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Abstract
Data races indicate serious concurrency bugs such as order, atom-
icity, and sequential consistency violations. Races are difficult to
find and fix, often manifesting only in deployment. The frequency
of these bugs will likely increase as software adds parallelism to
exploit multicore hardware. Unfortunately, sound and precise race
detectors slow programs by factors of eight or more, which is too
expensive to deploy.

This paper presents a precise, low-overhead sampling-based
data race detector called PACER. PACER makes a proportional-
ity guarantee: it detects any race at a rate equal to the sampling
rate, by finding races whose first access occurs during a global
sampling period. During sampling, PACER tracks all accesses us-
ing the sound and precise FASTTRACK algorithm. In non-sampling
periods, PACER discards sampled access information that cannot
be part of a reported race, and PACER simplifies tracking of the
happens-before relationship, yielding near-constant, instead of lin-
ear, overheads. Experimental results confirm our design claims:
time and space overheads scale with the sampling rate, and sam-
pling rates of 1-3% yield overheads low enough to consider in pro-
duction software. Furthermore, our results suggest PACER reports
each race at a rate equal to the sampling rate. The resulting system
provides a “get what you pay for” approach to race detection that
is suitable for identifying real, hard-to-reproduce races in deployed
systems.

1. Introduction
Programs must become more parallel to exploit hardware trends
that are producing successive processor generations with additional
parallel execution contexts, instead of faster single-threaded perfor-
mance. Unfortunately, correct and scalable multithreaded program-
ming is quite challenging. In particular, it is notoriously difficult to
specify the synchronization, i.e., the ways in which threads may in-
terleave operations on shared data. Too much synchronization hurts
performance and causes deadlock, while missing synchronization
causes unintended interleavings. A data race occurs when two ac-
cesses to the same variable, one of which is a write, do not correctly
synchronize. While data races are not necessarily errors in and of
themselves, they indicate a variety of serious concurrency errors
that are difficult to reproduce and debug such as atomicity viola-
tions [20], order violations [19], and sequential consistency vio-
lations [21]. Because some races occur only under certain inputs,
environments, or thread schedules, low overhead race detection for
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production systems is necessary to help achieve highly robust soft-
ware.

Static analysis finds races but either does not scale to large
programs, reports many false positives, or is intentionally unsound
to avoid reporting too many false positives. Precision (no false
positives) is important because both false and true data race reports
take lots of developer time to understand, and developers are not
likely to adopt approaches that report false positives. Dynamic
analyses typically use either lockset or vector clock algorithms.
Lockset is imprecise, and lockset and vector clock algorithms now
have about the same overhead [11], which strongly motivates using
precise vector clock algorithms.

Vector clock-based race detection is precise because it tracks
the happens-before relationship, but unfortunately the race detec-
tion analysis for most operations takesO(n) time and space, where
n is the number of threads, which does not scale well to many
threads. Recently the FASTTRACK vector clock algorithm reduced
most analysis from O(n) to O(1) by exploiting the observation
that some reads and all writes are totally ordered. However, FAST-
TRACK still slows programs down by a factor of eight on aver-
age. LITERACE addresses the overhead problem by sampling [22].
While LITERACE finds many races handily, it uses heuristics that
provide no guarantees, incurs O(n) overhead at synchronization
operations, and has high space overhead if performed online.

This paper presents a new approach for detecting data races
based on sampling called PACER that provides proportional de-
tection of data races. PACERguarantees, for each race, a detection
rate equal to the sampling rate, and it adds time and space over-
heads proportional to the sampling rate. PACER builds on the FAST-
TRACK algorithm, but further reduces overhead through sampling.
PACER reports sampled, shortest races. Two racy accesses A and
B are a shortest race if there is no intervening racy access to the
same variable. (FASTTRACK also reports shortest races.) They are
sampled if A occurs in the sampling period. In PACER, B may oc-
cur any time later—in any subsequent sampling or non-sampling
period. Please refer to the appendix for the proof of this claim. The
key insights we use to reduce overhead are as follows. (1) During
non-sampling periods, once PACER determines a sampled access
cannot be part of a shortest race, it may discard the access meta-
data to save time and space. (2) During non-sampling periods, we
observe that it is not necessary to increment vector clocks because
we only ask if sampled accesses happen before the current time.
Without increments, vector clock values converge due to redundant
synchronization, which we detect and exploit to reduce almost all
linear-time analysis to constant-time analysis during non-sampling
periods.

PACER’s scalable performance makes it suitable for all-the-time
use in deployed settings. We envision its use in a distributed de-
bugging paradigm [17; 18] where many deployed instances sample
bug-finding instrumentation to increase the chances of finding rare
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bugs. Since PACER guarantees that the chance of finding any in-
dividual race is equal to the sampling rate, with enough deployed
instances, the odds of finding every race become high. Deploying
PACER widely and running it all the time is critical since the occur-
rence of some races is quite rare.

We show that for sampling rates of 1 to 3%, PACER adds
overheads between 52 and 86%, which is likely low enough for
many deployed settings, especially considering the alternative is
buggy software. In particular, we show that it avoids nearly all
O(n) operations during non-sampling periods. Both sampling and
the observer effect complicate race detection evaluation because
they change the reported races. However, our careful evaluation
suggests that PACER works as designed, finding each dynamic data
race with a probability equal to the sampling rate.

In summary, PACER is a “get what you pay for” approach that
provides scalable performance and scalable odds of finding any
race. It is suitable for all-the-time use in deployed systems, where
its use could help developers eliminate rare, tough-to-reproduce
errors in their software.

2. Background, Motivation, and Requirements
This section describes dynamic race detection algorithms that pre-
cisely track the happens-before relationship using vector clocks.
It first reviews the happens-before relationship and a GENERIC
O(n) (time and space) vector clock algorithm. We describe how
the FASTTRACK algorithm replaces most O(n) analysis, where n
is the number of threads, with O(1) analysis without losing accu-
racy. Section 2.3 motivates sampling to reduce overhead, but argues
that a prior heuristic approach is unsatisfactory because it may miss
races, and has unscalable time and memory overheads. (Section 6
discusses other related work.) Section 3 presents PACER, showing
how it builds sampling on top of FASTTRACK, reducing analysis
overhead from linear to near-constant when not sampling, while
precisely and efficiently reporting races in proportion to the sam-
pling rate.

2.1 Race Detection Using Vector Clocks
The happens-before relationship computes a partial order over dy-
namic program statements [16]. A happens before B, A HB−−→ B, if
any of the following is true:

• A executes before B in the same thread.
• A and B are operations on the same synchronization variable

such that the semantics imply a happens-before edge (e.g., A
releases a lock, and B subsequently acquires the same lock).
• A HB−−→ C and C HB−−→ B. Happens before is transitive.

Two statements A and B are concurrent if A 6HB−−→B and B 6HB−−→A
and thus not ordered by the happens-before relationship. A data
race occurs when there are two concurrent accesses to a variable
and at least one is a write.

Accesses to synchronization objects are always ordered and
never race. Synchronization objects in Java are: threads, locks, and
volatile variables. (We focus on threads and locks to simplify this
presentation. Volatile variables differ slightly; see Appendix C.) All
other program accesses may race, if the program synchronization
does not order them. Potentially racing accesses include object
fields, static fields, and array element accesses in Java. We follow
the terminology in the literature: these accesses are on variables,
and synchronization operations are on synchronization objects.

A vector clock is indexed by thread identifier: C[1..n]. Vector
clock algorithms soundly and precisely track the happens-before
relationship [16; 23]. Vector clock race detection performs dynamic
analysis on all synchronization, read, and write operations to track

Algorithm 1 Acquire [GENERIC]: thread t acquires lock m

Ct ← Ct t Cm

Algorithm 2 Release [GENERIC]: thread t releases lock m

Cm ← Ct
Ct[t]← Ct[t] + 1

Algorithm 3 Fork [GENERIC]: thread t forks thread u

Cu ← Ct
Cu[u]← Cu[u] + 1
Ct[t]← Ct[t] + 1

Algorithm 4 Thread join [GENERIC]: thread t joins thread u

Ct ← Cu t Ct
Cu[u]← Cu[u] + 1

Algorithm 5 Read [GENERIC]: thread t reads variable f

check Wf v Ct {Check race with prior writes}
Rf [t]← Ct[t]

Algorithm 6 Write [GENERIC]: thread t writes variable f

check Wf v Ct {Check race with prior writes and reads}

check Rf v Ct
Wf [t]← Ct[t]

the happens-before relationship. It detects concurrent variable ac-
cesses and if at least one is a write, it reports a data race.

Synchronization operations. The simplest vector clock race de-
tection algorithm stores a vector clock for each synchronization
object, each variable read, and each variable write. For each syn-
chronization object o, the analysis maintains a vector clock Co that
maps every thread t to a clock value c.

Algorithms 1, 2, 3, and 4 show the GENERIC vector clock
algorithm at lock acquires and releases, and thread forks and joins.
Following Flanagan and Freund [11], gray shading indicates that
operations take O(n) time, where n is the number of threads. The
vector clock join operator t takes two vector clocks and returns
the maximum of each element. For example, if thread t acquires
lock m, GENERIC stores the join of t and m’s vector clocks into
t’s vector clock by computing Ct ← CttCm, which updates each
element Ct[i] to max(Ct[i], Cm[i]). When a thread t releases a
lock m, the analysis copies the contents of m’s vector clock to t’s
vector clock. It then increments t in t’s vector clock.

Variable reads and writes. GENERIC stores the vector clock
value for the last read and the last write access by a thread to
every variable:

R[1..n] Read vector

W [1..n] Write vector

Algorithms 5 and 6 show the analysis that GENERIC performs at
reads and writes. At reads, the analysis checks that prior writes
happen before the current thread’s vector clock and then updates
the read vector’s component for the current thread. The analysis is
similar at writes, except it checks for races with prior reads and
writes and updates the write vector.
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2.2 FASTTRACK

FASTTRACK is a sound and complete race detection algorithm [11].
It is nearly an order of magnitude faster than prior techniques be-
cause instead of O(n) time and space analysis, it replaces all write
and many read vector clocks with a scalar and performs constant-
time analysis on them. FASTTRACK’s insights are as follows. (1) In
a race-free program, writes to a variable are totally ordered. (2) In a
race-free program, upon a write, all previous reads must happen be-
fore the write. (3) The analysis must distinguish between multiple
concurrent reads since they all potentially race with a subsequent
write. For each write, FASTTRACK replaces the write vector clock
with an epoch c@t, the clock value c at thread t of the last write.
This optimization reduces nearly all analysis at reads and writes
from O(n) to O(1) time and space. When reads are ordered by
the happens-before relation, FASTTRACK uses an epoch for the
last read. Otherwise, it uses a vector clock for reads. The function
epoch(t) is shorthand for c@t where c = Ct[t].

For clarity of exposition, we combine the read epoch and vector
clock into a single structure we call a read map. A read map R
maps zero or more threads t to clock values c. A read map with one
entry is an epoch, and we use them interchangeably. A read map
with zero entries is equivalent to the initial-state epoch 0@0.

R Read map: t→ c

W Write epoch: c@t

FASTTRACK uses the same analysis at synchronization operations
as GENERIC (Algorithms 1 and 2). Algorithms 7 and 8 show
FASTTRACK’s analysis at reads and writes.

At a read, if FASTTRACK discovers that the read map is a single-
entry epoch equal to the current thread’s time, epoch(t), it does
nothing. Otherwise, it checks whether the prior write races with
the current read. Finally, it either replaces the read map with an
epoch (if the read map is an epoch already, and it happens before
the current read) or updates the read map’s t entry.

At a write, if FASTTRACK discovers the variable’s write epoch
is the same as the thread’s epoch, it does nothing. Otherwise, it
checks whether the current write races with the prior write. Finally,
it checks for races with prior read(s) and clears the read map. The
check takes O(|Rf |) time and thus O(n) at most, although it is
amortized over the prior |Rf | analysis steps that take O(1) time
each. In the case when Rf is an epoch, the original FASTTRACK
algorithm does not clearRf . ClearingRf is sound since the current
write will race with any future access that would have also raced
with the discarded read. We modify FASTTRACK to clear Rf to
make it correspond more directly with PACER, which clears read
maps and write epochs to reduce space and time overheads during
non-sampling periods.

Discussion. FASTTRACK performs significantly faster than prior
vector clock-based race detection [11]. Notably, it performs about
the same as imprecise lockset-based race detection, but it still slows
programs by a factor of eight on average1 and adds a factor of three
space overhead, which is too inefficient for most deployed appli-
cations. FASTTRACK’s analysis for nearly all read and write oper-
ations takes O(1) time; however, its analysis for synchronization
variables takes O(n) time. Although synchronization operations
account for only about 3% of analyzed operations, they will not
scale as the number of threads increases.

2.3 Sampling
A potential strategy for reducing overhead is to sample race detec-
tion analysis, i.e., execute only a fraction of the analysis. On first

1 The FASTTRACK implementation executes in pure Java. We estimate an
efficient implementation inside a JVM would slow programs by about 3-4X.

Algorithm 7 Read [FASTTRACK]: thread t reads variable f

if Rf 6= epoch(t) then {If same epoch, no action}
check Wf v Ct
if |Rf | = 1 ∧Rf v Ct then
Rf ← epoch(t) {Overwrite read map}

else
Rf [t]← Ct {Update read map}

end if
end if

Algorithm 8 Write [FASTTRACK]: thread t writes variable f

if Wf 6= epoch(t) then {If same epoch, no action}
check Wf v Ct
if |Rf | ≤ 1 then

check Rf v Ct
Rf ← empty {New: clear read map}

else
check Rf v Ct
Rf ← empty

end if
Wf ← epoch(t) {Update write epoch}

end if

glance, sampling seems to have two serious problems. First, if we
sample synchronization operations, we will miss happens-before
edges and thus report false positive races. Second, because a race
involves two accesses, if we sample a proportion r of all reads and
writes, then we expect to report only r2 of races (e.g., 0.09% for
r = 3%).

LITERACE solves some of these problems [22]. To avoid miss-
ing happens-before edges, LITERACE fully instruments all syn-
chronization operations. It then samples read and write operations
with a heuristic. It applies the cold-region hypothesis: bugs occur
disproportionately in cold code [7]. LITERACE samples at a rate
inversely proportional to execution frequency down to a minimum.
LITERACE thus cannot make claims on proportionality, since with
their minimum rate of 0.1%, a race in hot code will only be reported
0.1%2 = 0.0001%, i.e., one out of a million times.

LITERACE uses offline race detection by recording synchro-
nization, read, and write operations to a log file. Offline analysis
performs checks for races in the log if desired, e.g., if an execution
fails. We do not believe offline race detection is practical in many
cases, e.g., for long-running programs and races that do not cause
failures. An online implementation of LITERACE requires O(n)
analysis for synchronization operations. Furthermore, since it sam-
ples code, rather than data, the space overhead is proportional to
the data, not the sample rate.

2.4 Requirements
While recent work offers significant advances in dynamic, precise
race detection, several serious drawbacks limit its applicability. The
most serious drawback is operations that require O(n) time and
space, which will not scale as the number of threads increases.
We believe the following requirements are key for deployable race
detection. First, like the approaches just described, race detection
needs to be precise to avoid alienating developers with false posi-
tives. Second, the time and space impact must be low enough to be
acceptable for production software, and must scale with the num-
ber of threads. Third, the approach must offer reasonable chances
(e.g., chances linearly proportional to the sampling rate) of finding
any race that occurs in an execution.
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Thread t1 t2 t3
Sampling Rx

Wy
rel(m)

Non-sampling acq(m)
Wx

Wx
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Non-sampling Ry

Figure 1: Pacer reports race on y. Race on x is outside
sampling period.

t1 clockt1 vert1 t2 clockt2 vert2 t3 clockt3 vert3
Sampling

Non-
sampling

acq(m)
 clockm

acq(l)
  clockl

<9,0,0>

<9,6,8>

<10,0,0>

<11,15,0>

acq(m)
  clockm
rel(m)
  clockm

acq(l)
  clockl
rel(l)
   clockl

<6,6,5>

<6,6,8>

<10,14.12>

<10,15,14>

rel(m)
 clockm

rel(l)
  clockl

<4,5,8> <4,11,14>

Figure 2: Pacer exploits redundant communication outside sampling pe-
riod to eliminate vector clock updates and to share vector clocks.

3. PACER
This section presents the PACER sampling race detection approach.
PACER is precise: it reports only true races. It guarantees that the
probability of detecting any race is equal to the sampling rate r.
PACER has time and space overheads proportional to its sampling
rate r. While some of these overheads are also proportional to
the number of threads n, decreasing the sampling rate can reduce
overall overhead as much as desired.

PACER requires a fairly low sampling rate (≤5%) to keep over-
head low enough to consider deploying. The chance of finding a
race in a given execution is fairly low (≤5%) and therefore we en-
vision developers deploying PACER on many deployed instances,
as in distributed debugging frameworks [17; 18]. We now describe
how PACER (1) guarantees a detection rate for each race equal to
the sampling rate and (2) achieves time and space overheads pro-
portional to the sampling rate. We present the algorithms here, and
Appendices A and B formalize and prove them.

3.1 Sampling
PACER samples race detection analysis to reduce time and space
overheads. PACER divides program execution into global sampling
periods and non-sampling periods, periodically enabling and dis-
abling sampling for all threads. Given randomly chosen sampling
periods, PACER samples a proportion r of dynamic operations. It
finds any dynamic race with a probability r by guaranteeing to re-
port sampled races, defined as follows. Given two accesses A and
B, PACER reports the race if A is in the sample period and A is
the last access that races with B. B can occur inside or outside the
sampling period. The write-read race on y in Figure 1 shows a sim-
ple example. The write at t2 occurs in the sampling period, and the
next read at t3 is outside the sampling period, and it races with the
write. PACER reports this race.

During sampling periods, PACER fully tracks the happens-
before relationship on all synchronization operations, and variable
reads and writes, using FASTTRACK. In non-sampling periods,
PACER reduces the space and time overheads of race detection
by simplifying analysis on synchronization operations and vari-
able reads and writes. For example, PACER incurs no space over-
head and performs no work for accesses to variables that were not
sampled. Given a sampled access A, PACER stops tracking it and
discards its read and write metadata when a subsequent access B
means that A will not be the last access to race with a later access.

This guarantee is a little subtle because of the last access re-
quirement. Figure 1 shows an example: the sampled read of x, Rx
on t2, and the non-sampled write Wx at t1 both race with non-
sampled write Wx at t3. Since a happens-before edge orders Rx
and Wx at t1, when the write occurs, PACER detects there is no
read-write race with Rx and stops tracking x. Although there is a
race, the happens-before edge indicates thatWx at t1 must also par-
ticipate in any race with Rx and it is the last access before the race.

Since PACER has probability r of sampling any access, it reports
the race between the two writes to x with probability r. That is, if
Wx at t1 had executed in a sampling period, PACER would have
reported the race. Similarly, FASTTRACK only reports the race be-
tween the two writes to x. The next two sections describe in more
detail how PACER maintains accuracy while reducing work.

3.2 Synchronization Operations
The key insights we use to reduce vector clock O(n) analysis in
non-sampling periods are as follows.

• During non-sampling periods, we do not need to increment
thread time, because we do not need to compare access times in
non-sampled periods. We only need to ask if a sampled access
happens before the current time.
• When we do not increment time, redundant communication

will produce the same vector clock values. By detecting and
exploiting this redundancy, we eliminate redundant vector clock
joins and copies, reducing time and space overhead.

In a non-sampling period, the analysis stops incrementing thread
vector clocks, detects redundant vector clock values, and shares
them. A non-sampling period is timeless: it eliminates all incre-
ments. When two threads communicate with synchronization, they
will only copy or join the vector clock. This information is suffi-
cient to track happens-before during non-sampling periods, since
we do not compare two non-sampled vector clocks to detect races,
we only compare sampled to non-sampled vector clocks to find
races. Vector clocks will converge when communication is redun-
dant. PACER detects this redundancy and avoids linear-time vector
clock operations.

Consider Figure 2. In timeless periods, only lock acquire, fork,
and join operations change the vector clock values. Therefore,
the lockm release and lockl release can share t3’s vector clock.
Furthermore, we detect redundant happens-before relations. PACER
must perform the join for the first lockm acquire on t2, but the lockl
acquire receives a redundant clock value. PACER detects this case,
performs no join, and shares vector clocks. PACER thus performs
all non-redundant synchronization joins and copies.

To detect redundant communication, we introduce vector clock
versions and version vectors.2 PACER assigns a version number
to every unique vector clock value a thread observes. It starts the
version at zero and increments the version number every time the
thread’s vector clock changes due to a join or increment. Every
thread stores a version vector that records the latest version number
for all threads it has “received” via a join. We also store a version
epoch v@t for each lock that stores the last thread t and version v,
if any, that released this lock (i.e., copied it). When thread t releases
a lock, it sets the lock’s version epoch to v@t where v is thread t’s
current version.

2 These are not the same as version vectors used in distributed systems [25].
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Algorithm 9 Vector clock copy [PACER]: Cm ← Ct

if not sampling then
setShared(clockt, true) {Share the vector clock}
clockm ←shallow clockt

else
clockm ← clockt {Deep element-by-element copy}

setShared(clockm, false)
end if
vepochm ← vepoch(t) {Update m’s version epoch}

Algorithm 10 Vector clock increment [PACER]: Ct[t]← Ct[t]+1

if sampling then {If not sampling, no action}
if isShared(clockt) then

clockt ← clone(clockt) {First clone clockt, if shared}
setShared(clockt, false)

end if
clockt[t]← clockt[t] + 1
vert[t]← vert[t] + 1 {Update t’s version}

end if

Algorithm 11 Vector clock join [PACER]: Ct ← Ct t Cm

Let v@u = vepoch(m) {Is m’s vector clock newer}
if v@u 6= null ∧ vert[u] < v then {than thread u’s?}

if clockm 6v clockt then {Need to update clockt?}
if isShared(clockt) then

clockt ← clone(clockt)
setShared(clockt, false)

end if
clockt ← clockt t clockm

vert[t]← vert[t] + 1 {Update version with clockt}
end if
vert[u]← v {New version v of thread u’s vector clock}

end if

In non-sampling periods, PACER performs a shallow copy of the
vector clock to save time and space, since vector clocks will change
infrequently in non-sampling periods. If a subsequent synchroniza-
tion requires an update to a shared vector clock, PACER clones the
vector clock before modifying it. At a lock acquire, PACER com-
pares the lock’s version epoch and thread’s version vector to decide
whether it needs to perform the join.

More formally, PACER uses the following metadata for all syn-
chronization objects (threads, locks, and volatiles):

clocko[1..n] Vector clock.

Each thread has the following additional metadata:

vert[1..n] Version vector. Each element vert[u] is the latest
version received from thread u via joins.

Locks (and volatiles) have the following additional metadata:

vepochm Version epoch v@t. If nonnull, clockm is equal to
version v of thread t’s vector clock.

The function vepoch(o) is defined for any synchronization object
o. For a thread t, vepoch(t) ≡ v@t where v = vert[t]. For
a lock m, vepoch(m) ≡ vepochm. The functions isShared(),
setShared(), and clone() support sharing of one vector clock by
multiple synchronization objects and cloning to eliminate sharing.

PACER performs the same analysis at synchronization opera-
tions as GENERIC and FASTTRACK (Algorithms 1, 2, 3, and 4).
However, it redefines the low-level vector clock operations copy,

Algorithm 12 Read [PACER]: thread t reads variable f

if sampling ∨ (Rf 6= null ∨Wf 6= null) then
check Wf v clockt
if Wf 6= epoch(t) then {If same epoch, no action}

if sampling then
if Rf v clockt then
Rf ← epoch(t) {Update read map}

else
Rf [t]← clockt[t]

end if
else
Rf [t]← null {Discard Rf [t] only}
if isEmpty(Rf ) then
Rf ← null

end if
end if

end if
end if

Algorithm 13 Write [PACER]: thread t writes variable f

if sampling ∨ (Rf 6= null ∨Wf 6= null) then
check Rf v clockt {Check for race with prior access(es)}

check Wf v clockt
if Wf 6= epoch(t) then {If same epoch, no action}

if sampling then
Wf ← epoch(t) {Update write epoch}
Rf ← null {Discard read map}

else
Wf ← null {Discard write epoch and read map}
Rf ← null

end if
end if

end if

increment, and join. Algorithms 9, 10, and 11 show how PACER
defines these operations.

Algorithm 9 shows how we redefine vector clock copy. In a non-
sampling period, PACER performs a shallow copy of the synchro-
nization object, i.e., then m and t share vector clocks (clockm =
clockt). This sharing is likely worthwhile because the thread’s vec-
tor clock is likely to have the same value for a while. In a sampling
period, sharing would be useless because the algorithms increment
thread vector clocks immediately afterwards, so PACER performs a
deep copy (i.e., element-by-element) of clockt to clockm. The vec-
tor clock copy then assigns t’s version epoch to m.

Algorithm 10 redefines vector clock increment. It does nothing
in a non-sampling period. Otherwise, if a prior non-sampling period
introduced a shared vector clock, the increment first clones clockt.
It then increments the vector clock and its version number.

Algorithm 11 shows PACER’s redefined vector clock join. The
algorithm first avoids the join altogether when t’s version for u
is greater than v (where v@u = vepoch(m)); no work is needed
since we know clockm v clockt. Otherwise, a join may be required.
The algorithm checks whether a join will actually change clockt (if
clockm 6v clockt), to avoid incrementing vert[t] unnecessarily. If
the join is not redundant, the algorithm performs the join. Since the
clock changes, the algorithm clones the clock if it is shared and
increments the version. Algorithm 11 is only appropriate when the
target of the join is a thread vector clock. Appendix C provides the
details of how PACER redefines the join into a volatile’s clock so
that it can often perform a shallow copy.

To correctly detect a race whose first access is in a sampling
period but occurs before any synchronization operations, PACER
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increments each thread’s vector clock at the start of a sampling
period, i.e., ∀t Ct[t]← Ct[t] + 1.

In practice, versions and shallow copies avoid nearly all O(n)
analysis on joins and copies during non-sampling periods. We do
not currently know the expected worst case (assuming an adver-
sarial program). We plan to explore it in future work. Section 5.4
shows how in practice versions and shallow copies avoid nearly all
O(n) analysis in non-sampling periods.

3.3 Reads and Writes
A race is a sampled race (i.e., a race PACER reports) if its first ac-
cess is sampled and is the last access to race with its second access.
In sampling periods, PACER simply performs the FASTTRACK al-
gorithm. In non-sampling periods, PACER does not record read and
write accesses, and it discards any read or write accesses that FAST-
TRACK would have overwritten or discarded. Thus, PACER reports
a race if and only if the first access is sampled and FASTTRACK
would report it.

PACER defines the read map and write epoch similarly to FAST-
TRACK, except that they may be null. A null read map or write
epoch is equivalent to the epoch 0@0. Using null values to repre-
sent no read or write information helps save space and enables fast
common-case checks in non-sampling periods.

Algorithms 12 and 13 show PACER’s analysis for read and
write operations. In both sampling and non-sampling periods, the
analysis first checks if PACER is in a non-sampling period and
both Rf and Wf are null. If so, the analysis performs no action.
Otherwise, both analyses then check for races with prior accesses.
The next behavior depends on whether PACER is in a sampling
period. If so, it updates the read map and write epoch exactly as
FASTTRACK would. If not, it discards whatever read and write
accesses FASTTRACK would either replace or discard. In particular,
the analysis for a read discards zero or one prior read accesses. If
the read map becomes empty, it assigns null to it. The analysis for
a write always nulls the read map and write epoch.

4. Implementation
We have implemented PACER in Jikes RVM 3.1.0, a high-perfor-
mance Java-in-Java virtual machine [2].3 Jikes RVM’s performance
is competitive with commercial VMs as of November 2009.4

Metadata. Our implementation adds two words to the header of
every object. The first word points to an efficient hash table that
maps field (variable) offsets to field read/write metadata. This flex-
ible structure uses space only for metadata that PACER has not dis-
carded. When an object has no per-field metadata, instrumentation
sets variables the header word to null. The second header word is a
reference to the object’s synchronization metadata if the object has
been locked (Java programs may synchronize on any object).

We use two words per object for ease of design. An alternative
implementation could use less space by using indirection. The time
and space overheads reported in Section 5.4 include the cost of
these extra header words.

Similarly, the implementation adds a word per static field for
read/write metadata, which is null if PACER has discarded the
field’s metadata. It adds a word per (object or static) volatile field
for synchronization metadata.

Instrumentation. Jikes RVM uses two dynamic compilers to
transform Java bytecode into native code. The baseline compiler
initially compiles each method when it first executes. When a

3 http://www.jikesrvm.org/
4 http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.
html

Program r = 1% r = 3% r = 5% r = 10% r = 25%
eclipse 1.0±0.2 3.0±0.4 4.8±0.6 9.5±0.7 24.1±1.0
hsqldb 0.5±0.6 2.8±1.3 5.1±1.4 10.8±1.1 26.5±1.8
xalan 1.0±0.0 3.0±0.1 5.0±0.2 10.1±0.4 24.9±0.7
pseudojbb 0.8±0.4 3.0±0.4 5.0±0.5 10.1±0.7 25.5±1.4

Table 1: Effective sampling rates (± one standard deviation) for
specified PACER sampling rates.

method becomes hot, the optimizing compiler recompiles it at suc-
cessively higher optimization levels. Our implementation modifies
both compilers to add instrumentation to the application at synchro-
nization operations and at reads and writes to potentially shared
data (i.e., at most object and static field references). In the opti-
mizing compiler, the new PACER compiler pass uses Jikes RVM’s
existing static escape analysis to identify accesses to provably local
data, which it does not instrument.

The optimizing compiler inserts the following instrumentation
at reads and writes:

// instrumentation
if (sampling || o.metadata != null) {

slowPath(o, offset_of_f, siteID);
}
// original field read (similarly for write)
... = o.f;

The global variable sampling is true if and only if PACER is in
a sampling period. The variable o.metadata is the object’s first
header word, which is null if all the object’s field read/write meta-
data has been discarded. Section 5.4 shows that when the condition
is false at run time, the overhead of this check is about 18%.

Our implementation uses low-level synchronization (compare-
and-swap) to properly synchronize accesses to synchronization and
read/write metadata.

Reporting Races. PACER records the program location (site) cor-
responding to each write epoch and read map entry. When it detects
a race, this site is the first access. The second access is simply the
current program location.

Sampling. The implementation turns sampling on and off at the
end of garbage collections. Our experiments use the default gen-
erational mark-region collector [5]. Nursery collections occur fre-
quently, every 32 MB of allocation. At the end of a collection, we
turn on sampling with a probability of r via pseudo-random number
generation. At first glance, that should sample a random fraction r
of program reads and writes. However, since race detection allo-
cates a lot of metadata while sampling, collections occur more fre-
quently and consequently less program work occurs between two
collections during sampling. We correct for this problem by mea-
suring program work in terms of synchronization operations, which
are independent of sampling. We compute the number performed
during sampling and non-sampling periods, and adjust the proba-
bility of entering a sampling period accordingly.

Table 1 shows the actual, effective sampling rates (plus or minus
one standard deviation) that this mechanism achieves for various
specified (target) sampling rates on our benchmarks (see Section 5
for benchmark details). The implementation typically achieves an
effective rate very close to the specified rate. The effective rate is
sometimes lower, e.g., hsqldb at a 1% sampling rate, because the
mechanism for eliminating sampling bias does have not enough
opportunity to observe and correct for bias.

5. Results
This section evaluates the accuracy and performance of PACER.
It first presents the experimental platform and characterizes the
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Races ∀r Races at r = 100%
Threads 1,234 trials 50 trials

Program Total Max live ≥ 1 ≥ 5 ≥ 1 ≥ 5 ≥ 25

eclipse 16 8 77 50 55 44 27
hsqldb 403 102 28 28 23 23 23
xalan 9 9 73 38 70 34 19
pseudojbb 37 9 14 14 14 14 11

Table 2: Thread counts and race counts.

programs and races. We evaluate PACER’s accuracy and over-
head at various sampling rates and compare its accuracy to LITE-
RACE [22]. We experimentally confirm our theoretical claims:
PACER accurately reports races in proportion to the sampling rate
and its overhead is proportional to the sampling rate. Sampling
rates of 1 and 3% incur low enough overhead (52% and 86%, re-
spectively) to consider using in deployment.

5.1 Methodology
Platform. We execute all experiments on a Core 2 Quad 2.4 GHz
system with 2 GB of main memory running Linux 2.6.20.3. Each
of two cores has two processors, a 64-byte L1 and L2 cache line
size, and an 8-way 32-KB L1 data/instruction cache; and each pair
of cores shares a 4-MB 16-way L2 on-chip cache.

Benchmarks. We use the multithreaded DaCapo benchmarks [4]
(eclipse, hsqldb, and xalan; version 2006-10-MR1) and a fixed-
workload version of SPECjbb2000 called pseudojbb [29]. The Da-
Capo benchmark lusearch is multithreaded, but Jikes RVM 3.1.0
does not run it correctly in our environment, with or without
PACER.

Threads. Table 2 shows the number of threads and detected races
in each benchmark. Total is the total number of threads started.
Max live is the maximum number of live threads at any time.
Compared to the LITERACE and FASTTRACK experiments, our
benchmarks have many more threads and races. Our prototype
implementation does not reuse thread identifiers, so vector clock
sizes are proportional to Total. A production implementation could
use accordion clocks to reuse thread identifiers soundly [9].

Races and trials. Dynamically detecting races is challenging be-
cause some races occur infrequently. Another challenge is that the
observer effect may introduce heisenbugs [12]; changing thread
timing may increase or decrease the likelihood of a race. Sampling
decreases the probability of observing a race. Even when a race
occurs, ideal sampling detects the race with probability r, the sam-
pling rate. We thus need many trials to evaluate accuracy.

Table 2 characterizes races in our programs. Columns four and
five (∀r) report the races observed from either 50 fully accurate
executions (r = 100%) or in a sampled execution (more than 1,000
additional trials). The table reports statically distinct races, i.e., it
reports each pair of program references once even if the race occurs
multiple times in a single execution. Column four reports races
that occurred in at least one trial, and column five reports races
that occurred in at least five trials. Columns six, seven, and eight
(r = 100) reports races from the 50 trials executed at a 100%
sampling rate. These columns report races that occur in 1, 5, and
25 trials, respectively. Comparing column four with five, and six
with seven and eight, shows these programs have some rare races.

While PACER can find even rare races, the probability is the
product of the sampling rate times the occurrence rate. For exam-
ple, with a sampling rate r = 1% and an occurrence rate o = 2% (1
in 50), we would need 5000 trials to expect the race to be reported
in one trial—and many more trials to report the race with high prob-
ability. Even a frequent race with o = 100% and r = 1% requires

100 trials to have break-even odds of being reported. To bound our
experimentation time, we evaluate the accuracy of PACER on the
races that appear in at least half of our 50 fully sampled executions
(last column). About a third of races from the 50 fully accurate
trials appear in 25 trials of xalan (19 races); about half appear in
eclipse (27), most in pseudojbb (11), and all 23 races appear in all
50 trials of hsqldb (23). These are our evaluation races.

To report each race with reasonably high probability, we execute
between 50 and 500 trials at each sampling rate, according to the
following formula.

numTrialsr = min(max(d1000%

r
e, 50), 500)

For example, we perform 500 trials at a 1% sampling rate, 334 trials
at a 3% sampling rate, and 50 trials at a 100% sampling rate.

5.2 Accuracy
This section evaluates PACER’s race detection accuracy and shows
that PACER accurately reports a proportion r of the evaluation races
at various sampling rates r. It shows results that suggest that PACER
can detect each evaluation race at the expected rate.

Figures 3 and 4 show PACER’s detection rate versus sampling
rate for each benchmark. Figure 3 counts the average number of
dynamic evaluation races per run that PACER detects. A race’s
detection rate is the ratio of (1) average dynamic races per run at
sampling rate r to (2) average dynamic races with r = 100%. Each
point is the unweighted average of all evaluation races’ detection
rates. The plot shows that PACER reports roughly a proportion r of
dynamic races. PACER slightly underreports races in eclipse. On the
other three benchmarks, PACER reports races at a somewhat better
rate than the sampling rate. Factors such as the observer effect,
sampling approach, and statistical error may prevent PACER from
meeting its guarantee exactly.

Figure 4 shows the detection rate for distinct races. If a static
race occurs multiple times in one trial, this plot counts it only once.
The detection rate is somewhat higher in this case because PACER’s
chances of detecting a race improve if the race happens multiple
times in a run. Developers are likely to be interested in the distinct
detection rate: they care about which accesses race, not necessarily
about how many times they race in a single run.

Per-race detection. The fours graphs in Figure 5 plot the detec-
tion rate for each distinct evaluation race as a function of r for each
program. The x-axis sorts the races by detection rate, and each line
is a sampling rate r. We sort the races independently for each sam-
pling rate. The figures show how well PACER meets its guarantee
of detecting each race with a probability equal to the sampling rate.
PACER only misses one race in eclipse at a 1% sampling rate. Be-
cause of statistical error and heisenbugs, we cannot expect perfect
results. Nonetheless, the results are compelling: PACER detects all
but one race at least once at every sampling rate. On average, the
detection rates correspond well with the specified sampling rates.

5.3 Comparison to LITERACE

For comparison, we implemented an online version of LITE-
RACE [22]. It lowers overhead using a sampling heuristic that
hypothesizes that most races occur in cold code [7]. LITERACE
adaptively samples code in order to observe code at a rate inversely
proportional to its frequency. It uses per-thread sampling rates and
bursty sampling [14].

Our LITERACE implementation adaptively samples, lowering
the sampling rate for each method-thread pair from 100% to 0.1%.
Whereas the original LITERACE is deterministic, our implementa-
tion adds randomness when resetting the sampling counter, to in-
crease the chances of catching more races across multiple trials. We
initially used a sampling burst length of 10, but for all benchmarks
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Figure 3: PACER’s accuracy on dynamic races. 27 races in eclipse 23 races in hsqldb

19 races in xalan 11 races in pseudojbb

Figure 4: PACER’s accuracy on distinct races. Figure 5: PACER’s per-distinct race detection rate varying r.
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Figure 6: LITERACE’s per-distinct race detection rate for eclipse.

except hsqldb, these configurations yielded effective sampling rates
less than 1%, so we switched to burst lengths of 1,000. For hsqldb,
xalan, and pseudojbb, LITERACE’s heuristic is effective: it finds the
evaluation races more frequently than the effective sampling rate.
For eclipse (which achieves a 1.1% effective sampling rate with a
burst length of 1,000), LITERACE misses some races consistently.
Figure 6 shows how well LITERACE detects each evaluation race
in eclipse, across 500 trials. LITERACE finds some races in many
runs, but it never reports four of the evaluation races. For races be-
tween two hot accesses, we can surmise that this detection rate is
approximately 0.1%2 = 0.0001% (since 0.1% is the minimum sam-
pling rate). These results indicate that races do not always follow
the cold region hypothesis and that PACER’s statistical guarantees
provide accuracy improvements over the prior work.

Figure 10 shows that the space overhead of LITERACE even
with an effective sampling rate of 1%, is almost as high as with
100% sampling. This result is not surprising because LITERACE
samples code rather than data and does not discard metadata, so it
ends up sampling most live memory. Section 5.4 presents the other
data in Figure 10.

Our implementation of LITERACE’s sampling mechanism is
too inefficient to report fair time overheads. An online version of
LITERACE will incur O(n)-time overheads at all synchronization
operations, so it will not scale to many threads (Section 2.3).

5.4 Performance
Figure 7 presents the overheads of PACER with sampling rates
of 0%, 1%, and 3%. Each sub-bar is the median of 10 trials. It
breaks down the overheads into OM + sync ops, r = 0%, which
is the cost of adding object metadata (e.g., two header words for
every object) plus the cost of instrumentation at synchronization
operations. Since it never samples, all vector clock operations use
fast joins and shallow copies. This configuration adds about 15%

overhead (we find that only about 1% comes from object metadata).
Pacer, r = 0%, adds instrumentation at reads and writes but never
executes it. Its total overhead is 33% on average. Pacer, r = 1%,
samples with r = 1%, adding 19% for a total of 52%. The last
configuration, Pacer, r = 3%, adds 34% for a total of 86%.

Performance scalability. Larger sampling rates increase over-
head roughly linearly. Figure 8 graphs slowdown vs. sampling rate
for r = 0–100%; Figure 9 zooms in, showing r = 0–10%. The
figures normalize to program execution time with unmodified Jikes
RVM. The results for 0 and 1% sampling rates correspond to Fig-
ure 7. The graphs show that PACER achieves overheads that scale
roughly linearly with the sampling rate.

At a 100% sampling rate, our implementation slows programs
by 12x on average, compared with 8x in the FASTTRACK pa-
per [11]. Our implementation performs worse because it uses hash
tables instead of direct lookup (both for per-field metadata and
read maps) and it inlines the non-sampling case, which decreases
PACER’s overhead in non-sampling periods but increases overhead
in sampling periods.

Avoiding expensive operations. Table 3 shows statistics for r =
3% averaged over 10 trials on PACER’s reduction of linear- to
constant-time operations. The top half of the table shows the num-
ber of slow and fast joins and copies, during sampling and non-
sampling periods. Note that a few deep copies occur in sampling
periods because our implementation always performs deep copies
for thread forks, since they are rare and it simplifies the imple-
mentation somewhat. Nearly all vector clock operations in non-
sampling periods are fast (fast joins or shallow copies), i.e., they
can be performed in O(1) time.

The bottom half of Table 3 presents read and write operations
that occur in sampling and non-sampling periods. Note that many
more reads and writes occur in non-sampling periods, which is
expected at a 3% sampling rate. In a non-sampling period, read
and write instrumentation almost always takes the fast path: it does
nothing if the field has no metadata. The number of slow path
operations when PACER is not sampling corresponds well with the
number of sampling slow-path operations. Because PACER checks
for races with the last write and/or read to a variable in a sampling
period, it performs some slow-path work in non-sampling periods.

Space overhead. PACER reduces space overhead when it discards
read and write metadata or shares synchronization metadata during
non-sampling periods. Figure 10 shows the amount of live (reach-
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VC joins
Sampling period Non-sampling period

Program Slow Fast Slow Fast
eclipse 3,456K 656K 2K 149,376K
hsqldb 120K 288K 61K 14,636K
xalan 4,924K 3,255K 36K 275,724K
pseudojbb 2,932K 1,140K 3K 131,423K

VC copies
Deep Shallow Deep Shallow

eclipse 4,053K – <1K 147,458K
hsqldb 241K – <1K 7,938K
xalan 8,179K – <1K 275,760K
pseudojbb 4,072K – <1K 131,427K

Reads
Sampling period Non-sampling period

Slow path Slow path Fast path
eclipse 273,611K 14,170K 8,792,182K
hsqldb 13,108K 1,697K 431,167K
xalan 190,502K 118,682K 6,163,120K
pseudojbb 33,311K 51,254K 835,085K

Writes
eclipse 66,704K 52K 2,165,973K
hsqldb 1,696K 19K 50,217K
xalan 30,350K 442K 992,098K
pseudojbb 12,197K 1,064K 330,902K

Table 3: Counts of vector clock joins and copies, and read and write
operations for PACER at a sampling rate of 3%. O(n)-time vector
clock operations are almost entirely confined to sampling periods,
and slow-path reads and writes in non-sampling periods correspond
well with reads and writes in sampling periods.

able) memory for eclipse after each full-heap collection with vari-
ous PACER configurations. The measurement includes application,
VM, and PACER memory. We use a single trial of each configu-
ration because averaging over multiple trials might smooth spikes
caused by PACER’s sampling periods. Because PACER takes longer
to run with higher sampling rates, we normalize execution times
over total run length. Base shows the memory used by eclipse run-
ning on unmodified Jikes RVM. Note that memory usage increases
somewhat over time in this program. OM only adds two words per
object and a few percent all-the-time overhead. The other configu-
rations are PACER at various sampling rates. The graph shows that
PACER’s space overhead scales well with the sampling rate.

In summary, PACER is accurate and low overhead because it
finds races, performs work, and uses memory, all in proportion to
the sampling rate.

6. Related Work
Section 2 compared PACER to the most closely related work, FAST-
TRACK [11] and LITERACE [22]. This section compares PACER to
other prior work on race detection.

6.1 Language Design and Static Analysis for Race Detection
Safety in types. An alternative to detecting races is to use a
language that cannot have them. Boyapati et al. extend the typing
of an existing programming language with ownership types, so that
well-typed programs are guaranteed to be race-free [6]. Abadi et al.
use type inference and type annotations to detect races soundly [1].

Static analysis. Researchers have developed advanced techniques
for statically detecting data races [24; 27; 31]. These approaches
scale to millions of lines of code, are typically sound except for
a few exceptions, and try to limit false positives as much as pos-
sible. However, static analysis necessarily reports false positives
because it abstracts control and data flow in order to scale. In con-
trast, model checking is precise but does not scale well to large pro-
grams [13]. Races, whether true or false, are time consuming to fix
(or not fix), so even a few false positives may frustrate developers.

Choi et al. combine static and dynamic analysis to lower the
overhead of dynamic race detection, which can identify read and
write operations that cannot be involved in races [8]. Static ap-
proaches are typically unsound with respect to dynamic language
features such as dynamic class loading and reflection. Our imple-
mentation uses simple, mostly intraprocedural escape analysis to
identify some definitely thread-local objects (Section 4).

6.2 Dynamic Race Detection
Dynamic race detectors are typically based on the imprecise lockset
algorithm or precise vector clock algorithm.

Lockset algorithm. The lockset algorithm checks a locking disci-
pline based on each access to a shared variable holding some com-
mon lock [8; 28]. Because it enforces a particular locking disci-
pline, lockset is imprecise: it reports false positives due to other
synchronization idioms such as fork-join, wait-notify, and custom
synchronization with volatile variables. Furthermore, recent ad-
vances in precise, vector clock-based race detection (notably FAST-
TRACK’s order-of-magnitude improvement) mean that lockset and
vector clocks offer about the same performance [11].

Vector clocks. Prior techniques, including FASTTRACK and
LITERACE, use vector clocks to achieve precise race detection [11;
22]. They both decrease analysis overhead at reads and writes,
but overheads at sychronization operations still take O(n) time,
so these approaches will not scale to many threads. In contrast,
PACER can scale to many threads by adjusting the sampling rate
since overheads are proportional to the sampling rate.
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Hybrid techniques. Hybrid techniques combine lockset and vec-
tor clocks to obtain the performance of the former and the accu-
racy of the latter [10; 30; 32]. Goldilocks is sound and precise and
reports overheads low enough to deploy [10]. However, as Flana-
gan and Freund note [11], Goldilocks is compiled into a JVM that
only interprets code, so its overhead would likely be much higher
in a high-performance JVM. Pozniansky and Shuster introduce im-
proved versions of both vector clock and lockset race detection,
and present MultiRace, which is a hybrid of these two improved
detection approaches [26]. FASTTRACK further improves on Mul-
tiRace’s vector clock-based detector (called Djit+) [11].

6.3 Sampling
Object-centric sampling tracks only a subset of objects, chosen at
allocation time [3; 15]. Modifying LITERACE to use object-centric
sampling would reduce its space overhead to be proportional to
n, but it would still need O(n)-time analysis at synchronization
operations. PACER’s goals are similar in spirit to those of QVM,
which performs as much analysis as possible while staying within a
user-specified overhead budget [3]. PACER is well suited to finding
races in widely deployed software as part of a distributed sampling
framework [17; 18].

7. Conclusion
Data races indicate serious concurrency errors that are easy to in-
troduce but difficult to reproduce, understand, and fix. Not even
thorough testing finds all races, so deployable race detection is
necessary to achieve highly robust software. Prior approaches are
too heavyweight, or they are only effective at finding a subset of
races. This paper presents data race detection that provides a detec-
tion rate for each race that is equal to the sampling rate, and adds
time and space overheads proportional to the sampling rate. The ap-
proach’s adjustable performance and accuracy guarantees make it
suitable for all-the-time use in a variety of deployed environments.
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A. Formal semantics
A program consists of a set of concurrently executing threads
t ∈ Tid that perform actions to manipulate a set of data variables
x ∈ Var, a set of locks m ∈ Lock, and a set of volatile variables
vx ∈ Vol. Threads, locks, and volatile variables are all called
synchronization objects, and all other variables are data variables.
An action is one of the following operations:

rd(t, x): thread t reads data variable x.

wr(t, x): thread t writes data variable x.

acq(t,m): thread t acquires lock m.

rel(t,m): thread t releases lock m.

fork(t, u): thread t forks a new thread, u.

join(t, u): thread t blocks until thread u terminates.

vol rd(t, vx): thread t reads volatile variable vx.

vol wr(t, vx): thread t writes volatile variable vx.

sbegin(): the analysis enters a sampling period.

send(): the analysis leaves a sampling period.

The acq, rel, fork, join, vol rd, and vol wr actions are synchro-
nization actions. The sbegin and send actions are convenient nota-
tion for the start and end of a PACER sampling period. These actions
are not initiated by any particular thread and they do not affect the
happens-before relationship between threads, but they do modify
the analysis state.

A trace α captures the sequence of actions performed by the
various threads in a multi-threaded program. Given a trace α and an
action b, the term α.b denotes the trace that results after extending
α by b. An action a is related to an action b in a trace α by program
order if a occurs before b in α, and the same thread performs both
a and b. Two actions a and b in α are related by synchronization
order if a and b are both synchronization actions, and a occurs
before b. An action a is related to an action b in α by synchronizes-
with order if they are also related by synchronization order, and any
of the following hold:

• a is a release of a lockm and b is an acquire ofm by any thread.
• a is a write to a volatile variable vx and b is a read of vx by any

thread.
• a is a fork of a new thread u by a thread t, t 6= u, and u is the

thread that performs b.
• a thread u performs a, and b is a join that blocks a thread t,
t 6= u, until u terminates.

The happens-before relation for actions a and b in a trace α,
a

HB−−→α b, is the transitive closure of program order and synchronizes-
with order [21]. If a is related to b by the happens-before relation
then a happens before b and b happens after a, otherwise a and b
are concurrent. Two actions a and b conflict if they both read or
write the same data variable, and at least one of the two actions
writes that variable. A trace α contains a data race if it contains
conflicting, concurrent read/write actions.

We restrict our attention to traces that are feasible and that
obey traditional synchronization operation semantics. In particular,
citing many of the examples provided by Flanagan et al. [11]:

• A thread never acquires a lock that has been acquired, but not
released by another thread.
• A thread never releases a lock m unless it has previously ac-

quired m without releasing it.
• A thread u never performs any actions that precede an action
fork(t, u).
• A thread u never performs any actions subsequent to an action
join(t, u).
• Thread u performs at least one action after fork(t, u).
• A volatile read action vol rd(t, vx) always returns the value

of the most recent volatile write action vol wr(t, vx) that pre-
cedes the read in synchronization order.

A.1 Vector clocks and epochs
A vector clock VC : Tid→ Nat maps thread identifiers to natural
numbers that represent logical clock values. Given a vector clock
C ∈ VC the term C(t) ∈ Nat refers to the clock value to which
C maps thread t. Vector clocks are partially ordered in a pointwise
manner; a vector clock C1 is pointwise less-than a vector clock C2

(C1 v C2) if and only if each element in C1 is less than or equal
to the corresponding element in C2:

C1 v C2 iff ∀t.C1(t) ≤ C2(t)

The minimal element for a vector clock ⊥c ∈ VC is the vector
clock that maps every thread to 0, ⊥c = λt.0. We define three
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operations on vector clocks, copy, increment, and join (t):

copy(C) = λt.C(t) (1)
incu(Cu) = λt. if t = u then C(t) + 1 else C(t) (2)
C1 t C2 = λt.max(C1(t), C2(t)) (3)

The copy operation, copy(C), returns a vector clock where each
component is equal toC’s value for that component. The increment
operation, inct(Ct), returns a vector that is identical to Ct except
that t’s component has increased by one. The increment operation
is the mechanism by which logical time passes. The join operation,
C1 t C2, returns the pointwise maximum of C1 and C2.

Like FASTTRACK, PACER uses an epoch to concisely represent
the vector clock for a data variable x when accesses to x are totally
ordered. An epoch c@t is a pair consisting of a thread identifier, t,
and the clock associated with that thread identifier, c. The term ⊥e
denotes the minimal epoch 0@0. This minimal epoch is not unique;
any epoch 0@t is a minimal epoch. The relation c@t � C holds
for an epoch c@t and a vector clock C if and only if c is less than
or equal to the t component in C:

c@t � C iff c ≤ C(t) (4)

Unlike vector clock comparisons, which require time proportional
to the number of threads, evaluating the relation in Equation 4
requires constant time. Both FASTTRACK and PACER use epochs
to store read and write metadata when accesses to data variables
are totally ordered. Note that while the v and � relations imply
happens-before in FASTTRACK, in PACER they imply happens-
before only during sampling periods.

Given a vector clock Ct associated with a thread t, we use the
abbreviation E(t) ∈ Epoch to denote the current epoch of thread
t’s vector clock:

E(t) = Ct(t)@t

Both PACER and FASTTRACK include either a vector clock or an
epoch in the metadata for each variable that they track. To enable
efficient sampling, however, PACER maintains additional metadata
called version vectors to identify redundant vector clock values.

A.2 Version vectors and version epochs
A version vector VersionVec : Tid → Nat maps each thread to
a natural number that represents a version of that thread’s vector
clock. A version is a unique identifier for a snapshot of a thread’s
vector clock at a point in logical time. Given a version vector
V ∈ VersionVec, we use V (t) to denote the version to which V
maps thread t. A minimal version vector ⊥v ∈ VersionVec maps
all threads to 0, ⊥v = λt.0. We define an increment operation on a
version vector V and a thread t ∈ Tid:

inct(V ) = λu. if u = t then V (u) + 1 else V (u) (5)

Much like the vector clock increment operation, the version vector
increment returns a version vector that is identical to V except
that the t component has increased by one. A thread increments
its version vector whenever its vector clock changes.

PACER associates version information with each thread and
each synchronization object. Rather than a version vector, PACER
associates a more concise version epoch with locks and volatile
variables. This concise representation is suitable because opera-
tions that acquire and release the same lock are always totally or-
dered, and most conflicting accesses to a given volatile variable are
also totally ordered. A version epoch is a pair, v@t, where t ∈ Tid
is a thread identifier and v ∈ Nat is a version number for thread t’s
vector clock. The relation v@t � V holds for a version epoch v@t
and a version vector V if and only if v is less than or equal to the t
component in V :

v@t � V iff v ≤ V (t) (6)

The term ⊥ve ∈ VersionEpoch denotes a minimal version epoch
0@0 such that⊥ve � V is always true. This minimal version epoch
is not unique; any version epoch 0@t is a minimal version epoch.
The term>ve ∈ VersionEpoch denotes a unique maximal version
epoch such that >ve � V is never true. PACER uses a null version
epoch to represent >ve.

A.3 Synchronization metadata
PACER associates both a vector clock and version information with
each synchronization object. We will express the metadata for a
synchronization object o as a tuple So ∈ Meta that consists of the
following components:

• So.vc : VC

• So.ver : (VersionVec ∪ VersionEpoch)
So.vc is the vector clock for o, and So.ver is the version map for
o. The version map is either a version vector or a version epoch.
When o ∈ Lock, So.ver is always a version epoch because all
actions that acquire or release the same lock are totally ordered. A
release of lock m happens-before an acquire of m, and an acquire
of m by a thread t always happens-before the subsequent release
of m by program order, because no other thread can acquire the
lock until t releases it. Although accesses to volatile variables
are not always totally ordered, we find that in practice conflicting
concurrent accesses to volatile variables usually are. Thus, when
o ∈ Vol, So.ver is a version epoch unless the most recent write
to o was not totally ordered with respect to all prior writes to o,
in which case So.ver is >ve. When o ∈ Tid, So.ver is a version
vector.

Given synchronization metadata So ∈ Meta, we define an
abbreviation Ver(o) called the current version of o’s vector clock.
The current version is a version epoch v@t that indicates that o’s
vector clock is equal to thread t’s vector clock when its current
version was v. If o ∈ Lock or o ∈ Vol, then the current version is
equal to o’s version metadata, which is always a version epoch:

Ver(o) = So.ver | o ∈ (Lock ∪ Vol)
If o ∈ Tid, however, then So.ver is a version vector, not a version
epoch. A thread’s current version is its own identifier and the
corresponding slot in its version vector, which it updates every time
its vector clock changes:

Ver(o) = So.ver(o)@o | o ∈ Tid
The remaining slots in a thread t’s version vector indicate, for each
other thread u, what is the most recent version of u’s vector clock
that has been joined with t’s vector clock. That version, and any
prior versions of u’s vector clock, are all guaranteed to be pointwise
less-than t’s vector clock.

A.4 Analysis state
The analysis state for PACER σ = (C,L,V, R,W, s) consists of
the following components:

• C : Tid→Meta

• L : Lock →Meta

• V : Vol→Meta

• R : Var → (Epoch ∪ VC)

• W : Var → Epoch

• s : boolean

C, L, and V map threads, locks, and volatile variables, respectively,
to their metadata.R is a read map that maps each data variable x to
either an epoch indicating the clock of the last totally ordered read
of x and the thread that performed that read, or a vector clock that
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contains a join over multiple concurrent reads of x. W maps each
data variable x to an epoch that indicates the clock of the last write
to x and the thread that performed that write. Finally, s is a boolean
that is true if PACER is currently in a sampling period.

The initial analysis state for PACER, σ0, contains the following
component values:

σ0 = (λt.(inct(⊥c), inct(⊥v)), (7)
λm.(⊥c,⊥ve),
λvx.(⊥c,⊥ve),
λx.⊥e,
λx.⊥e,
false)

PACER increments both the vector clock and the version vector
for a thread in the initial state, but initializes everything else to its
minimal value.

An action a transitions PACER from one analysis state to an-
other, σ ⇒a σ′. Table 4 shows how PACER updates the analysis
state when a data variable read or write action occurs. Note that if a
condition labeled “Race-free” is not satisfied, then there is no rule
in Table 4 that transitions PACER to the next analysis state, and the
analysis becomes stuck. Thus, the relation σ ⇒a σ′ indicates that
PACER successfully transitions to a new state via action a without
becoming stuck and reporting a data race. If action a causes the
analysis to become stuck, then we write

σ /⇒a . . .

Table 5 shows how the sbegin and send actions modify the analy-
sis state at the start and end of a sampling period. Note that although
the sbegin action does modify each thread’s vector clock, it does
not add or remove any happens-before edges between threads. This
action is effectively equivalent, from the perspective of the analy-
sis, to each thread writing its own private volatile variable that no
other threads access. Thus, the analysis does not lose any informa-
tion about data races as a result of entering a sampling period.

Table 6 shows how PACER updates the analysis state when a
synchronization action occurs. These updates are identical to those
performed by FASTTRACK except that PACER performs modified
join, copy, and increment operations. Table 7 shows how these
modified operations use version information to avoid O(n) oper-
ations when possible. The observable effect of these operations,
however, is identical to the corresponding vector clock operations
with only one exception: PACER effectively halts the flow of logi-
cal time when a sampling period ends by no longer performing the
vector clock increment operation (see Rule 2 in Table 7).

In Tables 4-7 we frequently abbreviate notation for simplicity
and to conserve space. For example,R′x = E(t) is an abbreviation
for R′ = R[x := E(t)], which indicates that R’ is identical to R
except that x maps to E(t).

We do not address shallow and deep copies of vector clocks here
because we believe that their correctness will be clear to readers.
PACER always checks whether metadata is shared before modifying
it, and if it is shared PACER creates a deep copy prior to making
any changes. Whenever PACER creates a shallow copy, it marks the
object shared. Once an object is marked shared it remains that way
for the rest of its lifetime.

B. PACER correctness proofs
We will refer to the components of analysis states σ and σ′ as
follows:

σ = (C,L,V, R,W, s)
σ′ = (C′,L′,V ′, R′,W ′, s′)

When necessary to avoid ambiguity, we will use the following
conventions to differentiate analysis states: given an action a, the
term σa denotes the state prior to performing a, and σ′a denotes the
state after performing a: σa ⇒a σ′a. Using conventions similar to
those used to prove FASTTRACK correct [11], we will refer to the
components of states σa and σ′a as follows:

σa = (Ca,La,Va, Ra,W a, sa)

σ′a = (C′a,L′a,V ′a, R′a,W ′a, s′a)

Similar conventions hold for the function Ver(o):

• Ver(o) is the current version of o in state σ.
• Ver′(o) is the current version of o in state σ′.
• Vera(o) is the current version of o in state σa.
• Ver′a(o) is the current version of o in state σ′a.

The abbreviation IH stands for inductive hypothesis. Note that the
operator that transitions the analysis from one state to another,
σ ⇒a σ′, and the implication operator, =⇒ , are similar to one
another, but the implication operator is longer. Recall that the term
α.a denotes the trace that results when traceα is extended by action
a. We use the Greek math symbols α, β, and γ to denote arbitrary-
length sequences of actions.

DEFINITION 1. (Well-formedness). A state σ = (C,L,V,R,W, s)
is well-formed if ∀t, u ∈ Tid,m ∈ Lock, x ∈ Var, vx ∈ Vol:

1. Cu.vc(t) ≤ Ct.vc(t)
2. Lm.vc(t) ≤ Ct.vc(t)
3. Rx(t) ≤ Ct.vc(t)
4. Wx(t) ≤ Ct.vc(t)
5. Vvx.vc(t) ≤ Ct.vc(t)
6. Cu.ver(t) ≤ Ct.ver(t)
7. Lm.ver(t) ≤ Ct.ver(t)
8. Vvx.ver(t) ≤ Ct.ver(t)

LEMMA 1. σ0 is well-formed.

Proof. σ0 is well-formed by Equation 7.

LEMMA 2. (Logical time increases monotonically). If σ is well-
formed and σ ⇒a σ′, then Ct.vc(t) ≤ C′t.vc(t).

Proof. Ct.vc(t) ≤ C′t.vc(t) follows directly from the update rules
in Tables 5 and 6. The value of C′t.vc(t) is set only by the increment
operation (Rule 1 in Table 5, Rules 2, 3, 4, and 6 in Table 6), and
the join operation where one of the operands is itself (Rules 1, 3,
4, and 5 in Table 6). Thus, by Equations 3 and 2 (vector clock join
and increment) and the update rules in Tables 5 and 6, Ct.vc(t) ≤
C′t.vc(t)

LEMMA 3. (Version numbers increase montonically). If σ is well-
formed and σ ⇒a σ′, then Ct.ver(t) ≤ C′t.ver(t).

Proof. Ct.ver(t) ≤ C′t.ver(t) by Equation 5 (version increment
definition) and Rules 6 and 3 in Table 7, which are the only rules
that set C′t.ver(t).

LEMMA 4. (Preservation of well-formedness). If σ is well-formed
and σ ⇒a σ′ then σ′ is well-formed.

Proof. Assume σ′ is not well-formed. By Definition 1 (well-
formedness), Lemmas 2 and 3 (monotonicity), and the update rules
in Tables 4, 5, and 6, σ must not be well-formed. Thus, we have a
contradiction.
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Data reads and writes: σ ⇒a σ′, σ = (C,L,V, R,W, s)

State updates

Conditions Sampling Non-sampling

Read data variable: rd(t, x), σ′ = (C,L,V, R′,W, s)

Same epoch
Rx ∈ Epoch
Rx = E(t)

None None (1)

Exclusive
Rx ∈ Epoch
Rx � Ct.vc

Race-free
Wx � Ct.vc

R′x = E(t) R′x = ⊥e (2)

Shared
Rx ∈ VC

Race-free
Wx � Ct.vc

R′x(t) = Ct.vc(t) R′x(t) = 0 (3)

Share
Rx ∈ Epoch
Rx 6� Ct.vc

Race-free
Wx � Ct.vc

R′x = ⊥c
R′x(t) = Rt(t)
Let Rx = c@u
R′x(u) = c

None (4)

Write data variable: wr(t, x), σ′ = (C,L,V, R′,W ′, s)

Same epoch
Wx = E(t)

None None (5)

Exclusive
Rx ∈ Epoch

Race-free
Rx � Ct.vc
Wx � Ct.vc

W ′x = E(t)
R′x = ⊥e 1

R′x = ⊥e
W ′x = ⊥e (6)

Shared
Rx ∈ VC

Race-free
Rx v Ct.vc
Wx � Ct.vc

W ′x = E(t)
R′x = ⊥e

R′x = ⊥e
W ′x = ⊥e (7)

Table 4: PACER’s modifications to read and write metadata. Column
1 shows the checks PACER performs to determine which updates
are necessary and to check for race freedom, when needed. Column
2 shows PACER’s updates within a sampling period, which match
FASTTRACK’s read and write metadata updates. Column 3 shows
PACER’s updates in non-sampling periods. Gray boxes indicate
O(n)-time computations.

1 The original FASTTRACK algorithm does not perform this update.

Sampling periods: σ ⇒a σ′, σ = (C,L,V, R,W, s)

Action a Next state σ′ State updates

sbegin() (C’, L, V , R, W , s’) C′ = λt.inct(Ct)
s′ = true

(1)

send() (C, L, V , R, W , s’) s′ = false (2)

Table 5: Analysis state updates that PACER performs at the start and
end of a sampling period.

Synchronization actions: σ ⇒a σ′, σ = (C,L,V, R,W, s)

Action a Next state σ′ State updates

acq(t,m) (C’, L, V , R, W , s) C′t = Ct t Lm (1)

rel(t,m) (C’, L’, V , R, W , s) L′m = copy(Ct)
C′t = inct(Ct, s) (2)

fork(t, u) (C’, L, V , R, W , s) C′u = Cu t Ct
C′t = inct(Ct, s) (3)

join(t, u) (C’, L, V , R, W , s) C′t = Ct t Cu
C′u = incu(Cu, s) (4)

vol rd(t, vx) (C’, L, V , R, W , s) C′t = Ct t Vvx (5)

vol wr(t, vx) (C’, L, V’, R, W , s) V ′vx = Vvx t Ct
C′t = inct(Ct, s) (6)

Table 6: Analysis state updates that PACER performs in response
to synchronization actions. See Table 7 for definitions of the copy,
increment, and join operations.

Metadata join, copy, and increment operations

Conditions State updates

Metadata copy: S′o = copy(Ct), o ∈ (Lock ∪ Vol)

None S′o.vc = Ct.vc
S′o.ver = Ver(t)

(1)

Metadata increment: C′t = inct(Ct, s), t ∈ Tid

Non-sampling
s = false

None (2)

Sampling
s = true

C′t.vc = inct(Ct.vc)
C′t.ver = inct(Ct.ver) (3)

Metadata join for threads: C′t = Ct t So, o ∈ (Tid ∪ Lock ∪ Vol)

Same version epoch
Ver(o) � Ct.ver

None (4)

Happens-before
Ver(o) 6� Ct.ver
So.vc v Ct.vc

Let v@u = Ver(o)
C′t.ver(u) = v

(5)

Concurrent
Ver(o) 6� Ct.ver
So.vc 6v Ct.vc

C′t.vc = Ct.vc t So.vc
C′t.ver = inct(Ct.ver,)
Let v@u = Ver(o)
C′t.ver(u) = v {if Ver(o) 6= >ve}

(6)

Metadata join for volatiles: V ′vx = Vvx t Ct, vx ∈ Vol

Same version epoch
Ver(vx) � Ct.ver

V ′vx = copy(Ct) (7)

Happens-before
Ver(vx) 6� Ct.ver
Vvx.vc v Ct.vc

V ′vx = copy(Ct) (8)

Concurrent
Ver(vx) 6� Ct.ver
Vvx.vc 6v Ct.vc

V ′vx.vc = Ct.vc t Vvx.vc
V ′vx.ver = >ve (9)

Table 7: Copy, increment, and join operations for PACER metadata.
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DEFINITION 2. (Strict well-formedness). A state σ = (C, L, V, R,
W , s) is strictly well-formed if ∀t, u ∈ Tid,m ∈ Lock, vx ∈ Vol:
1. σ is well-formed.
2. if t 6= u then Cu.vc(t) < Ct.vc(t).
3. Lm.vc(t) < Ct.vc(t).
4. Vvx.vc(t) < Ct.vc(t).

Note that “strict well-formedness” is equivalent to “well-formedness”
in FASTTRACK. PACER’s definition for “well-formedness” (see
Definition 1) is slightly more relaxed because logical time stops
during non-sampling periods.

LEMMA 5. (Strict well-formedness at sampling period entry). If
σ is well-formed, σ ⇒a σ′, and a = sbegin(), then σ′ is strictly
well-formed.

Proof. σ′ must be strictly well-formed by Rule 1 in Table 5
(sbegin) and criteria 2, 3, and 6 of Definition 1 (well-formedness).
Intuitively, the sbegin action establishes strict well-formedness af-
ter a non-sampling period by incrementing each thread’s vector
clock.

LEMMA 6. (Preservation of strict well-formedness within a sam-
pling period). If σ is strictly well-formed, σ ⇒a σ′, and s = true
then σ′ is strictly well-formed.

Proof. Assume σ′ is not strictly well-formed. By Lemma 4 (preser-
vation of well-formedness), σ′ is well-formed. Thus, σ′ must vio-
late criteria 2, 3, or 4 of Definition 2. By Lemma 2 (monotonicity)
a must increase C′u.vc(t), L′m.vc(t), or V ′vx.vc(t) to be greater
than C′t.vc(t). By the update rules in Table 6, σ must not be strictly
well-formed. Thus, we have a contradiction.

Intuitively, notice that whenever a thread’s vector clock is
joined into another vector clock, which may sacrifice strict well-
formedness, the thread subsequently increments its vector clock
(provided that the analysis is in a sampling period). This vector
clock increment restores strict well-formedness. Each synchroniza-
tion action that can serve as the source of a happens-before edge
uses this pattern (see Rules 2, 3, 4, and 6 in Table 6).

LEMMA 7. (Versions imply vector clock ordering). Let t ∈ Tid
and o ∈ (Tid ∪ Lock ∪ Vol). If σ0⇒α σ then

Ver(o) � Ct.ver =⇒ So.vc v Ct.vc To prove (8)

Proof. If t = o then Equation 8 is trivially true. Thus, assume
t 6= o, and the proof proceeds by induction on the length of α.
Assume the length of α is zero, and show that Equation 8 holds in
the initial state.

So.vc v Ct.vc if o ∈ (Lock ∪ Vol) Equation 7 (9)

Ver(o) 6� Ct.ver if o ∈ Tid ′′ (10)

Equations 9 and 10 follow from the initial analysis state in Equa-
tion 7, which initializes the vector clock for a lock or volatile vari-
able to ⊥v , and the vector clock for a thread t to inct(⊥v). In the
initial state Equation 8 holds because either the consequent is guar-
anteed to be true, or the antecedent is guaranteed to be false by
Equations 9 and 10.

Suppose that α = β.a. If σ0⇒β σ⇒a σ′, and

Ver(o) � Ct.ver =⇒ So.vc v Ct.vc IH (11)

show that

Ver′(o) � C′t.ver =⇒ S ′o.vc v C′t.vc To prove (12)

The vector clock and version vector for an object can be modified
by a copy, increment or join operation. The copy operation (Rule 1

in Table 7) trivially preserves Equation 12 by the inductive hypoth-
esis.

The increment operation increments only a thread’s own clock
and version number (and only within a sampling period), so it
trivially preserves Equation 12 as well.

The join operation for a thread’s vector clock (Rules 4-6 in
Table 7) sets C′t.ver(o), but only after either verifying that So.vc v
Ct.vc (Rule 5), or performing a vector clock join operation using
So.vc as an argument (Rule 6). By Equation 3 (vector clock join),
S ′o.vc v C′t.vc, and Equation 12 holds.

The vector clock join operation for volatiles is simply a copy
operation in Rules 7 and 8, and thus satisfies Equation 12. In
Rule 9, V ′vx.vc receives the result of a join operation, which means
that it no longer contains a snapshot of a single thread’s vector
clock; it contains the join of multiple threads’ vector clocks. Thus,
a version epoch is no longer sufficient. In response, Rule 9 sets
V ′vx.ver to >ve. >ve � C′t.ver is false by definition of >ve, so
the implication in Equation 12 holds, as the antecedent is always
false. Thus, by the inductive hypothesis, the rules in Table 6, and
their definitions in Table 7, Equation 12 holds when the inductive
hypothesis is true.

LEMMA 8. (Vector clocks imply happens-before within a sam-
pling period). Suppose σa ⇒a.α σb ⇒b σ′b, where sa = true,
sb = true, and ∀d ∈ α, sd = true. Let t be the thread that
performs a and u be the thread that performs b. If Cat .vc(t) ≤
Cbu.vc(t), then a HB−−→a.α b.

Proof. By Lemmas 5 and 6 (strict well-formedness within a sam-
pling period), state σa must be strictly well-formed. We refer the
reader to the proof of a similar lemma for FASTTRACK that relies
upon σa being strictly well-formed [11] (“well-formed” in FAST-
TRACK is equivalent to “strictly well-formed” in PACER). Within
a sampling period, it should be clear that all actions that PACER
performs have the same effect as those that FASTTRACK performs,
except when PACER avoids joins via version numbers. Lemma 7
shows that PACER maintains an additional invariant:

Ver(o) � Ct.ver =⇒ So.vc v Ct.vc

Because the vector clock join operation takes the pointwise maxi-
mum of all elements, if So.vc v Ct.vc, then the operation Ct.vc =
Ct.vc t So.vc is unnecessary, as it will always set Ct.vc equal to
itself. The version numbers are used to avoid joins only in this sce-
nario (see Rules 4, 5, 7, and 8 in Table 7). Thus, PACER effectively
performs the same operations that FASTTRACK performs within
a sampling period, and Lemma 8 follows from the FASTTRACK
proof.

DEFINITION 3. (Fully-sampled races). Given two conflicting ac-
tions a and b such that σa ⇒a.α σb and a 6HB−−→a.α b , a and b
participate in a fully-sampled race if sa = true, sb = true, and
∀d ∈ α, sd = true.

THEOREM 1. (Soundness for fully-sampled races). If σ ⇒α σ′

and ∀a ∈ α, sa = true, then α is race-free.

Proof. By Lemmas 5 and 6 all states within a sampling period are
strictly well-formed. By Lemma 8, vector clocks imply happens-
before within a sampling period. Because all operations PACER
performs within a sampling period are effectively equivalent to
those that FASTTRACK performs, the proof proceeds similarly to
the FASTTRACK soundness proof [11], substituting Lemmas 5, 6,
and 8 to justify that states are strictly well-formed, and that vector
clocks imply happens-before.
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DEFINITION 4. (Sampled races). Given two conflicting actions a
and b such that σa⇒a.α σb and a 6HB−−→a.α b, a and b participate in
a sampled race if sa = true.

DEFINITION 5. (Shortest races). Given two conflicting actions a
and b such that σa⇒a.α σb and a 6HB−−→a.α b, a and b participate in
a shortest race if there does not exist any intervening read or write
action d such that d conflicts with b, α = β.d.γ and d 6HB−−→a.α b.

THEOREM 2. (Statistical Soundness). If σ0 ⇒α σ′ then α con-
tains no sampled shortest races.

Proof. Suppose that α contains a sampled shortest race, and thus
includes actions a and b such that

a 6HB−−→α b Assume (13)

sa = true ′′ (14)

a and b participate in a shortest race ′′ (15)

In a manner similar to FASTTRACK’s soundness proof, the proof
proceeds by lexicographic induction on the length of α and the
length of γ [11].

If α and γ have length zero then α trivially does not contain
sampled shortest races. Thus, without loss of generality, assume
that α = β.a.γ.b, that β.a.γ does not contain any sampled shortest
races, and

σ0 ⇒β σa ⇒a σ′a ⇒γ σb IH (16)

σ0 ⇒β σa ⇒a σ′a ⇒γ σb ⇒b σ′b To prove (17)

Let t be the thread that performs a, and let u be the thread that
performs b. If t = u then t and u do not race by program order and
we have a contradiction with Equation 13. Thus, assume t 6= u, and
proceed with the inductive step, which we prove by contradiction.

If a = wr(t, x), b = rd(u, x), and the rule for b is “Read,
Same epoch” (Rule 1 in Table 4), then there must exist a prior
access d = rd(u, x) that set the epoch value. If d is after a, then
a

HB−−→α d
HB−−→α b by induction on the length of γ.

If d is before a, then because a is in a sampling period, d
must either occur within the same sampling period as a, or there
must exist a sbegin action that occurs after d but before a. If d
occurred prior to the sbegin action, then the sbegin action would
have incremented Cu.vc(u), and the epoch would have changed,
violating the conditions for Rule 1 (thus a different rule would
have handled this case). If d occurred in the same sampling period
as a, then there could be no intervening fork, release, or volatile
write actions by thread u, as those actions would have incremented
Cu.vc(u) and changed the epoch. Thus, d 6HB−−→α a, and because
both d and a occur in the same sampling period, by Theorem 1
PACER would have gotten stuck by the prior race, contradicting the
assumption in Equation 16.

Otherwise, if the rule for b is not Rule 1, it must be the case that

W b
x � Cbu.vc Table 4, Rules 2-7 (18)

because otherwise the analysis would become stuck. The value of
W b
x must either have been set by a, or have been set by some other

access, d, that also wrote x. The inductive hypothesis ensures that
a

HB−−→α d
HB−−→α b in the case where d occurs after a, and if

d occurs before a, then either W ′dx = Cat .vc(t)@t already, or a
replaces the write epoch for d with that value. In either case,

W b
x = W ′

a
x = Cat .vc(t)@t Table 4, Rules 5-7 (19)

By Equation 14 and Lemmas 5 and 6, we know that state σa must
be strictly well-formed, and thus

Cau.vc(t) < Cat .vc(t) Definition 2 (20)

W b
x 6� Cau.vc Equations 19 and 20 (21)

Thus, some action must increase the value of C′au.vc(t) to satisfy
Equation 18. The only actions that could satisfy that criteria ensure
that a HB−−→α b, and thus we have a contradiction with Equation 13.

The completeness proof for PACER proceeds in a similar man-
ner to the completeness proof for FASTTRACK [11]. We use their
abbreviation

Ka =

(
S ′a if a is a join or acq operation
Sa otherwise

LEMMA 9. (Happens-before implies vector-clock ordering). Sup-
pose α is well-formed, σ ⇒α σ′, and a, b ∈ α. Let t be the thread
that performs a, and let u be the thread that performs b.

a
HB−−→α b =⇒ Ka

t .vc v Kb
u.vc To prove (22)

Proof. By induction on the derivation of a HB−−→α b. Note that
although PACER does not increment vector clocks during non-
sampling periods, it does perform join operations during non-
sampling periods. These join operations ensure that Equation 22
holds even when vector clocks do not increment. While vector
clocks imply happens-before only during sampling periods in
PACER, happens-before always implies vector clock ordering.

THEOREM 3. (Completeness). If α is race-free then σ0⇒α σ.

Note that we define completeness in terms of a race-free program,
rather than a program that is free of sampled, shortest races. We
do this because sometimes, PACER will report a race that is not the
shortest. We are indifferent to whether PACER reports such races
(in fact, it is preferable if it does) and do not consider these races
to be false positives. Thus, the weaker completeness criterion is
sufficient.

Proof. The proof proceeds by contradiction in a manner similar
to the FASTTRACK proof [11]. Suppose α = β.a.γ such that
operation a is stuck,

σ0 ⇒β σ′ /⇒a

If a is stuck and t is the thread that performs a, then a = rd(t, x)
or a = wr(t, x), and

W a
x 6� Cat .vc Table 4 (23)

Here we show the argument for a preceding write. Let b =
wr(u, x) be the most recent write to x that precedes a.

W a
x =

(
W ′

b
x if sb = true

⊥e otherwise
Table 4, Rules 5-7 (24)

If b did not occur within a sampling period, then

W a
x = ⊥e Equation 24 (25)
⊥e 6� Cat .vc Equations 23 and 25 (26)

and we have a contradiction, because by definition of ⊥e the rela-
tion ⊥e � Cat .vc always holds.

Otherwise, if b did occur within a sampling period, then

W ′
b
x = Cbu.vc(u)@u Table 7, Rules 5-7 (27)

= W a
x 6� Cat .vc Equations 24 and 23 (28)
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Hence,

Kb
u.vc(u) = Cbu.vc(u) 6≤ Cat .vc(u) = Ka

t .vc(u)

By Lemma 9 b 6HB−−→α a so the program is not race-free, and we
have a contradiction.

C. Handling Volatile Variables
This section details how prior GENERIC race detection and PACER
handle synchronization operations involving volatile variables.
The Java Memory Model states that each write to a volatile vari-
able happens before subsequent reads of the same variable [21].
Volatiles are quite similar to locks—a volatile read is like a lock
acquire, and a volatile write is like a lock release—except that a
volatile read need not be followed by a volatile write on the same
thread.

How GENERIC handles volatile variables. GENERIC uses the
same synchronization metadata for each volatile field x that it uses
for other synchronization objects: a vector clockCx. Algorithms 14
and 15 show how GENERIC handles reads and writes to volatile
variables. The analysis for a volatile read is identical to the analysis
for a lock acquire. The analysis for a volatile write is similar to
the analysis for a lock release, except the volatile write analysis
performs a vector clock join instead of copy.

FASTTRACK does not introduce new analysis for synchro-
nization operations; it uses the same algorithms as GENERIC for
volatile variables.

How PACER handles volatile variables. PACER redefines low-
level vector clock operations (join, increment, and copy) used in
GENERIC’s analysis for synchronization operations (Section 3.2).
PACER uses the same synchronization operations for each volatile
variable x as for each lock: clockx and vepochx. While PACER
redefines vector clock join in Algorithm 11, it is only suitable when
the target of the join is a thread, not a volatile variable, because it
relies on the target having a versioned vector clock and a version
vector. Thus PACER uses a special vector clock join for this case,
shown in Algorithm 16. In non-sampling periods, the algorithm
uses versions to detect if clockx v clockt; if so, the join simply
becomes a shallow copy from clockt to clockx. Then the behavior
is the same as at a lock release, i.e., the analysis copies the thread’s
clock to the volatile’s clock.
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