
Improving Performance of Data Analysis in Data
Warehouses: A Methodology and Case Study

Janet Siebert
Data Pantheon, Inc.
391 Clarkson Street
Denver, CO  80218

303-698-2593

jsiebert@acm.org

ABSTRACT
Data analysis in very large databases requires innovative
techniques.  In an exploration and discovery scenario, the
performance of standard SQL techniques can be unacceptable.
This paper provides a methodology and case study for an
alternative technique.
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1. INTRODUCTION
Growing data warehouses quickly become very large databases
(VLDBs), with multiple multi-million row tables.  When data
analysts and developers are faced with problems whose solutions
involve multiple multi-million row tables, standard SQL query
and join techniques are woefully inadequate. This paper presents
a synthetic join technique offering satisfactory performance and
numerous advantages.  The advantages include:

• the ability to limit the number of rows included in the
analysis;

• support for progression through the stages of exploration,
hypothesis testing, and formal reports;

• the ability to record and report both summary and detail
data; and

• embedded performance benchmarks.

The following discussion includes a design overview, a case
study, and performance results from that case study.

2. DESIGN OVERVIEW
The fundamental design of a synthetic join is to use nested loops
and key values to connect the tables.  Pseudo-code is as follows:

select N rows from table1

foreach row selected

output columns from table1

select corresponding row(s) from

 table2, based on key value(s)

foreach row selected

output columns from table2

This basic algorithm is extended as the analysis evolves.  In early
stages of exploration, the analyst is seeking patterns.  N is small,
and most of the columns from both tables are displayed.  Once
patterns are identified, some data becomes irrelevant.  The
columns which are displayed as output are limited, and N is
increased.  At this stage, hypotheses are formulated.

Hypothesis testing is added to the algorithm through
computations.  A sample computation is to sum the dollar values
of column x for rows in table2, and compare the sum to the dollar
value of column y in table1.  This introduces a metric into the
reporting.  The following pseudo-code would be inserted after
the end of the inner foreach loop:

if sum(table2.dollarX) = table1.dollarY

success=success + 1

else

failure=failure + 1

The final step in the program is to output the number of
successes and failures.  At this stage, N is increased, and the
percentage of successes and the percentage of failures is noted.

The algorithm evolves to support reporting by logging the detail
behind the success or failure.  The code becomes:

if sum(table2.dollarX) = table1.dollarY

success=success + 1

print “SUCCESS:

key_value, table2.dollarX,

 table1.dollarY”

else

failure=failure + 1

print “FAILURE:

key_value, table2.dollarX,

 table1.dollarY”



The detail of the failure can be extracted by searching the output
file for the key word "FAILURE."  Additionally, at this stage of
the analysis, N is increased to include all rows.

3. CASE STUDY
The case study is drawn from the health insurance industry.  The
problem at hand is reconciling transaction detail with detail that
interfaces to an accounting system.  Essentially, customers file
insurance claims, which contain one or many services.  Some
portion of the service dollar amount will be paid by the insurer.
This amount must then have an account number attached to it,
and be transmitted to the accounting system.  From a data quality
perspective, applicable amounts per service reconcile from
service to accounting data.

Selected columns in the first table, services, are:

service_num

amt_allowed

discount_amt

copay_amt

paid_amt

Selected columns in the second table, accounting_data, are:

serv_num

entry_type

amount

During the initial exploration of the data, the challenge is to
understand which amounts from the services table correspond to
which amounts in the accounting_data table.  Thus, the pseudo-
code will look like:

select * from services where rownum < N

foreach row

foreach column

print “SERVICE.this_column: data_val”

select * from accounting_data where

 serv_num=this_service.service_num

foreach row

foreach column

print “ACCOUNTING.this_column:

 data_val”

The results of this exploration suggest that services.paid_amt
corresponds to accounting_data.amount, entry_types 1 and 2.
Thus, our code becomes:

select service_num, paid_amt from services

 where rownum < N

foreach row

select * from accounting_data where

 serv_num=this_service.service_num

foreach row

if (this_accounting_data.entry_type

  = 1 or 2)

sum=sum+this_accounting_data.amount

if (sum = this_service.paid_amt)

success=success + 1

else

failure=failure + 1

print “SERVICE:

 this_service.service_num,

 this_service.paid_amt,

 ACCOUNTING:  sum”

4. PERFORMANCE RESULTS
In this case study, the services table had 10.5 million rows, and
the accounting_data table, 2.4 million rows.

Timings for retrieval of data from the synthetic join follow:

N Time

10 2 seconds

100 3 seconds

1,000 26 seconds

10,000 2.3 minutes

100,000 8.3 minutes

548,000 61 minutes

A SQL join required 8 hours.

5. SUMMARY
The synthetic join technique yields more information more
quickly than standard SQL techniques.  It readily supports the
evolution of analysis from exploration to hypothesis testing to
formal reporting.  It facilitates expansion and contraction of the
data set as the algorithm and reporting formats evolve.  It collects
summary and detail reporting in a single pass of the data set.  It
integrates performance benchmarks into the analysis, supporting
high performance data analysis in VLDB environments.


