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Abstract— Loop-closing has long been recognized as a criti-
cal issue when building maps of large-scale environments from
local observations. Topological mapping methods abstract
the problem of determining the topological structure of the
environment (i.e., how loops are closed) from the problem
of determining the metrical layout of places in the map and
dealing with noisy sensors. A recently developed incremental
topological mapping algorithm [1], [2] generates all possible
topological maps consistent with the experienced sequence of
actions and observations and the topological axioms. These
are then ordered by a preference criterion such as minimality
or probability, to determine the single best map for continued
planning and exploration. This paper presents the planarity
constraint and analyzes its impact on the search-tree of all
topological maps consistent with (non-metrical) exploration
experience. Experimental studies demonstrate excellent re-
sults even in artificial environments where loop-closing is
particularly difficult due to large amounts of perceptual
aliasing and structural symmetry.

I. INTRODUCTION

When a robot or human agent explores an unknown
environment and builds a map, a key type of decision is
whether the current place is the same as a previously-
mapped place or a new one. This decision determines
which loops exist in the map.

The loop-closing problem is a particularly difficult case
of the data association problem for simultaneous localiza-
tion and mapping (SLAM) algorithms building metrical
maps in single global frames of reference [3]. The number
and identity of the visited places and observed landmarks
determine part of the conditional dependency relations in
the probabilistic model — usually a dynamic Bayes net —
wherein an instance of the SLAM problem is traditionally
solved when data association is known a priori. This type
of uncertainty can thus be addressed as the problem of de-
termining the right structure of the Bayes net representing
the SLAM problem at hand; in this respect, uncertainty on
the Bayes net’s topology reflects topological ambiguity in
the physical world (data association).

Loop-closing has also long been recognized as an im-
portant problem in the topological mapping literature [4],
[5], [6].

In this paper, we present and analyze the planarity
constraint: the requirement that the topological map be
embedded in the plane without crossing edges. Our focus
is on the topological mapping process, which takes a
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Fig. 1. Unintended models. Both (b) and (c) are among the consistent
topological hypotheses after the complete physical robot exploration of
the environment (a). Places and their local perceptual characteristics at
the topological abstraction level are represented by the small circles.
Due to perceptual aliasing of places and the symmetrical structure of
the environment, any further exploration will give the same sequence
of observations, making it impossible to discriminate between the two
maps. Planarity constraint is an inexpensive alternative to using metrical
information or raw-data matching to discard (c), and applies directly to
the topological abstraction. Indeed (b) and (c) represent the same graph,
but considered as embedded graphs, (b) is planar, while (c) is not.

symbolic description of the environment exploration as
input. How such a symbolic description can be extracted
from raw sensor-data is beyond the scope of this paper.
An approach based on the use of local metrical maps
for real robots equipped with laser range-finder sensors is
discussed elsewhere [2], along with experiments in indoor
environments. Similar and alternative techniques for place
detection and topological structure extraction in occupancy
grid-maps were also proposed in [7] and [8], [9].

Figure 1 illustrates a physical exploration scenario ad-



dressed in our previous work, which motivates the ap-
plication of the planarity constraint. In this case, the
unintended consistent (but non-planar) model could be also
discarded using odometrical information to enforce global
metrical consistency by means of state-of-the-art SLAM
methods. However, the planarity test has the advantage
of being independent of the actual geometric properties
and metrical scale of the real environment, as it yields a
boolean result on the available abstract topological rep-
resentation. Moreover, it can be performed in time and
space linear in the number of topological links. If it
is dynamically evaluated as the map grows during the
topological search —exploiting past computations when a
new element is inserted— a sublinear (O(log2(n)) worst-
case time) algorithm can be used [10]. We show that the
planarity constraint significantly constrains the search for
correct topological maps in particularly difficult types of
environment, where the agent is faced with poor perceptual
characterization of distinctive locations and landmarks,
large amount of perceptual aliasing, multiple nested loops,
and structural symmetry. In some relevant cases, the pla-
narity test makes it possible to find unique optimal maps.

II. TOPOLOGICAL MAPPING

The Spatial Semantic Hierarchy (SSH) [11] describes
large-scale space using four different levels of represen-
tation. At the control level, the agent repeatedly selects
a hill-climbing control law to converge to and local-
ize at a distinctive state (dstate), and then a trajectory-
following control law to move from the current dstate to the
neighborhood of another, where hill-climbing converges to
the next dstate, eliminating cumulative error. The causal
level abstracts this pattern of behavior to a determinis-
tic automaton, consisting of states (the distinctive ones),
actions (sequences of control laws), schemas 〈x, a, x′〉
(asserting that state x′ results from performing action a
in state x), and views (the perceptual images of states,
view(x, v)). The topological level distinguishes between
turn and travel actions, and aggregates states into places,
paths, and regions, related by connectivity, order, and
containment. The metrical level consists of local metrical
attributes annotating objects at the causal and topologi-
cal levels, local metrical models of small-scale space in
place neighborhoods, and (when resources permit) global
metrical models of the large-scale environment [12]. A
formalization of the topological map in non-monotonic
logic, and an algorithm for identifying minimal models
according to a prioritized circumscription policy is given
in [1].

Hybrid mapping methods based on the SSH allow metri-
cal maps of local regions to be linked into topological maps
of large-scale space. Increasingly efficient algorithms have
been developed to exploit structure obtained from local
metrical models [1], [13], [2]. These algorithms generate
all possible models (i.e., topological maps), filter out those
inconsistent with the topological axioms, and provide a
preference ordering on the remaining models.

Exploration experience is an alternating sequence of ac-
tions and views. Repeat the following for each action a
and resulting view v from the beginning to the end of the
sequence.
For each 〈M,x〉 on the fringe of the tree:

1) If M includes a schema 〈x, a, x′〉
then let v′ be such that view(x′, v′),

• if v′ = v, then 〈M,x′〉 is the successor to
〈M,x〉;

• if v′ 6= v, then mark 〈M,x〉 as inconsistent.
(All the views corresponding to successive turn ac-
tions in the same local place neighborhood are known
all at once from a local metrical map, and include all
the gateways for leaving/approaching the place. Thus
if a is a turn action, M always contains 〈x, a, x′〉.)

2) Otherwise, M does not include 〈x, a, x′〉. This means
that x is a “pending gateway” of its place (see next
section), a is a travel action, and x′ must be a pending
gateway of the place it is associated with.
Let M ′ be M extended with a new distinctive
state symbol x′ and the assertions view(x′, v) and
〈x, a, x′〉. Consider the k ≥ 0 dstates xj in M such
that:

a) view(xj , v), and
b) xj is a pending gateway of its place, and
c) xj must belong to the same face of the graph

as x (this accounts for the planarity constraint
explained in the next section).

Then 〈M,x〉 has k + 1 successors:
• 〈M ′ ∪ {x′ = xj}, x′〉 for 1 ≤ j ≤ k, plus
• 〈M ′ ∪ {∀j x′ 6= xj}, x′〉.

3) If any of the new successor maps violates the topo-
logical axioms, mark it inconsistent.

After each action a and resulting view v, the nodes 〈M,x〉
at the leaves of the search-tree are the maps and qualitative
poses that are consistent with exploration experience thus
far.

Fig. 2. Building the tree of topological maps.

We briefly introduce an algorithm (Figure 2) that con-
structs a tree of topological hypotheses. Its input is the
abstract (non-metrical) description of actions and views
summarizing the exploration experience at the topological
level. Tree nodes are pairs 〈M,x〉, where M is a map and
x is the dstate representing the qualitative pose (vertex-
position and edge-orientation of the underlying graph)
within the topological map. After each action, the pair
〈M,x〉 is linked to its successor(s) 〈M ′, x′〉. If the action
takes place entirely within the existing map, then M ′ = M .
If otherwise x′ is a new dstate or if the link from x to
x′ is new, then M ′ is an extension of M and it must be
checked for consistency with the topological axioms and
possibly identified as inconsistent. Most importantly for
loop-closing, if x′ has the same view as some existing
states, it might be the same as one of those states or it
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Fig. 3. Face Tracking If edges are imagined as corridors, face tracking
can be intuitively viewed as walking along loops always following the
right wall. (a) e2 = rev(e1), e3 = pred(e2) = pred(rev(1)) =
next(e1). (b) the three faces of a simple embedded graph.

might be a new state, so the tree of maps must branch on
all possibilities.

Thus, the leaves of the map-tree represent the possible
consistent maps and poses at the current time. A preference
ordering, currently based on minimality as defined by
the circumscription policy, defines the optimal map(s) on
which to base planning for the next steps in exploration
or navigation. The preference ordering can be a partial
order, so if there are multiple distinct optimal maps, further
exploration is necessary to discriminate among them. The
algorithm can be strengthened either with stronger con-
straints to rule out more maps as inconsistent, or with a
stronger preference ordering.

Unfortunately, as shown in Figure 1, there are unin-
tended models (incorrect maps) which are consistent with
the topological axioms as well as all past and all possible
future experiences during exploration. The planarity con-
straint (2c in Figure 2) significantly helps to rule them out.

III. THE PLANARITY CONSTRAINT

A. Embedded graphs and planarity

We recall here basic mathematical concepts of graph
theory [14].

An undirected graph is intended, as usual, as a set of
vertices and undirected edges G = (V,E). An embedding
of an undirected graph G defines a clockwise circular order
over all the edges incidents on a vertex v, around each v of
G. An embedded graph is an undirected graph equipped
with an embedding. When embedded graphs are studied
as special structures themselves, they are also called maps.
Although this terminology witnesses how such structures
are mathematically relevant to our purposes, we use the
term ‘map’ in the more general sense intended in the SSH.

The genus of an embedded graph G is the minimal genus
of an orientable surface on which G can be drawn enforcing
its embedding without edge-crossings. In this case G is
planar on the considered surface. When G is planar on the
plane, its genus is 0 and we simply say it is planar. (Note
that the plane and the sphere both have genus 0, so G is
planar iff it is so on the sphere too. The torus is a surface
with genus 1.)

We describe here the classical method for deciding the
planarity of an embedded graph.

For any embedded graph G = (V,E), consider the
transformation T such that:

- T (G) = (V, T (E)) is a bidirected graph obtained
replacing each undirected edge e ∈ E that links
vertices v and w by two directed edges ev and
ew where source(ev) = target(ew) = v and
source(ew) = target(ev) = w. We define the 1 − 1
mapping rev(ev) = ew, rev(ew) = ev (note that
rev(rev(x)) = x).

- The circular order of undirected edges [e1 . . . ek]
around each vertex v defined by the embedding in G
is reflected by the circular order [e1

v . . . ek
v ] of outward

directed edges leaving v in T (G).

The mapping succ : T (E) → T (E) associates to any
directed edge ev the next outward directed edge in the
circular clockwise order around v. Analogously for pred :
T (E) → T (E), counterclockwise.

Computing the genus of an embedded graph G requires
us to count its faces, which we define on the auxiliary
structure T (G). Consider the following function next :
T (E) → T (E) such that next(ev) = pred(rev(ev)), i.e.,
the directed edge next(ev) is the predecessor of rev(ev) =
ew in the circular order of edges around w = target(ev)
(Figure 3 (a)). Note that next(ev) always exists and is
unique for any ev ∈ T (E). Now let [e1, e2 . . . en] be a list
of directed edges of T (G) s.t. (i) ei+1 = next(ei) for all
i = 1 . . . n − 1, (ii) ei 6= ej for any 1 ≤ i < j ≤ n, and
(iii) next(en) = e1. We call the directed loop formed by
the sequence of edges in such a list a face (Figure 3 (b)).

The preceding paragraph provides a combinatorial defi-
nition of faces. If we consider a surface on which an em-
bedded graph is planar, we can geometrically characterize
faces as the partitions induced on the surface by the images
of the edges. The infinite face of a planar embedded graph
on the plane can be avoided if the drawing is considered
on the sphere. Faces can then also be intuitively viewed as
the inside of the “least” loops, that is, those loops that do
not contain other loops.

The genus of an embedded graph G is given by the
following (Euler-Poincaré) formula:

genus(G) = (|E|+ 2c− |V | − |I| − f)/2,

where I is the set of isolated vertices, c the number of
connected components, and f the number of faces. Since
we shall only deal with totally connected (c = 1, |I| = 0)
embedded graphs — they model maps from single-agent



explorations — planarity (genus=0) can be tested 1 by:

|V | − |E|+ f = 2,

the well known Euler’s formula on the number of faces in
a polyhedron.

The number of faces can be counted in linear time and
space (in the number of edges) following the mathematical
formulation given above, based on the function next.

B. Search space reduction

The number of maps that the planarity constraint dis-
cards among all the topological hypotheses depends on
many factors, including the nature and structure of the envi-
ronment, the number and location of perceptually aliased
places and the particular exploration route. Nevertheless,
it is possible to formalize the reduction of the branching
factor at a node in the search-tree, in a fashion that sheds
light on the role of the past choices that have shaped the
map at that node.

Each place has a number of gateways. An edge is
created by linking gateways at two places. In general,
while exploration is underway, some places have pending
gateways that have not yet been explored and linked to
make edges. Since pending gateways are not yet edges
of the embedded graph, they must be skipped by the
functions succ, pred, and next while counting the faces
(even though they predict the positions in the circular
order around their vertices of the edges that will eventually
connect them). A map is closed if it has no pending
gateways. A closed map implicitly represents the entire
environment.

Every pending gateway in a non-closed map belongs to
exactly one face of the underlying embedded graph. We
formalize this notion as follows. Consider any adjacent
pair ei+1 = next(ei) of directed edges of the loop
defining a face, and let v be the vertex v = target(ei) =
source(ei+1). Any pending gateway pe of v that comes
after ei+1 and before rev(ei) in the circular clockwise or-
der of outward directed edges around the vertex v belongs
to the face. (When only one edge is currently incident on
v, i.e., when ei+1 = rev(ei), then any pending gateway
of v trivially belongs to the face.) It follows that the set
P of all the pending gateways in a map is partitioned into
the sets P1 . . . Pf , each Pi collecting the pending gateways
belonging to face i, i = 1 . . . f , where f is the number of
faces. Let pi = |Pi| and p = |P |.

Now, consider a node of the search tree where the next
exploration step leaves the current place through one of
its pending gateways. The branching factor of this node is
given by the number of possible successors of this map,
consistent with the resulting observation. One successor
is always the map where the arrival is at a totally new
place. The others are maps where the move is to a place
that is already represented in the map. First, such a place

1If unlikely non-planar maps must be taken into account, the planarity
constraint might be relaxed, by simply preferring maps with smaller
genus.

must have been approached through one of its pending
gateways, and the resulting view must be consistent with
the observation made. Second, if planarity is assumed, the
two pending gateways to be linked must belong to the same
face, otherwise they would be unified in an edge that would
cross the loop defining the face.

Assuming recursively that the map at the current node
of the search tree is already planar, we are interested in
the reduction of the branching factor when planarity is
enforced also in its children. In particular we consider the
ratio bp/b where bp is the number of planar children of
this node and b the number of all the children, including
the non-planar ones.

Assume a worst-case scenario where every pending
gateway in the map is compatible with the next observation,
and is thus a potential arrival. Then b is equal to p, minus
the one pending gateway where the move starts, plus the
map with a totally new place, i.e., b = p. Analogously,
if the starting pending gateway belongs to the ith face,
bp = pi. Then bp/b = pi/p. Denoting the average number
of pending gateways per face p̄ = p/f , we have bp/b =
pi/(p̄ · f).

From the recursive assumption of planarity, we have
f = |E| − |V | + 2 (before including the new edge
in E). The interesting point here is that the difference
|E| − |V | depends on the choices made at past branching
points leading to this map. Every time it was decided to
explain the observation at hand by linking the place with
one already encountered, unifying two pending gateways,
|E|−|V | increased by one unit. If instead it was decided to
build a totally new place, then a vertex and an edge were
inserted at once, and |E|−|V | did not change. Considering
that at the root of the search tree there is a map with just
one vertex and no edge, |E| − |V | = m − 1 where m is
the number of matches made between existing places, as
in the first case above. Thus, finally, the dynamic ratio that
quantifies the branching factor reduction is2:

bp

b
=

pi

p̄
· 1
m + 1

, (1)

The first factor normalizes according to the relative
number of consistent pending gateways in the current face
w.r.t. the average face. The second factor confirms the
intuition that the more loops have been closed, the more
topologically compact the map must be, and therefore the
fewer ways there are to close new loops while preserving
planarity.

IV. EXPERIMENTAL RESULTS

We have carried out several experiments to investigate
in detail how planarity testing improves the topological
search.

2Note that we get the same result if we replace the worst-case
assumption that all pending gateways are consistent with the observation
with a more moderate assumption that pending gateways consistent with
the observation are uniformly distributed throughout the map. In this case,
we restrict the numbers pi, p, and p̄ to only those pending gateways
consistent with the observation.



Environment Structure: 3× 3 3× 4 4× 4
(up to 16 places)

Planarity Pruning: no yes ∼ red. no yes ∼ red. no yes ∼ red.
Search-tree nodes built: 317 240 24% 4,239 1,722 59% 192,569 8,452 95%
Maps built: 188 147 22% 3,400 1,425 58% 93,034 4,951 94%
Final maps (all): 88 62 29% 1,465 507 65% 23,685 545 97%
Final maps (closed): 6 3 50% 16 3 81% 6992 58 99%
Optimal Final Maps: 2 1 / 8 1 / 2 2 /

Fig. 4. Search Space Reduction Breadth-first search expands the entire space of topological hypotheses permitting to observe the exact reduction
of the search-space if planarity is assumed. The 4 × 4 results regard only the portion of space of maps with less than 17 places, and show that the
planarity constraint has greater impact as more loop-closures are forced. Since minimality is related to loop-closing, the planarity constraint will prove
especially useful in practical cases when a best-first search is employed.

The topological map-builder does not assume a partic-
ular global structure for environment. However, for any
topological mapping algorithm, the worst-case environ-
ments will be those with large amounts of perceptual
aliasing (different places that look the same) and structural
symmetry (because it may be difficult or impossible to
refute incorrect hypotheses).

We evaluate this algorithm using simulated square and
rectangular grids, to maximize the difficulty facing the
algorithm. The only places are corridor intersections, with
“L”, “T”, or “+” structure. Every pose is perceptually
aliased multiple times throughout the environment and the
global structure of the environment has multiple embedded
loops and strong symmetries along multiple axes. This
kind of abstract environment allows a fair and straight
comparison of experimental results as the environment
scales topologically. Besides, its pattern is relevant to
several real environments, such as outdoor urban layouts,
or indoor large libraries with long corridors and shelves
that strongly limit the agent’s sensory horizon in most of
the locations.

The results we report are for a “snake” pattern of
exploration. The agent starts from a corner and walks along
all the horizontal corridors, in alternate directions, moving
from a corridor to the next parallel one when it reaches
a “T” (just a corner the first time) intersection. Then it
starts an analogous exploration of the vertical corridors. We
believe that this kind of exploration would also prove hard
when a pure metrical mapping method is used that closes
loops based on a maximum-likelihood choice. Indeed, if
corridors are long enough, the inevitable angular odomet-
rical error might often support the hypothesis that the agent
is back to a “+” intersection on a parallel corridor. In this
case, if maximum-likelihood is used for a greedy on-line
search, the map would be irreversibly affected by such an
error.

We assume the agent can acquire the correct abstract
representation “L”, “T”, or “+” of the place being visited
and be able to discriminate between these views.

We have run the experiments on an implementation
of the SSH topological breadth-first search, with and
without planarity testing. The reason for experimenting
with breadth-first search is that it builds the complete set

of the current topological hypotheses on-line: this allows
us to observe the exact reduction of the whole search-
space when planarity pruning is applied. We have gathered
statistics about (1) the number of search-tree nodes, (2)
maps ever built (these are usually fewer than search-tree
nodes because when a map already correctly predicts the
result of an action, only the assumed current position
changes from node to node), (3) the number of final maps
(those on the consistent leaves of the search-tree at the
end of the exploration), (4) final maps that are also closed,
and (5) final maps that are also optimal (according to the
preference defined by the circumscription). The table in
Figure 4 collects the results for the environments discussed
below.

The first column illustrates the results for a 3 × 3 grid
(see Figure 1(a)). Planarity testing discards half of the
final closed maps, and allows to determine the correct
model as the unique optimal final map. (The two optimal
maps obtained when planarity is not assumed are those in
Figure 1.)

The second column presents results from a single com-
plete exploration of a more topologically complex envi-
ronment: a 3× 4 grid of places. The gain in reducing the
search is larger than in the single exploration of the 3× 3
grid. This is due to the branching-factor reduction, which
makes planarity testing exponentially more efficient as the
exploration proceeds.

In the last column we address a 4 × 4 grid. Note that,
since now the two axes have same length, the environ-
ment has one more degree of symmetry, and the chances
of ruling out wrong models by inconsistencies along
observation-sequences is much reduced. A breadth-first
search of the maps consistent with a complete exploration
does not terminate in reasonable time. However, we have
driven the search so as to gather statistics significant for
our purposes. We have asserted an upper bound of 16 on
the number of places a map can have. In our case this was
intentionally chosen equal to the actual number of places in
the assumed physical environment. During the search any
partial map that grows over this limit is discarded. Since
during the search the number of places in a partial map
never decreases, no final map with less than 17 places that
would be produced with the complete search is lost. (Note
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Fig. 5. 4 × 4 grid models After the “snake” exploration of the 4 × 4 grid, and considering only closed and qualitatively perpendicular maps, (a)
is the unique (and correct) planar map. (b) is one example of the 255 non-planar “relatives” of (a) that are filtered out by the planarity constraint.
Without the qualitative perpendicular requirement, there are two consistent “over-minimal” maps with only 12 states, (c) and (d). Sufficient further
exploration can rule out (c), but not (d).

that having an upper bound — not necessarily picking the
exact correct number of places — could be a reasonable
strategy in some practical situations. The completeness of
the search under this limit would then prove useful.)

Besides the previous considerations we can observe here
that as the search proceeds, only those maps that account
for a certain minimum number of loop-closures can remain
under the upper-bound and not be ruled out. This means
that the number of matches m in the denominator of the
dynamic ratio formalized in Equation (1) must grow at a
certain average rate. Therefore, the dramatic performance
of planarity pruning in this last experiment is coherent
with our formalization, and with the intuition that in more
compact maps there are far fewer ways to allow spatially
for a new link while avoiding edge-crosses.

The two optimal final maps found with planarity pruning
are “overminimal”. That is, due to symmetry and aliasing
in the actual environment, the maps are complete and
consistent with exploration experience, but they have fewer
places than the actual environment (Figure 5(c,d))3.

We went further in making sense of the 4×4 grid explo-
ration data. Among all the final maps we have considered
those closed maps that are “qualitatively perpendicular”,
i.e., no two global paths intersect each other in more than
one place and no three global paths form a triangle. There is
only one such map (the correct model of the environment)
in the case of planarity pruning, as opposed to 256 such
maps in the other case (all with 16 places). The unique
planar solution is shown in Figure 5(a), while a map among
the 255 non-planar ones is shown in Figure 5 (b). These
numbers provide a concrete insight into how many non-
planar “close relatives” of the correct topological model
can arise in such a symmetrical environment.

We have observed that a best-first search, where the
search-tree expansion is prioritized by the optimality pol-
icy, in some cases produces the same results while reducing
the time and space used dramatically. Furthermore, since
minimality of the number of places is a component of the
optimality policy, by similar reasoning as with the upper

3Note that this example illustrates the kind of extreme structural
symmetry that requires a portable marker to find the correct map, as
in [5].

bound above, we expect the maps thus prioritized to be
those where m is larger and so the planarity constraint
tends to do more work (by Equation (1)). That is, best-first
search better leverages the potential of the planarity as-
sumption. Applied to the snake-exploration of the 4×4 grid
without upper bound on the number of places, with pruning
of non-planar and non-qualitatively-perpendicular maps,
and with backtracking if the final solution is not closed,
our C++ implementation of best-first search determines the
correct model in 0.84 sec. on an Intel Pentium 1.5 Ghz.
However, it does not always ensure similar benefits over
breadth-first search as the exploration/environment grows
in size and topological ambiguity.

The relationship between the particular preference pol-
icy chosen and optimal-completeness of best-first search
(which is guaranteed by exhaustive searches such as
breadth-first) requires more investigation (although a con-
sistent solution is always found, if one exists).

V. RELATED WORK

Following [15] where the topological nature of cognitive
maps is pointed out, embedded graphs as representations
of topological maps were proposed in [5]. They show that
correct map-building is impossible in general if only the
cyclic order of the incident edges is used to recognize
a place, unless the agent is provided with a portable
marker it can drop and pick up. In this case the agent can
cope with perceptual aliasing and symmetries, and learn
the correct topological model. The upper bound on the
length of the exploration with a portable marker reduces
from polynomial to almost linear in the size of the graph,
when planarity is assumed [16]; a similar improvement is
obtained also for the map-validation problem [17].

The approach presented in [18] is closer to our work in
that there is no recourse to portable markers. It provides
an algorithm that expands a tree of hypotheses about
loop-closures, but the role of planarity in branching-factor
reduction is not investigated, and a rich spatial ontology
that allows for a preference policy is not used.

Because of the negative result above, several works
have addressed topological map-building as the problem
of learning the minimal “discernable” structure of the
environment, i.e., its smallest underlying automaton: for



example, in [19] the deterministic case is addressed, while
the case of stochastic/noisy observations is introduced
in [20]. Here, the minimal automaton representation and
other assumptions are not compatible with environments
such as grids. Despite the “general impossibility” of deal-
ing with such ambiguous topologies, our work shows that
it is possible to handle them to some interesting extent.

VI. CONCLUSIONS AND FUTURE WORK

The planarity constraint allows to filter out most incor-
rect topological loop-closure hypotheses inexpensively, and
independently of the actual metrical scale and geometrical
appearance of the loops at issue. Although we have focused
on topological mapping in isolation, our study suggests
that this constraint would prove very useful also in hybrid
metrical-topological mapping methods [21], [22].

The contribution of our work is twofold. First, con-
cerning a general on-line mapping algorithm that does
not assume a particular exploration strategy [18], [2], we
have provided formal and experimental analysis of the
great impact of planarity constraint on the search-space.
Second, in so doing, we have shown how topological
map-building can go considerable distance in dealing with
embedded loops, perceptual aliasing, and symmetry, when
exploration experience is interpreted in terms of a rich
spatial ontology [11] that allows to rule out inconsistent
models, or to define a preference policy.

The cases we have considered here are extreme in
the weak perceptual characterization and adversity of the
environments being explored. They are meant to investigate
the potential of topological mapping. In real cases, any
kind of additional feature or irregularity in the structure
can be exploited to test and refute those incorrect models
that we have assumed impossible to discriminate (see for
example [2], [23]).

Finally, we plan to combine topological mapping with
modern SLAM metrical algorithms. The contribution from
topological mapping as presented in this paper would be
the strong reduction of data association uncertainty — one
of the most critical issue in SLAM — while odometrical
information could be used to improve the selection of the
final map, or to better prioritize nodes expansion in the
search-tree, by a best-first strategy.
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