IP Fast Reroute in Networks with Shared Risk Links

Yan Li
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
Email: yanli@cs.utexas.edu

Abstract—IP fast reroute is a mechanism that is used to
reroute packets around a failed link, as soon as the link fails
and before the employed routing protocol has a chance to
adapt the routing tables to the link failure. Most of the IP
fast reroute mechanisms, that have been proposed so far, fogu
on single or dual link failures but can not handle Shared Risk
Link Group (SRLG) failures when several links fail at the
same time because of some common underlying component
failure. Furthermore, most of current work is based on the
assumption that each node in the network has access to some
global topology information of the network. (This assumption
seems reasonable if the employed routing protocol is a link-state
protocol, but it is not valid if the employed routing protocol is
a distance vector like protocol.) In this paper, we present the
first IP fast reroute mechanism for SRLG failures that is not
based on the assumption that the nodes in the network have
global topology information of the network.

In our proposed mechanism, any nodex can advertise that
it needs to be able to reroute around a linkx—y that belongs
to a SRLG when this link fails. When the nodes in the network
receive this advertisement, they start to exchange “relay bits”
for link x—y and some nodes in the network recognize that
they can serve as “relay nodes” for link x—y to avoid any
SRLG failures and notify node x of this fact. Finally, nodes
x chooses one of the relay nodes, say nodeto be the relay
node for link x—y. Thus, when link x—y fails, node x can
immediately tunnel packets that need to traverse linkx—y to
node y through node z Our tunneling scheme ensures that
loops are never formed even when any number of links fail.
Through simulation, we show that our mechanism succeeds
in rerouting around SRLG failures about 100% of the time,
with average length of a reroute path about 1.5 times the re-
converged shortest path.

Keywords-IP Fast Reroute, Shared Risk Link Group Failure,
Distance Vector, Failure Recovery, Reliability

I. INTRODUCTION

Mohamed G. Gouda
The National Science Foundation, and
The University of Texas at Austin
Austin, Texas 78712
Email: gouda@cs.utexas.edu

failures, besides the most common single link failures,

another significant part is Shared Risk Link Group (SRLG)

failures. Links that belong to the same SRLG share some
underlying component either in the optical infrastructike

a fiber or at a router like a line card.

The convergence process for failure recovery in traditiona
routing protocols, link state and distance vector, is time
consuming and may result in instability in case of frequent
transient link failures. During this convergence proceiss,
routing tables may be inconsistent and packets may be
dropped due to invalid routes. Although much work has
been dedicated to reduce the convergence time of routing
to even under a second [12], it is still quite far from the 50
milliseconds target for mission critical applications [24

Recently, IP fast reroute has been proposed to proactively
compute backup paths before a failure happens. And as
soon as a failure is detected, the backup path can be
invoked immediately to reroute around the failure during
the convergence period. Thus the routing disruption tinme ca
be limited to only the failure detection time [25]. Although
several mechanisms have been developed within the IP fast
reroute realm, most of them focus on single or dual link
failures and can not handle SRLG failures [3], [4], [6],
[14], [216], [19], [22], [23]. Also, most of existing work
relies on the existence of some global topology information
to precompute backup paths [3], [4], [6], [14], [16], [17],
[22], [23], [26]. Specifically, for [3], [4], [6], [14], [16]
[17], [22], [23], they assume each node in the network has
the complete knowledge of all the connectivity information
in the network (i.e., how all the nodes in the network are
connected with each other). For Not-via [26], each node is
allocated some special Not-via IP addresses for all theslink

As Internet becomes the ubiquitous infrastructure for varassociated with that node. These Not-via addresses have to
ious applications and carries all kinds of traffic, traditdb  be known and stored in the routing table by every other node
best effort service model becomes insufficient. Demand#n the network, no matter whether the links are intended to
on reliability and availability are becoming more and morebe protected or not.
stringent, especially with the development of more real- When global topology information is not available (for ex-
time applications like VolP and Video on demand [5]. ample, in distance vector like routing protocols), to resov
Unfortunately, failures are very common in daily operasion from SRLG failures, IP fast reroute faces more challenges:
of a network and what makes things worse is that moshow to get necessary information to compute alternative
failures are not predictable. It is reported in [21] that 80%backup paths to avoid all the links in the same SRLG,
of all failures are unexpected. Among these unexpectedithout changing the original routing tables? To address



this challenge, we design an IP fast reroute mechanism fox—y.
handling SRLG failures with the following goals: The source node receives notification messages from

. No Global Topology Information: Our mechanism many nodes for linkx—y, and selects only one of these

does not assume nodes in the network have acce%qdes‘.s?y nodahto be ;cjhe relay_node for “rllkt_)t)f/{ It:rom d
to any global topology information: neither the IS point on, when nodex receives a packet that neeads

connectivity information of the network nor any to be forwarded over linkk—y and discovers that this link

additional IP addresses associated with each nod@”eo" nod_ex immediately forwards the packet to the relay
which need to be globally known and stored in routing node z which then forwards the packet to the other end

tables. Each node only has access to its local topolog;}?f the reroute link, nodey. Th|§ process contmugs i .the
i e links associated with the node itself. Also eachpacket encounters any other failed links towards its uliéma

node only knows to which SRLG its associated Iinksde\j\';'nat'on' N i h ¢ that |
belong but does not know other links in the same € propose a tunneling scheme 1o ensure that loops are

SRLG. never formed. We also propose an algorithm to suppress
redundant relay notification messages. Finally we show,
through extensive simulations on a variety of networks of

different sizes and varying SRLG size from 1 to 5, that the

coverage of our mechanism is close to 100%. Suppression
can effectively cut about 80% natification messages when
the network has at least one hundred nodes. Also, the
average length of a reroute path is around 1.5 times the

o Didtributed Computation of Backup Paths: Each
backup path for a reroute link is designated by a
node calledrelay node In order to find relay nodes
in a fully distributed way, we introduce tweelay bits
for each reroute link. Each node only maintain and

exchange two relay bits with its neighbors for each
reroute link. Using the two relay bits, a node in the average length of the re-converged shortest path.

network can automatically decide if itself can serve as The strgcture and organiza.tion of this paper follows from
a relay node for a reroute link or not. Thus backupour technical report [19] which focus on how to handle

paths for a reroute link can be computed in a fully single link failures using IP fast reroute. Section Il prgse
distributed manner the concept of reroute links and how to designate reroute

links. Then in Section lll, we introduce the concept of a

« Reroute Only When You Want: Rerouting information relay node for a reroute link that is a member of a SRLG
is propagated only for links that are currently underand how to use the relay node in rerouting. Section IV

protection using IP fast reroute, which are callegPresents how a node learns a relay node, without access
reroute links Reroute links can l;e changed at anyto the global topology information, for a reroute link which

time. Thus rerouting information for links that are not belongs to a SRLG. Section V.(.jesgrlbes the suppression
necessarily being protected at some instant will not bénode to suppress redundant notification messages. We show

propagated and stored. So the cost of our mechanisrﬁe efficiency and overhead of our rerouting algorithms in
is dynamically associa.ted with the number of links ection VI. Related work is reviewed in Section VII. Finally

currently protected in the network. we conclude in Section VIil.
Il. REROUTELINKS IN SHARED RISK LINK GROUP

The main idea of our IP fast reroute mechanism to recover We model a network as an undirected graph where each
from SRLG failures is elaborated as follows. Any nodean  node represents a router and each (undirected) edge between
decide, at anytime, that it needs to reroute packets aroungvo nodes, say nodes and b, represents two links: link
its link x—y if this link ever fails in the future. When this a—b and link b—a. For each linka—b, nodea is called
happens, node starts advertising that its link—y, together  the sourceof link a—b and nodeb is calledthe sinkof link
with its SRLG number, has been designated as a reroute linlg—D,

When a node in the network receives this advertisement, A Shared Risk Link Group (SRLG) is a set of links which
nodez allocates and maintains two bits for link-y. The  share the same underlying physical point of failure such as
two bits are called theelay bitsof link x—y in nodez. fiber cut or line card failure. We assume that all the links

The initial value of the relay bits for each reroute link in the network are partitioned into different SRLG groups.
x—Yy in each nodez is 00. Each node periodically sends That is, each link belongs to one SRLG group. If a link does
its relay bits (for different reroute links in the networlg t not share physical resources with others, then it is regarde
its neighboring nodes, and uses the received relay bits tas an SRLG with only one link. We also assume that the
update the values of its own relay bits. If the value of thesource node of a link a—b only knows to which shared
relay bits for a linkx—y in nodez ever becomes 11, then risk link group linka—b belongs if any, but noda does not
nodez recognizes that it is a relay node for link»y and  know other links that belong to the same shared risk link
sends a notification message to the source nodé link group as linka—b.



We assume that packets are routed between differerthble RR.athat has the following four columns:
nodes in the network using distance vector routing proto-
cols [2], [20]. In distance vector routing protocols, theipe

odic exchange of routing tables between neighboring nodesghe first columnylink, in every rerouting table lists all the
in a network eventually causes the next hop and distancgnks that have been designated, by their source nodes, as
entries in all routing tables in the network to “converge” to reroute links. The second columsrlg, lists the shared risk
their correct values. This convergence procedure may takgnk group that this reroute link belongs to. The other two
even tens of seconds. columns rbits andrelay, are discussed below in Section IV.
Initially, the rerouting tableRR.aof each node is empty
Table | except that node adds one entry for each link—s,, that
ROUTING TABLE RT.a OF . .
NODE a a wants to designate as a reroute link. Whenever nade
dest. | next hop| d sends a copy of its routing tab}éT.qto each.ne|ghbor|ng
. node, nodea also sends a copy of its rerouting tatit&R.a
(excluding the “relay” column) to the neighboring node. g hi
periodic exchange of routing and rerouting tables between
neighboring nodes in the network eventually causes every
link that has been designated as a reroute link to have one
entry in every rerouting table in the network.
At any time, each noda can change the set of links that
it has designated as reroute links by adding new links to this
set or by removing old links from this set. The algorithm
for updating this set is shown in Algorithm 1. Note that in
As an example, Figure 1 shows a netwa¥rk that has this algorithm, we uselink.a to denote the columnink in
nine nodes and twelve edges. Each edge in netwdrks  the rerouting tabldRR.aof nodea.
labeled with a distance. The routing talitd.aof nodea in
network Ny is shown in Table I. Also, there are three SRLGS Algorithm 1: Nodea updates its set of reroute links
in N7 with SRLG numbergy, ¢go andgs. Link a—b, c—d

(rlink, srlg, rbits, relay)

—

Fig. 1. An example networkv;

= T O|T|D
D DD DD T|T|T
BIWININ P OW N OG0

ande—f belong to the same SRLG; link b—f andf—g 1 Pegin _
belong to the same SRL@; link g—h andh—i belongto 2 for a—s, ¢ rlink.a do
the same SRLG 3 if a needs to be able to reroute around-s,, then
. o . . 4 adda—s,, entry to RR.a;
Now consider the situation where nodehas a packet 5 end
whose ultimate destination is nodeBut then node notices 6 end

that link a—b used to reach destinatiahhas failed and so 7  for a—s» € rlink.a do

no packet can be transmitted over it. The question now i 'fj not:]c;nnger needs to be able to reroute around
“what does nodea do with this packet, and every other g ¢ fgmovea_,sn from RR.a;

packet, that need to be transmitted over the failed éinkb 1o end

before the entries of the routing tadRT.ahave converged 11 end

to their new correct values?” 12 end

Nodea has two options in this situation. The first option is
that nodea drops every packet that needs to be transmitted
over the failed linka—h. This option is attractive if link d
a—b is very reliable (and so the probability of its failure
is very small) or if the rate of packets that need to be
transmitted over linka—b is very small. [1l. RELAY NODES FORSRLGFAILURES

The second option is that nodeanticipates the failure of | this section, we introduce the concept of a relay node
link a—b and maintains alternative routes that can be useqior a reroute link that is a member of a SRLG in a network.
to reroute around linka—b when this link fails. To do so, (Note that the relay node defined in this section also works
nodea needs to advertise to every node in the network thaor reroute links that does not belong to any SRLG in the
link a—b has been designated (by nodeto be areroute  network.) We then discuss how a relay node for a reroute
link. Thus every node in the network can proceed to helpink can be used in rerouting around its reroute link when
nodea identify and maintain alternative routes that can beg|| the links that belong to the same SRLG fail.
used to reroute around link—b when it fails. Since the set of links belonging to the same SRLG shares

Each nodea in the network is provided with gerouting  the same underlying physical point of failure such as fiber

Note that links that belong to the same SRLG can be
esignated as reroute links seperately depending on the two
scenarios we just discussed above.



cut or line card failure, when repairing the failure of a e
link that belongs to a SRLG, all the other links that are
members of the same SRLG should be avoided since they

R(b, d) (non-encapsulated now like a normal packet),
the packet reaches a nodethat needs to transmit
the packet over the reroute link—y except that it

all fail at the same time.

Let s andd be two nodes in a network, and letR(s,
d) denote the shortest route from nodeto noded as
determined by the routing tables in netwdrk A noder
in N is called arelay nodefor a reroute linka—b in N iff
neither the routeR(a, r) nor the routeR(r, b) contains any
link, if any, which belongs to the same SRLG as liak:b
(including a—b itself).

As an example, consider network; in Figure 1. Link
a—Db, link c—d and link e—~f belong to the same SRLG
g1. If link a—b in network IV, is designated, by nodg as
a reroute link, then by definition, nodg h andi are relay
nodes for linka—b. However, if link b—c and link c—h
belong to the same SRLG (not showniR), and linkb—c

is designated, by nodb, as a reroute link, then no node

in network N7 is a relay node for linkb—c according to

discovers that linkk—Yy has failed. Nodex can use the
same procedure, step 1 through 5 as describe above,
to reroute the packet around the failed lirk>y, no
matter whether linkk—y belongs to the same SRLG
as linka—b or not.

. However, assume that the encapsulated packet is

traversing the routeR(a, r) or the routeR(r, b), the
packet reaches a link—y that has failed. Recognizing
that the packet is being rerouted because it is an
encapsulated packet, nogelrops the packet and does
not attempt to reroute it a second time. This action
guarantees that the routing loops are not created due to
repeated rerouting of the same packet. Note that this
action is different from step 6 above. In step 6, the
packet can be rerouted because it is not in the procedure
of rerouting (i.e., the packet is not encapsulated). In

the definition of relay nodes. These two examples simply
show that a reroute link in a SRLG can have one or more
relay nodes or even no relay nodes. Fortunately, we show by
extensive simulations below in Section VI that reroute dink
in a SRLG that have no relay nodes are extremely rare.

this step, no more rerouting should be allowed while
the packet is right in the rerouting procedure (i.e., the
packet is encapsulated).

The fact that no routing loops are created due to the
repeated rerouting of the same packet is established in the

Next we describe the procedure for rerouting around gg|iowing lemma and theorem.

reroute linka—b, when this link fails, assuming that node
a knows the identity of a relay nodefor link a—b:
1.

. When the encapsulated packet reaches moa®deb

Lemma 1.

Let r be a relay node for a reroute lirkk—b in a network

N, and letd be any node in networl such that the route

R(a, d)contains the reroute ling—b. If link a—Db fails, and

packet can be represented (&sm s, to d) nodea reroutes a papket, whosg ultimate destination is npde
' d, to noder, then this packet will not traverse any loop in

Asgume also that when this packet reache_zs apdede the network before reaching notbeno matter whether link
a discovers that the reroute lirkk—b has failed and so
a—b belongs to a SRLG or not.

decides to reroute the packet towards the relay node o

r for link a—b. In this case, noda encapsulates the Proof: First, if when the rerouted packet traverses the
packet in two outer IP hearde(om a, to b)and then ~routé R(a, r) or the routeR(r, b), the packet does not

(from a, to r) and forwards the encapsulated packet€ncounter any other link failures, then from the definition
towardsr. of a relay node, this packet will not traverse the reroutk lin

Assume that a packet is to be sent from a nsde
a noded along the routeR(s, d)which contains the
reroute linka—b. In this case, the IP header of the

. When the encapsulated packet reaches the relay node~band thus will not be rerouted again. Hence the rerouted

r, noder removes the outermost IP headéom a, to packet will not traverse any loop before reaching néde
r) and discovers that the packet has an inner IP headerecond, if when the rerouted packet traverses the fi@(de

(from a, to b) Thus noder forwards the encapsulated 1) Or the routeR(r, b), the packet encounters any other link
packet towards. failure, denotedx—y, then if x—y is a reroute link, then

according to the seventh step of reroute procedure prakente

removes the outer IP head@om a, to b)and discovers above, nodex checks that the packet is an encapsulated
that the packet has an inner IP headfom s, to packet (means thf_;lt it has _bee_n rero_uted oncg)st drops _
d), which indicates that the ultimate destination of thethe packet to avoid rerouting it again. Thus, the packet is
packet isd. Thus nodeb forwards the packet towards only rerouted once through the relay nadand it will not
Note that now the packet is not encapsulated any mordf@verse any loop before reaching the sink nodén the
Finally when the packet reaches nadlenoded dis- other hand, if linkx—y is not a reroute link, node will
covers that the original source of the packesiand have no relay node to reroute the packetxsuill drop the

its ultimate destination isl. Thus, noded keeps the packet and thus the packet will not traverse any loop before
packet. reaching the sink nodk. ™

. Assume that, while the packet is traversing the routélheorem 2.



No routing loops are created due to repeated rerouting of the
same packet to its ultimate destination using the rerouting

a—b. Node a then addsx to the set ofrelay.a[a—Db]
in the rerouting tabld&RR.aof nodea.

procedure, no matter whether all encourtered failed links Next we describe first two parts of the procedure in some

belong to the same SRLG or not.

Proof: From Lemma 1, we know that rerouting a packet

details.
The First Part: For node a to announce that it has

through a single failed link to the sink node will not create designated linla—b as a reroute link, noda adds the entry
loops. Assume that after a packet is successfully reroutet®@—b, g1, 00, -) to its rerouting tabl&R.a Recall that each

through a failed linka—b, when the packet traverses the
routeR(b, d)towards its ultimate destinatial) it encounters
another link failure, denoted—y. If link x—y belongs to
the same SRLG as link—b, and the relay node fax—y

is denoted”’, then according to the definition of relay node,
route R(x, ') and R(r’, y) contains neithea—b nor x—y.

entry in a rerouting table consists of four componériiak,
srlg, rbits, relay) whererlink is a reroute linksrlg lists the
shared risk link group that this link belongs thijts are two
relay bits (to be discussed shortly) for the reroute linkg an
relay is the set of all known relay nodes for the reroute link.
The initial value ofrelay is “-” which indicates that noda

Thus no loops are created due to rerouting the packet agafPes not know yet this value.

through linkx—y. Otherwise, if linkx—y does not belong
to the same SRLG as lina—b, if either routeR(x, r’) or

Because the rerouting table of every node is sent periodi-
cally to every neighbor of this node, the fact that liak:-b

R(r', y) containsa—b, then after the packet being rerouted has been designated a reroute link, as well as the SRLG

through a—b, it would traverse the linkc—y again (after
going through linka—b). This contradicts to the definition
of relay node sinc&(x, r’) or R(r', y) containsx—y. Thus,

it blongs to, is eventually recorded in every rerouting ¢abl
in the network according to the following rule. If a node
receives a rerouting tablBR.yfrom a neighbory, and the

no matter how many failed links encountered when using thé@ext hop for reaching noda in the routing tableRT.x of
rerouting procedure to reroute a packet towards its ulématnodex is nodey, and if RR.yhas ana—b entry butRR.x
destination, and no matter whether or not all these failedloes not have—b entry, then node adds an entryg—b,
links belong to the same SRLG or not, there are no loopg1. 00, -) to its rerouting tableRR.x Conversely, ifRR.y

created due to rerouting. |

IV. RELAY BITS TO IDENTIFY RELAY NODES

has noa—b entry butRR.xhas ana—b entry, then node
removes thea—b entry from its rerouting tabl®R.x
The Second PartFor each reroute linka—b in the

In the previous section we presented a procedure by whickerouting tableRR.xof each nodex in the network, node

a nodea can reroute packets around a reroute lmkb

X maintains two bits, named the relay bits of liak-b, in

when all the links that belong to the same SRLG fail. ThisRR.x These two bits are denotetlits.x[a—b] and each of

procedure is based on the assumption that reodaows a
relay node for the reroute link—b. So the question now is
“How does nodea know a relay node for linkk—b which

the two bits has anyone of two values. The value “0” in the
first bit indicates two cases: either noxldoes not know yet
the correct value of the bit (i.e., initial value of the biby,

belongs to a SRLG without access to the global topologyhodex has checked that some link that belongs to the same

information?” In this section we present a fully distribdite
procedure by which noda learns all the relay nodes for
link a—b although nodea does not know any other links
that belong to the same SRLG as liaksb. This procedure
consists of the following three parts.

1. In the first part, nodea informs every node in the
network that it has designated lirkk—b as a reroute
link as well as the SRLG numbey thata—b belongs
to.

In the second part, each noxlen the network receives
the information that linka—b has been designated as
a reroute link and checks whether the roléx, b)

SRLG ¢ as linka—b occurs in the rout®(x, a) The value
“1" in the first bit indicates thak has checked that no link
that belongs to the same SRLgg as linka—b occurs in the
routeR(x, a) Similarly, the value in the second bit indicates
the same meaning except that nodehecks whether there
is any link that belongs to the same SRIg& as linka—b
occurs in the rout&®(x, b) Only when the two bits are both
“1"s, i.e., no link that belongs to the same SRlg&as link
a—b occurs in routeR(Xx, a)and routeR(x, b) nodex is a
relay node for reroute link—b.

Next, we describe how to set up the two relay bits for
a reroute link. Initially, the value ofbits.x[a—b] is “00”

and R(x, a)include any link that belongs to the same in the rerouting tabldRR.xin every nodex in the network,

SRLG g; as linka—b. If nodex finds that neitheR(x,

meaning that every node does not know the correct value

b) norR(x, a)includes any link that belongs to the same of the bits yet. The source nodeof link a—b assigns the

SRLG g; as link a—b, then nodex sends anotify(x,
a—b) message to node to inform a thatx is arelay
nodefor link a—b.

In the thrid part, when nodereceives anotify(x, a—b)
message, nodeconcludes that is a relay node for link

relay bitsrbits.a[a—Db] in its rerouting tableRR.athe value
10. The first bit “1” means that no link that belongs to the
same SRLGy; as linka—b occurs in the rout®(a, a) and
the second bit “0” means that lirkk—b occurs in the route
R(a, b)



Then the sink nodeb of link a—b assigns the bits  Algorithm 2: Update rerouting tableRR.x after x receives
rbits.b[a—b] in its rerouting tableRR.bthe value 01. The  rerouting tableRR.y from neighbory
first bit “0” means that linkb—a that belongs to the same ;| peqgin
SRLG ¢; as linka—b occurs in the rout&(b, a) and the

for (sr—sn € rlink.x) and (s,—s, ¢ rlink.y) do

second bit “1” means that no link that belongs to the same, if nexthop.x§,] ==y then
SRLG ¢; as linka—b occurs in the routd&(b, b) 4 removes,—s, entry from RR.x;
Then every other nodr in the network assigns each of dend
en

the two relay bitsrbits.x[a—b] in its rerouting tableRR.x
the valueval, whereval is either 0 or 1, according to the
following rule: If x receivesRR.yfrom neighbory, and if
the next hop for reaching nodein the routing tableRT.x 10 end

of nodex is nodey, then nodex checks whether the shared 11 end _

risk link group of link x—y is the same as the shared risk?2 ~ or sr—sn € rlink.x do
link group of link a—b, if yes, then node assigns the first X iFx == s then

for (sr—sn ¢ rlink.x) and (s,—s, € rlink.y) do
if nexthop.xf,] ==y then
add s, —s,, entry to RR.x;

© 0N o U

. . L 8 14 rbits.x[s,—s,] := 10;
bit rbits.x[a—b][0] in its RR.xthe value O; if no, then node 5 else ifx == s,, then
x assigns the first bitbits.x[a—b][0] in its RR.xthe value 16 rbits.x[s, —sn] := 01;
of the first bit in rbits.y[a~b]. Similarly, nodex assigns the 17 else
second relay bit: If the next hop for reaching ndalén the 18 i ”‘?}Xth‘l’p-"'@f] ==_y_th‘|5” o
routing tableRT.xof nodex is nodey, then nodex checks ;i ' Srrgigf(gf/]_);;][s‘(;]%f[oir_”9"] then
whether the shared risk link group of link-y is the same else
as the shared risk link group of lirk—Db, if yes, then nod& 22 rbits.X[s,—s,][0] := rbits.y[s,—s,][0];
assigns the second bibits.x[a—b][1] in its RR.xthe value 23 end
0; if no, then nodex assigns the second bibits.x[a—b][1] ;;‘ ﬁnr?exthop %] ==y then
in its RR.xthe value of the second l.)It in rbits.yfeb]. 6 if Srlg.X[xn—>y] == srlg.X[ s,—>sn] then

The first and second parts outlined above are part of; rbits.X[s, —sn][1] := O;
updating the rerouting tablBR.xafter nodex receives the 28 else
rerouting tableRR.yfrom the neighboring nodg shown in 29 rbits X[s, —sn][1] := rbits.y[s, —s.][1];
Algorithm 2. 22 endend

Figure 1 shows three SRLGgi, g2 and gs. Assume 3, end

that all the links in three SRLGg;, g» and g3 have been 33 end
designated by their respective source node to be rerouig end
links. Also, assume that linek—e has been designated by
nodea as a reroute link and linkl—i has been designated Table I
. . able

by nOded as a reroute Ilnk too. But these two IInkS dO not REROUTING TABLE RR.a OF NODEa IN NETWORK N1 WITH THE RELAY
belong to any SRLG. Then the rerouting taBlR.aof node NODES FOR THE REROUTE LINKS.—b WHOSE SOURCE NODE IR
a, after these links have been designated as reroute links, is
shown in Table II. rlink srlg | rbits relay

Note thatRR.aincludes the relay nodes for the two reroute a>b | g0 | 10 ] g hi
links a—b and a—g for which nodea is the source node. a—e ~ 10 | bed

. c—d g1 00 -

But RR.adoes not include any relay node for any reroute

. . . e—f 10 -
link for which nodea is not the source node. DT o

. i g2 11 -

Correctness of the procedure for updating the relay bits f—g g2 11 »
follows from the next theorem. g—h | g3 10 -
h—i gs 10 -

Theorem 3. = g T -

For any nodex in a networkV, if the relay bits in nodex
for a reroute linka—b are both ones, i.ethits.x[a—b]=11,
then neither routé&(a,x) nor routeR(x,b) contains any link

that belongs to the same SRLG as reroute Brkb. then routeR(x,b) does not contain any link that belong to
Proof: We prove the two parts respectively: first, we the same SRLG as reroute liak-b. We prove the first part

prove that if the first relay bit, denotatbits.x[a—b][0] is  using induction on the number of hops in a shortest route.

1, then routeR(a,x) does not contain any link that belong The base case is thdtits.a[a—b][0] = 1 andR(a, a)does

to the same SRLG as reroute lisk-b; second, we prove not contain any link that belong to the same SRLG as link

that if the second relay bit, denotetits.x[a—b][1] is 1, a—b. Assume that this proposition holds for nogevhich




is n, n>0 hops away from the source nodeof the reroute
link a—b, i.e., rbits.y[a—b][0] = 1 and routeR(a, y)does Th q q - i i
not contain any link that belongs to the same SRLG as link 1US, nodea ends up receiving no ify messages concern
a—b. Then from line 18-24 in Algorithm 2, another node Ing I|nl.< aﬂbfrorn only nodeg instead of all the three relay
X, which isn+1 hops away from the source nodgsets its nodes:g, h'and - ) ,

first relay bitrbits.x[a—b][0] to one, only when its nexthop 1€ actions of a node conceming the sending and
y also has one forbits.y[a—b][0] and link x—y does not receiving of notify messages are shown in Algorithm 3.
belong to the same SRLG as lirdk~b (neither does link

y—X since the topology is symmetric). Thus nadenly set Algorithm 3 : Actions of nodex on sending and receiving relay

its first relay bitrbits.x[a—b][0] to one when neitheR(a,y) _notify messages

nor y—x contains any link that belong to the same SRLG
as link a—b. Equivalently,rbits.x[a—b][0] is set to 1 only
when routeR(a,x) does not contain any link that belong to
the same SRLG as reroute ligk—b. Thus, we proved the

R L sending action----------- */
for s;—s, € rlink.x do
if (rbits.x[s,—s,] == 11) then
send notify(X, s, —s,) to nexthop.xg.];

abh wN P

first part. The second part can be proved similarly. m snd
en
V. SUPPRESSIONMODE I L receiving action--------- * |
] ] _ 6 rcv notify(z,s,—sy,) from a neighbor ydo:
There is one problem concerning the second and third, if x == s, then
part of the procedure discussed in the previous section: fos add z to relay.xf, —s,]
some reroute links many nodes in the network qualify to be9  else if (rbits.x[s,—sn] == 11) then
relay nodes and so these many nodes start to send not elsseuppresmotlfy(z,sr—wn)
messages to the source node of the link and the source noge forward notify(z, s»—s,) to nexthop.xk, ]

of a reroute link has to process all the notify messages even end
though the source node needs only one relay node for the
link in order to be able to reroute packets around the link

when it fails.

As an example, consider the reroute liak-b in network V1. SIMULATION RESULTS
N in Figure 1. In networkV,, each of the nodeg, h andi
qualifies as a relay node for link—b. Thus, each of these
nodes sends a natification message to reoddowever node

We now evaluate the performance of our IP fast reroute
mechanism for various size of shared risk link groups (i.e.,
a needs only one relay node for lirk—b so that nodea the ”“’T‘ber of links th‘?‘t are. membe_rs of a SRLG) using

simulations. Through simulation, we intend to answer the

can reroute packets around lisk-b when this link fails. followi tions: 1) What is th . p .
In order to minimize the notification messages sent in the2rowing questions- ) What is the repair coverage for vari-

network, we introduce suppression modéor the second ous size of SRLGs? 2) what is the efficiency of suppression
L - - 7 .

part of the procedure discussed in the previous section. IHnder different size Of_ SRLGs? 3) What is the chance Fhat

the suppression mode, when the relay bitiss.x[a—b] in a node can have multlple relay nOQes to choos_e for various

the rerouting tabld&RR.xof nodex have the value 11, node size of SRLGs? Wil t_he suppression affeqt this? 4? What

X recognizes that it is a relay node for ligk>b and so it is the overhead of using a relay path, which may include

sends anotify(x, a—b) message to its next hop for reaching several relays for links in the same SRLG, instead of usin_g
nodea, which either drops the message (as explained belo © re-C(_)nverged shortest path? How does the suppression
or forwards the message to its next hop for reaching reode frect this? . . .

Thus, if this notify message is not dropped along the way, We conduct_ our simulations using two gene_ral networks,
then this message will travel along the rodR¢x, a)from gef?efated using the BR_ITE tO.OI [1]. The first network_
node x to nodea. If the notify(x, a—b) message reaches, satisfies the power law distribution based on the Barabasi-

along this route, a nodg where the relay bitshits.y[a—b] Albert T%del V&’ith pirar\r;\;aten =2. Thde lseqc;nd is a random
in the rerouting tableRR.y have the value 11, then node networ q afe 20nt eh axman mode V\él't .pharamed?els f
y drops thenotify(x, a~b) message knowing that its own 0.15 and = 0.2. We have experimented with a variety o

notify(y, a—b) message is sufficient for nodeto have one network size from tens of nodes to hundreds of nodes, with
relay né)de for linka—b both types of topologies. For each toplogy with E edges,

: : : P— we randomly select S edgek,< S < 5 that are close to
1 Itfhtehrf leiprzrriﬁ;oﬂnrgfg 's used in netwdrk in Figure each other to form a SRLG (the number of hops between the
' ' first selected edge and any other selected edge is no larger
the notify message from nodes dropped by nodé than 0.6 the maximum number of hops in the network). For
the notify messages frofn is dropped byg S = 1, we count every single link failure. For S 1, we



generate up to 1000 different SRLG failures and make suré the size of the network, the repair coverage for smaller

each SRLG is not a cut of the topology graph.
Let repair coverage be the percentage of source- SRLG size. However, when the network size is at least

destination pairs in which, when the lirdource—sink of

a SRLG used to traverse packets from the source to ththe repair coverage and our IP fast reroute mechanism can

destination fails, the source can reroute around any failedchieve close to 100% repair coverage in these cases.

link in the same SRLG which appears along the path to

SRLG size is greater than the repair coverage for larger

100 nodes, the SRLG size does not have much effect on

reach the destination. To compute repair coverage for SRLG 1

link failures, for every source,. in a source-destination pair
sp—d, we iteratively mark all the links that belong to the
same SRLG as failed and compute all the relay nodes for
that failed link. Then we compute the percentage of source-
destination pairss,—d in which the sources, can find a
relay node to reach that destinatianAnd obviously when
the link is not used from the source to any destination, the
case is not counted.

1.05 T T T T T T T T T

0.9r 1

——SRLGsize=1
—0--SRLG size = 2[]
——SRLG size =3
—-o- SRLG size = 4
——SRLG size =5

300 400 '500 600 700 800 900 1000
# of nodes in the network

0.85-

Repair coverage of SRLG failures

0.8 !
0 100

200

Figure 1. Repair coverage of SRLG failures for BarabasieAllmetworks

1.05 T T T T T T T T T

Suppress ratio of relay notifications

Suppress ratio of relay notifications

0.4r

——SRLGsize=1
—0- SRLG size = 2]
——SRLG size =3
—o- SRLG size = 4]
—+—SRLG size =5

4 Figure 3.
networks

100

200

300 400 _500 600 700 800 900 1000
# of nodes in the network

Suppress ratio of relay notify messages for Bargklhert

0.9

——SRLGsize=1
—0- SRLG size = 2]
——SRLG size =3
—0- SRLG size = 4]
—+—SRLG size =5

o

0

100

200

300 400 500 600 700 800 900 1000
# of nodes in the network

0.9r

0.85r

0.8

Repair coverage of SRLG failures

——SRLGsize=1
—-0- SRLG size = 2|
——SRLG size =3
—-o- SRLG size = 4
—+—SRLG size =5

0

Figure 2.

.
100

.
200

.
300

.
400

.
500

.
600

700 800 900 1000

# of nodes in the network

Repair coverage of SRLG failures for Waxman network

El Figure 4. Suppress ratio of relay notify messages for Waxmamamnks

We measure the efficiency of suppression usingpress
ratio, which is defined as the percentage of suppressed
relay notify messages. As shown in Figure 3 and 4, in
both Barabasi-Albert and Waxman networks, the size of the
SRLG does not affect the suppress ratio much. And when the
network size is at most one hundred nodes, the suppress ratio
is between 50% and 75%. If the network size is larger than
one hundred nodes, then the suppress ratio is about 80%.
This demonstrates that suppression will effectively s#nee t

Figure 1 and 2 show the repair coverage for SRLG failureprocessing overhead for the source node and the bandwidth
for Barabasi-Albert and Waxman network respectively. Forin the network.

both Barabasi-Albert and Waxman network, no matter what

In both Barabasi-Albert and Waxman networks, no matter



1.1 . . . . . . . . . —+— SRLG size=1: closest relay —+ - SRLG size=1: farthest relay — + — SRLG size=1: random relay
—— SRLG size=3: closest relay — - - SRLG size=3: farthest relay — ¥ — SRLG size=3: random relay
1r P T % L ——9 = 4*; SRLG size=5: closest relay — % - SRLG size=5: farthest relay — * — SRLG size=5: random relay
_ Az~ - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.9 Tt ity ~ I N Jon [N
= draganes TR TF B e A
A 0.8 7 q g b A g’:&i\;;;’ *\\\é':’i
+ - 2% Si” -
B o7 . c 7t TE v
S S F 1
o 3 B i
€ 061 1 Bl 7 i
E 05 ,é —+—SRLG size=1: nonsuppression mode|| g 2ab /3” 1
o —+- SRLG size=1: suppression mode [} &
$+ 0.4 —&— SRLG size=2: nonsuppression mode}] (:,; 221" P A E - ///’//Q'”"‘ —~———%
= —0-- SRLG size=2: suppression mode c = I
O 0.3} —+— SRLG size=3: nonsuppression mode}{ 8 2F /;/" 7
o —*— SRLG size=3: suppression mode ~ |/
0.2+ —o— SRLG size=4: nonsuppression modeH{ 51 ¢ 1
—-0-- SRLG size=4: suppression mode 1] 16
0.1r —a— SRLG size=5: nonsuppression moder| =
‘ ‘ ‘ ‘fo SBLG siz‘e=5: sgppress:ion moge 2 14
00 100 200 300 400 500 600 700 800 900 1000 © 12
# of nodes in the network ol
10 1(‘)0 2(‘)0 3(‘}0 460 5(‘}0 560 7‘00 B‘UO 950 1000

# of nodes in the network
Figure 5. Probability of more than one relay node for SRLGufai$ in

Barabasi-Albert networks ) ) .
Figure 7. The average path stretch when choosing diffeday modes

for SRLG failures in nonsuppression mode for Barabasi-Albetworks

1.1
1 o o N N N N o N
b7 o :d;“j;;ci’—:—*:&’;’é&l:‘_q;_:.:{«;f—;* —+— SRLG size=1: closest relay —+— - SRLG size=1: farthest relay — + — SRLG size=1: random relay
0.917 xoo . /);j‘""$ 4 —— SRLG size=3: closest relay — O~ SRLG size=3: farthest relay — < — SRLG size=3: random relay
;T 0 f\ﬁ”/ —#— SRLG size=5: closest relay — *— - SRLG size=5: farthest relay — + — SRLG size=5: random relay
o4 T T T T T T T T T
A 0.8 1 N B
o |7 D a2 B /:;/5&\\1;:: ER R S
o 3F i 4
€ 06 E E )y
> c Ll ]
® g5l —+—SRLG size=1: nonsuppression mode|] =) 28 */J"
[ —+= SRLG size=1: suppression mode & 25,<$ ]
3+ 0.4 —— SRLG size=2: nonsuppression mode || [ 4
= —0— SRLG size=2: suppression mode Q 24f —
Q IR S S
© 0.3f —+— SRLG size=3: nonsuppression mode}| % /t\\ I o = ==F% g *
o —*- SRLG size=3: suppression mode 0 221 lr’ % - 1
0.21 —6— SRLG size=4: nonsuppression mode S 2—5 |
—-0-- SRLG size=4: suppression mode S M
0.1r —&— SRLG size=5: nonsuppression moder| c 18l 1
—-6-- SRLG size=5: suppression mode Q
0 . . . T T T T T :
0 100 200 300 400 500 600 700 800 900 1000 g :
# of nodes in the network 2.
il
Qv
Figure 6. Probability of more than one relay node for SRLGufai$ in Yo 0 0 30 4 50 600 700 800 900 1000
Waxman networks # of nodes in the network

Figure 8. The average path stretch when choosing diffeeday modes

what'’s the size for the SRLG, when the network size is oveffor SRLG failures in nonsuppression mode for Waxman networks
one hundred nodes and there is no suppression, the chance
that a source node can find multiple relay nodes to choose
from instead of only one relay node is over 97%, shownnetwork), IP fast reroute gains the lossless forwardindy wit
in Figure 5 and 6. While in the suppression mode, sincea possible longer path penalty. However, we show that the
some relay notify messages are suppressed, the chance tpanhalty is not significant. Lgtath stretchbe the ratio of the
a source node can find multiple relay nodes drops to ovelength of the pre-computed alternative path going through
88% in Waxman networks and to about 80% in Barabasithe relay node(s) divided by the length of the shorted path
Albert networks. However, we will show that the suppressionafter re-convergence. When a source node finds that there
mode will not affect the best relay node in terms of rerouteare multiple relay nodes for a reroute link, which relay node
path length and it also gives a source node better choices should the source choose? We examine three choices in
terms of reroute path length. terms of path stretch: the closest relay node to the source,

For a reroute link, the pre-computed alternative paththe farthest relay node to the source and a random relay
through a relay node is not necessarily the shortest pattode.
This is because only the source node of the reroute link is In nonsuppression mode (i.e., suppression is not applied),
aware of the failure and no other nodes are. So compared the average path stretch when choosing difference relay
the globally re-converged shortest path (which requires thnodes for different size of SRLG failures, in Barabasi-
convergence time for the failure to propagate throughaoait th Albert and Waxman networks is shown in Figure 7 and 8



10

respectively. In both networks, no matter what'’s the size of VII. RELATED WORK

the SRLG failures, choosing the closest relay node gives

the smallest path stretch, less than 1.6 compared to the re- Recently, IP Fast Reroute (IPFRR) has been proposed
converged shortest path length, while choosing the farthed0 recover from failures as soon as a falliurg is detected
relay node gives the largest path stretch. A random relay hd4Sing IP-based schemes [25]. However, existing proposals,

the stretch in between the above two. except [26] which _requires substantial number of a_ddiﬂior_1a
IP addresses, mainly focus on how to handle a single link
o s ety 0 S et 6 SHLG 0 i failure or dual-link failures [3], [4], [6], [14], [16], [1]
—*;SRLGslz‘ezszclcs‘eslrelayT*— SR"LGslze:E‘: 'anhes(‘ve\ay**‘*SRLG‘S\ZE:S r‘andcmrelay [23] AlSO, most Of ex|st|ng proposa's assume each node
% has the knowledge of some global topology information [3],
22 *;ngf;j&\\\\\\\ /55’ \\%;;5— [4], [6], [8], [14], [16]-[18], [22], [23], [26]. Instead, Or
S i work focuses on shared risk link group failures and assumes

that each node has neither global connectivity informasion
the network nor additional global IP addresses information
associated with each node. The idea of precomputing backup
paths is also explored for BGP [15], [22], [24], [27], [28].
The IPFRR framework [25] requires each router to proac-
tively compute an alternative forwarding path that do not
use the failed link or node. Thus, when a failure is actually
detected, the alternative path is immediately used during
D T T the routing convergence process to avoid dropping packets.
# of nodes in the network Once the routing converges on the new topology, normal
routing paths are used to forward packets and each router
Figure 9. The average path stretch when choosing diffeeday modes ~ recomputes a new reroute path after the topology changes.

Path stretch (suppression mode)

for SRLG failures in suppression mode for Barabasi-Albettvoeks An IPFRR scheme should be able to avoid micr0_|00ps [7]
[9], [11]. Francois et al. [10] and Gjoka et al. [13] evaluate
t SRLGsize=1: cosestrelay —+ SRLG size=1: farhest relay — + — SRLG size=L: random relay the coverage of several IPFRR mechanisms.

—— SRLG size=3: closest relay —O— - SRLG size=3: farthest relay — < — SRLG size=3: random relay
—%— SRLG size=5: closest relay — % - SRLG size=5: farthest relay— * — SRLG size=5: random relay
T T

Both Loop-free Alternates [4] and U-turn Alternates [3]
pre-computes an alternate next hop before a single link
failure. Since these two mechanisms find alternates only
among next hops, the coverage is not high even for single
link failures.

Tunnels [6] is more generalized than the above two
mechanisms in the sense that it is not limited to only use next
hops as tunnel endpoints, which have loop-free paths to the
destination. But again it can only handle single link faglsir
and is only designed for link state protocols. Also it regair
a significant number of computations of shortest paths since
it computes a reroute path for each of the neighbors of the

sink node.
Ly S nodes in the network In Multiple Routing Configurations (MRC) [16], each
router pre-computes a number of topology configurations
Figure 10. The average path stretch when choosing diffestay nodes by removing rerouted links. Failure Insensitive Routing
for SRLG failures in suppression mode for Waxman networks (FIR) [23] exploits interface-specific forwarding. Both MR
and FIR focus on single link failures. Failure-Carrying

Figure 9 and 10 show the corresponding path stretch undd?ackets (FCP) [17] uses the packet header to carry the
the suppression mode. It is clear that suppression will nolist of failed links and requires potentially expensive dy-
affect the path stretch for closest relay nodes. Howeuergesi namic computation to route that packet, with the goal of
suppression filters some farther relay nodes which tend teonvergence-free routing. Path splicing [22] createsipialt
have larger stretch, the average path stretch for bothefstrth routing trees and allows packets to switch paths by inggrtin
relay nodes and the random relay nodes is reduced undarnew packet header. It requires that every node computes
suppression mode. So a source can also randomly choosekashortest path trees and stores k forwarding table entries
relay node with stretch lower than or about 2 in both typedor each destination. All these mechanisms require every
of networks. node to have the knowledge of network topology. In [19],

o
®
T

~
o

~
N
T

N
N

-
®
T

-
@

N
N
T

Path stretch (suppression mode)

.
o
T

-




11

Li et al. explored the idea of using relay nodes to achieve IP REFERENCES
fast reroute around single link failures based only on local
information.

Kini et. al. [14] proposed an approach to handle two
simultaneous link failures by assigning three additional [2] Enhanced  interior ~ gateway  routing protocol.
addresses to each node. Their approach also requires every http://www.cisco.com/en/US/tech/tk365/technologiekite
node to be aware of the network topology. ~Paper09186a0080094cb7.shtml.

In Not-via [26], to reroute around a failed link, a special [3] A. Atlas. U-turn alternates for IP/LDP fast-reroute. linter-
Not-via addresses has to be allocated for the sink node re- net Draft, draft-atlas-ip-local-protect-uturn-03.txFebruary

garding that link and advertised over the network. Thegsfor 2006.

each node in Not-via needt additional Not-via addresses

for all the links for which it is a source node, whetés the

degree of that node. These additional IP addresses have to be

globally known, even when a link is currently not intended [5] C. Boutremans, G. lannaccone, and C. Diot. Impact of link

to be a reroute link. This significantly increases the size  failures on VoIP performance. INOSSDAV'02May 2002.

of the routing table and consequently lower the efficiency o o

of forwarding even when there is no failures. Recent work [6] S: Bryant, Cl' F'Ilrff"s’ S. PDrer'd'aa“f‘tjt')V" Sha.”‘fj' 'PfaStl reroute

from Li et al. [18] try to improve the efficiency of Not-via Klsmg tli)nnezs(,).O?ntemet raft, draft-bryant-ipfrr-tunnels-03
ovembper .

by aggregation, but it requires special allocation scheofies

Not-via addresses. Enyedi et al. [8] try to reduce the number[7] S. Bryant and M. Shand. A framework for loop-free conver-

of Not-via addresses but they also assume the knowledge of ~gence. Ininternet Draft, draft-ietf-rtgwg-If-conv-frmwk-03

global connectivity information. October 2008.

[1] BRITE: Boston univeristy Representative Internet Topology
gEnerator. http://www.cs.bu.edu/BRITE/.

[4] A. Atlas and A. Zinin. Basic specification for IP fast reroute:
Loop-free alternates. IRFC 5286 September 2008.

[8] G. Enyedi, P. Szégyi, G. Retvari, and A. Céasar. |IP fast
reroute: Lightweight not-via without additional addresses. In

VIil. CONCLUDING REMARKS IEEE infocom mini-conferenc®009.

We have presented an IP fast reroute mechanism forg] p. Francois and O. Bonaventure. Avoiding transient loops
Shared Risk Link Group failures in routing protocols withou during IGP convergence in IP networks. IBEE Infocom
global topology information. In our mechanism, any node 2005.
can advertise that it needs to be able to reroute around a
link x—y when this link fails. Then we leverage a set of
relay nodes, computed in advance of any link failures, to
tunnel the reroute paCketS around each failed link righﬁraft [11] P. Francois, O. Bonaventure, M. Shand, S. Bryant, and
the detection of a failure. Each node uses a fully distridute S. Previdi. Loop-free convergence using oFIB. Iiternet
algorithm to decide automatically whether it can serve as a  draft, draft-ietf-rtgwg-ordered-fib-Q2ZFebruary 2008.

.r8|ahy node f%rRaLréroNth link or not to avoid all “nhk failures [)]TZ] P Francois, C. Filsfils, J. Evans, a}nd O. Bonaventure. Achiev-
in the samg - Notify messages are sent to the sourcg ing subsecond IGP convergence in large IP network&Gm

a reroute link from relay nodes. We proposed a suppression  sigcomm 2005.

mode to greatly reduce the number of notify messages.

Moreover, our tunneling scheme ensures that loops are nevEr3] M. Gjoka, V. Ram, and X. Yang. Evaluations of IP fast reroute
formed even when any number of links fail. proposals. INEEE Comswarg2007.

Through simulations on different topologies, we con-ri41 g Kini, S. Ramasubramanian, A. Kvalbein, and A. Hansen.
firmed that our mechanism can achieve close to 100% repair ~ Fast recovery from dual link failures in IP networks. |EEE

coverage in different types and various sizes of networks fo Infocom 2009.

different SRLG size. The average length of a reroute path is _

around 1.5 the re-converged optimal paths. As expected, tH>] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-BGP:
o . . . Staying connected in a connected world. Usenix NSD]|

suppression is quite effective and cut 80% of notify message 2007.

in a network of reasonable size-100).

Our future work includes migrating our IP fast reroute [16] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and
mechanism to interdomain routing protocols. Using our  O- Lysne. Fast IP network recovery using multiple routing
mechanism, each AS can potentially leverage the existing ~ configurations. INEEE infocom 2006.

Internet topology to achieve fast reroute around Sharekl Risi; 71 ¢ Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,

Link Group Failures, without changing the BGP advertising S. Shenker, and I. Stoica. Achieving convergence-free routing
and decision process. using failure-carrying packets. IACM Sigcomm2007.

] P. Francois and O. Bonaventure. An evaluations of IP-based
fast reroute techniques. @oNext 2005.



(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

A. Li, P. Francois, and X. Yang. On improving the efficiency
and manageability of NotVia. I€oNext 2007.

Y. Li and M. G. Gouda. IP fast reroute without global
topology information. UTCS Technical Report TR-09-34
(also submitted to a conference), Department of Computer
Sciences, The University of Texas at Austin, Austin, TX,
20009.

G. Malkin. RFC 2453 - RIP Version 2, November 1998.

A. Markopoulou, G. lannaccone, S. Bhattacharyya, C.-N.
Chuah, and C. Dio. Characterization of failures in an IP
backbone. INEEE Infocom’04 Hong Kong, 2004.

M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path
splicing. InACM Sigcomm?2008.

S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah.
Fast local rerouting for handling transient link failures.
IEEE/ACM Transaction on Networkind5(2), April 2007.

C. F. Olivier Bonaventure and P. Francois. Achieving sub-
50 milliseconds recovery upon BGP peering link failures.
IEEE/ACM Transaction on Networking5(5), October 2007.

M. Shand and S. Bryant. IP fast reroute framework.Irin
ternet Draft, draft-ietf-rtgwg-ipfrr-framework-08.txEebruary
2008.

M. Shand, S. Bryant, and S. Previdi. IP fast reroute using
Not-via addresses. Idraft-ietf-rtgwg-ipfrr-notvia-addresses-
03, October 2008.

F. Wang and L. Gao. A backup route aware routing protocol -
fast recovery from transient routing failures.|EEEE Infocom
mini-conference2008.

F. Wang and L. Gao. Path diversity aware interdomain
routing. InlEEE Infocom 2009.

12



