration.

A metricalmap represents the environment by collecting the position of relevant landmarks,
features, and objects w.r.t. a single metric frame of reference,i.e. a global coordinate system. In
some cases, free and occupied space can be represented at high resolution, giving rise to a pixel
map, calledoccupancy grid, which does not require a prior ontology and operational definition
of objects or landmarks.

A topologicalmap generally represents spatial knowledge as a graph, describing locations,
places and objects of interest as nodes, and their spatial relations, such as proximity and links
as edges. Often edges also reflect the procedural knowledge and control laws used to navigate
between nodes.

Many hybrid approaches that integrate metrical and topological information have been pro-
posed as well. They are usually aimed at extracting a map of one kind from one of the other.
For example, a topological map can be used to drive the integration of local metrical maps in a
single global frame of reference.

While seeking to build a correct map, whatever its nature, two types of uncertainty influence
each other dramatically, making map-building a challenging task. One regards the current lo-
cation in the map, which is necessary to correctly integrate new sensed spatial information, and
update the map. The other concerns the map itself. Note that this distinction is different from
the classification of spatial uncertainty as topological or metrical.

Current terminology,Simultaneous Localization And Mapping(SLAM) or Concurrent Map-
ping and Localization(CML), makes the interplay between localization and mapping explicit.
Although this terminology is widely used in metrical mapping literature (for example, Thrun
et al., 1998a; Dissanayake et al., 2001), it can apply to topological mapping as well (Choset and
Nagatani, 2001).

In the metrical context, localization regards the problem of estimating the robot’s pose
(x, y, θ), i.e., its position and orientation. Mapping itself consists of building the map rely-
ing on the exact pose, w.r.t. the global metrical frame of reference. The hard problem here is
enforcing global metrical consistency, due to imprecision in sensing, motor control, and low-
level estimation of the robot’s own motion (odometry). The resulting accumulated error in the
map tends to scale up dramatically with the dimensions of the explored area.

In a simple topological model, localization is deciding what node or edge the current place
or path belongs to, while the mapping stage amounts to building the map as a graph.

However, “mapping” and “map-building” commonly refer to the entire SLAM problem, and
we will use these two terms in this sense, unless otherwise specified.

Next sections discuss metrical, topological, and hybrid map-building in more detail.
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1.2.1 Metrical Maps

Researchers have worked extensively on making metrical methods computationally feasible for
building large maps within a single, global coordinate system. Among the first successful and
influential approaches, Chatila and Laumond (1985) propose a metrical mapping algorithm that
uses sets of polyehedra to describe the geometry of the environment, while Elfes (1989) and
Moravec (1988) introduce the occupancy-grid framework. Methods to create metrical maps
using a set of landmarks or geometric features have been widely explored (Smith et al., 1990;
Dissanayake et al., 2001; Montemerlo et al., 2002).

Metrical maps excel in handling some of the initial, low-level problems encountered in
robotics. Since these methods are often used with high-precision sensors, accurate localization
and mapping can be efficiently accomplished in small-scale space (Gutmann and Schlegel, 1996;
Gutmann et al., 1998; Gutmann and Fox, 2002). This reduces the effect of odometry error
on pose estimation. Furthermore, recent probabilistic methods make metrical mapping robust
and fast also in interestingly large environments, such as offices, under suitable operational
conditions (Thrun, 2000, 2002).

Current metrical mapping methods, however, have several disadvantages. Metrical maps
reduce pose error in local space, but errors dramatically propagate over large-scale space. As a
consequence, metrical maps cannot easily handle cyclical environments once position estimates
have drifted sufficiently. Mapping and planning in very large metrical maps can be time con-
suming, thus algorithms are often run offline. Metrical maps also suffer from the lack of a good
interface for higher-level symbolic problem solvers. They are insufficient for a robot to reason
about the layout of its environment, or to communicate route directions to another robot that
lacks the same map.

Perceptual aliasing makes it difficult to handle loop-closure events. In principle, metrical
mapping would be especially useful when the environment is perceptually poor w.r.t. the robot’s
perceptual skills. If successive robot’s poses are known with sufficient accuracy, a loop can be
detected when two such poses are close enough. However, most online successful approaches
(see for example Paskin, 2003) assume to know which loops must be closed, for example by
expecting that no two landmarks can be mistaken one for the other. This cycle in the structure
of the problem confirms the importance of addressing perceptual aliasing in large-scale spatial
knowledge acquisition.

Approaches that do not make use of probabilistic techniques have also been proposed, for
example based onfuzzy logic(Driankov and Saffiotti, 2001). Fuzzy logic makes it possible
to deal with heterogeneous uncertain spatial knowledge (metrical, topological etc.) in a very
flexible fashion, at a low computational cost.
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1.2.2 Topological Maps

A topological map represents an environment as a graph. Several distinct topological mapping
frameworks have been proposed (Kuipers and Byun, 1991; Mataric, 1992; Shatkay and Kael-
bling, 1997), which differ in semantics and ontology, in particular about what makes a place,
and what should be considered a node or an edge in the graph. Some of them build topologi-
cal maps autonomously, others only explore autonomously while the researcher provides place
names to overcome perceptual aliasing.

Topological maps are more compact representations than global metrical maps. They al-
low high-level symbolic reasoning for map-building, navigation, planning, and communication.
Since the environment is abstracted to a graph, movement errors that accumulate between graph
nodes do not necessarily accumulate across a global frame of reference.

A recent topological mapping approach (Choset and Nagatani, 2001) employs Voronoi
graphs to obtain the discrete representation of the environment from sensor data. Huang and
Beevers (2004) address distributed multi-robot topological mapping; pattern matching on graphs
is exploited to evaluate different hypotheses about how to merge different partial topological
maps, built by different robots, that potentially overlap or match.

It is noteworthy that cognitive map research supports the creation of topological maps of
large, complex environments (Yeap, 1988; Chown et al., 1995; Kuipers, 2000). Cognitive maps
will be shortly introduced in Section 1.2.4.

1.2.3 Hybrid Maps

Arguably, the most promising approaches to robot map-building are based on hybrid topolog-
ical/metrical maps. Kuipers and Byun (1991) introduce the concept of “patchwork metrical
map”, created using the topological map as a base for integrating metrical data gathered lo-
cally at places and along paths. Local frames of reference at place neighborhoods and along
path segments are relaxed into a single global frame of reference, minimizing the “strain” at
their joints. More sophisticated approaches, based on probabilistic techniques, have been later
proposed (Thrun et al., 1998b; Duckett and Saffiotti, 2000; Modayil et al., 2004).

Thrun (1998) addresses the opposite direction, creating a topological map from a global
metrical map, for indoor environments. This implies the aforementioned metrical map scaling
problems. Related work connects the compact representations of rooms into both global metrical
and topological maps (Yeap and Jefferies, 1999).

Fabrizi and Saffiotti (2000, 2002) employ fuzzy digital image processing to extract topologi-
cal maps from occupancy grids, a mathematical technique rather more general and sophisticated
than that proposed by Thrun (1998). It does not require a global metrical map, and can thus work
online during exploration.

Most work on hybrid maps has dealt with generating topological and metrical maps as dis-
joint, sequential processes. Some recent research integrates metrical and topological mapping



20 CHAPTER 1. INTRODUCTION

by comparing local metrical models (Duckett and Nehmzow, 1999; Kuipers et al., 2004) or uti-
lizing odometry (Tomatis et al., 2003; Bosse et al., 2003) to reduce topological place aliasing.
Once a correct topological map is built, the local metrical models can be pieced together to make
a global metrical map, by the methods mentioned above.

Following (Choset and Nagatani, 2001), Lisien et al. (2003) propose a hierarchical explo-
ration and mapping framework which makes use of local metrical feature maps, and a global
topological map. Although a promising approach, in the experiments loops were assumed to be
notified externally during exploration.

Buschka and Saffiotti (2004) propose a principled ontology and theory of hybrid maps,
discussing their use and properties from a general viewpoint.

1.2.4 Cognitive Maps

Cognitive Science has long been concerned with spatial reasoning and knowledge representa-
tion. Broadly speaking, this discipline aims at understanding and modeling the representational
and computational mechanisms that underlie cognitive processes in humans and animals (cog-
nitive modeling). In this respect, it is related to AI and Robotics, based on the long-term goal
of reproducing human-level abilities and intelligence in agents that physically interact with the
world.

In the light of their recent developments, AI, Robotics, and Cognitive Science appear to find
an opportunity of taking further advantage from each other. In Cognitive Science, implementing
a model and running it against data drawn from experiments with humans is a method commonly
used to test the plausibility of such a model (cognitive simulation). On this side, advanced
robotic platforms lend themselves to suitable testbeds for cognitive simulation of tasks involving
physical interaction with the world, as in our case of spatial knowledge acquisition. On the other
side, although AI and Robotics are not necessarily committed to having recourse to the very
solutions Nature has devised, insights and ideas coming from the effort to model such solutions
turn out to be of great value to artificial systems as well2.

A cognitive mapis a general cognitive model of large-scale spatial knowledge assimilation
and representation, and of the mechanisms for reasoning with it. From related cognitive stud-
ies (Lynch, 1960; Piaget and Inhelder, 1967; Hart and Moore, 1973; Siegel and White, 1975), it
emerges that cognitive maps have strong topological nature, and are grounded in sensorimotor
experience and procedural knowledge of how to move between distinctive locations. Besides,
humans make use of different kinds of spatial knowledge, depending on the particular task at
hand.

Studies and models of cognitive mapping include (Kuipers, 1977; Yeap, 1988; Chown et al.,
1995). We briefly survey the Spatial Semantic Hierarchy (SSH) below, because of its important

2Such a twofold statement of interest also offers a rather broad ontological and semantic frame of reference to
the termCognitive Robotics, currently used with different meanings in distinct research areas.
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role in this thesis. Although primarily aimed at a general robotic framework, its scope signifi-
cantly overlaps the theme of cognitive mapping. A more detailed description of the SSH will be
given in Chapter 2.

The SSH

The Spatial Semantic Hierarchy (SSH) (Kuipers and Levitt, 1988; Kuipers and Byun, 1991;
Kuipers, 2000) provides a framework in which spatial knowledge is represented over multiple
levels. Such levels have different ontological nature, interact toward attaining a purposeful de-
scription of the environment and can work with partial knowledge. The different levels describe
different kinds of information — applicable control laws, procedural knowledge, topological
configurations — by different representational means, such as differential equations and sym-
bolic descriptions, the latter including graphs and logical theories. This information has some
degree of redundancy, because it is related to different aspects of the same phenomena, and is
organized in a hierarchy of abstraction and dependencies over the different levels.

The SSH has proved relevant to a diverse body of research in AI, Robotics (Kuipers and
Byun, 1991; Pierce and Kuipers, 1997) and Cognitive Science (Kuipers et al., 2003). The aspect
that is most relevant to our purposes is the abduction of a topological map, possibly annotated
with local metrical information, from the sensorimotor interaction of the robot with the environ-
ment.

Hybrid mapping methods based on the SSH allow metrical maps of local regions to be
linked into topological maps of large-scale space. Increasingly efficient algorithms have been
developed to exploit structure obtained from local metrical models (Remolina and Kuipers,
2004; Beeson et al., 2003; Kuipers et al., 2004; Savelli and Kuipers, 2004). These algorithms
generate all possible topological models, filter out those inconsistent with the exploration and
with the SSH theory, and provide a preference ordering on the remaining models.

In the SSH framework, metrical information can be very useful, but is not usually necessary
for building a purposeful map, provided that the environment is not adversely pathological. This
is not the case if structural ambiguity (e.g., raised by symmetric perceptually-aliased places
as in Figure 1.2) allows incorrect maps to be consistent with all past and all possible future
experiences during exploration. In the worst cases, if the potential of odometrical information
to rule out wrong place-association hypotheses is not exploited, coping with the combinatorial
explosion of the search-space may not be practically possible. The recourse to such information,
even when it is affected by strong uncertainty, can significantly help to tame the proliferation of
candidates (we shall deal with this in Chapter 4).
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1.3 Thesis Outline

This thesis is organized as follows.
In Chapter 2 we provide a thorough introduction of the Spatial Semantic Hierarchy, and of its

recent extension, the Hybrid Spatial Semantic Hierarchy, to which we also contributed (Beeson
et al., 2003; Kuipers et al., 2004). We improve and extend the mathematical formalization of
the topological mapping function introduced in this previous work, and describe the topological
mapper we have implemented, which will play an important role in the next chapters. This
constitutes the foundations of the thesis.

In Chapter 3, we provide a theoretical and experimental analysis of the great impact that
the planarity assumption (reasonable for many real-world environments) has on the reduction
of topological ambiguity (Savelli and Kuipers, 2004). This lends a further argument to the
use of discrete abstract representations of an environment: many (sometimes most) incorrect
models can be discarded by a sublinear-time test on a graphbeforeenforcing global metrical
consistency, which is more computationally and representationally expensive.

In Chapter 4, we formalize the problem of solving topological ambiguity as a particular
problem of Bayes-network learning, and derive a general framework in which metrical infor-
mation and the qualitative biases provided by the SSH can be exploited together. Several ap-
proximations are proposed that make it possible to employ some techniques recently introduced
in literature, among the best of the state of the art, for solving metrical pose uncertainty due to
noisy odometry and sensing.

Finally, in Chapter 5, we provide some concluding remarks.



Chapter 2

The Hybrid SSH

The Spatial Semantic Hierarchy (SSH) plays a foundational role in this thesis. In this chapter
we first introduce its framework (Section 2.1), then we describe a recent extension, called the
hybrid SSH (from Section 2.2 on), to which we contributed (Beeson et al., 2003; Kuipers et al.,
2004). Building accurate local representations is made computationally inexpensive by state-of-
the-art methods such as metrical mapping techniques; the hybrid SSH takes advantage of such
methods, and permits more effective large-scale topological mapping.

2.1 The Spatial Semantic Hierarchy

The Spatial Semantic Hierarchy (SSH) (Kuipers, 2000) provides a framework in which large-
scale spatial knowledge is represented over different ontological levels. Inspired by cognitive
findings about how humans assimilate and process large-scale spatial information, the SSH de-
scribes a computational model that includes topological maps abduction from the sensorimotor
experience of a robot. It also allows for metric knowledge in the form of local annotations on
the map and local frames of references integrated in a “patchwork”. While the SSH makes some
assumptions on the sensorimotor level of the robot, it does so in order to be independent from
the details of such a level.

In the SSH, the explored space is partitioned into segments and regions that are qualitatively
uniform w.r.t. the dynamical system composed of the robot, its control laws and sensor system,
the conditions that trigger the application of the control laws, and the environment. In a sense,
the SSH attempts to extract and exploit the fullest degree of determinism inherent in this system.
The edges of a topological map thus provide spatial relations of proximity that are deterministic,
in the sense that the robot can always move along them reproducing the same navigation results.

There are four levels of knowledge representation in the SSH, structured in a hierarchy of
abstraction and dependencies, as illustrated in Figure 2.1. At thecontrol level, the agent repeat-
edly selects a hill-climbing control law to converge to and localize at adistinctive state(dstate),

23



24 CHAPTER 2. THE HYBRID SSH
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Figure 2.1: The Spatial Semantic Hierarchy Closed-headed arrows represent dependen-
cies; open-headed arrows represent potential information flow without dependency. (Taken
from Kuipers, 2000.)
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and then a trajectory-following control law to move from the current dstate to the neighborhood
of another, where hill-climbing converges to the next dstate, eliminating cumulative error. The
causallevel abstracts this pattern of behavior to a deterministic automaton, consisting of states
(the distinctive ones),actions (sequences of control laws),schemas〈x, a, x′〉 (asserting that
statex′ results from performing actiona in statex), andviews(the perceptual images of states,
view(x, v)). Thetopologicallevel distinguishes between turn and travel actions, and aggregates
states into places, paths, and regions, related by connectivity, order, and containment. Themet-
rical level consists of local metrical attributes for objects at the causal and topological levels,
local metrical models of small-scale space in place neighborhoods, and (when resources permit)
global metrical models of the large-scale environment (Modayil et al., 2004). A formalization of
the topological map in non-monotonic logic, and an algorithm for identifying minimal models
according to a prioritized circumscription policy is given in (Remolina and Kuipers, 2004). The
circumscription policy formalizes preference and default criteria, which are well suited for the
ontology of many real-world classes of environments such as offices or urban street networks.

We introduce the SSH’s levels in more detail in the following sections. For a complete descrip-
tion see (Kuipers, 2000).

2.1.1 Sensory and Control Levels

Thesensory levelregards the interface with the agent’s sensory system. Both continuous (from
laser range finders, sonars etc.) and discrete (from names and directions provided, output from
high-level vision) kinds of input fit this level.

The control level includes control laws, conditions for their applications and procedural
knowledge for moving within small-scale space. It has the crucial role of abstracting the sen-
sorimotor experience into a discrete description that permits symbolic reasoning at the causal
and topological levels. It does so considering the agent and the environment a whole dynamic
system w.r.t. the application of the control laws. A set of spatial segments that are qualitatively
uniform for this system supports the construction of a net of distinctive states in the large-scale
space. For a segment of the space to be qualitatively uniform means that the execution of a
given law (e.g. “approach the visual target”) always reproduces a predictable result, taking the
agent to a distinctive location. In this sense, the resulting spatial description also reflects the
procedural knowledge of the robot in the environment.

The identification of distinctive states and their connections is generally accomplished alter-
nating two kinds of control laws:hill-climbing andtrajectory-following.

Hill-climbing is meant to take the agent to a locally-distinctive state within the small-scale
space surrounding the agent. Such adistinctive stateis a point in the space where a properly
chosen control law converges, usually by maximizing some kind of distinctiveness measure re-
lated to the perceived features in the surroundings. Examples include moving to the point where
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the distances from the sensed features are maximal (e.g., “move to the center of the room”)
or approaching a visual target. The high reproducibility of hill-climbing supports the extrac-
tion of the determinism intrinsic in the system<agent, environment, control laws/procedural
knowledge>, when working in combination with trajectory-following.

Trajectory-following is used to pursue an option for leaving the current distinctive state and
getting about another. Following a corridor is a typical example of this kind of control law.

Observe that both hill-climbing and trajectory-following can be performed through a behav-
ior more complex than just the application of a single control law. They provide an ontological
distinction between two kinds of procedural knowledge.

The partition of large-scale space into distinctive states, their surroundings and links induced
by the control level allows the agent to localize itself at a local level. From a global standpoint,
the uncertainty about its poses in the continuous space is reduced to uncertainty over a finite set
of distinctive states. This in turn is handled by the causal and topological levels.

- Metrical Information
The agent may be able to acquire a precise metric/geometric representation of aplace-

neighborhood(the small-scale surroundings), for example by one of the recent successful prob-
abilistic techniques (Thrun, 2002). If this is the case, the agent can use this representation as a
local observer to avoid hill-climbing to dstates and to extract the perceptual characterization of
its surroundings.

This is the basic way metrical information can be accommodated and exploited at the control
level. The ‘patchwork’ map of local metric maps associated to the places of the final topological
map (see topological level) might be used to build a global metrical map (see metrical level).

Technical details of possible implementations of the control level are provided in (Kuipers and
Levitt, 1988; Kuipers and Byun, 1991; Lee, 1996; Beeson et al., 2003). A discussion of its
assumptions and guarantees is given in (Kuipers, 2000).

2.1.2 Causal Level

A set of distinctive states, connected by the causal links that represent the control laws used to
move between them, emerges from the control level. The causal level symbolically describes
this net as an automaton. Besides distinctive states, the causal level introduces the notions of
view, action, andcausal schema.

An action summarizes the procedural knowledge for moving from a dstate to another, for
example the sequence of hill-climbing/trajectory-following control laws needed.

Actions are often classified intravel and turn sorts. A travel action may change both the
positions and the orientation of the agent, while a turn action only the latter. Thus, more dstates
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linked by turn actions lie in the same location. The direct use of hill-climbing and the sharp
distinction between turns and travels will be overcome to some extent in the extended framework
of the hybrid SSH, in which our work takes place.

A view is a sensory image taken at a dstate. Since hill-climbing takes the agent into the
same distinctive pose every time the place at hand is being visited, it is very likely that the
agent always gets the same image. This eliminates or at least mitigates the problem ofimage
variability, which occurs when the agent gets different sensory views of the same place upon
different visits, and makes place-recognition very difficult. Examples of views are range-finders
snapshots or high-level descriptions of the visual space.

Causal schemas are tuples of the form< v, a, v′ >, which describe the event in which
the agent performs actiona in a dstate with viewv, and ends up in a dstate with viewv′. The
association between dstates and their views is also registered. A chain of causal schemas of the
kind:

< v0, a1, v1 > < v1, a2, v2 > · · · < vi−1, ai, vi > . . .

describes the whole experience of the agent at the causal level.
The causal level is compatible with the approaches based on graphs of views, as opposed

to topological maps that are graphs of places, even though this distinction is not so sharp in
literature. View-graphs have been proved consistent with human navigation abilities (Gillner
and Mallot, 1998; Scḧolkopf and Mallot, 1995), and Franz et al. (1998) proposed them for robot
navigation. Extraction of the spatial structure of the environment in the form of a stochastic
automaton was addressed by Dean et al. (1995).

If two dstates never share the same view the view-graph is also a place-graph. If not, per-
ceptual aliasing occurs and it must be figured out whether identical views, occurring twice or
more times in the chain of causal schemas, correspond to different dstates or to the same. This
problem is mostly tackled at the topological level, interpreting the structure of the environment
according to the ontology. However, observe that the causal level provides enough information
to deal with it to some extent.

Indeed, the chain of causal schemas built up to a certain point in the exploration may predict
the sequence of views obtained during the execution of a particular action sequence, if it is
assumed to be back again in a dstate with an identical view at an earlier point in the chain. If
the actions really performed match this sequence, but views do not, such an assumption proves
wrong.

This can be viewed as a form of subgraph matching in a graph of places. The principle
here is very simple: two places are the same only if they, all their neighbors and neighbors
of neighbors (and so no) appear respectively identical. This is, of course, only a necessary
condition as the graph may exhibit genuinely isomorphic subgraphs, which is what happens
in presence of two regions entirely perceptually aliased. In such a case, to detect the wrong
assumption further exploration is needed — in the worst case, as long as the diameter of such
regions — and, in presence of symmetry, no exploration will achieve this goal by this only
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mechanism (see again Figure 1.2). Metrical information could help dramatically here, that is
what we propose in Chapter 4.

- Metrical Information A causal schema of the kind< v, travel, v′ > might be annotated
with metrical information about the net change in distance and orientation, one of the kind
< v, turn, v′ > with just the net change in orientation.

A logical formalization of the causal level was given in (Remolina and Kuipers, 2001). More
recently it has been expanded to take into account also the topological level. We shall briefly
illustrate it in the topological level section.

2.1.3 Topological Level

The control and causal levels deal with the agent’s experience. The topological level introduces
an ontology of the external environment used to explain the agent experience in terms ofplaces,
paths, regions, and their connectivity, order and containmentrelations.

A place abstracts a part of the environment as a zero-dimensional point. It may lie on more
paths. Every dstate is at a place, dstates linked by turn actions must be on the same place, while
it is usually assumed that two dstates linked by a travel action are on different places.

A path abstract part of the environment as one-dimensional. It defines an ideal transitive
closure and an order on a set of places linked by consecutive travel actions, which can be con-
sidered aligned (e.g., if a turn action — not a turnaround — is performed between two travel
actions, the two travel actions are not put on the same path). Each path has two directions
denoting downstream (+) or upstream (−) in the order on its set of places.

It is important to avoid confusion with the notion of path ingraph theory, which is based
on the transitive closure of the connectivity relation. A SSH path is also a graph-theory path in
the graph that underlies the topological map, but the inverse does not necessarily hold. Real-
world examples of SSH paths include streets in a urban layout, corridors in an office, or tracks
in a wood. These elements play a relevant role in human spatial cognition, in particular in the
assimilation of internal representations for navigation (Kuipers, 1978; Kuipers et al., 2003).

A region represents a two-dimensional part of the environment. It may be defined by its
boundaries, for example given by paths, by a set of places that is convenient to abstract as single
spatial entity, or by a common metrical frame of reference.

A path divides the environment in two regions, left and right. Aboundary relationinvolves
a place and a path, and tells whether the place is on the right or on the left of the path. This is
not always determined, in that paths in reality have not infinite length, and thus do not induce a
perfect separation of the two regions.

A topological map is built from the minimal set of places and paths that explains the causal
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schemas provided by the causal level, enforcing the ontological properties (for ex. see above the
case of two travels split by a turn).

The properties enforced and the selection by minimality constrain the space of possible
hypotheses, which is a consequence of perceptual aliasing, while interpreting the subjective
experience of the agent.

Unfortunately, in some cases minimality may lead to over-reduced maps that do not corre-
spond to reality (see for example Figure 3.4(c,d) of Chapter 3 page 61).

- Metrical Information The metrical annotation of causal schemas (see causal level) leads to
the possibility of annotating the topological map as well. For example the headings at which
paths lie in a place, or the distance between two places along a path can be annotated as attributes
respectively of the place and of the path.

Logical formalization

Recently (Remolina and Kuipers, 2004) a formalization of the causal and topological level
by means of circumscribed logical theories (McCarthy, 1980; Lifschitz, 1994) was proposed.
Nested Abnormality Theories (Lifschitz, 1995) are used, because they allow for the application
of more occurrences, possibly nested, of the circumscription operator to subsets of axioms in a
modular fashion.

We can roughly sketch the overall structure of the theory as follows:

1. Some axioms assert the existence of each causal schema, involving actions, views and
dstates as logical constants. These belong to different sorts of the language.

2. Some other axioms assert the existence of places, paths and (when considered) regions,
upon the existence of the individuals in 1. (There must exist a place where a dstate lies.
If there is a a schema like< v, travel, v′ >, there must exist a path where it lies, and
the two places to which the dstates associated withv andv′ belong must be on this path
as well. These are just two examples.)

3. Topological relations are axiomatically defined as well. Boundary relations, which play
a fundamental role, are defined on the grounds of turn action experienced at the causal
level.

4. Another group of axioms states the topological constraints assumed (for example, a place
cannot be simultaneously on the left and on the right of the same path).

5. Some second order (induction-like) properties, like the fact that a path should contain only
places actually linked by travel actions, are expressed using circumscription on a proper
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block of axioms in isolation. In particular, these are also used to define the boundary
relations. Every place encountered along a pathp′ after having turned right from pathp
will be on the right ofp unless this generates an inconsistency with the axioms above.

6. The models of the theory so far represent all the SSH maps that are consistent with the
experience and the causal and topological levels.

7. A prioritized circumscription policy is applied to the theory. This may take different
forms. It usually establishes a lexicographical order based on the number of paths, places,
boundary relations,etc.Unusual forms, such as self-intersecting paths, can be in principle
modeled in the policy, so as to prefer models that do not exhibit such peculiarities.

2.1.4 Metrical Level — Global Metrical Mapping

A topological map of the environment can drive the integration of local metrical maps into a
single global frame of reference. This helps to control the cumulative pose error, as shown
in (Thrun et al., 1998b; Modayil et al., 2004). The SSH naturally allows for such approaches,
provided that local metrical maps are built at places and metrical annotations are taken for causal
schemas (as explained for metrical information in control and causal level sections).

2.2 Accounting for Small-Scale Space

The main purpose of hill-climbing in the control level is the reliable and unique localization of
the agent in a place-neighborhood, over multiple visits of the same place. Thus, hill-climbing
also allows the robot to get distinctive sensory snapshots, which are used to recognize and
distinguish places during the exploration. If the agent can accomplish both these tasks through
more general perceptual representations of small-scale space — such as visual panoramas, or
local metrical maps — hill-climbing can be avoided.

This idea is supported by recent advancements in metrical mapping of environments of
limited dimensions, and by those expected in the field of artificial vision, especially in scene
interpretation and vision-based motion planning. These advancements are the technological
motivation to the ontological and technical integration of small-scale space into the SSH, leading
to an hybrid enhanced framework (Beeson et al., 2003; Kuipers et al., 2004).

2.2.1 LPMs and Stars

We term a general perceptual representation of a place-neighborhoodLocal Perceptual Model
(LPM). A LPM is supposed to:

- Allow the robot to localize itself unambiguously in the place-neighborhood.
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- Provide directly or support the extraction of a reliable and complete description of the
features or views used to distinguish the place.

- Support the extraction of a reliable and complete description of the options available to
leave and enter/approach the place.

Observe that the SSH is general enough to accommodate a LPM as a 360-degree sensory
view of a dstate, provided that any turn action leaves the robot in this dstate, which must be the
only one in the place at hand. However, the concept of LPM is general enough to cover the case
of a place where more dstates are linked by turn actions.

In the SSH topological level a place is characterized by the paths on which it lies. Such
paths locally correspond to the options for leaving or approaching and entering the place at the
control and causal levels, traditionally by alternating trajectory-following and hill-climbing. We
want to extract from a LPM the counterpart of this structure in the small-scale space. We call
this new structurestar, because of the shape the set of paths intersecting at a place exhibits. The
paths in the star are calledlocal paths, for they are intended to represent path segments of the
large-scale topological map intersecting in the place at hand. Note the difference in terminology,
a path is a (global) path of the SSH topological level, unless otherwise specified; alocal path
always refers to a path segment in the star.

We introduce some new terms and notations for this small-scale spatial ontology.LPid is an
identifier for a local path;+ or− are used to disambiguate between the two possible directions of
a local path. The two directions can be also viewed as distinguishing tags for the two endpoints
of the local path that appear in the star. They do not necessarily have to be oriented in the same
way as the+ and− of the corresponding SSH global path. We call a local path annotated with
a direction anoriented local path.

The notion of star can be now formally defined.

Definition 2.1 (Star). A starS is a set of oriented local paths such that

LP+ ∈ S iff LP− ∈ S

and equipped with two functions:

(i) next : S → S induces a circular order over the elements ofS; next(x) is the element
clockwise next tox.

(ii) α : S → A associates an attribute valueα(olp) to olp; A is a given domain of possible
values for the attribute.

The attribute values inA carry additional information about each oriented local path. The
basic version ofA contains two values:{T, C}. T specifies that the local oriented path is
actually travelable, in that the corresponding global path continues outside the place in the
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specified direction. On the contrary,C specifies that the oriented local path isclosed, because
the global path terminates at the place at hand. A richer classification here is possible, as needed
for the desired small-scale spatial ontology.

We conveniently represent a starS as a circular list of pairs of oriented local paths and their
attributes

[< OLP1, α(OLP1) >, < OLP2, α(OLP2) >, · · · < OLPn, α(OLPn) >, . . . ]

Given an elementolp of S, next(olp) is its successor in the list, the successor of the last element
being the first in the list.

Example 2.1.

The stars for a “+” intersection, for a “T” interesection, and for a “L” corner are:

(+) : [< LP0+, T >, < LP1+, T >, < LP0−, T >, < LP1−, T >]
(T ) : [< LP0+, T >, < LP1+, C >, < LP0−, T >, < LP1−, T >]
(L) : [< LP0+, C >, < LP1+, T >, < LP0−, T >, < LP1−, C >]

Note that the star is independent of where the enumeration of oriented local paths begins.
�

We introduce the notion ofisomorphismbetween two stars.

Definition 2.2. An isomorphism between two starsS andS′ that share the same attribute do-
mainA is a bijective functionϕ : S → S′ such that

(i) ϕ(next(olp)) = next(ϕ(olp)).

(ii) α(olp) = α(ϕ(olp)).

(iii) lp+ and lp− lie on the same local path in opposite directions iffϕ(lp+) andϕ(lp−) do
so too.

Intuitively, an isomorphismϕ : S → S′ such thatϕ(olp) = olp′ guarantees thatS andS′

appear identical when observed respectively fromolp andolp′. Another intuitive way to look at
this is thatS andS′ match when relatively rotated so as to haveolp correspond toolp′.

Remark 2.1.

Note that there can be more than one isomorphism between two stars. For example there are
four of them between two “+”-shaped stars. �
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2.2.2 Gateways and Stars from Occupancy-Grid Maps

We now address the problem of how star-representations could be extracted from occupancy-
grid maps that play the role of LPMs. To this purpose, we introduce the concept ofgateways,
intended as access points of a place neighborhood.

Possible operational definitions of gateways include:

1. Gateways can be defined as boundaries between regions of different control law applica-
bility, when positions within a LPM are tagged with the control law applicability condi-
tions they satisfy. In particular, the border between a hill-climbing region and a trajectory-
following one should be considered a gateway.

2. Chown et al. (1995) define gateways as the locations of major changes in visibility:

In buildings, these [gateways] are typically doorways. . . . Therefore, a gate-
way occurs where there is at least a partial visual separation between two
neighboring areas and the gateway itself is a visual opening to a previously
obscured area. At such a place, one has the option of entering the new area or
staying in the previous area.

3. In some cases, a geometric criterion for identifying gateways can be based on the medial
axis of free space in the LPM, that is the one-dimensional set of points that are equally
distant from nearby obstacles. All the such axes of a space make a graph, well known
in as theVoronoi diagram. A gateway corresponds to a “constriction” (or “critical line”
Thrun, 1998) along a medial axis edge, where the distance between the edge and obstacles
is a local minimum near a larger maximum.

The principle in 2. does not apparently lend itself to a direct robot implementation, while 1.
and 3. are the criteria illustrated in Figures 2.2 and 2.3 (1. is used for Figure 2.3(c)). In these
examples, gateways are first detected and then used to identify the local paths making up the star
of the place. Whether a local path terminates at or continues across a place must be decided. If
a local path terminates at a place, it will have only one gateway; if it passes through, it will have
two. The values ofA are lists of control laws applicable on the oriented local path.

Figure 2.3 also provides some insights into how the small-scale and large-scale spatial on-
tologies can relate to each other, involving every level of the SSH:

• Gateways can be considered dstates. (Control and Causal Levels.)

• Such dstates would be linked by virtual turn actions, which do not correspond to physical
turns at the control level, but to some short navigations planned in the occupancy-grid
map. (Control and Causal Levels.)

• Attributes for oriented local paths can represent which control laws are applicable. (Con-
trol Level.)
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(a) (b) (c)

Figure 2.2: Finding Gateways in a LPM. A possible implementation of a local perceptual
model (LPM) is a bounded occupancy-grid map. The robot is shown as a circle in the center of
the LPM.(a) To find gateways in corridor environments, the algorithm computes the medial axis
of the occupancy grid free space.(b) The maximum of the medial axis graph is found (where
the distance of obstacles from the graph is maximal) and each edge is traversed, looking for
“constrictions” (where the distance between the graph edge and obstacles is a local minimum).
(c) The final gateways are drawn as lines connecting the graph edge minima (circle) with the
closest obstacles. (Taken from Beeson et al., 2003.)
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Star
[<PF1+, (gw1,out) & (gw4,in), Midline>,
<PF2+, (gw2,out), Midline>,
<PF3+, (gw5,in), Closed>,
<PF4+, (gw3,out), Midline>,
<PF1-, (gw4,out) & (gw1,in), Midline>,
<PF4-, (gw3,in), Closed>,
<PF3-, (gw5,out), Midline>,
<PF2-, (gw2,in), Closed>]

(a) (b)

Star
[<PF1+, (gw1,out) & (gw2,in), LeftWall>,
<PF2+, (gw3,in), None>,
<PF1-, (gw2,out) & (gw1,in), RightWall>,
<PF2-, (gw3,out), Midline>]

(c) (d)

Figure 2.3: Local Extraction of the Star Description. (a-c) Given the gateways and local
paths of a place, the robot can extract the star.(b-d) The star enumerates all the local paths in
clockwise order. Here the attribute for an oriented local path takes the form of the list of control
laws (trajectory-following) applicable. The correspondence with the gateways is also annotated.
(Adapted from Beeson et al., 2003.)
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• Suitable portions of the occupancy-grid map can be considered views taken at the dstates.
(Causal Level.)

• Local paths of the star can be annotated with identifiers for the corresponding global paths
at the SSH topological level. (Topological Level.)

However, for our purposes, we will mostly focus on the star as the small-scale spatial coun-
terpart of the topological level, in the simple form as in Example 2.2.1, page 32.

2.3 A Topological Mapper

Motivations for the ontological and technical integration of small-scale space in the SSH are
provided in the previous section, and by the experimental results discussed later in Section 2.4.
We have designed and implemented a topological mapper for the causal and topological level in
this new context.

Instead of the traditional input as a sequence of causal schemas (see Section 2.1.2):

< v0, a1, v1 >

< v1, a2, v2 >
...

< vi−1, ai, vi >

< vi, ai+1, vi+1 >
...

the topological mapper takes a sequence of stars and oriented local paths:

< S0, S0 :: OLPout, S1 :: OLPin, S1 >

< S1, S1 :: OLPout, S2 :: OLPin, S2 >
...

< Si−1, Si−1 :: OLPout, Si :: OLPin, Si >

< Si, Si :: OLPout, Si+1 :: OLPin, Si+1 >
...

Si denotes a star,Si :: OLPout andSi :: OLPin denote the oriented local paths used respectively
to leave and enter the starSi, and refer to the internal representation ofSi.
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We call a single tuple< Si, Si :: OLPout, Si+1 :: OLPin, Si+1 > an observation.
This observation describes the piece of exploration in which the robot (1) is at a place whose
perceived star isSi, (2) leaves the place throughSi :: OLPout, (3) performs a travel action and
(4) reaches a place whose perceived star isSi+1 accessing it throughSi+1 :: OLPin.

Except for the first observation, at every step the first star is identical to the second in the
previous observation.

Figure 2.4 provides an example of exploration and its description as list of observations.
In this thesis, the only information characterizing a place that we consider in input is the

star. This choice has four main reasons:

1. Image variabilitycan cause the same place to appear differently due to differences in the
LPMs built upon two visits. In a sense, image variability can be considered orthogonal to
perceptual aliasing (Kuipers and Beeson, 2002). Considering only the star prevents or at
least strongly reduces the chance of occurrences of image variability.

2. The star concisely represents the minimal information that a topological-mapping sys-
tem needs: (a) a useful description of the options available to leave or enter/approach
a place/an object of interest, and (b) a log of those such descriptions encountered and
options taken.

3. Richer perceptual characterizations of places can be always accommodated on top of the
minimal description given by the star, perhaps relaxing some of the SSH deterministic
assumptions.

4. Retrieving and matching entire LPMs (for instance metrical maps if they are used as
LPMs) would be far more expensive computationally.

2.3.1 Algorithm

The topological mapper takes into account one observation at a time and builds all the topo-
logical models consistent with the observations already considered. These models consist of a
map anda pointer to the current place; the combination is called ayou-are-here(YAH) map in
the specialized literature. We shall denote such a map as

.
m = 〈M,p〉. M is the map, includ-

ing places represented as stars, whilep indicates the current place. Some of the oriented local
paths in the stars of the map will be already pairwise linked along SSH paths. The remaining
travelableoriented local paths correspond to options for further exploration that have not yet
been pursued, according to the particular interpretation of the exploration so far given by the
topological map

.
m. We will call such an unlinked oriented local path apending oriented local

path, abbreviated bypending olp. Likewise, we call a gateway that correspond to a pending olp
apending gateway.

The overall functioning of the topological mapper is based on the following recursive mech-
anism:



38 CHAPTER 2. THE HYBRID SSH

A B

C

D

E

start
1

2

7

8

34

5

6

(a)

SA = [< LP0+, C >, < LP1+, C >, < LP0−, T >, < LP1−, T >]
SB = [< LP0+, T >, < LP1+, C >, < LP0−, C >, < LP1−, T >]
SC = [< LP0+, T >, < LP1+, T >, < LP0−, C >, < LP1−, C >]
SD = [< LP0+, T >, < LP1+, T >, < LP0−, T >, < LP1−, T >]
SE = [< LP0+, C >, < LP1+, T >, < LP0−, T >, < LP1−, C >]

(b)

< SA, SA :: LP0−, SB :: LP0+, SB >
< SB, SB :: LP1−, SC :: LP1+, SC >
< SC , SC :: LP0+, SD :: LP0−, SD >
< SD, SD :: LP0+, SE :: LP0−, SE >
< SE , SE :: LP1+, SA :: LP1−, SA >
< SA, SA :: LP0−, SB :: LP0+, SB >
< SB, SB :: LP1−, SC :: LP1+, SC >
< SC , SC :: LP0+, SD :: LP0−, SD >

(c)

Figure 2.4: Topological Input. (a) The environment and the exploration.(b) Stars for the
distinctive places.(c) List of observations. (The search-tree produced by the topological mapper
for this input is given in Figure 2.5.)
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- Basic Step.A trivial map with one single place is built from the first star in the first
observation.

- Recursive Step.The maps that extend a given map consistently with a new observation
are created. We call these new maps thesuccessorsof the given one; they represent all the
different topological hypotheses that can explain the new observation in the given map.
The number of successors can be0 if the new observation is inconsistent with the assumed
map,1, or > 1 in case of perceptual aliasing.

Because of this recursive mechanism, the search space develops as a tree whose depth is the
number of observations processed. We discuss the detail of these two steps.

Basic Step.
The first map ever created by the algorithm contains one single place whose star is given byS0

in the first observation

< S0, S0 :: OLPout, S1 :: OLPin, S1 >

Of course, the current place is the only place of the map, while the next observation to take into
account (in the first application of the recursive step explained below) is still the first observation
above. �

Recursive Step.
Let

.
m = 〈M,p〉 be the map at hand, and

< Si, Si :: OLPout, Si+1 :: OLPin, Si+1 >

the next observation to take into account for
.
m. Let Sp be the star ofp in M ; assume (we will

prove it by induction shortly) that there exists an isomorphismϕ : Si → Sp, which intuitively
guarantees thatSi andSp are compatible.

There are three possibilities while creating the successor(s) of
.
m:

1. Predicted-Consistent (pc).M already includes a link fromp throughϕ(Si :: OLPout)
to another place, call itp′ and let its star beSp′ , through one oriented local paths ofSp′ ,
saySp′ :: OLPin (i.e., the two local paths already belong to the same SSH path). Then
.
m predicts the new position and the star expected in it (p′ andSp′). If there exists the
isomorphismϕ′ : Si+1 → Sp′ such thatϕ′(Si+1 :: OLPin) = Sp′ :: OLPin (intuitively,
Si+1 andSp′ match under the robot’s viewpoint upon entering the place), then the obser-
vation actually confirms the prediction, and the only successor is the same map wherep′

is the robot’s new current place. Finally,ϕ′ will be the new isomorphismϕ inherited by
the next step to come.



40 CHAPTER 2. THE HYBRID SSH

2. Predicted-Inconsistent (p-nc).Same situation as in (pc), but here the second star given
in the observation is not compatible with the predicted one. Formally, there is no isomor-
phismϕ′ : Si+1 → Sp′ such thatϕ′(Si+1 :: OLPin) = Sp′ :: OLPin. The map proves
wrong and has no successor.

3. Expand (e).ϕ(Si :: OLPout) is a pending olp, then the observation is not predictable in
the map. At least a successor is created, where a completely new place, sayp′, whose star
will be Si+1, is inserted.p′ is the new current place of the robot, and is properly linked to
p, by makingϕ(Si :: OLPout) andSi+1 :: OLPin lie on the same SSH path, andp and
p′ be one next the other. The new isomorphismϕ for the next step to come is the identity
function.

If there are old places whose star is isomorphic to the observed one, this first successor
assumes perceptual aliasing with all of them. In this case, as many other successors as
the possible hypotheses of being back to an old place need to be created. This makes the
original current map, intended as a node of the search-tree, branch.

The set of such additional successors can be ideally obtained as follows. First, the set of
all maps that can be created from

.
m by linking ϕ(Sp :: OLPout) to every other pending

olp is considered. For a map of this set call such a pending olpSp′ :: OLPin, p′ being
the arrival place andSp′ its star. If there is no isomorphismϕ′ : Si+1 → Sp′ such that
ϕ′(Si+1 :: OLPin) = Sp′ :: OLPin the map is discarded. This consistency check is
similar to that in the (p-c) and (p-nc) steps: the old star as perceived at the arrival must
match the observed one. The new current place isp′, while the new isomorphismϕ for
the next step isϕ′ that satisfies the consistency check.

Note that, since there can be more isomorphisms between two stars (see Remark 2.2.1,
page 32), an old place might have more pending olps to which the current place can be
linked consistently with the observation.

The next observation to take into account after the completion of the recursive step is

< Si+1, Si+1 :: OLPout, Si+2 :: OLPin, Si+2 >

�

The practical role ofϕ is to keep track from step to step of the rotational offset between oriented
local paths in the observed star and those in the star of the current place. The recursive assump-
tion on the existence of this isomorphism is justified because the algorithm makes sure that the
current place’s star is always isomorphic to the second star of the last observation, which is the
same as the first of the current observation.

Formally, the proof of this is by induction. After the basic step,ϕ is trivially the identity
functionid : S0 → S0. At the recursive step, a proper isomorphismϕ is assumed by inductive
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hypotyhesis, and a new one for every successor is defined (see above) in the two cases (pc) and
(e), while we do not need one for (p-nc) that corresponds to a branch termination in the tree of
maps.

An example of search-tree is given in Figure 2.5 for the exploration in Figure 2.4.

The topological mapper also implements (and can optionally run) a test for each axiom of the
SSH, like the one that rules out maps with self-intersecting paths. As a consequence, the mod-
els that do not meet common environmental defaults are filtered out, and the tree is pruned.
Moreover, the topological mapper is also equipped with the algorithms for comparing two maps
according to the preference criteria chosen at the SSH topological level, mostly based on the
minimality of paths and places, and good-form quality of regions (see Section 2.3.2).

We take into consideration two policies for traversing the search-tree of topological maps.
A breadth-first-searchcan be performed along the whole sequence of observations. This

yields all the leaves of the search-tree. Finding the optimal map(s) according to the given pref-
erence criteria is then the last step. This approach guarantees optimality, but suffers from com-
binatorial explosion of the number of maps, if perceptual aliasing occurs.

A best-first-searchpolicy selects the best map, according to the preference criteria, among
the maps already existing at the current step. Only the successors of this map are created at this
step. This method is much more efficient in the average case, but may miss the optimal map. It
always provides a consistent map, if such a map exists, but it does not guarantee optimality.

Observe the following problems, regardless of the method employed:

• In presence of symmetry and perceptual aliasing there may be more optimal maps, de-
pending on how optimality was defined (for example the two maps in Figure 1.2 are both
optimal according to the policy dicussed below in Section 2.3.2).

• When exploration is poor, minimality-based optimal selection is likely to output over-
simplified models of the environment’s topology. For example, consider the breadth-first
search in Figure 2.5; it is easy to note that afer just two steps the minimal model would be
the leftmost one with just two places, which has not been proved inconsistent yet. For the
same reason, after 4–6 steps, the minimal model would be the 4-place one on the leftmost
branch. In general, the preference policy is more complex than the plain minimization
of the number of places. Nevertheless, these examples suggest what can happen during a
best-first search, or when a premature commitment to a single model is made.

There can be also situations where an overminimal map cannot be topologically ruled
out, no matter how long and accurate the exploration. A simple example is given by
exploring a square, where only corners are accounted as places, which all look the same.
Remolina and Kuipers (2004) point out how a triangle could be an overminimal correct
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Figure 2.5:Topological Search.Search-tree of partial maps according to the exploration given
in Figure 2.4. The solid-filled points represent the places assumed in each map. Here a topo-
logical axiom that does not allow paths to intersect themselves (self-intersections forbidden) is
enforced while creating topological hypotheses. The sort of each derivation from map to map
(e, p-c, p-nc as explained in the text) are annotated; ! indicates a branch termination after a
(p-nc) step. A little closed-headed arrow points to the assumed current place in each map.
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interpretation of this situation, from a pure topological viewpoint. One similar case for a
4 by 4 grid environment will be presented in Chapter 3, Figure 3.4(d).

We claim that all these problems will benefit from informing a best-first search also by a
degree of metrical plausibility of each map created, evaluated on-line. We address this aspect in
Chapter 4.

2.3.2 Preference Policy

In Section 2.1.3 we mentioned that the preference policy for ordering topological maps is speci-
fied by a prioritized circumscription operator in the logical formalization of the SSH. The result
is a total lexicographical order over vectors of values, each such value being the number of oc-
currences of an element of the SSH topological ontology (paths, places, relations). This allows
us to assign different importance to, say, the minimization of paths and places. (As an empiri-
cal property of common environments, preferring a map that has fewer paths over one that has
fewer places usually yields better results.)

Unless otherwise specified, in this thesis we will also assume the prioritization to be “bound-
ary relations win over paths, paths win over places”. Formally

- f1(M) is the number of pairs〈path, place〉 in M such thatplace has no boundary relation
with path; i.e., place cannot be told univocally either on the right or on the left ofpath.

- f2(M) is the number of paths inM .

- f3(M) is the number of places inM .

Ma is preferred toMb if and only if

f1(Ma) < f1(Mb) ∨
f1(Ma) = f1(Mb) ∧ f2(Ma) < f2(Mb) ∨
f1(Ma) = f1(Mb) ∧ f2(Ma) = f2(Mb) ∧ f3(Ma) < f3(Mb) (2.1)

Minimal maps according to this order will be considered the optimal ones, and preferred to
the greater ones.

2.3.3 Advantages

In the hybrid SSH, the breadth-first and best-first policies for traversing the topological search-
tree are implemented in the same way as in the non-hybrid formalization given in (Remolina,
2001; Remolina and Kuipers, 2004). Nevertheless, there is a difference that contributes to re-
ducing the exponential growth of the tree.
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Whether the last observation is consistent with the predicted one must be tested in a (p-
c) or (p-nc) step, or after a loop-closure hypothesis, which may occur in a (e) step. Such a
consistency check is carried out by matching entire LPMs or their topological abstractions, as
opposed to simple view matching, which covers only part of a LPM. So, the unit of matching in
the algorithm becomes the whole place rather than one of its distinctive states.

This has two important consequences. First, branching at step (e) is reduced as a result
of matching larger portions of space at once. Second, topological ambiguity can only arise
after travel actions. Indeed, by building acompleterepresentation of a place-neighborhood
(the LPM), it is possible to know about all the distinctive states at once. This allows the robot
to predict the local result of any turn action; turn actions are implicitly fully represented in a
LPM. This is not possible according to the logic formalization of the non-hybrid case, which
indeed needs to allow for more hypotheses about the number of dstates at the same place, as a
consequence of turn actions. For example, consider a robot that performs successive turn actions
at a “+” intersection, each turn ending when the robot faces the next oriented local path. With
no quantitative estimation of the rotation, if the four resulting views are summarized as we did
by star-extraction and appear identical to the robot, there is no way to figure out whether the
intersection has more than just two intersecting paths. In general, even if some views differ at a
place, every model that is equivalent to the correct one up to a modulo operation on the circular
sequence of views is legitimate. This dramatically affects the growth of the search-tree.

A related problem is the identification of boundary (left/right) relations between paths inter-
secting at a place. In the hybrid SSH the star provides a direct decision procedure to tell what is
on the left or on the right of an oriented path. Starting from a local oriented pathLP + (−), the
subset of oriented local paths encountered by moving down the clockwise order until observing
LP−(+) are on the right ofLP +(−). Likewise, moving down the counter-clockwise order ac-
counts for the left side, and the two subsets are always disjoint by construction. Very differently,
in order to keep the left and right subsets from overlapping in the the non-hybrid formalization,
a more binding mechanism is adopted. A specialTurnAroundaction of exactly 180 degrees is
needed to associate two opposite local paths correctly. Performing such an action is the only
way to define the continuation of a path across a place permitted by the theory. In practice, this
makes the system utterly sensitive to the inevitable noise in odometry readings. To attain rea-
sonable robustness, these data could be processed over time while turning,e.g.through repeated
scan-matching. Such an approach would be very close to the idea of introducing, modeling and
using LPMs that we have pursued.

In summary, both hybrid and non-hybrid frameworks are faced with a worst-caseO(bd)
number of leaves of the search-tree, whereb − 1 is an upper bound on the number of possible
simultaneous perceptual aliasing occurrences, andd is the number of actions that can cause
branching. In the hybrid case,b is reduced because matching places, using complete local
topologies and LPMs, is more restrictive than matching views at dstates. Besides,d is reduced
because only travel actions, rather than both travels and turns, can lead to branching.
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Figure 2.6: Map Building I: Exploration. The environment is the third floor of the ACES
building of the University of Texas at Austin. The order of places in the exploration taken by
the robot is enumerated on the plan. LPMs and the output of the mapping process are illustrated
in Figure 2.7 and 2.8. (The three figures are adapted from Kuipers et al., 2004.)

2.4 A Physical Exploration

The hybrid SSH map-builder has been tested with an exploration of an office environment,
shown in Figure 2.6. Figure 2.7 reports the sequence of LPMs observed at successive place
neighborhoods. Figure 2.8 shows the correct topological map produced by the overall mapping
system, with LPMs overlaid at corresponding places in the correct topological map. Here,
no attempt is made to build a global metrical map of this environment within a single frame
of reference. Modayil et al. (2004) address this task by using the final topological map to
integrate metrical information locally gathered through a scrolling occupancy-grid map. The
algorithms we propose in Chapter 4, whose aim is to evaluate the metrical likelihood of multiple
topological hypotheses, also estimate the global metrical relations between the different places
of a topological map as a side effect.

The exploration exhibits several interesting features that makes it well suited for experimen-
tation. The metrical size of the environment would fit experiments commonly carried out to
validate the success of modern metrical SLAM methods. The office contains multiple nested
topological loops, which raise topological ambiguity in combination with perceptual aliasing. In
particular, three non-isomorphic stars (one “+”, and four occurrences of “L” and “T” each) nine
places and six paths (in this case respectively junctions and corridors) occur in the explored area.
However, the office does not offer a crisp structure in terms of walls, corridors and junctions,
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6 7 8 9 10
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Figure 2.7:Map Building II: LPMs. The LPMs created at the places during the exploration
shown in Figure 2.6. The stars generated from these LPMs are used to search through the space
of consistent topological maps.
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Figure 2.8:Map Building III: Map. The correct topological map is determined among the 4
final optimal ones either by the application of the planarity constraint (see Chapter 3), or through
accurate full-LPM matching. The map shown here is overlaid with the LPMs generated at the
places, with the gateways, and with the connections between gateways which lie on the same
path.
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because a quite complex and extended pattern of cubicles1 or small lounge rooms occupy most
space at the corners. Since the grid-map analysis system is not enough sophisticated to account
for them, they appear as a fragmentation of the free space that affects the process of gateways
detection. This can be observed in the grid map of the right-lowermost corner (Figure 2.8),
where four gateways instead of just two are annotated. As a result, the topological mapper here
works with four non-isomorphic stars instead of three.

After the exploration consisting of 14 travel actions, the topological mapper finds 83 possible
configurations of the environment that are consistent with the observed stars and the topological
constraints. The preference policy selects four final optimal models. The correct topological
representation of the environment can then be obtained by matching the full LPMs in succession:
the overall degree of correlation between the observed sequence of occupancy-grid maps and
the one predicted by each of the four topological maps is maximized.

If we assume planarity of the environment, we can use a more sophisticated version of the
topological map-building algorithm (which is the subject of Chapter 3) that rules out many
more models as inconsistent. In this case, there are only 46 consistent configurations of the
exploration experience, and the only optimal model selected by the preference policy is the
correct map, so that full LPM-matching can be avoided. Currently, our implementation can
build the tree of models and determine the unique minimal map of this environment in∼200 ms
on the robot’s Pentium III 450MHz processor.

2.5 Related Work

2.5.1 Similar Approaches to Hybrid Mapping

We review related work on two important themes in hybrid metrical-topological mapping. First,
the “patchwork metrical map” consists of local metrical maps with separate frames of reference,
linked by topological relations. Second, ambiguity in the topological map means that multiple
maps are consistent with the travel experience. Other approaches combine topological and met-
rical maps, for example creating a global metrical map first and then parsing it into topological
regions (Thrun, 1998), but these are less related with the hybrid SSH.

In the “patchwork metrical map”, places in the global topological map are annotated with
local metrical maps with limited extent and separate frames of reference. In early work on the
SSH, Kuipers and Byun (1991) associated topological places with local landmark maps and path
segments with generalized cylinder models. The local frames of reference could be relaxed into
a single global frame of reference by spreading metrical errors evenly across the topological
map.

Yeap and Jefferies (1999) build maps consisting of adjacent metrical maps of rooms, which
are directly connected by gateway-like entities. Bosse et al. (2003) link together perceptual

1A set of panels and desks arranged so as to extend the office environment in open space.
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maps of a fixed number of landmark features. Similarly, Duckett and Saffiotti (2000) connect
overlapping local occupancy-grid maps to form a dense topological network. Lankenau et al.
(2002) create a topological graph of travel paths annotated with metrical maps at the “corners”
where paths intersect.

Most mapping implementations only maintain a single map hypothesis, selected through
greedy or maximum likelihood methods. Perceptual aliasing may lead to ambiguity about
whether the robot has closed a loop or just reached a similar, nearby place. A single map
hypothesis cannot model this ambiguity. However, a few hybrid mapping techniques do reason
about structural ambiguity.

Kuipers and Byun (1991) detect perceptual aliasing and check for possible loop closures
by performing physical motion to obtain more evidence. Assuming the environment does not
contain large topologically identical substructures, this method handles the two cases of whether
a loop is present or not. Other frameworks that make use of probablistic methods to solve
topological uncertainty will be reviewed as related work of our approach described in Chapter 4.

As in the hybrid SSH, Dudek et al. (1993) construct an “exploration tree” of all possible
consistent world models. To extend the exploration tree, they use the degree of each node (the
number of graph edges) in the same way that we use local topology to match places. By using
local topology (and even LPMs when necessary), our method has a smaller branching factor.

2.5.2 Place Detection, Classification, and Recognition

Place detection and classification are important steps for the correct functioning of an approach
like the hybrid SSH.

The first approach to this problem that makes use of occupancy-grid maps was given by Ya-
mauchi and Langley (1997). More recent techniques were investigated by Duckett and Nehm-
zow (2001), who make use of hystogram (from occupancy-grid maps) matching combined with
multiple location hypotheses tracking. Fabrizi and Saffiotti (2000, 2002) adopt a different ap-
proach based on fuzzy digital image processing and mathematical morphology. Kuipers and
Beeson (2002) approach the problem from a more general viewpoint, proposing unsupervised
bootstrap learning methods for learning how to recognize places.
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Chapter 3

Loop-Closing and Planarity

Loop-closing is at the core of topological mapping. While parsing the sequence of observations,
when and where loops are closed determines a complete topological hypothesis. If the environ-
ment to map is known to be planar, the options to close loops are reduced, because the planarity
constraint requires that the graph-model of the map can be drawn without crossing edges. In this
chapter we formally analyze the impact of the planarity constraint on the search-tree of all topo-
logical maps consistent with exploration experience. Experiments demonstrate excellent results
even in artificial environments where topological mapping is particularly difficult due to large
amounts of perceptual aliasing and structural symmetry. This work is also reported in (Savelli
and Kuipers, 2004).

3.1 Introduction

In Chapter 2 we developed a topological map-building system based on the hybrid SSH. Apart
from the implemented preference policy, its functioning can be broadly summarized as (1)
parsing the symbolic input sequence of observations (Figure 2.4, page 38), (2) pursuing all
or some possibilities to close loops, and (3) enforcing consistency checks, both about observa-
tions and ontological constraints assumeda priori. Ambiguity about loop-closing is responsible
for branching in the search-tree (step (e) in Section 2.3.1).

Planarity is a simple property of many real-worlds environments, which helps to reduce
loop-closing hypotheses considerably. Planarity holds when the graph-abstraction of the en-
vironment can be drawn on a plane without crossing edges. Therefore, if we know that the
environment is planar, there are fewer ways to allow spatially for a new loop during the topo-
logical search. If otherwise we believe that the environment is likely to be planar, but are not
completely sure of that, the mathematical theory of graphs and topology provides a definition of
the degree to which a graph is not planar.

These considerations show that the notion of planarity is well suited for the SSH theory
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(Remolina and Kuipers, 2004). Planarity can play the role of strict constraint, or be just a
default contributing to the preference policy.

Figure 3.1 illustrates a physical exploration scenario already introduced in the previous
chapters, which motivates the application of the planarity constraint. In this case, the unin-
tended consistent (but non-planar) model could be also discarded using odometrical information
to enforce global metrical consistency, by means of state-of-the-art SLAM methods. However,
the planarity test has the advantage of being independent of the actual geometric properties and
metrical scale of the real environment, as it yields a boolean result on the available abstract topo-
logical representation. Besides, it can be performed in time and spacelinear in the number of
topological links. If it is dynamically evaluated as the map grows during the topological search
— exploiting past computations when a new element is inserted — asublinear(O(log2(n))
worst-case time) algorithm can be used (Italiano et al., 1993).

In this chapter we formally and experimentally analyze how the planarity constraint prune
the search-tree. Experiments confirm the implications of the theoretical analysis, and show an
impressive reduction of the space of topological hypotheses in particularly difficult types of
simulated environments, where the agent is assumed to be faced with poor perceptual charac-
terization of distinctive locations and landmarks, large amount of perceptual aliasing, multiple
nested loops, and structural symmetry. In some relevant cases, the planarity test makes it possi-
ble to find unique optimal maps.

The rest of this chapter is organized as follows. In Section 3.2 we define the concept of pla-
narity mathematically on embedded graphs, which are combinatorial structures well-suited to
represent topological maps. Section 3.3 and 3.4 respectively provide formal and experimental
investigation of the reduction of the topological search-space when the planarity constraint is
enforced. Finally, Section 3.5 reviews some relevant related work.

3.2 Embedded Graphs and Planarity

We recall here basic mathematical concepts of graph theory and topology. These have been
widely studied in mathematics and, more recently, computer science; for further details see for
example (Gross and Tucker, 1987).

An undirected graphG = (V,E) is composed of a set of verticesV and a set of undi-
rected edgesE, each edge linking two vertices. In adirectedgraph, each edgee is strictly
directed; it starts from a vertexsource(e) and ends at a vertextarget(e). An embeddingof an
undirected graphG defines a clockwise circular order over all the edges incident on a vertexv,
around eachv of G. An embedded graphis an undirected graph equipped with an embedding.
When embedded graphs are studied as special structures themselves, they are also calledmaps.
Although this terminology witnesses how such structures are mathematically relevant to our



3.2. EMBEDDED GRAPHS AND PLANARITY 53

(a)

(b) (c)

Figure 3.1:Non-planar Hypothesis. This figure is the same as Figure 1.2, and reported here
just for convenience. Both (b) and (c) are among the consistent topological hypotheses after the
complete physical robot exploration of the environment (a). Due to perceptual aliasing of places
and the symmetrical structure of the environment, any further exploration will give the same
sequence of observations, making it impossible to discriminate between the two maps. Planarity
constraint is an inexpensive alternative to using metrical information or raw-data matching to
discard (b), and applies directly to the topological abstraction. Indeed (a) and (b) represent the
same graph, but considered asembeddedgraphs, (a) is planar, while (b) is not.



54 CHAPTER 3. LOOP-CLOSING AND PLANARITY

e3

wv

x

y

e1

e2

(a)

(b)

Figure 3.2: Face Tracking. If edges are imagined as corridors, face tracking can be intu-
itively viewed as walking along loops always following the right wall.(a) e2 = rev(e1),
e3 = pred(e2) = pred(rev(1)) = next(e1). (b) the three faces of a simple embedded graph.



3.2. EMBEDDED GRAPHS AND PLANARITY 55

purposes, we shall keep using the term ‘map’ in the more general sense intended in “SSHmap”
or “roboticmap-building”.

An embedded graph isplanar on an orientable surfaceS if it can be drawn onS enforcing
its embedding without edge-crossings. Thegenusof an embedded graphG is the minimum
genus among those of all the orientable surfaces on whichG is planar. WhenG is planar on the
plane, its genus is0 and we simply say it is planar. Note that the plane and the sphere both have
genus0, soG is planar if and only if it is so on the sphere too. The torus is a surface with genus
1.

We describe here the classical method for deciding the planarity of an embedded graph.
For any embedded graphG = (V,E), consider the transformationT such that:

1. T (G) = (V, T (E)) is a bidirected graph obtained replacing each undirected edgee ∈
E that links verticesv andw by two directed edgesev and ew, wheresource(ev) =
target(ew) = v andsource(ew) = target(ev) = w.

rev : T (E) → T (E) is aone-to-onefunction such thatrev(ev) = ew, andrev(ew) = ev.
Observe thatrev(rev(x)) = x holds by construction.

2. The circular order of undirected edges[e1 . . . ek] around each vertexv defined by the
embedding inG is reflected by the circular order[e1

v . . . ek
v ] of outward directed edges

leavingv in T (G). (By construction this will then hold for the inward directed edges as
well.)

The mappingsucc : T (E) → T (E) is a one-to-onefunction that associates to any di-
rected edgeev the next outward directed edge in the circular clockwise order aroundv.
Analogously forpred : T (E) → T (E), counterclockwise.

Computing the genus of an embedded graphG requires us to count itsfaces, which we
define on the auxiliary structureT (G). Consider the following functionnext : T (E) → T (E)
such thatnext(ev) = pred(rev(ev)), i.e., the directed edgenext(ev) is the predecessor of
rev(ev) = ew in the circular order of edges aroundw = target(ev) (Figure 3.2 (a)). Since both
pred andrev are total and bijective functions,next will be so too,i.e. next(ev) always exists
and is unique for anyev ∈ T (E). We can formally define a face as follows (Figure 3.2 (b)).

Definition 3.1. LetG = (V,E) be a directed graph,T the transformation specified above, and
[e1, e2 . . . en] a list of directed edges ofT (G) such that

(i) ei+1 = next(ei) for all i = 1 . . . n− 1
(ii) ei 6= ej for any 1 ≤ i < j ≤ n

(iii) next(en) = e1

The directed loop formed by the sequence of edges in such a list is a face ofT (G).
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This is a combinatorial definition of faces. If we consider a surface on which an embedded
graph is planar, we can geometrically characterize faces as the partitions induced on the surface
by the images of the edges. The infinite face of a planar embedded graph on the plane can be
avoided if the drawing is considered on the sphere. Faces can then also be intuitively viewed as
the inside of the “least” loops, that is, those loops that do not contain other loops.

The genus of an embedded graphG is given by the following (Euler-Poincaré) formula:

genus(G) = (|E|+ 2c− |V | − |I| − f)/2,

whereI is the set of isolated vertices,c the number of connected components, andf the number
of faces. Since we shall only deal with totally connected (c = 1, |I| = 0) embedded graphs —
they model maps from single-agent explorations — planarity (genus=0) can be tested by:

|V | − |E|+ f = 2,

the well known Euler’s formula on the number of faces in a polyhedron.
If unlikely non-planar maps must be taken into account, the planarity constraint might be re-

laxed, by simply preferring maps with smaller genus. Indeed, the genus of an orientable surface
indicates the number of “holes” the surface exhibits; therefore the genus of an embedded graph
is by definition the minimum number of such holes that are needed to avoid edge-crossings.

The number of faces can be counted in linear time and space (in the number of edges)
following the mathematical formulation given above, based on the functionnext.

3.3 Search-Space Reduction

The number of maps that the planarity constraint discards among all the topological hypotheses
depends on many factors, including the nature and structure of the environment, the number
and location of perceptually aliased places and the particular exploration route. Nevertheless, it
is possible to formalize the reduction of the branching factor at a node in the search-tree, in a
fashion that sheds light on the role of the past choices that have shaped the map at that node.

To this purpose, we consider the embedded graph that underlies an hybrid SSH topologi-
cal map, so that we can reason with the combinatorial structures and properties introduced in
Section 3.2.

The relationship between an hybrid SSH topological mapM and its underlying embedded
graphG is straightforward:

(a) Each placep in M corresponds to a vertexv of G.

(b) Each travelable oriented local patholp (one with a gateway, see Section 2.2) in the star
of a placep of M corresponds to an edgee around the vertexv corresponding top in G.
This can lead to two cases:
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1. olp is linked toolp′ of a placep′, let v′ be the corresponding vertex. Thene dubs
botholp andolp′, and linksv andv′.

2. olp is a pending oriented local path (see Section 2.3.1), then we calle a pending
edge, which is not connected to any vertex butv.1

(c) The circular clockwise orders in the stars ofM are simultaneously preserved by the em-
bedding ofG — by (a) and (b).

Note that the notion of topological map strictly subsumes that of embedded graph, since a
star adds to the clockwise order of its oriented local path also information about the continuation
of a local path across the place, dividing the other oriented local paths into two disjoint sets: on
the right and on the left (see Section 2.3.3). This is not the case with the edges around a vertex
of an embedded graph.

Since pending edges are not regular edges of the embedded graph, they must be skipped
by functionssucc, pred, andnext while counting faces. When a pending oriented local path
is linked, its corresponding pending edge will become a regular edge and will then have to be
taken into account by these functions. In the meantime, the pending edge occupies and predicts
the position of such a regular edge in the circular order around its only vertex.

A map (embedded graph) isclosedif it has no pending oriented local paths (pending edges).
A closed map implicitly represents the entire environment.

Every pending edge in a non-closed embedded graphG falls inside exactly one single face
of T (G). We formalize this notion as follows.

Definition 3.2. Consider an adjacent pairei+1 = next(ei) of directed edges of the loop defin-
ing a faceF , and letv be the vertexv = target(ei) = source(ei+1). Any pending edge of
v that comes afterei+1 and beforerev(ei) in the circular clockwise order of outward directed
edges around the vertexv belongs toF .

As a particular case of the definition above, when only one edge is currently incident onv,
i.e., whenei+1 = rev(ei), then any pending edge ofv trivially belongs to the face.

It follows that the setP of all the pending edges of a map is partitioned into the sets
P1 . . . Pf , eachPi collecting the pending edges belonging to facei, i = 1 . . . f , wheref is
the number of faces. Letpi = |Pi| andp = |P |.

Now, consider a node of the search-tree where the next exploration step leaves the current
place through one of its pending oriented local path (step (e) of the algorithm). The branching
factor of this node is given by the number of possible successors of this map that are consistent
with the resulting observation. One successor is always the map where the arrival is at a totally
new place. The others are maps where the move is to a place that is already represented in the

1Note that we are being slightly liberal with the notion of embedded graph here, since such structures do not
traditionally include “pending edges”. These are just meant to simplify the description of the next steps. The whole
section can be rephrased avoiding the introduction of pending edges, though less concisely.
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map. First, such a place must have been approached through one of its pending oriented local
paths, and its star must be consistent with the observation made. Second, if planarity is assumed,
in the underlying embedded graphthe two pending edges to be linked must belong to the same
face, otherwise they would be unified in an edge that would cross the loops defining their faces.

Assuming recursively that the map at the current node of the search tree is already planar,
we are interested in the reduction of the branching factor when planarity is enforced also in its
successors. In particular we consider the ratiobp/b wherebp is the number of planar children of
this node andb the number of all its children, including the non-planar ones.

Assume a worst-case scenario where every pending edge corresponds to a potential arrival
compatible with the next observation. Thenb is equal top, minus the one pending edge where
the move starts, plus the map with a totally new place, i.e.,b = p. Analogously, if the starting
pending edge belongs to theith face,bp = pi. Thenbp/b = pi/p. Denoting the average number
of pending edges per facēp = p/f , we havebp/b = pi/p̄ · f .

From the recursive assumption of planarity, we havef = |E| − |V | + 2 (before including
the new edge inE). The interesting point here is that the difference|E| − |V | depends on the
choices made at past branching points leading to this map. Every time it was decided to explain
the observation at hand by linking the place with one already encountered, unifying two pending
edges,|E| − |V | increased by one unit. If instead it was decided to build a totally new place,
then a vertex and an edge were inserted at once, and|E| − |V | did not change. Considering
that at the root of the search tree the first embedded graph has just one vertex and no edge,
|E| − |V | = m − 1 wherem is the number of matches ever made between existing places,
as in the first case above. Thus, finally, the dynamic ratio that quantifies the branching factor
reduction is:

bp

b
=

pi

p̄
· 1
m + 1

, (3.1)

The first factor normalizes according to the relative number of consistent pending edges in
the current face w.r.t. the average face. The second factor confirms the intuition that the more
loops have been closed, the more topologically compact the map must be, and therefore the
fewer ways there are to close new loops while preserving planarity.

Note that we get the same result if we replace the worst-case assumption that all pending
edges are consistent with the observation with a more moderate assumption that pending edges
consistent with the observation are uniformly distributed throughout the map. In this case, we
restrict the numberspi, p, andp̄ to only those pending edges consistent with the observation.

3.4 Experimental Results

We have carried out several experiments to investigate in detail how planarity testing improves
the topological search.
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Environment Structure: 3× 3 3× 4

Planarity Pruning: no yes ∼ red. no yes ∼ red.

Search-tree nodes built: 317 240 24% 4,239 1,722 59%
Maps built: 188 147 22% 3,400 1,425 58%
Final maps (all): 88 62 29% 1,465 507 65%
Final maps (closed): 6 3 50% 16 3 81%
Optimal Final Maps: 2 1 / 8 1 /

(a)

Environment Structure: 4× 4
(up to 16 places)

Planarity Pruning: no yes ∼ red.

Search-tree nodes built: 192,569 8,452 95%
Maps built: 93,034 4,951 94%
Final maps (all): 23,685 545 97%
Final maps (closed): 6992 58 99%
Optimal Final Maps: 2 2 /

(b)

Figure 3.3:Search-Space Reduction.Breadth-first search expands the entire space of topolog-
ical hypotheses permitting to observe the exact reduction of the search-space when planarity is
assumed. The4 × 4 results regard only the portion of space of maps with less than 17 places,
and show that the planarity constraint is more effective as more loop-closures are forced. Since
minimality is related to loop-closing, the planarity constraint will prove especially useful in
practical cases when a best-first search is employed.
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The topological map-builder does not assume a particular global structure for the environ-
ment. However, for any topological mapping algorithm, the worst-case environments will be
those with large amounts of perceptual aliasing and structural symmetry — because it may be
difficult or impossible to refute incorrect hypotheses.

We evaluate this algorithm using simulated square and rectangular grids, to maximize the
difficulty facing the algorithm. The only places are corridor intersections, with “L”, “T”, or
“+” structure. As can be easily noted, here every place is perceptually aliased multiple times
throughout the environment, and the global structure of the environment has multiple embedded
loops and strong symmetries along multiple axes. This kind of abstract environment allows
a fair and straight comparison of experimental results as the environment scales topologically.
Besides, its pattern is relevant to several classes of real-world environments, such as outdoor
urban layouts, or indoor large libraries with long corridors and shelves that strongly limit the
agent’s sensory horizon in most of the locations.

The results we report are for a “snake” pattern of exploration. The agent starts from a corner
and walks along all the horizontal corridors, in alternate directions, moving from a corridor to
the next parallel one when it reaches a “T” (just a corner the first time) intersection. Then it
starts an analogous exploration of the vertical corridors. We believe that this kind of exploration
would also prove hard when a pure metrical mapping method is used that closes loops based
on a maximum-likelihood choice. Indeed, if corridors are long enough, the inevitable angular
odometrical error might often support the hypothesis that the agent is back to a “+” intersection
on a parallel corridor. If the features available at intersections in combination with the robot’s
perceptual capabilities do not make possible to distinguish different “+” junctions (because of
poor sensory system, or high image variability over multiple visits of the same place), the robot
could not know of the error, as in our simulation. In this case, if maximum-likelihood is used
for a greedy on-line search, the map would be irreversibly affected by such an error.

We assume the agent can acquire the correct star (“L”, “T”, or “+”) of the place being
visited.

We have run the experiments on an implementation of the SSH topological breadth-first
search, with and without planarity testing. The reason for experimenting with breadth-first
search is that it builds the complete set of the current topological hypotheses on-line: this allows
us to observe the exact reduction of the whole search-space when planarity pruning is applied.
We have gathered data about the number of (1) search-tree nodes, (2) maps ever built (these are
usually fewer than search-tree nodes because when a map already correctly predicts the result
of an action in step (p-c) of the algorithm in Section 2.3.1, only the assumed current position
changes from node to node), (3) final maps (those on the consistent leaves of the search-tree at
the end of the exploration), (4) final maps that are also closed, and (5) final maps that are also
optimal (according to the preference policy, see Section 2.3.2). The tables in Figure 3.3 collect
the results for the environments discussed below.

In Table (a) the first column illustrates the results for a3 × 3 grid (see Figure 3.1(a)). Pla-
narity testing discards half of the final closed maps, and makes it possible to determine the
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(a) (b)

(c) (d)

Figure 3.4:4×4 Grid Models. After the “snake” exploration of the4×4 grid, and considering
only closed and qualitatively perpendicular maps, (a) is the unique (and correct) planar map.
(b) is one example of the 255 non-planar “relatives” of (a) that are filtered out by the planarity
constraint. Without the qualitative perpendicular requirement, there are two consistent “over-
minimal” maps with only 12 states, (c) and (d). Sufficient further exploration can rule out (c),
but not (d).
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correct model as the unique optimal final map. (The two optimal maps obtained when planarity
is not assumed are those in Figure 3.1(b,c).)

The second column presents results from a single complete exploration of a more topolog-
ically complex environment: a3 × 4 grid of places. The gain in reducing the search is larger
than in the single exploration of the3 × 3 grid. This is due to the branching-factor reduction,
which makes planarity testingexponentially more efficientas the exploration proceeds.

In Table (b) we address a4 × 4 grid. Note that, since now the two axes have same length,
the environment has one more degree of symmetry, and the chances of ruling out wrong models
by inconsistencies along observation-sequences is much reduced. A breadth-first search of the
maps consistent with a complete exploration does not terminate in reasonable time. However,
we have driven the search so as to gather statistics significant for our purposes. We have asserted
an upper bound of 16 on the number of places a map can have. In our case this was intentionally
chosen equal to the actual number of places in the assumed physical environment. During the
search any partial map that grows over this limit is discarded. Since during the search the number
of places in a partial map never decreases,no final map with less than 17 places that would be
produced with the complete search is lost. (Note that having an upper bound — not necessarily
picking the exact correct number of places — could be a reasonable strategy in some practical
situations. The completeness of the search under this limit would then prove useful.)

Besides the previous considerations we can observe here that as the search proceeds, only
those maps that account for a certain minimum number of loop-closures can remain under the
upper-bound and not be ruled out. This means that the number of matchesm in the denominator
of the dynamic ratio formalized in Equation (3.1) must grow at a certain average rate. Therefore,
the dramatic performance of planarity pruning in this last experiment is coherent with our for-
malization, and with the intuition that in more compact maps there are far fewer ways to allow
spatially for a new link while avoiding edge-crosses.

The two optimal final maps found with planarity pruning are “overminimal”. That is, due
to symmetry and aliasing in the actual environment, the maps are complete and consistent with
exploration experience, but they have fewer places than the actual environment (Figure 3.4(c,d)).
Note that this example illustrates the kind of extreme structural symmetry that requires a portable
marker to find the correct map, as in (Dudek et al., 1991).

We went further in making sense of the4×4 grid exploration data. Amongall the final maps
we have considered those closed maps that are “qualitatively perpendicular”, i.e., no two global
paths intersect each other in more than one place and no three global paths form a triangle. There
is only one such map (the correct model of the environment) in the case of planarity pruning, as
opposed to 256 such maps in the other case (all with 16 places). The unique planar solution is
shown in Figure 3.4(a), while a map among the 255 non-planar ones is shown in Figure 3.4 (b).
These numbers provide a concrete insight into how many non-planar “close relatives” of the
correct topological model can arise in such a symmetrical environment.

We have observed that abest-firstsearch, where the search-tree expansion is prioritized by
the optimality policy, in some cases produces the same results while reducing the time and space
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used dramatically. Furthermore, since minimality of the number of places is a component of the
optimality policy, by similar reasoning as with the upper bound above, we expect the maps
thus prioritized to be those wherem is larger and so the planarity constraint tends to do more
work (by Equation (3.1)). That is, best-first search better leverages the potential of the planarity
assumption. Since best-first policy is more likely to be employed, perhaps additionally informed
by metrical consideration as we do in Chapter 4, to deal with practical cases, planarity testing
can have an even more effective role in such cases. Applied to the snake-exploration of the
4 × 4 grid without upper bound on the number of places, with pruning of non-planar and non-
qualitatively-perpendicular maps, and with backtracking if the final solution is not closed, our
C++ implementation of best-first search determines the correct model in 0.84 sec. on an Intel
Pentium 1.5 Ghz. However, it does not always ensure similar benefits over breadth-first search
as the exploration/environment grows in size and topological ambiguity.

The relationship between the particular preference policy chosen and optimal-completeness
of the search (which is guaranteed by exhaustive searches such as breadth-first) requires more
investigation (although a consistent solution is always found, if one exists).

The cases we have considered here are extreme in the weak perceptual characterization and
adversity of the environments being explored. They are meant to investigate the potential of
topological mapping. In real cases,anykind of additional feature or irregularity in the structure
can be exploited to test and refute those incorrect models that we have assumed impossible to
discriminate (see for example Kuipers et al., 2004; Kuipers and Beeson, 2002).

3.5 Related Work on Loop-Closing

Loop-closing has long been recognized as a central problem in the topological mapping litera-
ture (Kuipers and Byun, 1991; Dudek et al., 1991; Choset and Nagatani, 2001).

Following Kuipers and Levitt (1988), where the topological nature of cognitive maps is
pointed out, embedded graphs as representations of topological maps were proposed by Dudek
et al. (1991). They show that correct map-building is impossible in general if only the cyclic
order of the incident edges is used to recognize a place, unless the agent is provided with a
portable marker it can drop and pick up. In this case the agent can cope with perceptual aliasing
and symmetries, and learn the correct topological model. The upper bound on the length of the
exploration with a portable marker reduces from polynomial to almost linear in the size of the
graph, when planarity is assumed (Rekleitis et al., 1999); a similar improvement is obtained also
for the map-validation problem (Deng et al., 2001).

The approach presented by Dudek et al. (1993) is closer to our work in that there is no
recourse to portable markers. It provides an algorithm that expands a tree of hypotheses about
loop-closures, but the role of planarity in branching-factor reduction is not investigated, and a
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rich spatial ontology that allows for a preference policy is not used.
Because of the negative result above, several works have addressed topological map-

building as the problem of learning the minimal “discernable” structure of the environment, i.e.,
its smallest underlying automaton: for example, Rivest and Schapire (1989) address the deter-
ministic case, while the case of stochastic/noisy observations is introduced by Dean et al. (1995).
These and smilar approaches based on the minimal automaton representation, however, would
yield wrong results with environments such as grids, which can have overminimal isomorphic
models (Figure 3.4 (d)). Dealing with such ambiguous topologies is impossible without con-
sidering metrical information or matching richer perceptual representations (or using a portable
marker, see above). The work presented in this chapter, however, demonstrates that ontological
considerations can be exploited to drive and prune the topological search inexpensively, with
impressive results.



Chapter 4

Topological Reasoning and Metrical
Analysis

In this chapter we propose a probabilistic framework for modeling and solving large-scale topo-
logical ambiguity. The method introduced combines topological mapping and reasoning, as
presented in the previous chapters, with modern approaches to metrical mapping. We present
formal analysis, underlying intuitions and rationale, and preliminary experimental studies.

4.1 Introduction

Most approaches to SLAM (Simultaneous Localization And Mapping) employ probabilistic
methods to build an accurate metrical model of the environment from noisy metrical data, pro-
vided by motion and range-finder sensors. This task is usually accomplished by determining the
correct pose of some distinctive landmarks in a cartesian frame of reference, or by integrating
the sensorial snapshots collected along the exploration into a large-scale occupancy-grid map,
which represents the occupied/free state of space at a pixel resolution level.

In this context, ambiguity and possible aliasing in sensing and perception is referred to
as thedata associationor correspondenceproblem. The first term borrows from sonar and
radar literature (Bar-Shalom and Fortmann, 1988), where it refers to the problem of associating
intermittent measures with the correct objects being tracked, while also allowing for objects
falling in and out the scene. A very similar problem faces a robot that needs to correctly map
landmarks that appear identical, and is also related to the uncertainty about whether the territory
being explored is new or overlaps some already visited region, when building an occupancy-grid
map.

Pure topological mapping, including our work presented in the previous chapters, is comple-
mentary of such metrical approaches in more than one way. Metrical methods very effectively
cope with metrical uncertainty when data association is known. Data-association ambiguity,

65
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when it is at all addressed, is usually solved byad hoctechniques “plugged in” the framework
at hand. Conversely, pure topological mapping is primarily concerned with the number of the
distinctive places of the environment, and their correct qualitative relations — connection, order,
containment — but does not utilize metrical information.

Obviously, if the metrical layout of a topological map is estimated by applying SLAM meth-
ods, this could be used to evaluate the geometrical plausibility of the closed loops, according to
the triangle property. At the same time, purely qualitative constraints and preferences in topo-
logical mapping might help to further discriminate between different topological maps, when
metrical relations are too uncertain. They can also improve the search process; for instance,
non-planar maps can be inexpensively discarded beforehand, where this makes sense.

We point out that topological ambiguity and data-association uncertainty affect the model
within which metrical uncertainty is traditionally modeled and solved. In particular, this model
can be represented as aBayes network(Pearl, 1988), which is determined by the assumed topo-
logical map. The problem of finding the right topological map can then be viewed as a problem
of model selection, or Bayes-network learning. This is widely recognized in the AI commu-
nity as a very hard problem (Friedman, 1998; Jordan, 1999; Russell and Norvig, 2002), and we
observe that this is consistent with the well-known difficulty of coping with data-association
uncertainty and topological ambiguity.

The formalization proposed represents the potential solution of the problem as the model
maximizing thea posteriori probability conditioned to the observed metrical relations. The
qualitative ontological and cognitive biases, such as the planarity constraint and the SSH pref-
erence criteria, form thea priori probability of the model. This allows us to combine the two
worlds in a rigorous way, while taking advantage of the complementary benefits. After suitable
approximations, the framework is compatible with some of the most successful relaxation-based
probabilistic techniques recently introduced for SLAM (Frese et al., 2004; Konolige, 2004),
which can thus be utilized towards effective implementations.

The rest of this chapter is organized as follows. We first model topological ambiguity and
metrical uncertainty in the framework of the Bayes networks (Section 4.2). In Section 4.3 we
propose a way to compute thea posterioriprobability of a topological map (and its related Bayes
network). This in turn requires us to compute the metrical likelihood of the map (Section 4.4)
and itsa priori probability (Section 4.5). Section 4.6 brings everything together and provides
some more operational details, while Section 4.7 describes experimental results. Section 4.8
concludes the chapter with a discussion of related work that addresses the problem of spatial
correspondence in robot map-building.
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4.2 Topological Hypotheses as Bayes Networks

Consider a robot that can reliably detect distinctive places (some approaches are discussed in
Section 2.5.2, page 49) and navigate between them when exploring a large-scale environment,
as assumed by the hybrid SSH and more in general by any topological mapping system. The
robot is supposed to estimate the distance and change of orientation between any two distinctive
poses, in addition to their uncertainty. This estimate is expected in the form of mean values and
covariance matrix, or a fully specified probability density distribution. To this purpose, well-
known probabilistic filtering techniques can be applied to sensory readings, based on motion
and sensor probabilistic models. We do not address here how this will be accomplished in the
specific implementation, and we assume such information to be available as input. Virtually ev-
ery metrical SLAM method that correct odometry at a local level might be used. Best candidates
seem to be scan-matching (Lu and Milios, 1997), or the use of a “scrolling” local occupancy-
grid map that allows continuous relocalization, as proposed by (Modayil et al., 2004) in the
framework of the hybrid SSH. We focus on a more abstract level, more similarly to Smith et al.
(1990).

We start with a very simple model.

For then places hypothesized in the environment by a topological map, letπ = π1 . . . πn

be the random vectors of pose variablesπ = (xπ, yπ, θπ)T w.r.t. a global frame of reference.
Each such pose can be also viewed as the origin and orientation of a local frame of reference.
We assumeπ1 to be the starting pose without loss of generality. Theπ contain hidden variables
of our model, because they cannot be directly observed, exceptπ1, which we assume to be
the origin of the global frame of reference (i.e., π1 = (0, 0, 0)). At each stepi = 1 . . . p,
according to the topological map at hand, the robot moves from a place with global poseπs(i)

(‘s’ for start) to another with global poseπe(i) (‘e’ for end), with πe(i) = πs(i+1). We call
τ = τ1 . . . τp the random vectors of coordinate transformation variables for every such a move
along the exploration;τi = (xτi , yτi , θτi)

T represents the move betweenπs(i) andπe(i), and
can be also viewed as the pose ofπe(i) w.r.t. the local frame of reference atπs(i). The variables
of τ account for the observations, since their continuous probability distributions are estimated
from sensorimotor data and models. This simple model is illustrated in Figure 4.1.

From a geometrical viewpoint, eachτ is completely determined by the initial and final poses
according to the following transformation:

τ = (	πs)⊕ πe

that is:  xτ

yτ

θτ

 =

 (xπe − xπs) cos θπs + (yπe − yπs) sin θπs

−(xπe − xπs) sin θπs + (yπe − yπs) cos θπs

θπe − θπs

 (4.1)
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Figure 4.1: Geometrical Model. Every place in the topological map is associated with an
unknown poseπ w.r.t. a global frame of reference. At theith step of exploration, depending on
the topological hypothesis, the agent is assumed to move from one such poseπs(i) to another
πe(i). The agent observes (with uncertainty) the related coordinate transformationτi, which is
the poseπe(i) w.r.t. the local frame atπs(i).

Therefore,eachτi conditionally depends onπs(i) andπe(i), while it is conditionally inde-
pendent of any other variable given these two. The vectorial function(	πs)⊕ πe is non-linear;
given a possible linearization

τ = (	πs)⊕ πe ≈ λ(πs, πe) (4.2)

we can specify the conditional distribution as a linear Gaussian

p(τ | πs, πe) =
1√

(2π)3 det C
exp

{
−1

2
(λ(πs, πe)− τ)T C−1 (λ(πs, πe)− τ)

}
(4.3)

Here C is a3 × 3 positive semidefinite covariance matrix that quantifies the uncertainty onτ .
Although most of our analysis holds independently of the particular choice ofp(τ | πs, πe), we
will commit to (4.3).
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Figure 4.2: Maps and Bayes Networks.Mapsṁ1, ṁ2, andṁ3 are among the topological
hypotheses after a square exploration;ṁ2 is the correct interpretation.BN(ṁ1), BN(ṁ2), and
BN(ṁ3) represent the full joint distributions over the domain variables forṁ1, ṁ2, andṁ3.
Spatial uncertainty is twofold. Metrical uncertainty is modeled and handled within oneBN(ṁ).
Topological ambiguity affects the topology ofBN(ṁ), i.e., the conditional (in)dependency
assumptions for poses and metrical relations. Determining the correct topological map then
amounts to identifying the right probabilistic model of metrical uncertainty.
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All this information is systematically represented in the framework of the Bayes networks,
which permits compact representations of joint probability distributions by exploiting condi-
tional independence between variables (Pearl 1988, see also Appendix A). In our case, a partic-
ular topological map

.
m, defining a hypothesis about the number of distinctive places/poses and

the order in which they have been visited, can be always associated with a Bayes network, call it
BN(

.
m), as shown in Figure 4.2 and explained below. The correspondence between such maps

and Bayes networks isone-to-one. By BN(
.
m, C), besides denotingBN(

.
m), we additionally

specify that the covariance matricesC = C1 . . . Cp for τ = τ1 . . . τp are used for defining the
conditional distributions, for example as in Equation (4.3).

Nodes ofBN(
.
m) are both observed variablesτ1, . . . τp, π1 and hidden onesπ2 . . . πn, one

for each different place hypothesized. Arrows represent conditional dependency relationships,
which reflect the particular route and loops hypothesized: for eachτi, we have two arrows from
πs(i) andπe(i) to τi.

This class of Bayes networks naturally represents the type of probabilistic model in which
an instance of SLAM is solved according to the approaches in the tradition of (Lu and Milios,
1997), when data association,i.e. the topological structure, is known. Likewise, with little
additional sophistication, it can be extended to model probabilistic-filtering based approaches
as well.

Most important, Bayes networks lead to a formal and explicit account of the fundamental
difference between the two factors of uncertainty involved in map-building: the number and
topological relationships of the observed places, and their global metrical layout. The latter
is modeled as a problem of Bayesian inference given the observed data, and can be handled
within the probabilistic model defined by the Bayes network. The former affects the proba-
bilistic model itself, posing a much harder challenge. In fact, uncertainty about the topological
configuration of physical space is reflected in the topological layout of the network, raising am-
biguity concerning the actual conditional (in)dependence relationships (Figure 4.2). This means
that the Bayes network, besides being the tool for representing and solvingmetricaluncertainty,
becomestopologicallyuncertain itself, and in turn must be probabilistically estimated.

In this respect, identifying the correct topological map belongs to a class of problems well
known to be very hard to deal with, usually referred to asmodel selection, statistical learning,
or, when Bayes networks are employed,Bayes-network learning1.

Three cases are usually distinguished for a Bayes network to learn, listed below in order of
increasing difficulty:

1. The structure, (nodes and arrows) is known, all variables represent observable (with un-
certainty) quantities (case of complete data), and only the conditional probability distri-
butions associated with the arrows need to be learned.

1While primarily studied in the community concerned with uncertainty in AI, their applications have recently
grown fast, now covering areas such as bioinformatics, data mining, and many others.



4.3. CHARACTERIZING MAPS PROBABILITY 71

2. Same as 1., but there are hidden variables, representing quantities that cannot be directly
measured.

3. Same as 2., but the structure in not known in advance either.

The last case is the most adverse, and no general solution has so far been devised (but
see Friedman, 1998). Although our problem falls into this category, it is mitigated by the fact
that conditional probability distributions are actually known from the observations of the robot,
according to Equation (4.1), for example in the form (4.3). Moreover, the Bayes network must
belong to the particular class described above, which considerably constrain the hypotheses that
can be made about its structure.

These arguments support the idea of working toward a computational framework that can
leverage the peculiarities of our problem, which make possible to take advantage of a particular
family of SLAM algorithms (Gutmann and Konolige, 1999; Konolige, 2004; Duckett et al.,
2002; Frese et al., 2004), rather than resorting to general-purpose methods (Jordan, 1999).

Next section will address the characterization of the probability of a map and its Bayes
network, to the purpose of comparing and selecting maps.

4.3 Characterizing Maps Probability

Given enough perceptual aliasing and metrical error, identifying the right topological map may
be impossible. What we can do is to estimate the probability of each hypothesis conditioned to
the observations, in the hope that the correct one will eventually dominate.

Selecting the most probable model given the observations is a criterion commonly adopted
in many statistically modeled problems, sometimes called MAP (maximuma posteriori). It is
not fully Bayesian, because later answer to spatial queries will not be computed in the form of
expected values, over all the models weighted by their respective probability. However, in our
case the topological model that correctly represents the physical world at the desired abstraction
level is actually unique, and MAP selection also well fits a single-model committment, when
this is required.

We need first understand how to assess and compute usefula posterioriprobabilities for
the maps at hand. To this purpose, we want to combine ontological biases and expectations,
like those involved in the SSH and presented in the previous chapters, with the map’s metrical
plausibility evaluated from the (noisy) metrical information available.

Given the estimated mean coordinate tranformationsτ o
i (‘o’ for observed), their covariance

matricesCo
i , i = 1 . . . p and a topological map

.
m among those built by the topological mapping

algorithm, we are interested in the following conditional probability

p(
.
m | metrical information) = p(

.
m | τ o, Co) (4.4)
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According to the Bayes rule, this can be factorized as

p(
.
m | τ o, Co) =

p(τ o | .
m, Co) p(Co | .

m) p(
.
m)

p(τ o, Co)

Since the covarianceCo is independent of the global topological structure assumed, we have

p(Co | .
m) = p(Co)

and thus
p(

.
m | τ o, Co) = α p(τ o | .

m, Co) p(
.
m) (4.5)

whereα denotes a constant quantity independent of
.
m

p(Co)
p(τ o, Co)

This factor can be obtained by renormalizing over the set of maps on the search-tree fringe that
is developed by the topological mapping algorithm (see Section 2.3),i.e., the entire space of
hypotheses.

However, as long as we use probability (4.4) tocomparedifferent maps, or to find the map
that maximizes such a probability, we can forget aboutα, that does not affect the outcome of
such operations.

The factorp(τ o | .
m, Co) is the likelihood, that is the probability that the observedτ o are

generated along the hypothesized exploration and map
.
m. We will mostly refer to this term

asmetrical likelihood, because of the metrical nature of the observations here involved, and
propose a way to compute it in the next section.

The rightmost factorp(
.
m) in (4.5) is the prior probability of the topological hypothesis

being the true one,a priori of any metrical observations,i.e., before the information provided
by observingτi is ever taken into consideration. We claim that such a probability can play
the role of quantitative account of the SSH preference policy and constraints introduced in the
previous chapters. Those maps that violate the SSH constraints are implicitly interpreted as
having 0-probability. Those left on the search-tree fringe have probabilities that are consistent
with the ordering determined by the preference policy.

This approach might be faulted to translate a qualitative notion of preference into a real
number, since the possibilities to do so are infinite and may lead to different outcomes when
multiplied to the metrical likelihood in (4.5). Indeed, when comparing two maps

.
m1 and

.
m2,

the metrical likelihood and the qualitative preference ordering might disagree about the most
plausible model. When this is the case, say

.
m1 preferred to

.
m2 and p(τ o | .

m1, Co) < p(τ o | .
m2, Co)
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the actual mapping from the qualitative preference to the real values forp(
.
m1) and p(

.
m2)

determines which map will dominate

p(
.
m1 | τ o, Co) > p(

.
m2 | τ o, Co) iff

p(
.
m1)

p(
.
m2)

>
p(τ o | .

m2, Co)
p(τ o | .

m1, Co)

This means that two different numerical implementationsp(
.
m1) andp(

.
m2) of the same

qualitative orderingp(
.
m1) > p(

.
m2) might yield two different final results.

We believe that there is no way round this “non-deterministic” situation, which is not to
suggest that the approach is ill-posed. Indeed, the case above is inevitably part of the game, due
to using probability theory to represent and evaluate beliefs by real numbers. Besides, there are
two points worth noting.

First, the preference policy order is usually based on “the number of” occurrences of some
spatial entity, such as places, paths, boundary relations (see Section 2.3.2). That is, it already
owns some countably quantitive nature, making it easier to move into the realm of the real
numbers.

Second, the preference policy is strongly based on the notion of minimality, that drives the
focus on the current simplest, most compact, and consistent model, according to the well-known
Occam’s Razor principle. This type of bias is common in machine learning systems, because
larger and more complex explanations can accommodate errors more easily, in the extreme
case by listing all the past inputs. This situation is calledoverfitting, and requires a careful
tradeoff between complexity/size and degree of fit. In our case, the maximally accommodating
hypothesis is the topological map where no loop has ever been closed, always hypothesizing yet
another new place at every step.

Whether Occam’s Razor principle, more related to epistemological issues, can be legiti-
mately expressed in probabilistic terms, by having the prior distribution penalize the complex-
ity and size of a model, is currently debated. Some insights into this can be provided by an
information-theoretic account of the relationship between theminimum description lengthprin-
ciple and prior probabilities (a brief and gentle introduction is given in Russell and Norvig,
2002). We refrain from addressing this problem2, far beyond the scope of our present work,
although we adopt probabilistic penalization of complexity, when deriving the prior distribution
from the SSH preference policy.

In the next section we make use of the formalization ofBN(
.
m) presented in Section 4.2 for

computing the metrical likelihood.

2Though, you may ask yourself if you would ever bet your money on a city map with a sole utterly long street
and no loops at all, the gamble being on whether it represents a real city that was picked fairly randomly from a
nation-wide geographic map. If you wouldn’t, you are arguably closer to accepting that you have a prior in your
mind about what a full city-layout should look like (beforeever stepping in that city), that penalizes complexity based
on your ontological expectations, at least consistently with the SSH way (for example, complex= many places with
few loops).
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4.4 Computing the Metrical Likelihood

We now focus on the metrical likelihoodp(τ o| .
m, Co). By our Bayes-network formalization of

the joint probability distribution overπ andτ , we define

p(τ o | .
m, Co) ∆= pBN(

.
m, Co)(τ = τ o)

HerepBN (x) denotes the marginal probability distribution of the random variablex in the Bayes
networkBN , while BN(

.
m, Co) denotes the Bayes network whose structure and conditional

distributions are obtained from
.
m andCo as illustrated in Section 4.2.

Intuitively, a probability distribution conditioned to
.
m andCo is the same as the uncon-

ditioned evaluated in the probabilistic model provided byBN(
.
m, Co). Indeed,

.
m andCo

determine the probabilistic modelBN(
.
m, Co), but do not belong to its set of random vari-

ables3.
By Bayes rule and marginalization we can write

pBN(
.
m, Co)(τ = τ o) =

∫
R3n

pBN(
.
m, Co)(τ = τ o | π) pBN(

.
m, Co)(π)dπ (4.6)

pBN(
.
m, Co)(π) should be considered a uniform distribution, because there is no reason why one

particular metrical layout for the distinctive poses (π) should be more probable than another, if
there is no conditioning to anyτ . However, the marginal distribution in the analytic form above
would be hard to turn into a computationally effective implementation, either in a closed form or
by approximating techniques such as Monte Carlo integration. We then introduce a preliminary
approximation, that will lead to an effective class of algorithms.

pBN(
.
m, Co)(τ = τ o) ≈ max

π

{
pBN(

.
m, Co)(τ = τ o | π)

}
(4.7)

Instead of computing the exact marginal distribution in the pointτ = τ o, in the approximation
above the Bayes network is partially sampled assigning toπ1 . . . πn those values that maximize
the conditioned distribution in the same point. We provide more mathematical insights into this
approximation in Section 4.4.1.

Exploiting conditional independence (see also Appendix A), (4.7) can be factorized and we
have:

max
π

{
pBN(

.
m, Co)(τ = τ o | π)

}
= max

π

{
p∏

i=1

pBN(
.
m, Co)(τi = τ o

i | πs(i), πe(i))

}
= (4.8)

3As a matter of fact, there is no reason why we should not consider them random variables, since they appear as
arguments of probability expressions, and range over specific domains. Yet, we want to set the uncertainty on the
modelBN(

.
m, C) apart from the probabilistic relationships embodied inBN(

.
m, C). One is the ambiguity about

the topological map, while the probabilistic relationships concern this map’s metrical layout and the observed metri-
cal relations. Thus, if

.
m andCo were explicitly modeled as random variables, ameta-level should be distinguished

in the overall ontology.
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if we evaluate the metrical likelihood as in (4.3),

max
π

{
p∏

i=1

1√
(2π)3 det Co

i

exp
{
−1

2
(λ(πs(i), πe(i))− τ o

i )T Co
i
−1 (λ(πs(i), πe(i))− τ o

i )
}}
(4.9)

We first turn to find the pointπ in which the expression above is maximal. If we apply a
monotonic logarithmic transformation, this amounts to maximize thelog-likelihood:

arg max
π

{
log

[
p∏

i=1

1√
(2π)3 det Co

i

exp
{
−1

2
(λ(πs(i), πe(i))− τ o

i )T Co
i
−1 (λ(πs(i), πe(i))− τ o

i )
}]}

=

arg max
π

{
p∑

i=1

log

[
1√

(2π)3 det Co
i

]
− 1

2
(λ(πs(i), πe(i))− τ o

i )T Co
i
−1 (λ(πs(i), πe(i))− τ o

i )

}
=

arg max
π

{
−

p∑
i=1

(λ(πs(i), πe(i))− τ o
i )T Co

i
−1 (λ(πs(i), πe(i))− τ o

i )

}
=

arg min
π

{
p∑

i=1

(λ(πs(i), πe(i))− τ o
i )T Co

i
−1 (λ(πs(i), πe(i))− τ o

i )

}
(4.10)

The expression to minimize in (4.10) has a physical analogy. It represents the energy of
a network ofi = 1 . . . p springs, each one with stiffness given byCo

i . The solution forπ
that maximizes our metrical likelihood represents the geometrical configuration with minimal
energy of such a system.

The final expression (4.10) can also be efficiently computed. In fact, it takes the form
of a linear (following from λ(πs, πe)) regressionproblem, and in particular of aleast square
errors/fittingproblem. Its solution is classically posed as that of a particular linear system (Press
et al., 1992). Mathematical details, also covering the linearizationλ(πs, πe), are reported in
Appendix B. Least square fitting is a well-known statistical technique, extensively studied and
applied. Its application to the SLAM problem (Lu and Milios, 1997) has been recently addressed
with excellent results by exploiting sparseness in the linearized system (Gutmann and Konolige,
1999; Konolige, 2004), or by relaxation methods (Duckett et al., 2002; Frese et al., 2004), which
solve the resulting linear system in almost-linear time.

Finally, once the solution is obtained, it can be substituted in the argument of themax
operator in (4.9) to obtain the desired metrical likelihood of

.
m.

Next, Section 4.4.1 provides more mathematical insights into the metrical likelihood ap-
proximation used in (4.7).
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4.4.1 More about the Approximation

We show that the approximation in (4.7) can be derived from the following one:

pBN(
.
m, Co)(π) ≈ δ

arg max
π

n
pBN(

.
m, Co)(π | τ=τo)

o
(π) (4.11)

By δ c(x) we denote the Dirac function centered inc; the following properties hold for such a
function:

1.
δ c(x) = 0 ∀x 6= c

2. In c there is concentrated a unit mass of probability,i.e.,

a. ∫ c+ε

c−ε
δ c(x)dx = 1 ∀ε > 0

b. ∫ c+ε

c−ε
δ c(x)f(x)dx = f(c) ∀ε > 0

Because of the approximation (4.11), the approach is not being purely Bayesian. Indeed,
the marginalpBN(

.
m)(π) — which in principle is supposed to cover uniformly the entire do-

main — is replaced by a distribution that concentrates all the probability in the point where
pBN(

.
m, Co)(π | τ = τ o) is maximal. The approximation is twofold: (1) a spurious conditioning

is added to an unconditioned marginal distribution, and (2) the whole distribution is “shrinked”
in a single point of the domain. Intuitively, this can be explained as getting over-confident in the
observationsτ o.

Now, consider that

arg max
π

{
pBN(

.
m, Co)(π | τ = τ o)

}
=

(Bayes Rule)

arg max
π

{
pBN(

.
m, Co)(τ = τ o | π) pBN(

.
m, Co)(π)

pBN(
.
m, Co)(τ = τ o)

}
=

(pBN(
.
m, Co)(τ = τ o) independent ofπ andpBN(

.
m, Co)(π) uniform)

arg max
π

{
pBN(

.
m, Co)(τ = τ o | π)

}
(4.12)

Combining (4.6), (4.11) and (4.12) we get

pBN(
.
m, Co)(τ = τ o) ≈∫

R3n

pBN(
.
m, Co)(τ = τ o | π) δ

arg max
π

n
pBN(

.
m, Co)(τ=τo | π)

o
(π)dπ (4.13)
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and by property 2b. above of Dirac functions this is equal to

pBN(
.
m, Co)

(
τ = τ o | π = arg max

π

{
pBN(

.
m, Co)(τ = τ o | π)

})
(4.14)

that is equal to the right-hand side of (4.7)

max
π

{
pBN(

.
m, Co)(τ = τ o | π)

}
4.5 From the SSH to the Prior Probability

We now turn to the priorp(
.
m). In Section 4.3 we proposed that this should be derived from the

semi-qualitative criteria involved in the SSH preference policy. We pointed out that there are
infinite possibilities to do so, which may lead to different results, but we did not go into further
details.

In our preliminary implementation we adopt a straightforward approach.
First of all we relax the mechanism for preference ordering. Remember (Section 2.3.2,

page 43) that this is given by minimality according to a lexicographical order based on the
numbers of (1) missing boundary relations, (2) paths, and (3) places. For a map

.
m, these

numbers aref1(
.
m), f2(

.
m), f3(

.
m). The different importance of these values, accounted by

prioritized comparison, will be now handed over to the weightsc1 > c2 > c3 of the following
linear combination to minimize

F (
.
m) = c1 · f1(

.
m) + c2 · f2(

.
m) + c3 · f3(

.
m) (4.15)

Observe that it is always possible to findc1, c2, c3 such that the combination above induce
the same ordering as the prioritized comparison, over agivenset of maps. Of course, this may
not hold for any set of maps once the weights are given. For example consider the situation

f1(
.
ma) = f1(

.
mb)

f2(
.
ma) > f2(

.
mb)

f3(
.
ma) < f3(

.
mb) (4.16)

By the lexicographical order,
.
mb will be certainly preferred to

.
ma, while the same happens with

the linear combination only ifc2 andc3 satisfy

c2

c3
>

f3(
.
mb)− f3(

.
ma)

f2(
.
ma)− f2(

.
mb)

which may not be the case.
We accept this “risk” for three reasons. First, it is a remote risk if one choosesc1 enough

greater thanc2, andc2 enough greater thanc3. Indeed, at least for paths and places, it is rea-
sonable to assume that they grow linearly together in non-pathological environments. Second,
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although the linear combination does not provide such an appealing logical mechanism to com-
pare maps as the circumscription does, we believe that the important empirical nature of such
a mechanism (roughly speaking, prefer minimal maps in “good form”) is almost entirely pre-
served. Third, the linear combination greatly simplifies the estimation of real numbers for prob-
abilities. In addition,preliminaryexperiments have shown that settingc2 ≈ 2.0 · c1 yields better
results than choosingc2 an order of magnitude greater thanc1.

Intuitively, the probability of every map
.
mi in a set

.
m1, . . .

.
mn should be inversely proportional

to F (
.
mi). Taking into account the necessary normalization we get:

p(
.
mi) =

[F (
.
mi)]−1∑n

i=1[F (
.
mi)]−1

(4.17)

which will be our probability assessment for the priorp(
.
m).

4.6 Maximizing the Log-Posterior Probability

In Section 4.3 we proposed to compute the probability of a topological map through the
Bayesian posterior (4.5):

p(
.
m | τ o, Co) = α p(τ o | .

m, Co) p(
.
m)

In Section 4.4, and Section 4.5 we showed how the metrical likelihood

p(τ o | .
m, Co) = pBN(

.
m, Co)(τ = τ o)

and the prior probabilityp(
.
m) can be respectively computed by linear regression after suitable

approximations, and from the SSH preference policy.
We now introduce two simplifications for the computation of the posterior, which preserve

the results of maximization/minimization and comparison.

1. We apply a monotonic logarithmic transformation:

log[p(
.
m | τ o, Co)] = log[α] + log[p(τ o | .

m, Co)] + log[p(
.
m)]

This is common practice, because of two computational benefits:

- Multiplications are replaced by additions.

- Log-values computations usually stand better the consequences of machine approx-
imations.
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2. We can ignore all the constant factors. In particular we do not need normalization. How-
ever, the trade-off between the metrical likelihood and the prior probabilitywill matter.

- The denominator[
∑

i F (
.
mi)]−1 in (4.17) for the prior probability can be neglected.

- We can neglect the values 1√
(2π)3 det Co

i

in (4.9).

Therefore, the map that is most probablea posterioriis given by

max
.
m

{
log[F (

.
m)−1] + log[pBN(

.
m, Co)(τ = τ o)]

}
equivalent to the nicer form

max
.
m

{
log[pBN(

.
m, Co)(τ = τ o)]− log[F (

.
m)]

}
(4.18)

4.7 Experimental Results

We have implemented the framework proposed in this chapter, and carried out a preliminary yet
accurate experimentation. The experiments we present here regard the 4 by 4 grid we addressed
in Section 3.4, where we investigated the effect of the planarity constraint. We observed that
this environment is particularly hard for pure topological mapping, both because an exhaustive
(breadth-first) search is computationally unfeasible (on a Pentium 1.5 Ghz, 512 Mb Ram), and
because there are overminimal maps consistent with the exploration that deceptively attract
a best-first search. We could solve it by applying a strong structural bias, which we called
qualitative perpendicularity.

By contrast, this environment can be easily mapped by a best-first search that traverses the
search-tree maximizing the probability as computed in Section 4.6. However, as we will show,
things get worse as topological reasoning and constraints are reduced. This means that the
advantages of the approach cannot be solely ascribed to the utilization of metrical information,
and rather resides in the integration of topological reasoning and metrical analysis, which is the
central theme of this thesis.

In Section 4.7.1, we collect a number of details concerning the particular conditions and
assumptions in our experiments. In Section 4.7.2 we report the results.

4.7.1 Parameters

One issue that arose in our first experiments is that some of the topological biases used in the
SSH can determine sudden variations inF (

.
m), when some loops are closed. This is not an ideal

behavior for a best-first search, which works better when such variations are smooth.
When closing a loop, say a wrong one, the number of overall missing boundary (left/right)

relations can considerably reduce, as a result of unifying two paths. The new path will inherit
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Figure 4.3: Metrical Input. The sequence of metrical relations that the algorithm takes in
input. They are not to be considered pure odometry, but probabilistic estimates of the coordinate
transformations relative to the moves from place to place. As explained in the text, this is also
the result output by the algorithm, when only the metrical likelihood is used to inform the best-
first search.
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the boundary relations of both original paths, whereas the original paths were very likely to miss
each other’s boundary relations. If the metrical likelihood fails to compensate the advantage that
this map gains (from the sudden reduction off1(

.
m)), the correct hypothesis might not have a

later chance of being resumed.
An analogous problem arises when a new place is inserted. Its star is instantiated in the map,

along with all its new local-to-global paths, except the one along which the place is assumed to
be accessed (which already exists in the map). Although such new paths are likely to be later
unified with other paths already existing in the map, at the time of place insertion they add to
f2(

.
m). Even worse, such new paths lack boundary relations with all but one place; this increases

f1(
.
m) dramatically. It is easy to imagine a common situation in which the robot moves across

many intersections without yet closing a physical loop; the correct map would score very low
compared to wrong models that prematurely close loops.

These problems make it difficult to draw general insights and conclusions, since they cause
some instability in the results obtained. For this reason, we have decided (1) to count as paths
only those containing at least two places, and (2) not to involvef1(

.
m) in the preliminary exper-

iments below.
Note that we do not intend this as an argument against the use of boundary relations as

qualitative biases. They can play an important role in driving the search for correct models.
However, more investigation is needed to establish how they can be employed more effectively
in a best-first search.

The particular linear combination that we used forF is

F (
.
m) = 2.0 · f2(

.
m) + 1.0 · f3(

.
m)

The exploration assumed is a “snake” over a 4 by 4 topological grid. We discussed the motiva-
tions for this testbed in Section 3.4.

Regarding the metrical observationsτ o
i andCo

i , we have obtained them adding random drift and
rotational error to the transformed polar coordinates for every move in the simulated environ-
ment. Transforming back the (linearized) system it is possible to compute both the error onτ o

i

and the covariance matrix of the hypothesized error.
The whole sequence of all theτ o

i in input for the experiments described below is given in
Figure 4.3.

Apart from the simulations run here, we have already pointed out (Section 4.2) that metrical
observations are supposed to come from a real robot system, as a result of a lower level pro-
cess that partially corrects the odometrical error (scan-matching, scrolling occupancy-grid maps
etc.). This makes the odometry assumed in 4.3 plausible.

As for other assumptions not specified here, they are as in Chapters 2 and 3.
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4.7.2 Results

We discuss some different relevant cases. Figures of maps are automatically obtained as a side-
effect of the algorithm, which needs to compute the posesπi that minimize (4.10).

Only Topological Mapping

When the metrical likelihood is totally neglected, the best-first search is informed only by the
SSH preference policy. We have seen in Section 3.4 that in this case an overminimal map is
eventually selected. The only way round this problem was to enforce an almostad hocstructural
bias, which we called qualitative perpendicularity.

This suggests the use of metrical information to overcome the problem.

Only Metrical Likelihood

If p(
.
m) is suppressed from the posterior probability informing the search, in presence of even

little metrical errors the metrical likelihood is maximal in the map where no loop is closed.
This is actually a problem of overfitting, if the entire process is viewed as model learning: the
map where no loop has been closed avoids any geometrical constraint, each place visited is
considered new, and its pose is computed by adding lastτ o

i to the pose of the precedent place in
a recursive way.

The layout produced equals the metrical input (Figure 4.3).
For the same reason, if backtracking is forced when the selected final map is not closed (see

Section 3.3, this is atopologicalbias in its own respect, provided by the hybrid SSH framework)
the search does not end in reasonable time, since it will sweep the branches where maps have
fewer loops, which are not closed, before focusing on the region of search-space where more
compact maps are built.

This suggests that at least a bias toward minimality is needed. This can be provided by the
prior probability, derived by the SSH preference policy.

Integrated Framework

The correct topological model is selected as final map when the planarity constraint is enforced,
only closed final maps are accepted, and the best-first search is driven by the maximization of
the posterior probability, taking into account both the prior derived from the SSH preference
policy and the metrical likelihood. Its layout is shown in Figure 4.4.

If planarity is not enforced, a wrong model is selected, analogously to what happens with
the non-planar model in Figure 1.2(c), page 16. Indeed non-planarity arises due to two places
connected in a “twisted way” (Figure 4.5 and 4.6).

This shows how uncertain metrical information, when utilized by a best-first search may end
up with wrong models that can be easily ruled out by topological reasoning.
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Figure 4.4: Correct Result. This is the topologically correct result obtained when the full
posterior probability is used to inform the search, and in addition planarity is enforced.
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Figure 4.5:Non-Planar Result I. This is the (wrong) result that is obtained when planarity is
not enforced, despite the full posterior probability is utilized. Indeed, place 6 and place 9, are
connected by “twisted” edges, in the same way as it happens in Figure 1.2(c), page 16. The
detail is reported in Figure 4.6. Compared with Figure 4.4, this case shows how pure topo-
logical considerations can be very valuable when metrical analysis fails to recover the correct
correspondence between places over large-scale space.
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Figure 4.6: Non-Planar Result II. Stars and gateways of the map in Figure 4.5. Here it is
possible to observe that the connections are arranged in a non-planar layout. In this picture
places have been manually shifted to help visual inspection. The actual metrical layout output
by the algorithm is given in Figure 4.5.
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The search expands 2934 nodes in the first case (2098 when planarity is not applied), in a
few seconds (C++ implementation running on a Pentium 2.8 Ghz, 512 Mb RAM).

4.8 Related Work

We review here related work that addresses the correspondence problem in the context of robot
map-building.

4.8.1 Correspondence in Metrical Methods

In metrical mapping, the termdata associationhas been borrowed from the literature concerned
with the problem of tracking targets in raw data. It stands for the problem, also called thecor-
respondence problem, of deciding which object/feature/target, among multiple candidates, is
associated with the data obtained from the sensors. The method usually employed is to select
one of the candidates, according to some maximum likelihood evaluation (among most recent
work Montemerlo et al. (2002, 2003)), or the Nearest Neighbor Filter (NNF, Bar-Shalom and
Fortmann (1988)). Limits of this kind of approaches have been pointed out by Neira and Tardós
(2001); the most likely hypothesis at selection time might prove wrong later, affecting the whole
mapping process. More sophisticated approaches (Leonard et al., 2001; Nieto et al., 2003) com-
bine the NNF with the Multiple Hypothesis Tracking (MHT, Reid (1980)) method, with great
advantages. Here the decision is delayed; before selecting a hypothesis some look-ahead is per-
formed. In the approach proposed by Cox and Leonard (1994), very close to our framework in
some respects, a probability-guided search is performed over a tree of hypotheses. The differ-
ences with our work are: (1) tree-pruning is also guided by probability considerations, whereas
we discard branches only if they prove inconsistent, (2) certainty on robot poses is assumed, and
then the SLAM (CML) problem is not entirely addressed.

In (Montemerlo et al., 2002, 2003; Eliazar and Parr, 2003) and similar work the probability
distribution over the map and the pose of the robot is updated through particle-filtering (Doucet
et al., 2001); roughly speaking, a population of samples (particles) approximates such a distribu-
tion, and evolves as more data are made available. If particles are looked at as hypotheses, this
approach is clearly related to ours, even though creation of hypotheses is not explicitly driven
by data association ambiguity or view comparison. The above mentioned work (Nieto et al.,
2003) goes in this direction creating also particles for the hypotheses originated by the NNF and
MHT combined together.

4.8.2 Correspondence in Hybrid Methods

In the framework of the SSH, Remolina and Kuipers (2004) consider local metrical annotations,
whose uncertainty is represented by intervals. Based on these annotations, metrical constraints
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are axiomatized in the logical theory we sketched in Section 2.1.3. Therefore maps are discarded
irreversibly by metrical considerations, whereas we rank them by a degree of confidence.

Atlas (Bosse et al., 2003) is an hybrid approach very close to ours. It is strongly based on
the Smith and Cheeseman’s framework (Smith and Cheeseman, 1986). It builds a graph of local
metrical maps in local frames of reference, and exploits the transformations from frame to frame,
to evaluate global positional relationships according to the Smith and Cheseeman’s method.
They call this a Dijkstra projection, because they use a path that is minimal w.r.t. the covariance
of the final compound transformation. They use the Dikstra projection between two local maps
and some criteria of map-matching to evaluate hypotheses about whether closing a loop. More
hypotheses are kept simultaneously and their performance in explaining few next steps of sensor
measurements are evaluated, before the selection. Beyond some important technical details, the
main difference here is that the policy employed in Atlas to handle loop-closure events is the
exact opposite of ours. In Atlas a very conservative strategy is adopted, which attempts to
avoid wrong loop-closure at the expense of accepting the risk of missing some genuine loop-
closure event. We adopt a very conservative strategy that potentially creates the whole set of
loop-closure topological candidates.

Tomatis et al. (2002, 2003) use a probabilistic framework to localize and detect loops. When
the estimate of the robot’s location has two probable hypotheses, the framework assumes it is
recreating a previously known portion of the topological map. The robot will then physically
backtrack until the location estimate converges to a single hypothesis, producing a simpler topo-
logical map.

Hähnel et al. (2003) use metrical likelihood to prioritize a best-first search on the tree of cor-
respondence hypotheses, what they call “Lazy Data-Association”. This approach is very close
to ours, but for the fact that topological reasoning and biases are not utilized. The same argu-
ment applies to (Shatkay and Kaelbling, 1997), in addition to the difference in the probabilistic
framework they adopt. They use Partially Observable Markov Decision Processes (POMDPs)
as a framework to integrate a topological map and metrical information, to the purpose of deter-
mining the correct topological model.
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Chapter 5

Conclusions

Topological ambiguity is a type of spatial uncertainty that faces an agent, human or robot, whose
tasks or goals have to be accomplished over unknown large-scale space. While trying to build
a useful map of the environment, whatever the nature of such a map, uncertainty might arise
about whether the region currently being explored has already been visited, a problem some-
time known as the data-association (or correspondence) problem. This is clearly captured in a
topological representation, where the graph of spatial relationships is laid down. Topological
ambiguity makes the loops of such a graph uncertain.

The amount of topological ambiguity depends on the environment at hand, in particular on
how many regions appear identical, and on where these regions are w.r.t. each other, especially
in presence of symmetry. Note, however, that these factors also depend on what the agent “sees”
of such an environment.

Therefore, one important research direction towards making robots more robust against
topological uncertainty is to improve their perceptual mechanisms. This also includes devis-
ing new ways a robot can extract the distinctive features of the places of a given environment,
which allow it to reliably and conveniently recognize and distinguish such places. These features
need to be extracted from the massive amount of raw data made available by modern sensors. It
seems that relatively little effort has so far been made in this direction, and researchers are now
increasingly focusing on it (see Section 2.5.2).

Another way to address topological uncertainty is to build a very precise and reliable ge-
ometrical description of the environment, in a single global frame of reference. When this
is possible, topological uncertainty is implicitly solved, since the identity of a region can be
uniquely determined by its position. This direction has received much attention in the SLAM
community, with great success especially over the last decade. Impressive advancements have
been made possible by new families of algorithms, primarily based on probabilistic techniques,
and by the computing power now available.

However, there are several reasons why it is important to make explicit use of topological
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representations (graphs). First, they are necessary regardless of the need of dealing with topo-
logical ambiguity. For example, topological representations better serve cheap and hierarchical
navigation planning, and human-robot interaction, because they allow for symbolic computa-
tion. Second, the amount of data that have to be retrieved, and whose global consistency has to
be enforced at every step may reduce the appeal of pure metrical mapping for the purpose of
dealing with topological ambiguity. Third, there are situations where even the most successful
techniques for global metrical mapping would fail, for example in presence of unexpectedly
large errors, well beyond the typical range assumed by the probabilistic model. Last, but not
least, explicit topological reasoning can be considerably cost-effective for reducing topological
uncertainty, even in presence of a selective use of metrical information. The thesis contributes
to this last point by studying the planarity constraint (Chapter 3), and the integration of the SSH
qualitative reasoning with metrical estimation methods in a probabilistic framework (Chapter 4).

We have addressed the problem of topological ambiguity in its natural context, that is topo-
logical mapping. Our work builds on and contributes to the topological mapping framework of
the hybrid SSH (Chapter 2), which has been demonstrated with robot explorations of office-like
environments.

Abstracting a real environment to a graph, however, is not usually so straightforward. The
SSH provides general (and cognitively plausible) principles for doing this. When this comes
to practice, and to the peculiar sensing capabilities of a robot, what should be considered a
place or a path, for building a consistent and reliable topological map, depends on the task at
hand. Hierarchical representations seem to be crucial here, but research with real robots in this
direction has so far been quite poor.

For the same reasons, it might be necessary to move beyond the concept of topological maps
as (built on) graphs, perhaps introducing more sophisticated combinatorial structures. Such
structures should preserve the same advantages, for example they should allow for effective
symbolic spatial reasoning as exploited by the planarity test. It can be envisaged that these
research efforts would be strictly related to the aforementioned investigation of methods for
detecting, classifying, and recognizing distinctive places.

In Chapter 4 we combined topological reasoning, and the SSH ontology, with a family of
metrical mapping methods. The contribution here was twofold.

From a representational viewpoint, we formalized metrical and topological uncertainty in
a probabilistic framework. We emphasized that topological uncertainty affects the conditional
dependence assumptions in the probabilistic model of metrical uncertainty. Thus, while metrical
uncertainty could be handled by probabilistic inference in a Bayes network, topological ambi-
guity makes such a Bayes network uncertain itself. Topological mapping can then be viewed as
a Bayes-network learning problem, which in AI and statistics is well known to be very hard.

The structure of the Bayes network to learn, however, is not free to vary arbitrarily. It must
belong to a particular set of candidates, which reflect the loops assumed in the map (Figure 4.2,
page 69). From the computational viewpoint, this allowed us to demonstrate that after suitable
approximations the problem can be efficiently addressed. The SSH qualitative preference policy
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is used to derive the probability a priori of the topological model, while a family of state-of-the-
art solutions to the SLAM problem, recently introduced in literature, can be used to compute
its metrical likelihood. Experimental results show that this integrated approach can work better
than either approach in isolation.

The planarity constraint filters out most incorrect topological loop-closure hypotheses in-
expensively, and independently of the actual metrical scale and geometrical appearance of the
loops at issue. In Chapter 3 we provided a formal analysis of the reduction of topological un-
certainty that follows from enforcing the planarity constraint. We also experimentally showed
that this constraint can make a dramatic difference in particularly adverse (because of percep-
tual aliasing, multiple nested loops, symmetry) environments, both when topological mapping
is used in isolation, and in the extended framework that takes advantage of metrical information
(Chapter 4).

The contributions of this thesis add to the arguments in favor of topological and qualitative
reasoning for robot applications faced with spatial uncertainty, and to the techniques available
for overcoming this uncertainty.
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Appendix A

Bayes Networks

A Bayes network is a partially graphical representation of a joint probability distribution over a
set of random variables. The set of conditional dependencies between the random variables is
represented by a graph, while quantitative information about the respective conditional (proba-
bility, or probability density) distributions are specified apart.

The advantages of Bayes networks are twofold. On one hand, they make possible to examine
the conditional dependency relationships qualitatively, by visual inspection. On the other hand,
algorithm design for inference and learning benefits from the explicit combinatorial description
of such relationships.

In a Bayes network, random variables are represented as the nodes of an acyclic directed
graph. Given two variablesx, y, an arrow fromx to y represents the fact thaty conditionally
depends onx 1.

A variablex is a parentof a variabley if there is an arrow fromx to y. A variablew is
a descendantof a variablev if there is a directed path of arrows fromv to w. An important
representational property of Bayes networks is the following:

A variable is conditionally independent of its non-descendants given its parents.

This property is at the heart of the many computational techniques available for efficient
probabilistic inference in Bayes networks. These are beyond the scope of this Appendix, since
they are not used in this thesis. We point out, however, a simple consequence that lends a
Bayes-network perspective to the factorization (4.8) used in Section 4.4 (page 74).

1This implies that a single direction must be chosen for denoting correlation, which may not exhibit such an
asymmetric nature in the domain at hand. The reason for this is that Bayes networks are primarily meant to capture
conditional dependencies that account forcausalrelationships between the elements of the domain at hand. Other
types ofgraphical modelsexist that make use of undirected graphs, and also allow cycles in them.
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The marginal distributionpBN(
.
m)(τ | π) can be factorized by the Bayes rule as

pBN(
.
m)(τ | π) = pBN(

.
m)(τ1 | τ2, . . . τp, π) · pBN(

.
m)(τ2, . . . τp | π) (A.1)

and then, by applying the same step recursively,

pBN(
.
m)(τ | π) =

p∏
i=1

pBN(
.
m)(τi | τi+1, . . . τp, π) (A.2)

Because of the type of conditional independence assumptions that hold in our domain, il-
lustrated in Section 4.2, every variable of the vectorτi has no descendant inBN(

.
m), and its

parents are given by the union ofπs(i) andπe(i). Therefore, by the property above,

pBN(
.
m)(τi | τi+1, . . . τp, π) = pBN(

.
m)(τi | πs(i), πe(i)) (A.3)

which leads to the factorization used:

pBN(
.
m)(τ | π) =

p∏
i=1

pBN(
.
m)(τi | πs(i), πe(i)) (A.4)

Note that, although this could serve as a formal justification of the factorization used in
Chapter 4, a traditional account of the conditional independence assumptions is sufficient to this
purpose.



Appendix B

Global Poses Computation

We report here the mathematical details of the linearization (4.2)

τ = (	πs)⊕ πe ≈ λ(πs, πe) (B.1)

with (4.1)  xτ

yτ

θτ

 =

 (xπe − xπs) cos θπs + (yπe − yπs) sin θπs

−(xπe − xπs) sin θπs + (yπe − yπs) cos θπs

θπe − θπs

 (B.2)

and of the minimization (4.10)arg min
π
{f(π)}, with

f(π) =
p∑

i=1

(λ(πs(i), πe(i))− τ o
i )T Co

i
−1 (λ(πs(i), πe(i))− τ o

i ) (B.3)

We follow (Press et al., 1992; Lu and Milios, 1997; Frese et al., 2004).

B.1 Linearization

We linearize the functionτ = (	πs) ⊕ πe ≈ λ(πs, πe) by a first-order Taylor expansion. Let
πs = ls, πe = le be the linearization point. We assume thatls is given by the last estimation, or
by initialization from the sequence ofτ . We choosele such that

le = ls ⊕ τ (B.4)

that is
λ(ls, le) = (	ls)⊕ le = τ (B.5)

Thus, the first-order Taylor expansion is

λ(πs, πe) = τ + S (πs − ls) + E (πe − le) (B.6)
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with

S =

 − cos θls − sin θls τy

sin θls − cos θls −τx

0 0 −1

 (B.7)

E =

 cos θls sin θls 0
− sin θls cos θls 0

0 0 1

 (B.8)

B.2 Minimization

By the linearization in equation (B.6), we can write

f(π) =
p∑

i=1

[Si (πs(i) − ls(i))+Ei (πe(i) − le(i))]
T Co

i
−1 [Si (πs(i) − ls(i))+Ei (πe(i) − le(i))]

(B.9)
which after a suitable regrouping of terms is equal to

πT A π − 2 πT b + constant (B.10)

whereA andb are the following sparse matrix and vector

A =
p∑

i=1


0

0 ST
i Co

i
−1 Si 0 ST

i Co
i
−1 Ei 0

0
0 ET

i Co
i
−1 Si 0 ET

i Co
i
−1 Ei 0

0

 (B.11)

b =
p∑

i=1


0

ST
i Co

i
−1 (Si ls(i) + Ei le(i))

0
ET

i Co
i
−1 (Si ls(i) + Ei le(i))

0

 (B.12)

(Here we have assumeds < e without loss of generality.)
The minimization can be accomplished by solving forπ

∂f(π)
∂π

=
∂(πT A π − 2 πT b + constant)

∂π
= 0 (B.13)
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that is is equivalent to (A is positive, symmetric, and definite)

2(A π − b) = 0 (B.14)

Therefore, the values forπ that minimizef(π) can be found by solving the linear system

A π = b (B.15)


