
Compiler-assisted Hybrid Operand Communication

Dong Li Behnam Robatmili, Madhu Saravana Sibi Govindan Aaron Smith
Steve Keckler Doug Burger

University of Texas at Austin, Computer Science Department
{dongli , beroy, sibi, asmith, skeckler, dburger}@cs.utexas.edu

ABSTRACT
Communication of operands among in-flight instructions can be
power intensive, especially in superscalar processors where all re-
sult tags are broadcast to a small number of consumers through a
multi-entry CAM. Token-based point-to-point communication of
operands in dataflow architectures is highly efficient when each
produced token has only one consumer, but inefficient when there
are many consumers due to the construction of software fanout
trees. Placing operands in registers is efficient for broadcasting the
values which have consumers spread over a long lifetime, but ineffi-
cient for shorter-lived operations. This paper evaluates a compiler-
assisted hybrid instruction communication model that combine to-
kens instruction communication with statically assigned broadcast
tags. Each fixed-size block of code is given a small number of
architectural broadcast identifiers, which the compiler can assign
to producers that have many consumers. Producers with few con-
sumers rely on point-to-point communication through tokens. Pro-
ducers whose result is live past the instruction block communicate
with distant consumers through a register. Selecting the mechanism
statically by the compiler relieves the hardware from categorizing
instructions at runtime. At the same time, a compiler can cate-
gorize instructions better than dynamic selection does because the
compiler analyzes a larger range of instructions. Furthermore, com-
piler could perform complex optimizations without hardware cost
and execution-time penalty. We propose a compiler optimization to
reuse broadcast tags for instructions with non-overlapping broad-
cast live ranges, the speedup is further improved without spending
more power . The results show that this compiler-assisted hybrid
token/broadcast model requires only eight architectural broadcasts
per block, enabling highly efficient CAMs. This hybrid model re-
duces instruction communication energy by 28% compared to a
strictly token-based dataflow model (and by over 2.7X compared
to a hybrid model without compiler support), while simultaneously
increasing performance by 8% on average across the SPECINT and
EEMBC benchmarks, running as single threads on 16 composed,
dual-issue EDGE cores.

1. INTRODUCTION
Communicating operands between instructions is a major source

of energy consumption in modern processors. A wide variety of
operand communication mechanisms have been employed by dif-
ferent architectures. For example in superscalar processors, to wake
up all consumer instructions of a completing instruction, physical
register tags are broadcast to power-hungry Content Addressable
Memories (CAMs), and operands are obtained from a complex by-
pass network or by a register file with many ports. A mechanism
commonly used for operand communication in dataflow architec-
tures is point-to-point communication, which we will refer to as

“tokens” in this paper. Tokens are highly efficient when a pro-
ducing instruction has a single consumer; the operand is directly
routed to the consumer, often just requiring a random-access write
into the consumer’s reservation station. If the producer has many
consumers, however, dataflow implementations typically build an
inefficient software fanout tree of operand-propagating instructions
(that we call move instructions). These two mechanisms are ef-
ficient under different scenarios: broadcasts should be used when
there are many consumers currently in flight (meaning they are in
the instruction window), tokens should be used when there are few
consumers, and registers should be used to hold values when the
consumers are not yet present in the instruction window.

Several approaches [5, 6, 12, 18, 19] have proposed hybrid schemes
which dynamically combine broadcasts and tokens to reduce the
energy consumed by the operand bypass. These approaches achieve
significant energy consumption compared to superscalar architec-
tures. In addition, because of their dynamic-nature, these approaches
can adapt to the window size and program characteristics without
changing the ISA. On the other hand, these approaches use some
additional hardware structures and keep track of various mecha-
nisms at runtime.

The best communication mechanism for an instruction depends
on the dependence patterns between that instruction and the group
of consumer instructions currently in the instruction window. This
information can be calculated statically at compile time and con-
veyed to the microarchitecture through unused bit in the ISA.

Using this observation, this paper evaluates a compiler-assisted
hybrid instruction communication mechanism that augments a token-
based instruction communication model with a small number of ar-
chitecturally exposed broadcasts within the instruction window. A
narrow CAM allows high-fanout instructions to send their operands
to their multiple consumers, but only unissued instructions wait-
ing for an architecturally specified broadcast actually perform the
CAM matches. The other instructions in the instruction window do
not participate in the tag matching, thus saving energy. All other in-
structions, which have low-fanout, rely on the point-to-point token
communication model. The determination of which instructions
use tokens and which use broadcasts is made statically by the com-
piler and is communicated to the hardware via the ISA. As a result,
this method does not require instruction dependence detection and
instruction categorization at runtime. In addition, the compiler can
reduce the bit width of the needed CAM by efficiently reusing the
tags for non-overlapping live range broadcasts. However, this ap-
proach requires ISA support and may not automatically adapt to
microarchitectural components such as window size.

Table 1 categorizes different architectures by their operand com-
munication mechanisms and instruction dependences detection meth-
ods. Architectures in the first row use the software (compiler) to

detect instruction dependences. However, architectures in the sec-
ond row use hardware to detect instruction dependences. Archi-
tectures in each column use a specific mechanism for instruction
communication. Superscalar and dataflow mechanisms each rep-
resent different ends of this spectrum. Superscalar processors use
hardware just for broadcast, which provides high sharing between
consumer. Dataflow machines, on the other hands use compiler
just for point-to-point communication, which provides no sharing
between consumers. Dynamic hybrid schemes [5, 6, 12, 18, 19]
use hardware to detect instruction dependences and dynamically
select the right communication mechanism for each instruction.
Forwardflow [11] dynamically uses only point-to-point communi-
cation for all instructions. Finally, the approach discussed in this
paper (referred to as Compiler-assisted broadcast/tokens in the ta-
ble) uses software to detect dependences and categorize instruc-
tions for token-based or broadcast communication mechanisms.

Broadcast Hybrid Tokens
SW Compiler-assisted Dataflow [8, 3]

broadcast/tokens TRIPS [21]
Wavescalar [24]

HW Superscalar N-use table [5]
Hybrid Wakeup [12] Forwardflow [11]

Table 1: Different operand delivery approaches categorized by
operand communication mechanisms used and instruction de-
pendency detection methods.

Our experimental vehicle is TFlex [13], a composable multicore
processor, which implements an EDGE ISA [21]. We extend the
existing token-based communication mechanism of TFlex with this
hybrid approach and evaluate the benefits both in terms of perfor-
mance and energy. On a composed 16-core TFlex system (run-
ning in the single-threaded mode), the proposed compiler-assisted
hybrid shows a modest performance boost and significant energy
savings over the token-only baseline (which has no static broad-
cast support). Across the SPECINT2K and EEMBC benchmarks,
using only eight architectural broadcasts per block, performance
increases by 8% on average. Energy savings are more significant,
however, with a 28% lower energy consumption in operand com-
munication compared to the token-only baseline. This energy sav-
ing translates to a factor of 2.7 lower than a similar hybrid policy
implementation without full compiler support.

2. STRATEGIES FOR OPERAND COMMU-
NICATION

Providing efficient operand communication between instructions
is essential for performance and power efficiency in modern pro-
cessors. Different mechanisms for instruction communication have
been used by different architectures. Superscalar processors use
fully-dynamic, power-hungry broadcast bypass networks for han-
dling instruction dependences that exist in the instruction window.
For other dependence patterns, they use registers and memory. Dataflow
flow processors, on the other hand, use static point-to-point com-
munication (also referred to as tokens) among producer and con-
sumer instructions. To be able to select the right communication
mechanism or a combination of mechanisms in a given system, one
must understand the tradeoff space of instruction communication.
Hence, we first discusses this tradeoff space in this section, and
then we introduce different communication mechanisms. For each
mechanism, we also explain its advantages and disadvantages.

2.1 Operand Bypassing Tradeoff Space
Several parameters are important when designing operand com-

munication mechanisms among producing and consuming instruc-
tions. One of the most important of these parameters is fanout,
which is defined as the number of consuming instruction for a given
producer. Other key parameters are dependence distance, which is
defined as the distance between each producer and its consumers
in the number of dynamic instructions, and the instruction window
size that affects the number of producers and consumers currently
in flight. Figure 1 plots the density of instruction communication
with different fanout and dependence distances. We collected this
data using an Alpha ISA simulator [17] for the SPEC2000 integer
benchmarks [2]. The z-axis represents the normalized communica-
tion density, so upper parts of the graph represent a higher density
of communication. Assuming inorder fetch, the x-axis measures
the dynamic distance, in instructions, between a producer and a
consumer. The y-axis shows the total number of consumers for
each producer plotted. For instance, assume one of the consumer
of a producer with fanout 5, is fetched 10 instructions apart from
the producer. This will add one to the density (z value) of the point
at coordinate position (x = 10, y = 5) in the graph.

We partition the graph into three regions, assuming a 32-entry
instruction window: the region with five or more consumers (re-
gion B), the region with four or fewer consumers (region A), and
the region outside of the instruction window (region C). The graph
shows that the number of points in regions A and B are significant.
It also shows, assuming that the ideal crossover point is in fact five
consumers, that most instruction communication can happen within
the window, and that the potential energy savings are large if the
best communication mechanism can be selected for each pattern of
operands.

Choosing the right communication mechanism based on the de-
pendence pattern of each producing instruction and its consumers
not only can effectively improve power efficiency but also can im-
prove performance of the system. To achieve this goal, a system
needs to leverage the producer-consumer knowledge available at
runtime. In an ideal machine every producer knows exactly which
consumers are waiting for its output right at the time it produces the
output. In such a system, an efficient multicast mechanism that lets
each producer directly wake up all its current consumers, may suf-
fice regardless of operands pattern of the producer. In a real system,
however, accurately providing this information for each producer
can be challenging due to micro architectural or ISA restrictions.
In the next subsection, we discuss these restrictions in the state-of-
the-art architectures and the popular communication mechanisms
used by those architectures.

2.2 Operand Bypassing Mechanisms

2.2.1 Broadcast Bypass Networks
Communicating operands between instructions is a major source

of energy consumption in superscalar processors [16]. Instruction
dependences between producer and consumer instructions are dy-
namically extracted by the hardware. During register renaming
phase, every instruction is assigned a tag (physical register) associ-
ated with its output. Later, when a consuming instruction for that
first instruction is dispatched, the same tag will be assigned to the
corresponding operand(s) of the consumer instruction. When the
producer instruction is ready, its tag is broadcast to power-hungry
CAMs, and all the instructions in the instruction queue compare the
tags of their operands against the broadcast tag. If the broadcast tag
and the tag of one of their operands are identical, the value of that
operand will be set to the value read from the broadcast network or

5
10

15
20

25
30

35
40

45
50

2

4

6

8

10

12

14

16

18

0

0.5

1

1.5

2

2.5

3

(Dependence Distance)

(Fanout

C
om

m
un

ic
at

io
n

D
en

si
ty

 P
er

ce
nt

ag
e

Normalized Communication Density for SPEC INT

(A)

(B)
(C)

Figure 1: Instruction communication distribution with differ-
ent fanout and different dependence distances.

the register file [16], and the ready flag of that operand is set.
Broadcast bypass networks are only power-efficient for instruc-

tions with high number of consumers in the instruction window.
Figure 1 shows that instructions with this dependence pattern, which
are represented in region B in that figure, constitute a small por-
tion of all instructions in the window. Previous work [9] on SPEC
benchmark shows that short dependences (region A in Figure 1)
handled by the broadcast network constitute approximately 75% of
program dependences in a superscalar processor. The cause for this
significant inefficiency in superscalar processors is the way the de-
pendence tree structure is built dynamically. This structure does
not directly link producers to their current consumers in the win-
dow. Instead, consumer operands point to their producers using
the physical tags. An alternative would be to change this structure
such that each producer points directly to its consumers. In such
an approach, when the the producer executes, it would only wake
up its consumers, thus eliminating unnecessary tag matchings im-
posed by the bypass network approach. To achieve this goal, when
a consumer instruction is dispatched, it updates a pointer set (or
some other structure) associated with its producer instruction so
that when the producer finishes executing, the producer has full
or partial knowledge about its current consumers in the window.
Based on this idea, there have been several recent studies [5, 6,
12, 18, 19] proposing such dynamic, hybrid communication mod-
els. For example, Gonzalez et al. [6] exploit the well-known phe-
nomena that many instructions have small numbers of consumer
instructions in the instruction window. Based on this observation,
they propose a power-efficient issue logic design for superscalar
processors. The approach employs an N-use table, which is in-
dexed by physical registers, to store the first N consumer instruc-
tions of each physical register. If a physical register has more than
N consumers in the table, the next consumer instruction is put into
a small out-of-order instruction queue called I-buffer, to which a
broadcast is performed. The instructions stored in the N-use ta-
ble will acquire the operand through point-to-point communication,
when the corresponding physical register is available, and the ones
in the I-buffer will acquire the operand through a broadcast. The
ratio between point-to-point and broadcast operations can be ad-
justed by changing the value of N. This approach eliminates most
of the broadcasts and tag matchings and achieves high energy sav-

ings. On the other hand, each consumers may wait on multiple pro-
ducers, multiple copies of consumer instructions can exist in the
N-use table. These copies of an instruction in the N-use table need
to maintain circular pointers to each other. These pointers need to
be updated when the corresponding physical register is available.
Consequently, the N-use table may require multiple read and write
ports. Nonetheless, this approach is an effective way to increase
efficiency.

Huang et al. [12] propose a full hardware pointer-based approach
to eliminate the broadcasts and the tag matchings, which detects
the one-consumer instructions dynamically and performs point-to-
point communication to them. Any instruction targeting more than
one instruction has to broadcast its result. During dispatch, a con-
sumer instruction updates a pointer to itself in the instruction queue
entry associated with its producer instruction. This pointer value is
used during the issue of the producer instruction to directly send the
result to the consumer. This approach does not use structures like
N-use table. Instead, this approach employs point-to-point commu-
nication only for instructions that have only one consumer. When
misprediction causes some instructions to flush, the pointers in the
instruction queue pointing to the flushed instructions now longer
are valid. As a result, this method requires a mechanism for clean-
ing up during branch misprediction.

These hybrid broadcast/point-to-point communication mechanisms
significantly reduce consumed operand communication energy com-
pared to superscalar models. In addition, they do not require any
compiler or ISA support, which makes them flexible. However,
these approaches support dynamically perform some pointer chas-
ing and bookkeeping operations on structures like N-use table or
instruction queus.

This paper evaluates a different hybrid approach in which with
some ISA support, the compiler selects a mix of broadcast and
point-to-point (token) bypasses between instructions in each block
(a group of instructions) of the program. By moving the depen-
dence pattern detecting task to the compiler, this approach does not
hardware-based structures or pointer chasing operation. In addi-
tion, given the global knowledge about operand dependences and
criticality of all instructions in each block at compile time, the com-
piler is able to effectively selecting the right communication mech-
anism for instructions. On the other hand, a drawback of using the
compiler-assisted hybrid method is extra bits consumed in the ISA.

2.2.2 Tokens
Tokens or packets are used by dataflow machines for point-to-

point communication among instructions. In this mechanism, each
instruction encodes directly it destination instruction(s) through the
ISA support. Dennis’ dataflow machine [8] has an instruction mem-
ory with each instruction cell corresponding to an operation of a
dataflow program. When the operands are ready, the instruction is
sent through a high bandwidth switch to an operation unit to exe-
cute. After instruction is executed in the operation unit, the result of
the operation is sent as one or two packets (or tokens), along with
the address of a the destination operand to the instruction memory.

In first generation dataflow machines [8, 3], different from the
conventional von Neumann machines, data values are not perma-
nently stored in memory or registers. Instead, data values are trans-
mitted among instructions using tokens allowing for massively par-
allel execution. However, these machines run programs written in
specialized dataflow languages, which are not very popular. An-
other problem with using dataflow tokens, is variable instruction
sizes that complicates the ISA design for such architectures.

This work relies on ISA support to combine static point-to-point
(similar to dataflow tokens) and broadcast communication using

opcode  xop  target1  target2 

7 bits  9 bits 

type  Des5na5on ID 

2  7 bits 

9 bits 7 bits 

Figure 2: TFlex Instruction Encoding.

compiler analysis, which identifies the dependence pattern of in-
structions within each block of instructions. The compiler encodes
static broadcast tags in the ISA only for critical high-fanout in-
structions within a block of instructions. These tags are used at
runtime by the microarchitecture through a light-weight, energy-
efficient broadcast mechanism. For the rest of the instructions in
a block, the compiler encodes targets into the producers for direct
point-to-point communication. By having the compiler choose be-
tween broadcasts and tokens depending the fanout of instructions,
this mechanism achieves high power saving and performance im-
provements.

3. SYSTEM OVERVIEW
TFlex processor [13] implements an Explicit Data Graph Exe-

cution (EDGE) ISA [4], which supports block-atomic execution,
and instructions within a block execute in dataflow order using to-
kens. Each block is allocated to one core [20] and is fetched into
the instruction queue of that core. Different cores in the TFlex
processor communicate through the memory and registers and a
lightweight operand network. In each core, however, instructions
directly communicate with their consumers within the instruction
window. The original TFlex model supports different block map-
ping strategies [20]. In deep mapping which is used as our baseline
in this work, each block is mapped to only one core. As a results,
all intra-block communication is localized to the core.

The TFlex compiler [23] breaks the program into single-entry,
predicated blocks of instructions, similar to hyperblocks [15]. In
this ISA, each instruction encodes up to two target instructions in
the same block using their offsets from the beginning of the block.
If an instruction has more than two targets, the TFlex compiler [23]
uses move instructions to generate a software fanout tree to deliver
the output to its targets. Although this approach fixes the high-
fanout instruction encoding problem, the inserted move instructions
incur performance penalty in terms execution latency and the code
size [10].

In this dataflow representation, each instruction explicitly en-
codes its target instructions in the same block using the offsets of
the target instructions from the beginning of the block. For each
instruction, its offset from the beginning of its block is the instruc-
tion ID of that instruction. An example of the initial intermediate
code and its converted dataflow representation are shown in Fig-
ures 3(a) and 3(b), respectively. Instruction i adds values a and b
and sends the output to operand1 and operand2 of instructions j
and k, respectively. Instruction j subtracts that value from another
value d, and sends the output to operand2 of instruction k. Fi-
nally, instruction k stores the value computed by instruction i at the
address computed by instruction j.

Figure 2 illustrates instruction encoding used by the EDGE ISA.
Because the maximum block size is 128 instructions, each instruc-
tion ID in the target field of a instruction requires seven bits. The
target field also requires two bits to encode the type of the target
because each instruction can have three possible inputs including
operand1, operand2 and predicate.

i:  add c, b, a 
j:  sub e, c, d 
k:  st  e, c  

9(a) Initial representation

i:  add <j, op1> <k, op2> 
j:  sub <k,op1>  
k:  st  

9(b) Dataflow representation

operand 1  issued operand 2  target1  target2  op1 op2 p opc 

j 

Inst. ID = j 

Type = op1 

To
ke
n 
(I
ns
t.
 ID

, t
yp
e,
 v
al
ue

) =
 (j
, o
p1

, c
) 

d�

✓ ✓  ✓ 

a�

b�

sub �

i  op1, j a� b�add� op2, k 

op1, k 

k  st�

✓ 

9(c) Execution in the baseline instruction queue

Figure 3: A baseline code example.

Figure 3(c) illustrates a block diagram of the instruction queue of
the baseline TFlex core when running the code sample. When in-
struction i is issued, values a and b along with target of that instruc-
tion are brought to an execution unit. After instruction i finishes
executing, the execution unit sends two tokens to its targets one at
a time. The first token is sent to the operand1 of instruction j. This
token, as shown in the figure, includes the instruction ID of the
target instruction (value j in the example), the target operand type
(operand1 in this example) and the output value of the executed
instruction (a + b in this example). The instruction ID and type
fields of the token are used to directly index the rows and columns
of the instruction queue and no tag matching is needed for finding
the targets.

Although this instruction queue is very power-efficient as in other
dataflow machines, it is not very performance-efficient when run-
ning high-fanout instructions. In the TFlex microarchitecture, one
token is produced and bypassed for each target. TFlex uses mov
instructions to generate fanout trees to distributed the output of
high-fanout instructions. In the next section, we explain how we
can exploit compiler-time producer-consumer information to aug-
ment this point-to-point communication model with a low-weight
power-efficient broadcast mechanism.

4. HYBRID OPERAND COMMUNICATION
MECHANISM

In this section proposes an approach for hybrid operand commu-
nication with compiler assistance. The goal of the new approach
is to achieve higher performance and energy efficiency by allowing
the compiler to choose best communication mechanism for each
instruction during the compilation phase. The section discusses
the implementation of the new approach, which consists of four
parts: (1) heuristics to decide the operand communication mech-
anism during compilation; (2) ISA support for encoding the com-
piler decision, broadcast tags or point-to-point tokens; and (3) mi-
croarchitectural support for the hybrid communication mechanism.
This section concludes with a discussion of design parameters and
power trade-offs and performance implications of the proposed ap-
proach; (4) further compiler optimization to reuse broadcast tags

for instructions with non-overlapping broadcast live ranges.

4.1 Overview
Since each block of code is mapped to one core, the hybrid mech-

anism explained in this section is used to optimize the communica-
tion between instructions running within each core. This means
that no point-to-point or broadcast operand crosses core bound-
aries. For cross-core (i.e. cross-block) communication, TFlex uses
registers and memory [20], which are beyond the scope of this arti-
cle. Of course extending hybrid communication to cross-core com-
munication is an interesting area and can be considered future work
of this work.

Different from dynamic hybrid models, the compiler-assisted hy-
brid model relies on the ISA to convey information about point-
to-point and broadcast instructions into the microarchtecture. The
involvement of the ISA leads provides some opportunities for the
compiler while causing some challenges at the same time. Assum-
ing a fixed instruction size, using tokens can lead to construction
of fanout move trees and manifests itself at runtime in form of ex-
tra power consumption and execution delay. On the other hand,
categorizing many instructions as broadcast instructions requires
the hardware to use a wide CAM in the broadcast bypass network,
which can become a major energy bottleneck. The main role of
the compiler is to pick the right mixture of the tokens and broad-
cast such that the total energy consumed by the move trees and the
broadcast network becomes as small as possible. In addition, this
mixture should guarantee an operand delivery delay close to the one
achieved using the fastest operand delivery method (i.e. the broad-
cast network). One challenge, however, is to find enough number
of unused bits in the ISA to encode broadcast data and convey it to
the microarchitecture.

4.2 Broadcast Tag Assignment and Instruction
Encoding

One primary step in designing the hybrid communication model
is to find a method to distinguish between low- and high-fanout
instructions. instructions that can be analyzed. In the compiler-
assisted hybrid communication approach, the compiler detects the
high-fanout instructions and encodes information about their tar-
gets via the ISA. In this subsection, we first give an overview of
the phases of the TFlex compiler. Then we explain the algorithm
for detecting high-fanout instructions and the encoding informa-
tion inserted by the compiled in the broadcast sender and receiver
instructions.

The original TFlex compiler [23] generates blocks containing
instructions in dataflow format by combining basic blocks using
if-conversion, predication, unrolling, tail duplication, and head du-
plication. In each block, all control dependencies are converted
to data dependencies using predicate instructions. As a result, all
intra-block dependencies are data dependencies, and each instruc-
tion directly specifies its consumers using a 7-bit instruction iden-
tifier. As shown in Figure 2, each instruction can encode up to two
target instructions in the same block. During block formation, the
compiler identifies and marks the instructions that have more than
two targets. Later, the compiler adds move fanout trees for those
high-fanout instructions during the code generation phase.

The modified compiler for the hybrid model needs to accom-
plish two additional tasks, selecting the instructions to perform the
broadcast, and assigning static broadcast tags to the selected in-
structions. The compiler lists all instructions with more than one
target and sorts them based on the number of targets. Starting from
the beginning of the list, the compilers assigns each instruction in
the list a tag called broadcast identifier (BCID) out of a fixed num-

opcode  xop  target1  target2 

7 bits  9 bits 

type  S‐BCID 

2  3 
bits 

9 bits 

4 bits 

7bits 

R‐BCID2 R‐BCID1  B 

1
3 
bits 

3 bits 

Figure 4: TRIPS Instruction Encoding with Broadcast Sup-
port. S-BCID, R-BCID and B represents send BCID, receive
BCID and the broadcast enable flag.

i1:  add c, a, b 
i2:  sub e, c, d 
i3:  add f, c, g 
i4:  st d, c 
i5:  st f, e 

9(a) Initial representation

i1:  add <i2, op1> <i1a, op1>  
I1a:  mov <i3, op1> <i4 op1>  
i2:  sub <i5, op2>  
i3:  add <i5, op1>  
i4:  st 
i5:  st 

9(b) Dataflow representation

i1:  add [SBCID=1, op1] 
i2:  sub [RBCID=1] <i5, op1> 
i3:  add [RBCID=1] <i5, op1> 
i4:  st [RBCID=1] 
i5:  st 

9(c) Hybrid dataflow/broadcast
representation

Figure 5: A sample code and corresponding code conversions
in the modified compiler for the hybrid model.

ber of BCIDs. For producers and consumers send or receive BCIDs
needs to be encoded inside each instruction. Therefore, the total
number of available BCIDs is restricted by the number of unused
bits available in the ISA. Assuming there are at most MaxBCID
BCIDs available, then the first MaxBCID high-fanout instruc-
tions in the list are assigned a BCID.

After the broadcast sender instructions are detected and BCIDs
are assigned, the compiler encodes the broadcast information inside
the sender and receiver instructions. Figure 4 illustrates the ISA
extension using a sample encoding for MaxBCID equal to eight.
Each sender contains a broadcast bit, bit B in the figure, enabling
broadcast send for that instruction. The compiler also encodes the
BCID of each sender inside both the sender and the receiver instruc-
tions of that sender. For the sender, the target bits are replaced by
the three send BCID bits and two broadcast type bits. Each receiver
can encode up to two BCIDs with six bits, and so it can receive its
operands from two possible senders. Although this encoding uses
two BCIDs for each receiver instruction, the statistics show that a
very small percentage of instructions may receive broadcasts from
two senders. For the other instructions that are not receiver of any
broadcast instructions, the compiler assigns the receive BCIDs to
0, which disables the broadcast receiving mechanism for those in-
structions.

Figure 5 illustrates a sample program (except for stores, the first
operand of each instruction is the destination), its equivalent dataflow
representation, and its equivalent hybrid token/broadcast represen-
tation generated by the modified compiler. In the original dataflow
shown code in Figure 5(b), instruction i1 can only encode two of
its three targets. Therefore, the compiler inserts a move instruction,
instruction i1a, to generate the fanout tree for that instruction. For
the hybrid communication model shown in Figure 5(c), the com-

piler assigns a BCID (BCID of 1 in this example) to i1, the instruc-
tion with high fanout, and eliminates the move instruction. The
compiler also encodes the broadcast information into the i1 and its
consuming instructions (instructions i2, i3 and i4). The compiler
use tokens for the remaining low-fanout instructions. For example,
instruction i3 has only one target (instruction i5) so i3 still uses
token-based communication. In the next subsection, we explain
how these fields are used during the instruction execution and what
additional optimizations are possible in the proposed hardware im-
plementation.

4.3 Microarchitectural Support
To implement the broadcast communication mechanism in the

TFlex substrate, a small CAM array is used to store the receive
BCIDs of broadcast receiver instructions in the instruction queue.
When instructions are fetched, the receive BCIDs are stored in a
CAM array called BCCAM . Figure 6 illustrates the instruction
queue of a single TFlex core when running the broadcast instruc-
tion i1 in the sample code shown in Figure 5(c). When the broad-
cast instruction executes the broadcast signal, bit B in Figure 4 is
detected, then the sender BCID (value 001 in this example) is sent
to be compared against all the potential broadcast receiver instruc-
tions. Notice that only a subset of instructions in the instruction
queue are broadcast receivers and the rest of them need no BCID
comparison. Among all receiving instructions, the tag comparison
will match only for the CAM entries corresponding to the receivers
of the current broadcast sender (instructions i2, i3 and i4 in this
example). Each matching entry of the BCCAM will generate a
write-enable signal to enable a write to the operand of the corre-
sponding receiver instruction in the RAM-based instruction queue.
The broadcast type field of the sender instruction (operand1 in
this example) is used to select the column corresponding to the re-
ceivers’ operand, and finally all the receiver operands of the se-
lected type are written simultaneously into the instruction window.

It is worth noting that tag delivery and operand delivery do not
happen at the same cycle. Similar to superscalar operand deliv-
ery networks, the tag of the executing sender instruction is first
delivered at the right time, which is one cycle before instruction
execution completes. At the next cycle, when instruction result is
ready, the result of the instruction is written simultaneously into all
waiting operands in the instruction window.

Figure 7 illustrates a sample circuit implementation for the com-
pare logic in each BCCAM entry. The CAM tag size is three bits
which represents a MaxBCID parameter of eight. In this circuit,
the compare logic is disabled if one of the following conditions is
true:

• If the instruction corresponding to the CAM entry has been
previously issued.

• If the receiver BCID of the instruction corresponding to the
CAM entry is not valid, which means the instruction is not a
broadcast receiver. For example instruction i5 in the example
shown in Figures 6 and 5.

• If the executed instruction is not a broadcast sender.

This hybrid broadcast model is more energy-efficient than the in-
struction communication model in superscalar processors for sev-
eral reasons. First, because of the MaxBCID limit on the maxi-
mum number of broadcast senders, the size of the broadcast tag,
which equals to the width of the CAM, could be reduced from
Log(InstructionQueueSize) to Log(MaxBCID). A broad-
cast consumes significantly less energy because it drives a much
narrower CAM structure. Second, only a small portion of bypasses

operand 1  issued operand 2  target1  target2  op1 op2 p opc 

Send BCID = 001 

Type = op1 

(B
CI
D
, t
yp
e,
 v
al
ue

) 

BC CAM 

i1 

i2 

i3 

i4 

✓ 

✓ 
a�

b�

a� b�

d�

g�

000� i5 

001� ✓ 

i5 , op1�

add�

add�

sub �

st�

st�

SBCID=1�

001�

001�

✓ ✓  ✓ 

✓ 

✓ 

i5 , op2�

Figure 6: Execution of a broadcast instruction in the IQ.

match 

= = = 

RBCID 

Send 
BCID 

B 

RBCIDv 

Issued 

3 

Figure 7: Compare logic of BC CAM entries.

are selected to be broadcast and the majority of them use the token
mechanism, since the compiler only selects a portion of instruc-
tions to perform broadcasts. Third, only a portion of instructions
in the instruction queue are broadcast receivers and perform BCID
comparison during each broadcast. Both of these design aspects are
controlled by the MaxBCID parameter. This parameter directly
controls the total number of broadcast senders in the block. On the
other hand, as we increase the MaxBCID parameter, the num-
ber of active broadcast targets is likely to increase, but the average
number of broadcast targets per broadcast is likely to shrink.

Different values of MaxBCID represent different design points
in a hybrid broadcast/token communication mechanism. MaxBCID
of zero represents a pure token-based communication mechanism
and fanout trees using move instructions. MaxBCID of 128 means
every instruction with fanout larger than one will be a broadcast
sender. In other words, the compiler does not analyze any global
fanout distribution to select right communication mechanism for
each instruction. Instead, all fanout instruction in each block use
broadcast operation. This model is close to a TFlex implementa-
tion of a dynamic hybrid point-to-point/broadcast communication
model [12]. It is worth mentioning that even with MaxBCID
equal to 128, there are still many instructions with just one target
and those instructions still use token-based communication. As we
vary the MaxBCID form zero to 128, more fanout trees are elim-
inated, and more broadcasts are added to the system. By choos-
ing an appropriate value for this parameter, the compiler is able
to minimize total power consumed by fanout trees and broadcasts
while achieving a decent speedup in performance as a result of us-
ing broadcasts for high-fanout instructions.

4.4 Further Compiler Optimization: Reusing
Broadcast-ID by ID-Allocation

This section proposes a compiler optimization that reuses broad-
cast IDs in each instruction block. The goal of this optimization
is to support more architectural broadcasts than MaxBCID pro-
vided by BCCAM , thus achieving higher performance while spend-

Figure 8: An example shows the potential of reusing broadcast-
ID. (a)Code layout in instruction queue. (b)the necessary live-
range of each broadcast-ID. (c) the interference-graph of the
broadcast-ID live-range

Figure 9: Flowchart of the Broadcast ID Allocation Algorithm

ing lower energy.
In the basic compiler-assisted approach, as discussed in previ-

ous section, each broadcast ID is only assigned to one producer-
instruction which broadcasts this ID to all entries in the CAM while
most of the waiting instructions are not its consumer. In this model,
the CAM width limits the number of broadcast instructions because
the number of available architectural broadcasts depends on the
width of the CAM.

The idea of reusing broadcast-ID by ID allocation is based on
the observation that if two broadcast instructions are not sharing
the range from its first consumer-instruction to the last one in the
instruction queue, the two broadcasts could use the same broad-
cast ID, as long as each broadcast does not send its result to the
consumers of another broadcast with the same broadcast ID .

Figure 8 gives an example to show the potential for reusing broad-
cast ID. The codes are in the instruction queue. There are three
broadcast instructions (i0, i1, i6), each of which has been assigned
a broadcast ID shown as SBCID. The consumer instructions of a
broadcast ID have the same RBCID which all equal to sender’s
SBCID. There is no broadcast range overlap between i0 and i6. If
the microarchitecture can guarantee that i0 can only broadcast to
the instruction in the region below i0 and above i6, i0 and i6 can
share the same broadcast ID.

4.4.1 Broadcast-ID Allocation in the Compiler

B 

RBCIDv 

Issued 

=  =  = 

SBCID[7]  SBCID[6]  SBCID[0] 

RBCID[7]  RBCID[6]  RBCID[0] 

match 

Local‐SBCID[7]  Local‐SBCID[6]  Local‐SBCID[0] 

Issuing 

Local‐SBCID[7] 

Issuing 

Local‐SBCID[6] 

Issuing 

Local‐SBCID[0] 

Figure 10: Single Entry Design of the new CAM. Note: 8bit
one-hot encoding is used

Detecting and assigning reusable broadcast IDs are similar to
the register allocation problem. We define the necessary live-range
of each broadcast ID as smallest range of instructions in the in-
struction queue to which that the broadcast ID need to be sent.
Clearly, this live-range ends at the last consumer instruction of
that broadcast. The necessary live-ranges of the three broadcast
IDs are shown in Figure 8(b). Based on the necessary live-range
of each broadcast, the interference-graph can be built representing
each broadcast ID with a vertex and overlaps between . In such
graph, if the necessary live-ranges of two broadcast instructions
overlap, the two corresponding vertexes are connected through an
edge. The interference-graph of the example code is showed in Fig-
ure 8(c). The compiler can safely assign reusable broadcast IDs by
checking non-adjacent vertexes in the interference graph. Further-
more, the compiler can schedule the instructions to minimize the
overlap among necessary broadcast live-ranges.

A simple algorithm has been proposed and evaluated based on
the flowchart shown in Figure 9. Algorithm optimizations will be
part of the future work.

4.4.2 Microarchitectural Support
Reusing broadcast ID requires the microarchitectural support to

guarantee that each broadcast will be sent to instructions below it
up to the next broadcast instruction with same broadcast ID. This
section proposes the CAM hardware design that satisfies the re-
quirement with minimum energy consumption.

The new CAM design has mainly two new features: (1) Each
CAM entry stores the decoded one-hot code of broadcast ID, the
decoding happens when instruction get fetched. Each broadcast
producer will only drive one wire on the broadcast-ID bus which
we call it the hot-wire of this entry. (2) Each CAM entry discon-
nects its own hot-wire above itself. Each wire in the broadcast ID
bus is functionally divided into several segment so that the instruc-
tions sharing the same broadcast ID will each drive its own seg-
ment of same wire. Figure 10 shows the design a single entry of
the new CAM. In order to support eight architectural broadcasts,
the one-hot encode broadcast-ID needs an 8-bit bus (BCID[7:0] in
the figure). Each entry consists of three parts: the gating logic, the
comparing logic and the driving logic. Compared to the original
designed, the only added hardware is the gating logic, which dis-
connects the hot-wire of the entry above this entry. Comparing with
normal CAM design, this new CAM costs more hardware, how-
ever, each broadcast will only cause gate switch on a segment of a
single hot-wire. Thus, each broadcast will consume less energy.

5. EVALUATION AND RESULTS
In this section we evaluate the energy consumption and perfor-

mance of the compiler-assisted hybrid operand communication model.
We first describe the experimental methodology followed by statis-
tics about the distribution of broadcast producers and consumers.
This distribution data will indicate the fraction of all instructions
in the window that have a high fan-out value. The distribution
also suggests the minimum MaxBCID and BCCAM bit-width
needed for assigning broadcast tags to all of those high-fanout in-
structions. Then, we report performance results and power break-
down of fanout trees or broadcast instructions for different MaxBCID
values. After that, the dynamic hybrid approach is compared with
this compiler-assisted approach. Finally the broadcast-ID reusing
mechanism is evaluated. These results show that by intelligently
picking a subset of high-fan out instructions for broadcast, the com-
piler is able to reduce the total power significantly without losing
much performance than if it picked all high-fanout instructions.

The results show that this compiler-assisted hybrid model con-
sumes significantly lower power than the pure broadcast mecha-
nism used by superscalar processors. With this hybrid communi-
cation model, we explore the full design space ranging from a very
power efficient token-based dataflow communication model to a
high-performance broadcast model similar to that used in super-
scalar machines. The results show that the compiler assistance is
more reliable than dynamically choosing the right operand com-
munication mechanism for each instruction. Given the compiler
assistance, not only are we able to achieve a higher energy effi-
ciency than pure dataflow, but at the same time we are also able to
achieve better performance in this design space.

5.1 Methodology
We augment the TFlex simulator [13] with the support for the

hybrid communication model explained in the previous section. In
addition we modify the TFlex compiler to detect high-fanout in-
structions and to encode broadcast identifiers in those instructions
and their targets. Each TFlex cores is a dual-issue, out-of-order
core with a 128-instruction window. Table 2 shows the microar-
chitectural parameters of each TFlex core. The energy consumed
by move instructions during the dispatch and issue phases is al-
ready incorporated into original TFlex power models [13]. We
augment the baseline TFlex models with the power consumed in
the BCCAM entries, modeled using CACTI 4.1 [7], when tag
comparisons are made during a broadcast.

The results presented in this section are generated using runs on
several SPEC INT [2] and EEMBC [1] benchmarks running on 16
TFlex cores. We use seven integer SPEC benchmarks with the ref-
erence (large) dataset simulated with single SimPoints [22]. The
SPEC FP benchmarks achieve very high performance when run-
ning on TFlex, so the speedups are less important and interesting
to this work. We also use 28 EEMBC benchmarks which are small
kernels with various characteristics. We test each benchmark vary-
ing the MaxBCID from 0 to 128 to measure the effect of that
parameter on different aspects of the design.

5.2 Distribution of Producers and Operands
Figure 11 shows the average cumulative distribution of the num-

ber of producers and the operands for different fanout values for
SPEC INT benchmarks. The cumulative distribution of producers
converges much faster that the one of operands does, which indi-
cates a small percentage of producers corresponds to a large num-
ber of operands. For example, for fanouts larger than four, only
8% of producers produce 40% of all operands. It indicates that per-
forming broadcasts on a small amount of producers could improve

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0  1  2  3  4  5  6  7  8  9  10  11  12 

Cu
m
ul
a&

ve
 D
is
tr
ib
u&

on
  

Fanout 

% of producers  % of consumers 

Figure 11: Cumulative distribution of producers and operands.

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0  1  2  4  8  16  32  64  128 
N
or
m
al
iz
ed

 In
st
ru
c2
on

 n
um

be
r 
(%

) 
MaxBCID 

Direct Token 

Broadcast 

Move Instruc?on 

Figure 12: The ratio of broadcast, move and other instructions.

operand delivery for a large number of operands. The information
shown in this graph is largely independent from the microarchitec-
ture and reflects the operand communication behaviors of the pro-
grams. To choose the right mechanism for each producer, one also
must consider the hardware implementation of each mechanism.
This graph shows that 78% of all instructions have fanout equal or
less than two. For these instructions, given the TFlex microarchi-
tecture, it is preferred to use efficient token-based communication.
For the rest of instructions, finding the right breakdown of instruc-
tions between broadcasts and move trees also depends on the cost
of each of these mechanisms.

Figure 12 shows the breakdown ratio of broadcast producers, in-
structions sending direct tokens, and the move instructions to all
instructions for the SPEC benchmarks when using the compiler-
assisten model proposed in this paper. The number of broadcast in-
structions (producers) increases dramatically for smaller MaxBCID
values, but levels off as the MaxBCIDs parameter approaches
32. At the same time, the ratio of move instructions decreases from
35% to 5%. As a result, the total number of instructions drops to
79%. This observation indicates that the compiler can detect most
of the high-fanout dependences inside a block and replace the soft-
ware fanout tree by using only up to 32 broadcasts. The data shown
in Figure 12 also indicates that even with the unlimited number of
broadcasts, at most 25% of the instructions use broadcast commu-
nication and the rest of them use tokens for communicating. This
is almost one fourth of the number of broadcasts used by a super-
scalar machine because in a superscalar machine all instructions
must use the broadcast mechanism. Another observation is that the
total number of instructions decreases 15% with only 8 broadcasts,
which indicates that a small number of broadcasts could give us
most of the benefits of unlimited broadcasts.

5.3 Energy Tradeoff

9
Table 2: Single Core TFlex Microarchitecture Parameters [13]

Parameter Configuration
Instruction Supply Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency) with

speculative updates; Num. entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, CTB: 16,
BTB: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP) or
single issue.

Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 44-entry LSQ bank;
4MB decoupled S-NUCA L2 cache [14] (8-way set-associative, LRU-replacement); L2-hit latency varies from
5 cycles to 27 cycles depending on memory address; average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven simulator validated to be within 7% of real system measurement

Figure 13 illustrates the energy breakdown into executed move
and broadcast instructions for a variety of MaxBCID values on
the SPEC benchmarks. The energy values are normalized to the to-
tal energy consumed by move instructions when instructions com-
municate only using tokens (MaxBCID = 0). When only us-
ing tokens, all energy overheads are caused by the move instruc-
tions. Allowing one or two broadcast instructions in each block,
MaxBCIDs of 1 and 2, we observe a sharp reduction in the en-
ergy consumed by move instructions. As discussed in the previous
section, the compiler chooses the instructions with highest fanout
first when assigning BCIDs. Consequently, high number of move
instructions are removed for small MaxBCIDs which results in
significant reduction in the energy consumed by move instructions.
For these MaxBCIDs values, the energy consumed by broadcast
instructions is very low.

As we increase the total number of broadcast instructions, the
energy consumed by broadcast instructions increases dramatically
and fewer move instructions are removed. As a result, at some
point, the broadcast energy becomes dominant. For high num-
bers of MaxBCID, the broadcast energy is orders of magnitude
larger than the energy consumed by move instructions. The key
observation in this graph is that for MaxBCID equal to 4 and
8, in which only 4 to 8 instruction broadcast in each block, the
total energy consumed by moves and broadcast is minimum. For
these MaxBCIDs, the total energy is about 28% lower than the
energy consumed by a fully dataflow machine (MaxBCID =
0) and about 2.7x lower than when MaxBCID is equal to 128.
These results show that the compiler is able to achieve a better
trade-off in terms of power breakdown by selecting a critical sub-
set of high-fanout instructions in each block. We also note that for
MaxBCIDs larger than 32, the energy consumed by move in-
structions is at a minimum and does not change. In an ideal setup
where the overhead of broadcast is ignored, these points give us
the best possible energy savings. This energy is four time lower
than the total energy consumed when using MaxBCID equal to
8, which is the point with the lowest total power. The energy break-
down chart for EEMBC benchmarks is similar to SPEC bench-
marks except that MaxBCID of 4 results in lower total power
consumption than MaxBCID of 8.

Max BCID 0 1 2 4 8 16 32 64 128
Compiler-assisted 2 5 8 13 19 28 31 31
Ideal 35 35 35 14 14 14 6 6

Table 3: Percentage of broadcast producers for real and ideal
models.

Figure 13 also shows the lower bound energy consumption val-
ues derived using an analytical model. This analytical model gives
us the best communication mechanism for each producer in an ideal

environment. In order to choose the best communication mecha-
nism for each instruction, the analytical model measures the en-
ergy consumption of a single move instruction and that of broad-
cast CAMs of different bit widths. The energy consumption of
software fanout tree mainly comes from several operations, such
as writing/reading move instructions in the instruction-queue, writ-
ing/reading operands in the operand buffer, generating control sig-
nals, driving the interconnection wires which includes the activities
on the wire networks when fetching, decoding, executing of the
move instruction and transmitting the operand. On the other side,
the energy consumption of the broadcast operations mainly comes
from driving the CAM structure, the tag-matching and writing the
operands in the operand buffer. The energy consumed by each of
these operations is modeled and evaluated with CACTI4.1 [7] and
the power model in the TFlex simulator [13], and used by the ana-
lytical model. For a specific MaxBCID x, the analytical model
estimates the lower bound of energy consumption of the hybrid
communication model assuming an ideal situation in which that
there are unlimited number of broadcast tags and each broadcast
consumes as little energy as a broadcast using a CAM width logx.
Based on this assumption, the analytical model finds the break even
point between moves and broadcast instructions in which the total
energy consumed by broadcasts is the same as the total energy con-
sumed by moves.

As can be seen in Figure 13, for small or large values of MaxBCID,
the real total power consumed by moves and broadcasts is sig-
nificantly more than the ideal energy estimated by the analytical
model. This difference seems to be minimum when MaxBCID
equals 8, which the total consumed power is very close to the opti-
mum power at this point. Table 3 reports the percentage of broad-
cast producer instructions for different BCIDs achieved using ideal
analytical model and compiler-assisted approach. With small MaxBCIDs,
the large difference between real energy and ideal energy is be-
cause there is not enough tags to encode more broadcasts. On the
other hand, when using large MaxBCIDs the more than enough
number of broadcasts are encoded, which increases the energy con-
sumption. Finally, with MaxBCIS of eight, the percentage of
broadcast is very close to that achieved using the ideal analytical
model.

We also measured the total energy consumption of the while pro-
cessor (including SDRAMs and L2 caches) with variable MaxBCID.
The compiler-assisted hybrid communication model achieves 6%
and 10% total energy saving for SPEC INT and EEMBC bench-
marks, respectively. The energy reduction mainly comes from two
aspects: (1) replacing software fanout trees with broadcasts which
reduces the energy of instruction communication; (2)reducing the
total number of instructions , so there are fewer number of I-Cache
access (and misses) and less overhead for executing the move in-
structions.

5.4 Performance Improvement

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1 2 4 8 16 32 64 128

E
ne

rg
y

co
ns

um
pt

io
n

re
la

tiv
e

to
 M

ax
B

C
ID

 =
 0

MaxBCID

Moves Broadcasts Lower Bound

Figure 13: Averaged energy breakdown between move instruc-
tions and broadcasts for various MaxBCIDs for SPEC bench-
marks.

0.9

0.95

1

1.05

1.1

1.15

1.2

0 1 2 4 8 16 32 64 128 0 1 2 4 8 16 32 64 128

Av
er

ag
e

sp
ee

du
p

ov
er

 M
ax

B
C

ID
 =

 0

Max BCID
EEMBC

Max BCID
SPEC-INT

Figure 14: Average speedups achieved using various MaxB-
CIDs for SPEC and EEMBC benchmarks.

In terms of performance, full broadcast has the potential to achieve
highest performance. The reasons are that there is only one cy-
cle latency between the broadcast instructions with its consumers,
while communicating the operands though move tree results in more
than one cycle latency. However, large number of broadcast causes
large amount of energy consumption. There is an important trade-
off between the performance and the energy efficiency when using
viable value of MaxBCID. This subsection evaluates the perfor-
mance improvement for different parameters. The key observation
from the evaluation is that 8 broadcasts per-block could be the best
tradeoff between the performance and energy efficiency. It achieves
most of the speedup reached by the unlimited broadcast, at the same
time, it saves most of the energy as discussed in last subsection.

Figure 14 shows the average performance improvement over TFlex
cores with no broadcast support (MaxBCID = 0) for the SPEC
and EEMBC benchmarks.

The average speedup reaches its maximum as MaxBCID reaches
32 and remains almost unchanged for larger values. As shown in
Figure 12, with MaxBCID equal to 32, most of high-fanout in-
structions are encoded. The speedup achieved using MaxBCID
of 32 is about 8% for SPEC benchmarks. Again, for the EEMBC
benchmarks MaxBCID of 32 achieves very close to the best
speedup, which is about 14%. On average, the EEMBC bench-
marks gain higher speedup using the hybrid approach, which might
be because of larger block sizes in EEMBC applications, which
provide more opportunity for broadcast instructions. Most EEMBC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

16
4.g

zip

17
6.g

cc

18
6.c

raf
ty

25
6.b

zip
2

19
7.p

ars
er

25
5.v

ort
ex

30
0.t

wolf

SPEC-IN
T-A

vg

Sp
ee

du
p

ov
er

 B
C

ID
 =

 0

0
1
2
4
8
16
32
64
128

Max 
BCID  �

Figure 15: Speedups achieved using various MaxBCIDs for in-
dividual SPEC benchmarks.

benchmarks consist of parallel loops, whereas the SPEC bench-
marks have a mixture of small function bodies and loops. In addi-
tion, the more complex control flow in SPEC benchmarks results
in relatively smaller blocks.

Figure 15 shows the performance improvement over TFlex cores
with no broadcast support (MaxBCID = 0) for individual SPEC
benchmarks. The general tend for most benchmarks is similar. We
do not include the individual EEMBC benchmarks here because we
notice similar trends in EEMBC too. For gcc, the trend of speedups
is not similar to other benchmarks for some MaxBCID values.
We attribute this to the high misprediction rate in the memory de-
pendence predictors used in the load/store queues.

Although MaxBCID of 32 achieves the highest speedup, but
Figure 13 shows it may not be the most power-efficient design point
compared to the power-efficiency of full dataflow communication.
When designing for power-efficiency, one can choose MaxBCID
of 8 to achieve the lowest total power, while still achieving a decent
performance gain. Using MaxBCID of 8 the speedup achieved
is about 5% and 10% for SPEC and EEMBC benchmarks, respec-
tively, and the power is reduced by 35%.

Max 0 1 2 4 8 16 32 64 128
BCID
Blocks 1 0.95 0.94 0.92 0.9 0.88 0.84 0.84 0.84
Inst.s 1 0.95 0.90 0.87 0.83 0.79 0.76 0.76 0.76

Table 4: The average number of executed blocks and instruc-
tions using various MaxBCIDs.

As Table 4 shows there is a decrease in the number of blocks
and instructions executed as we increase MaxBCID. This directly
translates into improved performance because by eliminating move
instructions we reduce resource contention in the ALUs and at the
same time decrease the total number of tokens. The decrease in
the number of blocks executed reduces pressure on the instruction
cache and also reduces the total cost of control operations since
each block incurs fixed control overheads.

5.5 Comparison with the Dynamic Hybrid Com-
munication Approach

There have been several studies [5, 6, 12, 18, 19] proposing dy-
namic hybrid communication models, which rely on hardware to
track and analyze the related information then decide the commu-
nication mechanism for each instruction. As analyzed in previ-
ous section, dynamic approaches have different tradeoff compar-
ing with compiler-assisted approach. We compare the compiler-
assisted approach with one of latest dynamic approaches [12], which

Figure 16: Normalized energy consumption of selected dy-
namic hybrid approach with variable thresholds. Note: the
energy values have been normalized to the energy of best con-
figuration in the compiler-assisted approach without the ID-
reusing optimization

broadcasts from instructions with fanout bigger than the predefined
threshold(one), and performs point-to-point communication from
others based on a pointer table attached with the register-alias-table.
The authors in [12] make the observation that the pointer table be-
comes too complicated with more than one-pointer per-entry, so
they do not exploit the designs with thresholds other than one.
We extend their approach with variable thresholds in the TFlex
processor toolchain to exploit whole design space, and estimate
the power consumption with TFlex power model augmented with
CACTI4.1 [7].

Figure 16 shows the energy consumption of the TFlex imple-
mentation of selected dynamic hybrid approach [12] with variable
thresholds. The energy values have been normalized to the en-
ergy of best configuration in the compiler-assisted approach with-
out reusing ID. When the threshold equals to one, the dynamic
model consumes 2.8X instruction communication energy compared
to the compiler-assisted model. When the threshold becomes big-
ger than one, it requires multiple pointers per-entry in the pointer
table, which requires significantly complicated hardware as ob-
served in [12]. When ignoring hardware complexity to only com-
pare the energy consumption, as shown in the figure, the dynamic
hybrid design with best configuration consumes 1.3X energy of that
compiler-assisted approach does. The comparison validates that the
static approach reaches higher energy efficiency by relying on com-
piler to select the communication mechanism.

5.6 Reusing Broadcast IDs
The compiler-assisted hybrid approach enables the system reuse

the broadcast IDs, so that more broadcast instructions could be sup-
ported with fewer architectural broadcasts, which results in both
higher performance and less energy. Figure 17 shows the normal-
ized dynamic move instruction numbers for variable MaxBCID
with and without reusing broadcast ID. As shown in this figure,
with reusing IDs, larger ratio of move instructions in the fanout
tree could be removed while MaxBCID ranges from 1 to 16.
Reusing broadcast ID could enable almost 2X instructions to broad-
cast. Four architectural broadcasts with reusing ID results in similar
amount of move instructions as the eight architectural broadcasts
do without reusing . For MaxBCID beyond 16, all the remov-
able move instructions have been eliminated, so reusing broadcast-
ID makes no difference.

In the energy consumption perspective, the new CAM design

Figure 17: Normalized dynamic move-instruction numbers
with and without reusing ID

uses the one-hot encoding and each broadcast only drives a segment
of a single hot-wire, which will cause less gate-switching. Thus
less energy consumption could be expected.

6. CONCLUSIONS
Given the slowdown in supply voltage scaling, power and energy

are now such huge concerns that anything architects can do to re-
duce them, without hampering performance, is worthwhile. Com-
munication of operands between instructions, particularly in a clus-
tered or distributed processor, is one of the major sources of energy
consumption in high-end, out-of-order processors. This communi-
cation is therefore a good target for energy reduction. To reduce
energy consumed during operand delivery in superscalar bypass
network, several dynamic hybrid communication models have been
proposed. These models dynamically trace producer-to-consumer
information between instructions using hardware-based methods
such as hardware pointing chasing operations in the instruction
window. By having low fanout producer instructions wake up only
their consumers, these models eliminate unnecessary tag matchings
imposed by the bypass network approach.

This paper proposes a compiler-assisted hybrid operand commu-
nication model. Instead of using dynamic hardware-based pointer
chasing, this method relies on the compiler to categorize instruc-
tions for token or broadcast operations. In this model, the compiler
took a simple approach: broadcasts were used for operands that had
many consumers, and dataflow tokens were used for operands that
had few consumers. The compiler can analyze the program in a
bigger range to select the best operand communication mechanism
for each instruction. At the same time, the block-atomic EDGE
model made it simple to perform that analysis in the compiler, and
allocate a number of architecturally exposed broadcasts to each
instruction block. Furthermore, compiler performs complex opti-
mizations without hardware cost and execution-time penalty like
the dynamic approaches do. The proposed broadcast-ID-reusing
mechanism is a good example for complex optimizations better to
be performed with compiler. By limiting the number of broadcasts,
the CAMs searching for broadcast IDs can be kept narrow, and only
those instructions that have not yet issued and that actually need a
broadcast operand need to be performing CAM matches. This ap-
proach is quite effective at reducing energy; with eight broadcast
IDs per block, 28% of the instruction communication energy is
eliminated by eliminating many move instructions (approximately

55% of them), and performance is improved by 8% on average due
to lower issue contention, reduced critical path height, and fewer
total blocks executed. In addition, the results show that the power
savings achieved using this model are close to the minimum possi-
ble power savings using a near-ideal operand delivery model.

The major downside to this approach is the encoding space re-
quired for specifying receivers of broadcast operands. Because
EDGE ISAs encode destination consumers in each instruction, rather
than source operands, encoding a sender’s broadcast fits nicely within
the existing TFlex instruction formats. Encoding the consumer’s
broadcast ID, however, does not line up well with the ISA model,
and requires a number of bits equal to the logarithm of the number
of broadcasts.

7. REFERENCES
[1] The embedded microprocessor benchmark consortium

(EEMBC), http://www.eembc.org/.
[2] The standard performance evaluation corporation (SPEC),

http://www.spec.org/.
[3] K. Arvind and Rishiyur S. Nikhil. Executing a Program on

the MIT Tagged-Token Dataflow Architecture. IEEE Trans.
Computer, 39(3):300–318, 1990.

[4] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.
John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and others. Scaling to the End of Silicon with
EDGE Architectures. IEEE Computer, pages 44–55, July
2004.

[5] Ramon Canal and Antonio González. A Low-complexity
Issue Logic. In Proceedings of the 14th International
Conference on Supercomputing, pages 327–335, 2000.

[6] Ramon Canal and Antonio González. Reducing the
Complexity of the Issue Logic. In Proceedings of the 15th
International Conference on Supercomputing, pages
312–320. ACM, 2001.

[7] S. Thoziyoor D. Tarjan and N. Jouppi. HPL-2006-86, HP
Laboratories, technical report. 2006.

[8] Jack B. Dennis and David P. Misunas. A Preliminary
Architecture for a Basic Data-flow Processor. In Proceedings
of the 2nd Annual Symposium on Computer architecture,
pages 126–132, 1975.

[9] Manoj Franklin and Gurindar S. Sohi. Register Traffic
Analysis for Streamlining Inter-operation Communication in
Fine-grain Parallel Processors. In Proceedings of the 25th
Annual International Symposium on Microarchitecture,
pages 236–245, 1992.

[10] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff
Diamond, Paul Gratz, Mario Marino, Nitya Ranganathan,
Behnam Robatmili, Aaron Smith, James Burrill, Stephen W.
Keckler, Doug Burger, and Kathryn S. McKinley. An
Evaluation of the TRIPS Computer System. In Proceeding of
the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
1–12, 2009.

[11] Dan Gibson and David A. Wood. Forwardflow: A Scalable
RAM-Based Core. In University of Wisconsin Computer
Sciences Technical Report #1656, 2009.

[12] Michael Huang, Jose Renau, and Josep Torrellas.
Energy-efficient Hybrid Wakeup Logic. In Proceedings of
the 2002 International Symposium on Low Power Electronics
and Design, pages 196–201, 2002.

[13] Changkyu Kim, Simha Sethumadhavan, M. S. Govindan,
Nitya Ranganathan, Divya Gulati, Doug Burger, and

Stephen W. Keckler. Composable lightweight processors. In
40th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 381–394, Chicago, Illinois, USA,
2007. IEEE Computer Society.

[14] Chankyu Kim, Doug Burger, and Stephen W. Keckler. An
Adaptive, Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches. In 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 211–222, 2002.

[15] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E.
Hank, and Roger A. Bringmann. Effective Compiler Support
for Predicated Execution Using the Hyperblock. In 25th
Annual International Symposium on Microarchitecture,
pages 45–54, Los Alamitos, CA, USA, 1992. IEEE
Computer Society Press.

[16] Dmitry V. Ponomarev, Gurhan Kucuk, Oguz Ergin, Kanad
Ghose, and Peter M. Kogge. Energy-efficient Issue Queue
Design. IEEE Trans. Very Large Scale Integr. Syst.,
11(5):789–800, 2003.

[17] S.W. Keckler R. Desikan, D.C. Burger and T.M. Austin.
Sim-alpha: A Validated, Execution-Driven Alpha 21264
Simulator. UT-Austin Computer Sciences Technical Report
TR-01-23, October 2001.

[18] Marco A. Ramirez, Adrian Cristal, Mateo Valero,
Alexander V. Veidenbaum, and Luis Villa. A New
Pointer-based Instruction Queue Design and Its
Power-Performance Evaluation. In Proceedings of the 2005
International Conference on Computer Design, pages
647–653, 2005.

[19] Marco A. Ramírez, Adrian Cristal, Alexander V.
Veidenbaum, Luis Villa, and Mateo Valero. Direct
Instruction Wakeup for Out-of-Order Processors. In IWIA
’04: Proceedings of the Innovative Architecture for Future
Generation High-Performance Processors and Systems,
pages 2–9, 2004.

[20] Behnam Robatmili, Katherine E. Coons, Doug Burger, and
Kathryn S. McKinley. Strategies for Mapping Dataflow
Blocks to Distributed Hardware. In International Conference
on Microarchitectures, pages 23–34, 2008.

[21] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming
Liu, Changkyu Kim, Jaehyuk Huh, Nitya Ranganathan,
Doug Burger, Stephen W. Keckler, Robert G. McDonald, and
Charles R. Moore. Exploiting ILP, TLP, and DLP with the
Polymorphous TRIPS Architecture. In 30th Annual
International Symposium on Computer Architecture, pages
422–433, june 2003.

[22] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic
Block Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications. In 10th International
Conference on Parallel Architectures and Compilation
Techniques, 2001.

[23] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote,
B. Yoder, D. Burger, and K. S. McKinley. Compiling for
EDGE Architectures. In International Symposium on Code
Generation and Optimization, March 2006.

[24] S. Swanson, K. Michaelson, A. Schwerin, and M. Oskin.
WaveScalar. In 36th Symposium on Microarchitecture,
December 2003.

