
Breadcrumbs: Efficient Context Sensitivity
for Dynamic Bug Detection Analyses ∗

Michael D. Bond
University of Texas at Austin
mikebond@cs.utexas.edu

UT Austin Computer Sciences Technical Report TR-09-36. Under double-blind submission to PLDI 2010.

Graham Z. Baker
MIT Lincoln Laboratory

gzbaker@ll.mit.edu

Samuel Z. Guyer
Tufts University

sguyer@cs.tufts.edu

Abstract
Calling context—the set of active methods on the stack—is crit-
ical for understanding the dynamic behavior of large programs.
Dynamic program analysis tools, however, are almost exclusively
context insensitive because of the prohibitive cost of representing
calling contexts at run time. Deployable dynamic analyses, in par-
ticular, are limited to reporting only static program locations.

This paper presents Breadcrumbs, an efficient technique for
recording and reporting dynamic calling contexts. It builds on an
existing technique for computing a compact (one word) encoding
of each calling context that client analyses can use in place of
a program location. The key feature of our system is a search
algorithm that can reconstruct a calling context from its encoding
using only a static call graph and a small amount of dynamic
information collected in cold methods. Breadcrumbs requires no
offline training or program modifications, and handles all language
features, including dynamic class loading. On average, it adds 10%
to 20% overhead to existing dynamic analyses, depending on how
much additional information it collects: more information slows
down execution, but improves the decoding algorithm.

We use Breadcrumbs to add context sensitivity to two dynamic
analyses: a race detector and an analysis that identifies the origins
of null pointer exceptions. Our system can reconstruct nearly all of
the contexts for the reported bugs in a few seconds. These calling
contexts are non-trivial, and they significantly improve both the
precision of the analyses and the quality of the bug reports.

1. Introduction
A stack trace is one of the most useful pieces of information to
have when debugging a program failure. A stack trace captures
the full dynamic calling context of the code that failed, not just its
static program location. This level of detail is crucial for debugging
object-oriented programs, which have many small methods and a
high degree of reuse. Producing a stack trace is straightforward at
the point of failure: the program is halted, and a debugging tool
can inspect the program’s stack and emit a sequence of methods or
call sites for the programmer to inspect. The cost of computing or
storing the stack trace is largely unimportant.

Recently, more sophisticated dynamic debugging techniques
have focused on identifying the root causes of bugs, not just the
immediate circumstances of failures. To do this, they record a
lot of information that might be useful in explaining a failure, if
one occurs. Dynamic race detection tools, for example, record all
memory accesses; when a race is detected they provide information
about both the access that triggered the detector and the earlier

∗ This material is based upon work supported by the National Science
Foundation under Grant No. CCF-0916810

access with which it conflicts. Ideally, these tools would report
multiple stack traces: one for the point of failure, and one for each
event leading up to it. Without knowing which stack traces will
be needed, however, most tools are limited to recording just static
program locations (e.g., method and bytecode index). The naive
approach of walking the stack and recording the explicit calling
context for every event—for example, every memory access—is
prohibitively expensive.

This paper presents Breadcrumbs, an efficient runtime mech-
anism for recording and reporting dynamic calling contexts. Our
work builds on an existing mechanism called probabilistic calling
context: during execution our system computes a probabilistically
unique ID (called a PCC value) for each calling context [Bond and
McKinley 2007]. Dynamic debugging tools can be made context
sensitive by using the PCC value to tag events or data wherever
they would have used simple program locations. Unlike the origi-
nal PCC work, though, our system can decode a PCC value back
into its original sequence of calls for error reporting. In addition,
unlike recent related techniques, our system does not require any
ahead-of-time training, data collection, or program analysis. All in-
formation needed to encode and decode PCC values is computed
online. Our technique is suitable for use by debugging and analysis
tools for deployed software.

The key problem we solve is collecting enough extra informa-
tion at runtime to allow accurate decoding of PCC values, without
incurring a large overhead. Since PCC values are computed top-
down during execution (that is, the PCC value in a method is com-
puted as a function of the PCC value in its caller and a callsite ID),
the decoding algorithm is naturally a bottom-up search: starting at
the most recent method, we invert the computation at each call site,
moving from callees to callers until we reach ”main”. While de-
coding occurs offline, a blind search of the PCC space is much too
expensive. To constrain the search Breadcrumbs collects two addi-
tional kinds of information at runtime: (1) a static call graph, which
constrains which potential callers it must consider, and (2) the set of
PCC values observed at a callsite. Since method calls are extremely
frequent, however, we can only build these sets for code that is rela-
tively cold. This threshold is a tunable parameter that trades online
performance for reconstruction accuracy.

We implement Breadcrumbs in Jikes RVM, a high-performance
Java-in-Java virtual machine [Alpern et al. 1999], and integrate it
with two real dynamic debugging tools: a dynamic race detector
based on the FastTrack algorithm [Flanagan and Freund 2009],
and origin tracking, an analysis for diagnosing null pointer ex-
ceptions [Bond et al. 2007]. Breadcrumbs is able to reconstruct
almost all calling contexts for the bugs reported with overheads
around 10% to 20% on average (depending on the hotness thresh-
old). The resulting bug reports provide much more information than

the context-insensitive versions. With Breadcrumbs, origin tracking
reports a full stack trace for both the exception and the origin of the
null value. The race detector reports the full calling context of most
conflicting memory accesses, and separates buggy from non-buggy
uses of common code.

The rest of this paper is organized as follows. First, we discuss
in more detail the benefits of context sensitivity for dynamic anal-
ysis, and the class of dynamic analysis tools that can benefit from
this technique. In Section 3 we present the Breadcrumbs decoding
algorithm and associated runtime support. In Section 4 we describe
our results—both performance and accuracy—using Breadcrumbs
to make two dynamic bug detectors context sensitive.

2. Motivation
Dynamic analysis has emerged as an important technique for under-
standing program behavior, and in particular, detecting program-
ming errors. Catching bugs at runtime has a number of advantages
over other techniques, such as static analysis and testing. It works
on all inputs, easily handles language features like dynamic class
loading and bytecode rewriting, and, in many cases, produces no
false positives. In addition, it is effective for catching difficult-to-
reproduce errors, such as race conditions.

Monitoring programs at runtime, however, imposes significant
constraints on the analysis algorithm, both in terms of time and
space. Deployable dynamic analyses, in particular, cannot signif-
icantly degrade program performance. As a result, most dynamic
bug detectors are context insensitive: they analyze and report bugs
strictly in terms of static program locations.

For modern object-oriented programs, however, static program
locations are often insufficient to explain program behavior. These
programs exhibit complex patterns of code reuse and delegation
that make it hard to understand how execution arrived at a par-
ticular point. In addition, these programs consist of many layers
of software, assembled using components and application frame-
works. Context sensitivity is critical for understanding the circum-
stances of an error.

The goal of Breadcrumbs is to provide a general mechanism for
making deployable dynamic bug detectors context sensitive. In this
section we discuss the benefits and challenges of context sensitivity
in a dynamic setting, and we describe the class of applications that
will benefit from our approach.

2.1 Why context sensitivity?
Context sensitivity is crucial for understanding the behavior of
large object-oriented programs [Inoue and Nakatani 2009; Lhoták
and Hendren 2008]. Unlike static analysis, however, prior work on
dynamic analysis has largely avoided context sensitivity because no
efficient technique was known. Dynamical analysis tools, such as
bug detectors, however, stand to benefit considerably from context
sensitivity, which improves both the precision of the analysis and
the quality of the bug reports.

Context sensitivity improves precision by separating buggy
from non-buggy uses of the same code. Modern software is as-
sembled from class libraries, application frameworks, and other
reusable components. Failures in common code might occur in
some contexts of use and not in others. In our race detection exper-
iments, for example, we discovered that one static program location
is actually involved in several dynamically distinct races.

Context sensitivity improves bug reporting by providing more
information about the circumstances of relevant program events.
State-of-the-art memory leak detectors, for example, tag each ob-
ject with its allocation site [Chilimbi and Hauswirth 2004]. If a
leak is detected, the allocation site is used to identify the objects
involved. With factory methods, however, objects of a particular
class are all generated at a single allocation site. Using only static

program locations, this information is essentially useless for de-
bugging. Tagging objects with the full calling context of their al-
location solves this problem by revealing the context in which the
factory method was called.

In addition, when the origin of a bug and the point of failure
are far apart in the program, it is not always obvious how they are
connected. With the full calling context for both it is much easier
to see how control flows from one to the other.

The main challenge, for both static and dynamic analyses, is the
shear number of calling contexts. In theory, this number is expo-
nential in the size of the program. In practice, even relatively small
programs can have millions of calling contexts. In the presence of
recursion, the number of possible calling contexts is unbounded.

2.2 Target clientele
Not all client analyses need the techniques described in this paper.
Breadcrumbs represents a specific tradeoff between cost and preci-
sion that is targeted at deployable bug detectors. These clients rep-
resent a broad class of dynamic analysis with the following proper-
ties:

• (1) Correct execution must be fast: our goal is to provide context
sensitivity in a deployed setting.
• (2) Tracked events are numerous: the client analysis records

many context-sensitive events online, not knowing which ones
might later be relevant for error reporting.
• (3) Reconstruction of calling contexts occurs offline: since the

search space is large, and both the encoding and decoding are
probabilistic, Breadcrumbs allows the reconstruction algorithm
to run for several seconds before returning its best candidate, if
any.

Correct execution must be fast. Deployable bug detectors have
become increasingly important for languages like Java, which in-
clude many features that hamper other methods of error detec-
tion. Unlike static analysis, dynamic analysis operates on the con-
crete program rather than an abstract approximation, often catching
all the real errors with no false positives. Dynamic analysis also
works naturally in the presence of dynamic class loading and byte-
code rewriting. Deployable bug detectors also catch difficult-to-
reproduce errors, such as race conditions, which are often missed
during routine testing. To be deployable, however, a bug detector
must avoid slowing the program down by a significant amount.
Breadcrumbs keeps time and space overheads low, and includes a
tunable parameter (see Section 3) that controls the amount of over-
head versus the accuracy of decoding.

Other kinds of dynamic analysis do not require high perfor-
mance. Using Valgrind, for example, can slow programs down by
a factor of 30 or more [Nethercote and Seward 2007]. For these ap-
plications, the additional expense of walking the stack or building
a calling context tree (see below) is not significant. Breadcrumbs
might still be useful, however, since it requires few changes to the
analysis algorithm.

Events are numerous. Providing context sensitivity in a deploy-
able setting is particularly challenging when events that need call-
ing context information occur very frequently. The dynamic analy-
sis clients presenting in Section 4, for example, record every mem-
ory access (for race detection), and every null pointer (for origin
tracking). Existing techniques, which represent calling contexts ex-
plicitly, would be much too expensive. These techniques fall into
roughly two categories: explicit stack traces, and building the dy-
namic calling context tree.

Creating an explicit stack trace is relatively slow and occupies
space proportional to the depth of the calling context (e.g., as
an array of call sites) [Nethercote and Seward 2007; Seward and

Nethercote 2005]. For infrequent events, however, this cost is easily
hidden; for example, for a dynamic analysis that records the calling
context at each new thread start. For frequent events, however, both
the time and space costs are much too high for use in deployed
software. Walking the stack at every system call or at every object
allocation, for example, slows execution dramatically [Bond and
McKinley 2007].

An alternative is to build a dynamic calling context tree (similar
to a dynamic call graph), in which each node represents a unique
calling context [Ammons et al. 1997; Spivey 2004]. Per event
recorded, the time and space costs are very low: a calling context
is identified by a pointer into the tree. Building and maintaining
the tree, however, requires every method call to check the set of
children contexts and create a new node if necessary. In addition,
the tree can become very large: the eclipse benchmark, for exam-
ple, executes 35,000 static callsites resulting in 10 million unique
calling contexts (see Table 1 in Section 4).

Reconstruction occurs offline The techniques we use to keep
overhead low at runtime make reconstructing calling contexts more
difficult. First, since the underlying PCC values are only probabilis-
tically unique, the reconstruction algorithm can find multiple call-
ing contexts for a single PCC value. Second, we collect a limited
amount of information to guide the search algorithm; depending on
the quality of this information the search space might still be very
large. Breadcrumbs uses an iterative deepening algorithm with a
fixed time budget (five seconds in our experiments), after which
it returns the best solution found so far, if there is one. If none is
found, the reconstruction fails. As a result, our system is most suit-
able for error reporting and logging. More work is needed to de-
termine if Breadcrumbs could be used to answer context-sensitive
questions online.

3. Breadcrumbs algorithm
Breadcrumbs builds on probabilistic calling context (PCC) [Bond
and McKinley 2007], an online technique for computing a proba-
bilistically unique ID (called a PCC value) for each dynamic call-
ing context. While PCC computes an efficient and compact encod-
ing of calling contexts, it provides no way to decode a PCC value
for use in bug reporting. This section describes our calling context
reconstruction algorithm and the additional runtime support needed
to make this decoding possible.

3.1 The PCC decoding problem
Each PCC value is essentially a hash of the sequence of callsites
that compose a calling context. PCC values are computed continu-
ously during execution so that dynamic analyses can obtain a repre-
sentation of the current calling context at any time. At every method
call, a PCC value for the new context is computed as a function of
the PCC value in the caller, plus an identifier representing the call-
site. Specifically, given a PCC value p for the current calling con-
text, and a callsite ID c, it computes the new calling context in the
callee as:

f(p, c) = (3p + c) mod 232

The initial PCC value representing the top-most context (the main
method) is zero; c0 represents a call site in main and cn represents
the most recent call. Computing PCC values during execution,
shown graphically in Figure 1, proceeds as follows:

p0 = 0 {the main calling context}
p1 = f(p0, c0) {context in callee invoked at c0 in main}
...

!"#

!$#

!%#

&"# &'#

&$# &(#

C() B()

A()

D()

f !"#

)#
f*"!"#

f !"#

Figure 1. Calling context encoding and decoding. Method A()
calls method B() at callsite c1; the child context in B() is computed
as p2 = f(p1, c1). Likewise, when B() calls D(), we compute
p3 = f(p2, c2). The inverse function, f−1, takes a PCC value
and a callsite and computes the parent context. The challenge is
choosing the right callsite: choosing correctly, we compute p2 =
f−1(p3, c2) and p1 = f−1(p2, c1). Choosing callsite cy , however,
leads to a PCC value that never occurred.

pi = f(pi−1, ci−1)
...
pn = f(pn−1, cn−1)

The PCC value decoding problem can be described abstractly as
follows: given a PCC value pn, find a sequence of callsite IDs c0,
c1, ..., cn−1 such that

pn = f(f(...f(0, c0)..., cn−2), cn−1)

One key observation is that the single-step PCC computation f is
invertible, in spite of its use of modular arithmetic, because 3 and
232 are relatively prime. Given a particular p′ and c, there is only
one p that satisfies p′ = (3p + c) mod 232. This property allows
us to recast the problem as a backward search: starting at the last
callsite, we can invert the PCC computation one callsite at a time
until we reach main.

Given pn,
choose cn−1 and compute pn−1 = f−1(pn, cn−1)
...
choose ci−1 and compute pi−1 = f−1(pi, ci−1)
...
choose c0 such that f ′(p0, c0) = 0

Without any additional information, this search problem is in-
tractable. Even relatively small programs contain 1000s of call
sites and calling contexts 10s of levels deep, leading to more than
100010 = 1030 combinations. In addition, because PCC values are
only probabilistically unique, considering all possible combina-
tions of call sites will discover many spurious paths that represent
hash collisions. In the presence of recursion, the search is actually
unbounded because the PCC value does not directly encode the
length of the calling context.

3.2 Pruning the search
In order to constrain the search, Breadcrumbs collects two kinds
of additional information at run time, one static and the other
dynamic.

First, decoding uses a static call graph to prune out callsites
that cannot invoke the current method. Assuming it has decoded
the path up to call site ci in method mi, it only considers callsites
ci−1 that could invoke mi. This constraint significantly reduces the
fan-out of the search, and thus dramatically reduces the size of the
search space.

Breadcrumbs computes the static call graph during just-in-time
compilation using a traditional type-based algorithm for approxi-
mating possible callees. It handles dynamic class loading naturally
by adding call graph edges as the VM loads, resolves, and com-
piles new methods. The resulting data structure is small and does
not significantly impact compilation time, but it is typically incom-
plete, however, due to calls in and out of native methods and the
virtual machine.

Second, Breadcrumbs collects dynamic information to prune
call paths that never occurred during execution. For real programs,
the number of calling contexts that actually occur in a particular
run is much, much smaller than the number of calling contexts that
could possibly occur in any run.

Breadcrumbs modifies the dynamic compiler to insert instru-
mentation at every application call site that collects per-callsite
PCC values. The per-callsite PCC values for callsite ci−1 are all
PCC values pi that PCC instrumentation computed at ci−1. That
is, the per-callsite values for a callsite are all the PCC values com-
puted at the callsite.

p′ ← f(p, c) {Original PCC computation}
valuesc ← valuesc ∪ {p′} {Record per-callsite PCC value}
c : foo(. . .) {Original application call site}

Collisions among these per-callsite PCC values are highly unlikely,
and they prune the search to practically one candidate. Unfortu-
nately, even with careful engineering, updating the per-callsite val-
ues at every method call is too expensive, both in time and space,
for deployed software.

3.3 Trading accuracy for performance
To control the costs of recording every per-callsite PCC value,
Breadcrumbs stops recording per-callsite PCC values at hot call-
sites, which are callsites whose frequency exceeds a custom thresh-
old hotThreshold. The instrumentation at per-callsite values tracks
the callsite’s execution frequency. If the frequency exceeds hot-
Threshold, the instrumentation discards any per-callsite values
recorded so far, and it does not record per-callsite values in the
future. In our implementation, if the dynamic optimizing compiler
recompiles a hot callsite, it can forgo adding instrumentation (in-
cluding the threshold check) that records per-callsite PCC values.

The hotThreshold is a key parameter to Breadcrumbs that sig-
nificantly affects its performance and reconstruction accuracy. In
future work, we plan to explore more sophisticated metrics for se-
lecting hot callsites, such as avoiding marking many callsites hot in
one part of the static call graph, a situation that often leads to the
reconstruction algorithm being unable to reconstruct values.

3.4 Client sites
As described so far, Breadcrumbs’ instrumentation computes PCC
values, records per-callsite PCC values, and builds a static call
graph. Its purpose, however, is to serve a client analysis, such as
a dynamic bug detection analysis, that stores program locations.

Each client analysis defines some notion of client sites, which
are program locations of interest to the analysis. At any program
point, however, the PCC value only represents the calling context
at the last caller’s callsite. When the client requests a PCC value,
Breadcrumbs needs to modify the PCC value to include the client
site. Breadcrumbs computes the PCC value for client sites as fol-
lows:

p′ ← f(p, cclient)
{Give p′ to client analysis as current program location}

Breadcrumbs also records the set of all client sites, which is needed
during the first step of the reconstruction algorithm. During or at
the end of the run, the client analysis asks Breadcrumbs to decode
one or more PCC values (e.g., potential bug locations).

3.5 Reconstruction algorithm
Algorithm 1 shows the complete reconstruction algorithm,

which uses the static and dynamic information described above.
The algorithm uses iterative deepening to find the most likely call-
ing context for a given PCC value.

Each iteration is a depth-limited backwards search of the PCC
space, following potential call edges from callees back to callsites
in their callers, continuing until it reaches the value 0. Not all
edges are equal, however: when static and dynamic information
is available, the resulting edges are much more likely to be part
of the correct calling context. To account for this difference, the
algorithm computes a depth metric for each edge, called the blow-
up factor (described in detail below), which estimates the size of
the search space based on the fan-out of previous search steps. A
large blow-up factor results from many blind or semi-blind search
steps; it represents a low-confidence path and indicates a region of a
subgraph that will take a long time to explore. Each iteration of the
search has a set blow-up limit, and the algorithm cuts off any path
that exceeds the limit. The main search loop, procedure decode() in
Algorithm 1, successively increases the blow-up limit looking for a
solution with minimum blow-up.

Procedure decodeWithLimit() performs a single step of the
search given three pieces of information: the current PCC value
to decode pi (p′ in the algorithm), the last callsite identified ci (site
in the algorithm), and the current blow-up factor. If pi is zero, we
have a potential solution, which we record along with a confidence
value (similar to blow-up). Otherwise, we select a set of candidate
callsites for ci−1 by looking at the static call graph and the dy-
namic per-callsite PCC sets, yielding two sets of candidates and
four possible types of sites to consider:

Static and dynamic: a site that is in both the static and dynamic
sets; it is very likely to be part of the correct calling context.

Static only: a site in the static set but not the dynamic set. The
algorithm considers hot sites since these are the only sites that
can be callers but not be in the dynamic set.

Dynamic only: a site in the dynamic set but not the static set.
These sites occur when the application calls into the VM or
class libraries, which in turn call back into the application.
Since we do not analyze this system code, the static call graph
will be missing these edges.

No static, no dynamic: a site in neither set. The algorithm must
consider all hot sites as potential callers.

In each case, the resulting set of candidate callsites is assigned a
blow-up factor, which is computed from three variables:

searchSpace Estimates the total branching factor of the region of
the call graph being explored with static but no dynamic infor-

Algorithm 1 Decoding calling context from a PCC value
globals
{Current blow-up cutoff}
blowupLimit← 2
{For sites indicated by dynamic information only, what’s the probability that a match is not a conflict?}
probNoConflict← (1− numValues

232)|allCallSites| where numValues =
P

s∈allCallSites |s.perCallSiteValues|

procedure decode(p′)
solutions← ∅
{Iterative deepening}
repeat

decodeWithLimit(p′)
blowupLimit← 2× blowupLimit
sort(solutions) {Sort by increasing blow-up}

until solutions 6= ∅ ∨ timed out

procedure decodeWithLimit(p′)
{If client site known, instead just call decodeFromSite() directly}
for all clientSite ∈ allClientSites do

p← f−1(p′, clientSite)
decodeFromSite(p, clientSite, {1, 1, 0})

end for

procedure decodeFromSite(p′, site, {searchSpace, permProb, blindDepth})
if p’ = 0 then
{Found a possible solution. Assign a blow-up for sorting.}
solutions← solutions ∪ {contextOnStack, searchSpace

permProb }
end if

staticSites← getStaticallyPossibleSites(p′) {Use static call graph}
dynamicSites← getDynamicallyPossibleSites(p′) {Use per-call site values}

if staticSites 6= ∅ then
{Try sites indicated by both static and dynamic information}
decodeCallers(p′, staticSites ∩ dynamicSites, {1, permProb, 0})
{Try sites indicated by static information but with dynamic information discarded}
decodeCallers(p′, {site ∈ staticSites s.t. site.perCallSiteValues = null}, {searchSpace× |callerSites|, permProb, blindDepth + 1})

else
{Try sites indicated by dynamic information only}
decodeCallers(p′, dynamicSites, {searchSpace, permProb× ProbNoConflict, 0})
{Try sites not indicated by static or dynamic information}
decodeCallers(p′, allRemovedCallSites, {searchSpace× |allRemovedCallSites|, permProb× ProbNoConflict, blindDepth + 1})

end if

procedure decodeCallers(p′, callerSites, {searchSpace, permProb, blindDepth})
blowupFactor← searchSpace+blindDepth

permProb

if blowupFactor ≤ blowupLimit then
for all callerSite ∈ callerSites do

p← f−1(p′, callerSite)
decodeFromSite(p, callerSite, {searchSpace, permProb, blindDepth})

end for
end if

mation. The value is reset to 1 on steps that use dynamic infor-
mation, and otherwise accumulates the product of the number
of possible callers at each step.

blindDepth Estimates the depth of the region of the callgraph
being explored with static but no dynamic information. The
searchSpace variable tracks the fan-out of this subgraph, but it
does not change when there is just one statically possible caller.
Adding in the depth, which only grows by one, captures this
small, but significant, unit of work.

permProb If a site is indicated by dynamic but not static informa-
tion, there is some probability that it represents a conflict in the
PCC space. permProb accounts for this factor by accumulat-
ing the product of the probability of such a collision for each
dynamic-only callsite along the search path.

Procedure decodeCallers() takes the PCC value, the set of can-
didate callsites, and the blow-up factor, and cuts off the search
if the blow-up exceeds the limit. If not, for each candidate call-
site ci−1 it inverts the PCC computation to obtain pi−1 and calls
decodeFromSite() recursively.

Procedure decodeWithLimit() is the main entry point for a sin-
gle iteration of the search. Since PCC values do not encode a pro-
gram location directly, the first step of the search must consider all
possible client sites (all places where the dynamic analysis client
requested a PCC value). The fan-out of this first search step can be
significant. One possible solution is to give the client a 64-bit value
for each context identifier: 32 bits for the PCC value and 32 bits for
the client site.

4. Results
This section evaluates the accuracy and overhead of Breadcrumbs.
We first evaluate Breadcrumbs without a client. We then demon-
strate its utility by adding context sensitivity to two existing dy-
namic bug detectors, one for detecting races and the other for
identifying the origins of null pointers. It required modest effort
to integrate these analyses with Breadcrumbs. The decoding algo-
rithm can reconstruct the majority of calling contexts for these two
clients, within a time limit of five seconds per context. It fails to
reconstruct contexts that involve long, uninterrupted hot sites; dy-
namic information is unavailable for these contexts, and the blow-
up in possible static callers becomes too large to search within the
time limit. The calling contexts that it successfully reconstructs are
long and nontrivial. These bug reports are much more informative
than the context-insensitive information provided by the unmodi-
fied systems.

4.1 Methodology
Platform. We execute all experiments on a Core 2 Quad 2.4 GHz
system with 2 GB of main memory running Linux 2.6.20.3. Each
of two cores has two processors, a 64-byte L1 and L2 cache line
size, and an 8-way 32-KB L1 data/instruction cache; and each pair
of cores shares a 4-MB 16-way L2 on-chip cache.

Benchmarks. We evaluate Breadcrumbs on the DaCapo bench-
marks version 2006-10-MR1 [Blackburn et al. 2006] and a fixed-
workload version of SPECjbb2000 [Sta 2001] called pseudojbb.
We exclude the benchmarks bloat because its performance is er-
ratic and lusearch because it does not execute correctly in Jikes
RVM 3.1.0 in our environment, with or without Breadcrumbs.

4.2 Breadcrumbs without a client
We first evaluate characteristics of Breadcrumbs without a client.
Figure 2 shows the overhead of several Breadcrumbs configurations
compared to unmodified Jikes RVM. Each sub-bar is the median 10

antlr
chart

eclipse
fop hsqldb

jython
luindex

pmd
xalan

pseudojbb

geomean

0

40

80

120

160

O
ve

rh
ea

d
(%

)

No threshold
t = 100,000
t = 10,000
t = 1,000
t = 100
PCC only

Figure 2. Overhead of Breadcrumbs for various hot callsite thresh-
olds.

trials. The PCC only configuration computes the PCC value all the
time but does not store per-callsite PCC values. The other configu-
rations store PCC values for callsites whose execution frequency
is below the hotThreshold. With no threshold at all, the system
records per-callsite PCC sets at all callsites, adding almost 100%
overhead. This option makes the reconstruction algorithm fast and
very accurate, but it is probably too slow for deployed software.
Thresholds of 1,000 and 10,000 add about 10% and 20% overhead,
respectively, which is low enough for many deployed settings. The
t = 100 configuration adds about 5% overhead over PCC, mainly
due to instrumentation in baseline-compiled methods and the base-
line compiler adding static call graph edges.

Table 1 presents statistics about dynamic and distinct per-
callsite PCC values it stores, and executed and hot call sites. Each
number is the average from 10 trials. The PCC values stored shows
how many values Breadcrumbs stores in per-callsite PCC values.
Dynamic values is the total number of hash table lookups to add
per-callsite values. It grows dramatically with the hot threshold,
which explains the significant performance impact from high hot
thresholds. Distinct values is the number of distinct PCC values
that Breadcrumbs stores. It increases with the hot threshold but
not as drastically, and it shows that using a low threshold lowers
Breadcrumbs’ memory footprint in addition to its time overhead.

The Static callsites columns show the size of the static call
graph. Exec. is the total number of callsites in the static call graph
that the application actually executed. Breadcrumbs is only con-
cerned with executed sites, which it computes easily because call-
site instrumentation already tracks execution frequency in order to
determine if the site is hot. Breadcrumbs marks a significant pro-
portion of sites as Hot for low thresholds. Of course, in the case of
no threshold, no site becomes hot.

In summary, the table shows that the hot threshold significantly
affects the characteristics of Breadcrumbs. Higher thresholds in-
crease its performance impact, but lower thresholds record a lot less
information. We find that thresholds of 10,000 and 100,000 provide
an acceptable balance: low enough overheads for most deployed
software, but still able to reconstruct most real context-sensitive
program locations.

4.2.1 Origin tracking
Origin tracking is a dynamic analysis for identifying the causes of
null pointer exceptions [Bond et al. 2007]. It tracks the origin of
every null value, which it stores in place of the null value. These

PCC values stored Static callsites
Program Threshold Dynamic Distinct Exec. Hot

antlr

100 834,998 6,152 6,836
1,000 4,608,868 38,143 3,078

10,000 17,808,051 121,711 11,105 907
100,000 69,635,283 413,218 352

∞ 528,695,364 466,492 0

chart

100 276,828 93,227 1,764
1,000 1,264,545 213,146 846

10,000 5,452,412 314,987 5,874 381
100,000 32,020,085 329,185 246

∞ 201,127,995 344,824 0

eclipse

100 1,804,807 86,188 14,644
1,000 10,982,483 319,873 8,570

10,000 64,718,116 1,520,876 34,834 4,568
100,000 259,995,599 4,480,888 1,202

∞ 857,238,160 10,535,356 0

fop

100 236,824 12,193 1,703
1,000 1,343,523 15,338 1,030

10,000 5,405,674 27,630 8,059 206
100,000 14,343,170 53,985 51

∞ 21,143,486 87,320 0

hsqldb

100 163,775 9,591 1,490
1,000 1,278,734 22,065 1,151

10,000 10,074,484 30,749 4,079 897
100,000 34,616,207 47,312 120

∞ 158,805,788 52,797 0

jython

100 1,865,469 62,256 17,460
1,000 16,479,966 197,996 15,699

10,000 148,352,609 606,760 32,853 13,951
100,000 675,365,567 1,660,706 1,294

∞ 3,624,874,761 2,010,286 0

luindex

100 152,502 1,239 1,480
1,000 1,335,305 2,651 1,267

10,000 8,261,057 7,141 2,167 642
100,000 46,989,738 65,117 361

∞ 217,577,829 83,163 0

pmd

100 400,366 17,061 3,573
1,000 2,730,737 67,794 2,164

10,000 17,566,711 408,631 7,181 1,230
100,000 62,704,566 1,928,866 214

∞ 270,967,921 2,628,090 0

xalan

100 462,369 9,309 4,283
1,000 3,946,777 18,055 3,646

10,000 31,886,716 35,225 7,674 2,685
100,000 126,698,291 97,318 559

∞ 738,467,992 128,095 0

pseudojbb

100 139,777 2,998 1,179
1,000 1,092,692 4,238 1,022

10,000 8,981,094 5,822 3,033 811
100,000 44,543,902 10,094 258

∞ 137,258,103 14,171 0

Table 1. Breadcrumbs characteristics without any client, for a va-
riety of hot thresholds. Callsite instrumentation records many more
dynamic and distinct PCC values at high thresholds, and it also
marks many fewer methods as hot.

special null values flow through the program normally. If a null
pointer exception occurs, it reports the origin of the null, as well
as a context-sensitive stack trace for the current program location.
The origin is context insensitive because origin tracking encodes
static program locations for each origin. We modify origin tracking
to use PCC values in place of program locations, making the origins
context sensitive. With Breadcrumbs, the system can report two full
stack traces: one for the exception and one for the origin.

Origin tracking is challenging to make context sensitive because
there are so many null values at runtime, most of which never
cause a exception. As such, it is well suited for Breadcrumbs.

antlr
chart

eclipse
fop hsqldb

jython
luindex

pmd
xalan

pseudojbb

geomean

0

40

80

120

160

O
ve

rh
ea

d
(%

)

CS OT, no threshold
CS OT, t = 100000
CS OT, t = 10000
CS OT, t = 1000
CS OT, t = 100
CI OT

Figure 3. Overhead of origin tracking with and without context
sensitivity (i.e., with and without Breadcrumbs) for various hot
callsite thresholds.

Origin tracking can only use 27 bits for origins, since the other
5 are needed to mark the value as a null origin, so we modify
Breadcrumbs in this case to compute 27-bit PCC values (instead
of the usual 32-bit PCC values in our implementation).

Figure 3 shows the overhead of origin tracking with several
Breadcrumbs configurations and without Breadcrumbs, compared
to unmodified Jikes RVM. Each sub-bar is the median of 10 tri-
als. The OT only configuration is the overhead of origin tracking
alone, which does not use Breadcrumbs and reports only context-
insensitive origins for null pointer exceptions. The other configura-
tions use Breadcrumbs with various hot callsite thresholds. These
results mirror Breadcrumbs-only results in Figure 2. That is, Bread-
crumbs adds about the same overhead with or without a client.

The original origin tracking paper [Bond et al. 2007] evaluated
origin tracking on 12 real null pointer exceptions, which the authors
made available publicly as the Bad Apples Suite.1 The suite pro-
vides 12 null pointer exception-inducing inputs and programs. We
evaluate Breadcrumbs-enabled origin tracking with 10 of 12 excep-
tions from the Bad Apples Suite. We do not evaluate the 2 Eclipse
NPEs because Jikes RVM 3.1.0 does not execute the Eclipse GUI
correctly. (The Jikes RVM development head fixes the problem, so
we plan to port to it for the final paper.)

Table 2 shows how well Breadcrumbs reconstructs calling con-
texts for null pointer origins from the Bad Apples Suite, in the same
order as the original paper, which describes these exceptions in de-
tail and explains if and how each origin is useful [Bond et al. 2007].
Our system is able to reconstruct all but one of the calling contexts,
regardless of the hotness threshold, suggesting that this dynamic
analysis could use the t = 100 threshold with the lowest overhead.
On the other hand, many of the inputs expose null pointer excep-
tions almost immediately, so few methods are hot. In contrast, the
other client we evaluate, race detection, reconstructs contexts from
throughout execution, and unsurprisingly its accuracy degrades as
the hot threshold increases (Section 4.3).

The resulting origin stack traces are nontrivial, ranging in length
from 2 to 19 stack levels. For example, it reports the following
context-sensitive origin for the Jython #2 exception:

at org.python.core.PyObject.fastGetDict():2723
at org.python.core.PyObject.getDoc():360

1 http://www.cs.utexas.edu/~mikebond/bad-apples-suite

Program Succeeds Depth
Mckoi SQL DB Always 6
FreeMarker #1 Always 12
JFreeChart #1 Always 2
JRefactory #1 Always 8
Checkstyle Always 19
JODE Never∗ ?
Jython #1 Always 11
JFreeChart #2 Always 4
Jython #2 Always 14
JRefactory #2 Always 10

Table 2. Origin tracking statistics for the Bad Apples Suite. The
threshold does not affect reconstruction accuracy for these inputs.

at org.python.core.PyGetSetDescr.__get__():55
at org.python.core.PyObject.object___findattr__():2770
at org.python.core.PyObject.__findattr__():1044
at org.python.core.PyObject.__getattr__():1081
at org.python.pycode._pyx0.f$0():1
at org.python.pycode._pyx0.call_function():0
at org.python.core.PyTableCode.call():213
at org.python.core.PyCode.call():14
at org.python.core.Py.runCode():1182
at org.python.core.__builtin__.execfile_flags():315
at org.python.util.PythonInterpreter.execfile():158
at org.python.util.jython.main():186

Context-insensitive origin tracking of course reports only the first
line of the context.

Breadcrumbs cannot reconstruct the calling context of the origin
in JODE due to technical difficulties. At the higher thresholds,
Breadcrumbs completes an exhaustive search without finding a
matching context, indicating a bug in our implementation. We plan
to investigate for the final paper.

4.3 Race Detection
We implemented a dynamic race detector in Jikes RVM based on
the sound and precise FastTrack algorithm [Flanagan and Freund
2009]. Our race detector is not highly optimized, and on average
it slows program execution by 12x. (The implementation in the
FastTrack paper slows programs by 8x on average.) While such an
expensive race detector probably does not require Breadcrumbs—it
might as well pay the additional 2-4x and use a calling context tree
(CCT) [Ammons et al. 1997; Spivey 2004]—Breadcrumbs could
be applied to a less expensive analysis, such as sampling-based
race detection [Marino et al. 2009]. Here we use a fully sound and
precise race detector to evaluate how accurately Breadcrumbs can
reconstruct buggy, nontrivial calling contexts. For benchmarks we
use four multithreaded programs: DaCapo’s eclipse, hsqldb, and
xalan; and SPEC pseudojbb.

Figure 4 shows the overhead of race detection with several
Breadcrumbs configurations and without Breadcrumbs, compared
to unmodified Jikes RVM. Each sub-bar is the median of five tri-
als (since the experiments are time-consuming; we plan to run more
trials). The RD only configuration is the overhead of our implemen-
tation of FastTrack, which does not use Breadcrumbs and reports
only context-insensitive locations for the first access of a data race.
The other configurations use Breadcrumbs with various hot call-
site thresholds. Breadcrumbs adds somewhat more overhead with
this client than standalone or with origin tracking. While in theory
Breadcrumbs does no additional work, both systems increase vari-
ous loads in ways that add superlinearly, e.g., at high hot thresholds,
they both add significant memory overhead and stress the memory
subsystem and garbage collector.

eclipse
hsqldb

xalan
pseudojbb

geomean

0

5

10

15

20

Sl
ow

do
w

n
fa

ct
or

CS RD, no threshold
CS RD, t = 100000
CS RD, t = 10000
CS RD, t = 1000
CS RD, t = 100
CI RD

Figure 4. Overhead of Race detection with and without context
sensitivity for various hot callsite thresholds.

Table 3 shows how well Breadcrumbs reconstructs calling con-
texts for the first access of racy access pairs. Except for the num-
ber of client sites, all the stats are sums across all five trials. In
this analysis the client sites are the subset of memory accesses that
could be involved in a race. For each combination of benchmark
and threshold we report the number of calling context reconstruc-
tions that succeeded and failed. Breadcrumbs is able to reconstruct
most of the calling contexts regardless of the hotness threshold.
For eclipse and xalan, however, we start to see the effects of having
less dynamic information at the lower thresholds. In these cases,
the search algorithm is running out of time before finding the right
path, which in both cases are quite deep. With no threshold, eclipse
runs out of memory because Breadcrumbs with no threshold and
race detection both use a lot of memory.

Race detection using Breadcrumbs is also more precise: par-
ticularly for hsqldb, the context-sensitive analysis (column labeled
“CS”) finds more races than either a completely context-insensitive
analysis (labeled “CI”) or a partially context-sensitive analysis,
which reports a stack trace for the last memory access (labeled
“Part CS”). The contexts involved can be quite long, as shown in
the columns labeled “Context Depth”.

In some cases we help decoding algorithm succeed by provid-
ing the program location of the client site. With the client site infor-
mation the first step of the search does not need to be completely
blind (see decodeWithThreshold() in Algorithm 1). FastTrack al-
ready stores the program locations, so this information is readily
available. In addition, we could use 64 bits for calling contexts, al-
lowing us to include both the PCC value and the static program
location. The Unknown column shows the number of contexts that
Breadcrumbs could not reconstruct without a client site but could
reconstruct with a client site. Unfortunately, we cannot say for cer-
tain if these are the correct contexts, or if they are false matches
that happen to start with the given client site. We are working on a
methodology that will allow the system to evaluate whether these
are contexts are correct. The Failures column shows the remaining
contexts, which Breadcrumbs was unable to reconstruct, with or
without client information.

The following context from xalan shows the difficulty of de-
coding contexts without sufficient dynamic information (package
names omitted for clarity):

1 ElemNumber.getFormattedNumber():1375
1 ElemNumber.formatNumberList():1309
1 ElemNumber.getCountString():880
1 ElemNumber.execute():605
2 ElemApplyTemplates.transformSelectedNodes():425

Context reconstructions Context depth Races
Program Client sites Threshold Successes Unknown Failures Avg Range CI Part. CS CS

eclipse 65,993

100 97 13 13 15±14 [1, 45] 138 2,220 2,477
1,000 112 14 12 19±15 [1, 49] 132 2,191 2,554

10,000 98 6 2 12±12 [1, 42] 131 2,067 2,081
100,000 117 8 9 19±16 [1, 51] 134 2,443 2,640

∞ Out of memory

hsqldb 9,148

100 112 1 0 7±4 [1, 13] 109 276 642
1,000 95 10 0 7±4 [1, 13] 105 264 574

10,000 106 6 0 7±4 [1, 13] 106 272 634
100,000 110 0 0 7±4 [1, 12] 109 257 554

∞ 71 0 0 7±4 [1, 13] 72 173 342

xalan 21,474

100 35 0 41 12±11 [5, 30] 76 91 99
1,000 31 8 24 19±16 [5, 44] 66 74 79

10,000 36 23 15 15±12 [5, 35] 78 90 92
100,000 42 36 3 14±10 [5, 29] 92 103 106

∞ 69 0 5 15±9 [5, 28] 71 84 92

pseudojbb 5,602

100 36 0 0 3±1 [2, 4] 56 56 61
1,000 35 0 0 3±1 [2, 4] 55 55 60

10,000 37 0 0 3±1 [2, 4] 57 57 62
100,000 34 0 0 3±1 [2, 4] 54 54 59

∞ 39 0 0 3±1 [2, 4] 59 59 64

Table 3. Race detection performance versus accuracy tradeoff: with a high enough threshold Breadcrumbs reconstructs most calling contexts.
The columns show accuracy results for a range of hotness thresholds. Context reconstruction can either succeed, fail, or produce an unknown
context; Context depth shows the average depth and standard deviation, and the range of depths; the last three columns show the number of
races found using context insensitive analysis (CI), partially context sensitive analysis (Part CS), and fully context sensitivity(CS)

2 ElemApplyTemplates.execute()V:216
2 TransformerImpl.executeChildTemplates():2339
8 ElemLiteralResult.execute():710
4 ElemApplyTemplates.transformSelectedNodes():425
2 ElemApplyTemplates.execute():216
2 TransformerImpl.executeChildTemplates():2339
8 ElemLiteralResult.execute():710
4 ElemApplyTemplates.transformSelectedNodes():425
2 ElemApplyTemplates.execute():216
2 TransformerImpl.executeChildTemplates():2339
8 TransformerImpl.applyTemplateToNode():2160
1 TransformerImpl.transformNode():1213
1 TransformerImpl.transform():668
1 TransformerImpl.transform():1129
1 TransformerImpl.transform():1107

dacapo.xalan.XalanHarness$XalanWorker.run():93

Breadcrumbs finds this context, but only when given the initial
client site, ElemNumber.getFormattedNumber():1375. This
context was manually verified as correct. Even with the hotness
threshold at 10,000, every callsite in the context is hot, resulting in
long chains of methods with no dynamic information. As a result,
the algorithm falls back on static information: the number to the left
of each callsite is the number of possible caller callsites according
to the static call graph. While the individual numbers are small,
the size of the search space is the product: 1,048,576. This result
suggests that future work should consider strategies for avoiding
throwing out dynamic instrumentation in long chains of method
calls. This problem is particularly challenging for long chains of
recursive calls.

5. Related work
Our work falls into a broad category of techniques in program
analysis, both static and dynamic, that associate information with
calling contexts.

Our work is most closely related to inferred call path profiling,
which uses the program counter and stack depth (64 bits together)
to identify a calling context [Mytkowicz et al. 2009]. The advan-
tage of this approach is that it has essentially no runtime overhead.

The downside is that stack depths have very little entropy, resulting
in many ambiguous context IDs. To address this problem, this sys-
tem first modifies the program, padding activation records to help
disambiguate contexts. Second, it relies on training runs to build an
offline mapping from context IDs to their full calling contexts. Any
new contexts observed online cannot be decoded. Our approach im-
poses a slightly higher overhead, but reconstructs calling contexts
using only information collected online. In addition, it computes
context IDs using a hash-like function, which has a much lower
probability of producing collisions.

Inoue and Nakatani present a technique similar to inferred call
path profiling that reconstructs contexts using program counters
and stack depths sampled by a hardware performance monitor [In-
oue and Nakatani 2009]. Because contexts are sampled, the number
of distinct contexts is significantly smaller than in our work. Even
for small numbers of contexts, however, accuracy suffers because
there are not many bits of entropy in the values representing a con-
text (program counter and stack depth).

Context sensitivity in static analysis. Context sensitivity has been
implemented in a number of static analysis algorithms, most no-
table for pointer analysis. In many cases, these algorithms use ex-
plicit call strings or a calling context tree, since the time and space
requirements are not as constrained [Lattner et al. 2007; Lhoták
and Hendren 2008; Sridharan and Bodı́k 2006]. Other analyses use
a customized calling context numbering to improve BDD compact-
ness [Whaley and Lam 2004]. Computing this numbering, however,
relies on analyzing the entire call graph ahead of time.

Context sensitivity in dynamic analysis. Prior dynamic analyses
have used either a calling context tree [Ammons et al. 1997; Spivey
2004; Zhuang et al. 2006] or stack walking [Froyd et al. 2005;
Nethercote and Seward 2007; Seward and Nethercote 2005] to
implement context sensitivity, neither of which is efficient enough
for deployed software.

Ball-Larus path profiling inserts instrumentation that computes
a unique number for each possible intraprocedural path [Ball and
Larus 1996]. An appealing idea is to apply path profiling to the dy-
namic call graph and compute a unique number for each possible

context. This approach is problematic because (1) call graphs are
typically much larger than control-flow graphs, and possible paths
are typically exponential in the size of the graph; (2) dynamic class
loading modifies the graph at run time; and (3) recursion leads to
cyclic graphs. Wiedermann applies Ball-Larus path numbering to
the call graph but avoids the challenges of dynamic class loading
and virtual dispatch, avoids recursion by collapsing strongly con-
nected components, and does not evaluate whether large programs
can be numbered uniquely [Wiedermann 2007]. Interprocedural
path profiling captures both inter- and intraprocedural control flow,
but it adds complex call edge instrumentation and does not scale to
large programs [Melski and Reps 1999].

Sampling-based approaches keep overhead low by profiling the
calling context infrequently [Hazelwood and Grove 2003; Wha-
ley 2000; Zhuang et al. 2006]. While these approaches are good
at identifying hot calling contexts, they are not suitable for bug-
finding clients that need coverage both in cold and hot code.

6. Conclusions
Programmers need context sensitivity to understand the behavior of
large, complex programs. Online dynamic analyses that help pro-
grammers find bugs have been context insensitive because prior
techniques for context sensitivity have been too expensive to de-
ploy. This paper introduced Breadcrumbs, which enables dynamic
bug detection analyses to record contexts inexpensively and later
recover bug-causing contexts probabilistically. The key to our ap-
proach is combining the static call graph with limited dynamic in-
formation collected at cold call sites, and using a backwards heuris-
tic search to find potential contexts that match the calling context
value. The result is a system that can be applied to a wide variety of
existing analyses to help programmers diagnose hard-to-reproduce
errors in deployed software.

Acknowledgments
We would like to thank Kathryn McKinley and Ben Wiedermann
for support and helpful discussions.

References
B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.

Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Implementing
Jalapeño in Java. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 314–324, Denver, CO,
1999.

G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Performance
Counters with Flow and Context Sensitive Profiling. In ACM Conference
on Programming Language Design and Implementation, pages 85–96,
Las Vegas, NV, 1997.

T. Ball and J. R. Larus. Efficient Path Profiling. In IEEE/ACM International
Symposium on Microarchitecture, pages 46–57, 1996. URL citeseer.
nj.nec.com/ball96efficient.html.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis.
In ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 169–190, 2006.

M. D. Bond and K. S. McKinley. Probabilistic Calling Context. In ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 97–112, 2007.

M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S. McKinley.
Tracking Bad Apples: Reporting the Origin of Null and Undefined Value
Errors. In ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 405–422, 2007.

T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory Leak Detection
Using Adaptive Statistical Profiling. In ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 156–164, 2004.

C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dynamic
Race Detection. In ACM Conference on Programming Language Design
and Implementation, pages 121–133, 2009.

N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call path pro-
filing of unmodified, optimized code. In ACM International Conference
on Supercomputing, pages 81–90, New York, NY, USA, 2005.

K. Hazelwood and D. Grove. Adaptive Online Context-Sensitive Inlining.
In IEEE/ACM International Symposium on Code Generation and Opti-
mization, pages 253–264, 2003.

H. Inoue and T. Nakatani. How a Java VM Can Get More from a Hard-
ware Performance Monitor. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2009.

C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-
to analysis with heap cloning practical for the real world. In ACM
Conference on Programming Language Design and Implementation,
pages 278–289, New York, NY, USA, 2007.

O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation. ACM Transactions
on Software Engineering and Methodology, 18(1):1–53, 2008. ISSN
1049-331X.

D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In ACM Conference on
Programming Language Design and Implementation, pages 134–143,
2009.

D. Melski and T. Reps. Interprocedural Path Profiling. In International
Conference on Compiler Construction, pages 47–62, 1999.

T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred Call Path Profiling.
In ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2009.

N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. In ACM Conference on Programming
Language Design and Implementation, pages 89–100, 2007.

J. Seward and N. Nethercote. Using Valgrind to Detect Undefined Value
Errors with Bit-Precision. In USENIX Annual Technical Conference,
pages 17–30, 2005.

J. M. Spivey. Fast, Accurate Call Graph Profiling. Softw. Pract. Exper., 34
(3):249–264, 2004. ISSN 0038-0644.

M. Sridharan and R. Bodı́k. Refinement-based context-sensitive points-
to analysis for java. In ACM Conference on Programming Language
Design and Implementation, pages 387–400, New York, NY, USA, 2006.

SPECjbb2000 Documentation. Standard Performance Evaluation Corpora-
tion, release 1.01 edition, 2001.

J. Whaley. A Portable Sampling-Based Profiler for Java Virtual Machines.
In ACM Conference on Java Grande, pages 78–87. ACM Press, 2000.

J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In ACM Conference on Pro-
gramming Language Design and Implementation, pages 131–144, New
York, NY, USA, 2004.

B. Wiedermann. Know your Place: Selectively Executing Statements Based
on Context. Technical Report TR-07-38, University of Texas at Austin,
2007.

X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, Effi-
cient, and Adaptive Calling Context Profiling. In ACM Conference on
Programming Language Design and Implementation, pages 263–271,
2006.

