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Abstract—IP fast reroute is a mechanism that is used to
reroute packets around a failed link, as soon as the link fails
and before the employed routing protocol has a chance to
adapt the routing tables to the link failure. Most of the IP
fast reroute mechanisms, that have been proposed so far, focus
on single or dual link failures but can not handle Shared Risk
Link Group (SRLG) failures when several links fail at the
same time because of some common underlying component
failure. Furthermore, most of current work is based on the
assumption that each node in the network has access to some
global topology information of the network. (This assumption
seems reasonable if the employed routing protocol is a link-state
protocol, but it is not valid if the employed routing protocol is
a distance vector like protocol.) In this paper, we present the
first IP fast reroute mechanism for SRLG failures that is not
based on the assumption that the nodes in the network have
global topology information of the network.

In our proposed mechanism, any nodex can advertise that
it needs to be able to reroute around a linkx→y that belongs
to a SRLG when this link fails. When the nodes in the network
receive this advertisement, they start to exchange “relay bits”
for link x→y and some nodes in the network recognize that
they can serve as “relay nodes” for link x→y to avoid any
SRLG failures and notify node x of this fact. Finally, nodes
x chooses one of the relay nodes, say nodez, to be the relay
node for link x→y. Thus, when link x→y fails, node x can
immediately tunnel packets that need to traverse linkx→y to
node y through node z. Our tunneling scheme ensures that
loops are never formed even when any number of links fail.
Through simulation, we show that our mechanism succeeds
in rerouting around SRLG failures about 100% of the time,
with average length of a reroute path about 1.5 times the re-
converged shortest path.
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I. I NTRODUCTION

As Internet becomes the ubiquitous infrastructure for var-
ious applications and carries all kinds of traffic, traditional
best effort service model becomes insufficient. Demands
on reliability and availability are becoming more and more
stringent, especially with the development of more real-
time applications like VoIP and Video on demand [5].
Unfortunately, failures are very common in daily operations
of a network and what makes things worse is that most
failures are not predictable. It is reported in [21] that 80%
of all failures are unexpected. Among these unexpected

failures, besides the most common single link failures,
another significant part is Shared Risk Link Group (SRLG)
failures. Links that belong to the same SRLG share some
underlying component either in the optical infrastructurelike
a fiber or at a router like a line card.

The convergence process for failure recovery in traditional
routing protocols, link state and distance vector, is time
consuming and may result in instability in case of frequent
transient link failures. During this convergence process,the
routing tables may be inconsistent and packets may be
dropped due to invalid routes. Although much work has
been dedicated to reduce the convergence time of routing
to even under a second [12], it is still quite far from the 50
milliseconds target for mission critical applications [24].

Recently, IP fast reroute has been proposed to proactively
compute backup paths before a failure happens. And as
soon as a failure is detected, the backup path can be
invoked immediately to reroute around the failure during
the convergence period. Thus the routing disruption time can
be limited to only the failure detection time [25]. Although
several mechanisms have been developed within the IP fast
reroute realm, most of them focus on single or dual link
failures and can not handle SRLG failures [3], [4], [6],
[14], [16], [19], [22], [23]. Also, most of existing work
relies on the existence of some global topology information
to precompute backup paths [3], [4], [6], [14], [16], [17],
[22], [23], [26]. Specifically, for [3], [4], [6], [14], [16],
[17], [22], [23], they assume each node in the network has
the complete knowledge of all the connectivity information
in the network (i.e., how all the nodes in the network are
connected with each other). For Not-via [26], each node is
allocated some special Not-via IP addresses for all the links
associated with that node. These Not-via addresses have to
be known and stored in the routing table by every other node
in the network, no matter whether the links are intended to
be protected or not.

When global topology information is not available (for ex-
ample, in distance vector like routing protocols), to recover
from SRLG failures, IP fast reroute faces more challenges:
how to get necessary information to compute alternative
backup paths to avoid all the links in the same SRLG,
without changing the original routing tables? To address
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this challenge, we design an IP fast reroute mechanism for
handling SRLG failures with the following goals:

• No Global Topology Information: Our mechanism
does not assume nodes in the network have access
to any global topology information: neither the
connectivity information of the network nor any
additional IP addresses associated with each node
which need to be globally known and stored in routing
tables. Each node only has access to its local topology,
i.e., links associated with the node itself. Also, each
node only knows to which SRLG its associated links
belong but does not know other links in the same
SRLG.

• Distributed Computation of Backup Paths: Each
backup path for a reroute link is designated by a
node calledrelay node. In order to find relay nodes
in a fully distributed way, we introduce tworelay bits
for each reroute link. Each node only maintain and
exchange two relay bits with its neighbors for each
reroute link. Using the two relay bits, a node in the
network can automatically decide if itself can serve as
a relay node for a reroute link or not. Thus backup
paths for a reroute link can be computed in a fully
distributed manner.

• Reroute Only When You Want: Rerouting information
is propagated only for links that are currently under
protection using IP fast reroute, which are called
reroute links. Reroute links can be changed at any
time. Thus rerouting information for links that are not
necessarily being protected at some instant will not be
propagated and stored. So the cost of our mechanism
is dynamically associated with the number of links
currently protected in the network.

The main idea of our IP fast reroute mechanism to recover
from SRLG failures is elaborated as follows. Any nodex can
decide, at anytime, that it needs to reroute packets around
its link x→y if this link ever fails in the future. When this
happens, nodex starts advertising that its linkx→y, together
with its SRLG number, has been designated as a reroute link.
When a nodez in the network receives this advertisement,
nodez allocates and maintains two bits for linkx→y. The
two bits are called therelay bitsof link x→y in nodez.

The initial value of the relay bits for each reroute link
x→y in each nodez is 00. Each node periodically sends
its relay bits (for different reroute links in the network) to
its neighboring nodes, and uses the received relay bits to
update the values of its own relay bits. If the value of the
relay bits for a linkx→y in nodez ever becomes 11, then
nodez recognizes that it is a relay node for linkx→y and
sends a notification message to the source nodex of link

x→y.
The source nodex receives notification messages from

many nodes for linkx→y, and selects only one of these
nodes, say nodez, to be the relay node for linkx→y. From
this point on, when nodesx receives a packet that needs
to be forwarded over linkx→y and discovers that this link
failed, nodex immediately forwards the packet to the relay
node z which then forwards the packet to the other end
of the reroute link, nodey. This process continues if the
packet encounters any other failed links towards its ultimate
destination.

We propose a tunneling scheme to ensure that loops are
never formed. We also propose an algorithm to suppress
redundant relay notification messages. Finally we show,
through extensive simulations on a variety of networks of
different sizes and varying SRLG size from 1 to 5, that the
coverage of our mechanism is close to 100%. Suppression
can effectively cut about 80% notification messages when
the network has at least one hundred nodes. Also, the
average length of a reroute path is around 1.5 times the
average length of the re-converged shortest path.

The structure and organization of this paper follows from
our technical report [19] which focus on how to handle
single link failures using IP fast reroute. Section II presents
the concept of reroute links and how to designate reroute
links. Then in Section III, we introduce the concept of a
relay node for a reroute link that is a member of a SRLG
and how to use the relay node in rerouting. Section IV
presents how a node learns a relay node, without access
to the global topology information, for a reroute link which
belongs to a SRLG. Section V describes the suppression
mode to suppress redundant notification messages. We show
the efficiency and overhead of our rerouting algorithms in
Section VI. Related work is reviewed in Section VII. Finally
we conclude in Section VIII.

II. REROUTEL INKS IN SHARED RISK L INK GROUP

We model a network as an undirected graph where each
node represents a router and each (undirected) edge between
two nodes, say nodesa and b, represents two links: link
a→b and link b→a. For each linka→b, nodea is called
the sourceof link a→b and nodeb is calledthe sinkof link
a→b.

A Shared Risk Link Group (SRLG) is a set of links which
share the same underlying physical point of failure such as
fiber cut or line card failure. We assume that all the links
in the network are partitioned into different SRLG groups.
That is, each link belongs to one SRLG group. If a link does
not share physical resources with others, then it is regarded
as an SRLG with only one link. We also assume that the
source nodea of a link a→b only knows to which shared
risk link group linka→b belongs if any, but nodea does not
know other links that belong to the same shared risk link
group as linka→b.
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We assume that packets are routed between different
nodes in the network using distance vector routing proto-
cols [2], [20]. In distance vector routing protocols, the peri-
odic exchange of routing tables between neighboring nodes
in a network eventually causes the next hop and distance
entries in all routing tables in the network to “converge” to
their correct values. This convergence procedure may take
even tens of seconds.

g1 g1

g1

g2

g2

g3 g3

Fig. 1. An example networkN1

Table I
ROUTING TABLE RT.a OF

NODE a

dest. next hop dist.
a - 0
b b 2
c b 3
d b 5
e e 1
f e 2
g e 2
h e 3
i e 4

As an example, Figure 1 shows a networkN1 that has
nine nodes and twelve edges. Each edge in networkN1 is
labeled with a distance. The routing tableRT.aof nodea in
networkN1 is shown in Table I. Also, there are three SRLGs
in N1 with SRLG numberg1, g2 and g3. Link a→b, c→d
ande→f belong to the same SRLGg1; link b→f and f→g
belong to the same SRLGg2; link g→h andh→i belong to
the same SRLGg3.

Now consider the situation where nodea has a packet
whose ultimate destination is noded. But then nodea notices
that link a→b used to reach destinationd has failed and so
no packet can be transmitted over it. The question now is
“what does nodea do with this packet, and every other
packet, that need to be transmitted over the failed linka→b
before the entries of the routing tableRT.ahave converged
to their new correct values?”

Nodea has two options in this situation. The first option is
that nodea drops every packet that needs to be transmitted
over the failed linka→b. This option is attractive if link
a→b is very reliable (and so the probability of its failure
is very small) or if the rate of packets that need to be
transmitted over linka→b is very small.

The second option is that nodea anticipates the failure of
link a→b and maintains alternative routes that can be used
to reroute around linka→b when this link fails. To do so,
nodea needs to advertise to every node in the network that
link a→b has been designated (by nodea) to be areroute
link. Thus every node in the network can proceed to help
nodea identify and maintain alternative routes that can be
used to reroute around linka→b when it fails.

Each nodea in the network is provided with arerouting

table RR.athat has the following four columns:

(rlink, srlg, rbits, relay)

The first column,rlink, in every rerouting table lists all the
links that have been designated, by their source nodes, as
reroute links. The second column,srlg, lists the shared risk
link group that this reroute link belongs to. The other two
columns,rbits andrelay, are discussed below in Section IV.

Initially, the rerouting tableRR.aof each nodea is empty
except that nodea adds one entry for each linka→sn that
a wants to designate as a reroute link. Whenever nodea
sends a copy of its routing tableRT.a to each neighboring
node, nodea also sends a copy of its rerouting tableRR.a
(excluding the “relay” column) to the neighboring node. This
periodic exchange of routing and rerouting tables between
neighboring nodes in the network eventually causes every
link that has been designated as a reroute link to have one
entry in every rerouting table in the network.

At any time, each nodea can change the set of links that
it has designated as reroute links by adding new links to this
set or by removing old links from this set. The algorithm
for updating this set is shown in Algorithm 1. Note that in
this algorithm, we userlink.a to denote the columnrlink in
the rerouting tableRR.aof nodea.

Algorithm 1 : Nodea updates its set of reroute links

begin1

for a→sn /∈ rlink.a do2
if a needs to be able to reroute arounda→sn then3

adda→sn entry to RR.a;4
end5

end6
for a→sn ∈ rlink.a do7

if a no longer needs to be able to reroute around8
a→sn then

removea→sn from RR.a;9
end10

end11

end12

Note that links that belong to the same SRLG can be
designated as reroute links seperately depending on the two
scenarios we just discussed above.

III. R ELAY NODES FORSRLG FAILURES

In this section, we introduce the concept of a relay node
for a reroute link that is a member of a SRLG in a network.
(Note that the relay node defined in this section also works
for reroute links that does not belong to any SRLG in the
network.) We then discuss how a relay node for a reroute
link can be used in rerouting around its reroute link when
all the links that belong to the same SRLG fail.

Since the set of links belonging to the same SRLG shares
the same underlying physical point of failure such as fiber
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cut or line card failure, when repairing the failure of a reroute
link that belongs to a SRLG, all the other links that are
members of the same SRLG should be avoided since they
all fail at the same time.

Let s and d be two nodes in a networkN, and letR(s,
d) denote the shortest route from nodes to node d as
determined by the routing tables in networkN. A node r
in N is called arelay nodefor a reroute linka→b in N iff
neither the routeR(a, r) nor the routeR(r, b) contains any
link, if any, which belongs to the same SRLG as linka→b
(including a→b itself).

As an example, consider networkN1 in Figure 1. Link
a→b, link c→d and link e→f belong to the same SRLG
g1. If link a→b in networkN1 is designated, by nodea, as
a reroute link, then by definition, nodeg, h and i are relay
nodes for linka→b. However, if link b→c and link c→h
belong to the same SRLG (not shown inN1), and linkb→c
is designated, by nodeb, as a reroute link, then no node
in network N1 is a relay node for linkb→c according to
the definition of relay nodes. These two examples simply
show that a reroute link in a SRLG can have one or more
relay nodes or even no relay nodes. Fortunately, we show by
extensive simulations below in Section VI that reroute links
in a SRLG that have no relay nodes are extremely rare.

Next we describe the procedure for rerouting around a
reroute linka→b, when this link fails, assuming that node
a knows the identity of a relay noder for link a→b:

1. Assume that a packet is to be sent from a nodes to
a noded along the routeR(s, d) which contains the
reroute link a→b. In this case, the IP header of the
packet can be represented as(from s, to d).

2. Assume also that when this packet reaches nodea, node
a discovers that the reroute linka→b has failed and so
decides to reroute the packet towards the relay node
r for link a→b. In this case, nodea encapsulates the
packet in two outer IP hearders(from a, to b)and then
(from a, to r) and forwards the encapsulated packet
towardsr.

3. When the encapsulated packet reaches the relay node
r, noder removes the outermost IP header(from a, to
r) and discovers that the packet has an inner IP header
(from a, to b). Thus noder forwards the encapsulated
packet towardsb.

4. When the encapsulated packet reaches nodeb, nodeb
removes the outer IP header(from a, to b)and discovers
that the packet has an inner IP header(from s, to
d), which indicates that the ultimate destination of the
packet isd. Thus nodeb forwards the packet towardsd.
Note that now the packet is not encapsulated any more.

5. Finally when the packet reaches noded, noded dis-
covers that the original source of the packet iss and
its ultimate destination isd. Thus, noded keeps the
packet.

6. Assume that, while the packet is traversing the route

R(b, d) (non-encapsulated now like a normal packet),
the packet reaches a nodex that needs to transmit
the packet over the reroute linkx→y except that it
discovers that linkx→y has failed. Nodex can use the
same procedure, step 1 through 5 as describe above,
to reroute the packet around the failed linkx→y, no
matter whether linkx→y belongs to the same SRLG
as link a→b or not.

7. However, assume that the encapsulated packet is
traversing the routeR(a, r) or the routeR(r, b), the
packet reaches a linkx→y that has failed. Recognizing
that the packet is being rerouted because it is an
encapsulated packet, nodex drops the packet and does
not attempt to reroute it a second time. This action
guarantees that the routing loops are not created due to
repeated rerouting of the same packet. Note that this
action is different from step 6 above. In step 6, the
packet can be rerouted because it is not in the procedure
of rerouting (i.e., the packet is not encapsulated). In
this step, no more rerouting should be allowed while
the packet is right in the rerouting procedure (i.e., the
packet is encapsulated).

The fact that no routing loops are created due to the
repeated rerouting of the same packet is established in the
following lemma and theorem.

Lemma 1.
Let r be a relay node for a reroute linka→b in a network
N, and letd be any node in networkN such that the route
R(a, d)contains the reroute linka→b. If link a→b fails, and
nodea reroutes a packet, whose ultimate destination is node
d, to noder, then this packet will not traverse any loop in
the network before reaching nodeb no matter whether link
a→b belongs to a SRLG or not.

Proof: First, if when the rerouted packet traverses the
route R(a, r) or the routeR(r, b), the packet does not
encounter any other link failures, then from the definition
of a relay node, this packet will not traverse the reroute link
a→b and thus will not be rerouted again. Hence the rerouted
packet will not traverse any loop before reaching nodeb.
Second, if when the rerouted packet traverses the routeR(a,
r) or the routeR(r, b), the packet encounters any other link
failure, denotedx→y, then if x→y is a reroute link, then
according to the seventh step of reroute procedure presented
above, nodex checks that the packet is an encapsulated
packet (means that it has been rerouted once),x just drops
the packet to avoid rerouting it again. Thus, the packet is
only rerouted once through the relay noder and it will not
traverse any loop before reaching the sink nodeb. On the
other hand, if linkx→y is not a reroute link, nodex will
have no relay node to reroute the packet, sox will drop the
packet and thus the packet will not traverse any loop before
reaching the sink nodeb.

Theorem 2.
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No routing loops are created due to repeated rerouting of the
same packet to its ultimate destination using the rerouting
procedure, no matter whether all encourtered failed links
belong to the same SRLG or not.

Proof: From Lemma 1, we know that rerouting a packet
through a single failed link to the sink node will not create
loops. Assume that after a packet is successfully rerouted
through a failed linka→b, when the packet traverses the
routeR(b, d)towards its ultimate destinationd, it encounters
another link failure, denotedx→y. If link x→y belongs to
the same SRLG as linka→b, and the relay node forx→y
is denotedr’ , then according to the definition of relay node,
route R(x, r’) and R(r’, y) contains neithera→b nor x→y.
Thus no loops are created due to rerouting the packet again
through link x→y. Otherwise, if linkx→y does not belong
to the same SRLG as linka→b, if either routeR(x, r’) or
R(r’, y) containsa→b, then after the packet being rerouted
through a→b, it would traverse the linkx→y again (after
going through linka→b). This contradicts to the definition
of relay node sinceR(x, r’) or R(r’, y) containsx→y. Thus,
no matter how many failed links encountered when using the
rerouting procedure to reroute a packet towards its ultimate
destination, and no matter whether or not all these failed
links belong to the same SRLG or not, there are no loops
created due to rerouting.

IV. RELAY BITS TO IDENTIFY RELAY NODES

In the previous section we presented a procedure by which
a nodea can reroute packets around a reroute linka→b
when all the links that belong to the same SRLG fail. This
procedure is based on the assumption that nodea knows a
relay node for the reroute linka→b. So the question now is
“How does nodea know a relay node for linka→b which
belongs to a SRLG without access to the global topology
information?” In this section we present a fully distributed
procedure by which nodea learns all the relay nodes for
link a→b although nodea does not know any other links
that belong to the same SRLG as linka→b. This procedure
consists of the following three parts.

1. In the first part, nodea informs every node in the
network that it has designated linka→b as a reroute
link as well as the SRLG numberg1 that a→b belongs
to.

2. In the second part, each nodex in the network receives
the information that linka→b has been designated as
a reroute link and checks whether the routeR(x, b)
and R(x, a) include any link that belongs to the same
SRLGg1 as linka→b. If nodex finds that neitherR(x,
b) nor R(x, a)includes any link that belongs to the same
SRLG g1 as link a→b, then nodex sends anotify(x,
a→b) message to nodea to inform a that x is a relay
nodefor link a→b.

3. In the thrid part, when nodea receives anotify(x, a→b)
message, nodea concludes thatx is a relay node for link

a→b. Node a then addsx to the set ofrelay.a[a→b]
in the rerouting tableRR.aof nodea.

Next we describe first two parts of the procedure in some
details.

The First Part: For node a to announce that it has
designated linka→b as a reroute link, nodea adds the entry
(a→b, g1, 00, -) to its rerouting tableRR.a. Recall that each
entry in a rerouting table consists of four components(rlink,
srlg, rbits, relay), whererlink is a reroute link;srlg lists the
shared risk link group that this link belongs to;rbits are two
relay bits (to be discussed shortly) for the reroute link; and
relay is the set of all known relay nodes for the reroute link.
The initial value ofrelay is “-” which indicates that nodea
does not know yet this value.

Because the rerouting table of every node is sent periodi-
cally to every neighbor of this node, the fact that linka→b
has been designated a reroute link, as well as the SRLGg1

it blongs to, is eventually recorded in every rerouting table
in the network according to the following rule. If a nodex
receives a rerouting tableRR.yfrom a neighbory, and the
next hop for reaching nodea in the routing tableRT.x of
nodex is nodey, and if RR.yhas ana→b entry butRR.x
does not havea→b entry, then nodex adds an entry (a→b,
g1, 00, -) to its rerouting tableRR.x. Conversely, ifRR.y
has noa→b entry butRR.xhas ana→b entry, then nodex
removes thea→b entry from its rerouting tableRR.x.

The Second Part:For each reroute linka→b in the
rerouting tableRR.xof each nodex in the network, node
x maintains two bits, named the relay bits of linka→b, in
RR.x. These two bits are denotedrbits.x[a→b] and each of
the two bits has anyone of two values. The value “0” in the
first bit indicates two cases: either nodex does not know yet
the correct value of the bit (i.e., initial value of the bit),or
nodex has checked that some link that belongs to the same
SRLGg1 as linka→b occurs in the routeR(x, a). The value
“1” in the first bit indicates thatx has checked that no link
that belongs to the same SRLGg1 as linka→b occurs in the
routeR(x, a). Similarly, the value in the second bit indicates
the same meaning except that nodex checks whether there
is any link that belongs to the same SRLGg1 as link a→b
occurs in the routeR(x, b). Only when the two bits are both
“1”s, i.e., no link that belongs to the same SRLGg1 as link
a→b occurs in routeR(x, a)and routeR(x, b), nodex is a
relay node for reroute linka→b.

Next, we describe how to set up the two relay bits for
a reroute link. Initially, the value ofrbits.x[a→b] is “00”
in the rerouting tableRR.xin every nodex in the network,
meaning that every node does not know the correct value
of the bits yet. The source nodea of link a→b assigns the
relay bitsrbits.a[a→b] in its rerouting tableRR.athe value
10. The first bit “1” means that no link that belongs to the
same SRLGg1 as linka→b occurs in the routeR(a, a), and
the second bit “0” means that linka→b occurs in the route
R(a, b).
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Then the sink nodeb of link a→b assigns the bits
rbits.b[a→b] in its rerouting tableRR.b the value 01. The
first bit “0” means that linkb→a that belongs to the same
SRLG g1 as link a→b occurs in the routeR(b, a), and the
second bit “1” means that no link that belongs to the same
SRLG g1 as link a→b occurs in the routeR(b, b).

Then every other nodex in the network assigns each of
the two relay bitsrbits.x[a→b] in its rerouting tableRR.x
the valueval, whereval is either 0 or 1, according to the
following rule: If x receivesRR.y from neighbory, and if
the next hop for reaching nodea in the routing tableRT.x
of nodex is nodey, then nodex checks whether the shared
risk link group of link x→y is the same as the shared risk
link group of link a→b, if yes, then nodex assigns the first
bit rbits.x[a→b][0] in its RR.xthe value 0; if no, then node
x assigns the first bitrbits.x[a→b][0] in its RR.xthe value
of the first bit in rbits.y[a→b]. Similarly, nodex assigns the
second relay bit: If the next hop for reaching nodeb in the
routing tableRT.xof nodex is nodey, then nodex checks
whether the shared risk link group of linkx→y is the same
as the shared risk link group of linka→b, if yes, then nodex
assigns the second bitrbits.x[a→b][1] in its RR.xthe value
0; if no, then nodex assigns the second bitrbits.x[a→b][1]
in its RR.xthe value of the second bit in rbits.y[a→b].

The first and second parts outlined above are part of
updating the rerouting tableRR.xafter nodex receives the
rerouting tableRR.yfrom the neighboring nodey shown in
Algorithm 2.

Figure 1 shows three SRLGs:g1, g2 and g3. Assume
that all the links in three SRLGsg1, g2 and g3 have been
designated by their respective source node to be reroute
links. Also, assume that linka→e has been designated by
nodea as a reroute link and linkd→i has been designated
by noded as a reroute link too. But these two links do not
belong to any SRLG. Then the rerouting tableRR.aof node
a, after these links have been designated as reroute links, is
shown in Table II.

Note thatRR.aincludes the relay nodes for the two reroute
links a→b and a→g for which nodea is the source node.
But RR.adoes not include any relay node for any reroute
link for which nodea is not the source node.

Correctness of the procedure for updating the relay bits
follows from the next theorem.

Theorem 3.
For any nodex in a networkN , if the relay bits in nodex
for a reroute linka→b are both ones, i.e.,rbits.x[a→b]=11,
then neither routeR(a,x)nor routeR(x,b)contains any link
that belongs to the same SRLG as reroute linka→b.

Proof: We prove the two parts respectively: first, we
prove that if the first relay bit, denotedrbits.x[a→b][0] is
1, then routeR(a,x) does not contain any link that belong
to the same SRLG as reroute linka→b; second, we prove
that if the second relay bit, denotedrbits.x[a→b][1] is 1,

Algorithm 2 : Update rerouting tableRR.x after x receives
rerouting tableRR.y from neighbory

begin1

for (sr→sn ∈ rlink.x) and (sr→sn /∈ rlink.y) do2
if nexthop.x[sr] == y then3

removesr→sn entry from RR.x;4
end5

end6
for (sr→sn /∈ rlink.x) and (sr→sn ∈ rlink.y) do7

if nexthop.x[sr] == y then8
addsr→sn entry to RR.x;9

end10
end11
for sr→sn ∈ rlink.x do12

if x == sr then13
rbits.x[sr→sn] := 10;14

else if x == sn then15
rbits.x[sr→sn] := 01;16

else17
if nexthop.x[sr] == y then18

if srlg.x[x→y] == srlg.x[ sr→sn] then19
rbits.x[sr→sn][0] := 0;20

else21
rbits.x[sr→sn][0] := rbits.y[sr→sn][0];22

end23
end24
if nexthop.x[sn] == y then25

if srlg.x[x→y] == srlg.x[ sr→sn] then26
rbits.x[sr→sn][1] := 0;27

else28
rbits.x[sr→sn][1] := rbits.y[sr→sn][1];29

end30
end31

end32
end33

end34

Table II
REROUTING TABLE RR.a OF NODEa IN NETWORK N1 WITH THE RELAY

NODES FOR THE REROUTE LINKSa→b WHOSE SOURCE NODE ISa

rlink srlg rbits relay
a→b g1 10 g, h, i
a→e - 10 b, c, d
c→d g1 00 -
e→f g1 10 -
b→f g2 11 -
f→g g2 11 -
g→h g3 10 -
h→i g3 10 -
d→i - 11 -

then routeR(x,b) does not contain any link that belong to
the same SRLG as reroute linka→b. We prove the first part
using induction on the number of hops in a shortest route.
The base case is thatrbits.a[a→b][0] = 1 andR(a, a)does
not contain any link that belong to the same SRLG as link
a→b. Assume that this proposition holds for nodey which
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is n, n≥0 hops away from the source nodea of the reroute
link a→b, i.e., rbits.y[a→b][0] = 1 and routeR(a, y)does
not contain any link that belongs to the same SRLG as link
a→b. Then from line 18-24 in Algorithm 2, another node
x, which is n+1 hops away from the source nodea, sets its
first relay bitrbits.x[a→b][0] to one, only when its nexthop
y also has one forrbits.y[a→b][0] and link x→y does not
belong to the same SRLG as linka→b (neither does link
y→x since the topology is symmetric). Thus nodex only set
its first relay bitrbits.x[a→b][0] to one when neitherR(a,y)
nor y→x contains any link that belong to the same SRLG
as link a→b. Equivalently,rbits.x[a→b][0] is set to 1 only
when routeR(a,x)does not contain any link that belong to
the same SRLG as reroute linka→b. Thus, we proved the
first part. The second part can be proved similarly.

V. SUPPRESSIONMODE

There is one problem concerning the second and third
part of the procedure discussed in the previous section: for
some reroute links many nodes in the network qualify to be
relay nodes and so these many nodes start to send notify
messages to the source node of the link and the source node
of a reroute link has to process all the notify messages even
though the source node needs only one relay node for the
link in order to be able to reroute packets around the link
when it fails.

As an example, consider the reroute linka→b in network
N1 in Figure 1. In networkN1, each of the nodesg, h and i
qualifies as a relay node for linka→b. Thus, each of these
nodes sends a notification message to nodea. However node
a needs only one relay node for linka→b so that nodea
can reroute packets around linka→b when this link fails.

In order to minimize the notification messages sent in the
network, we introduce asuppression modefor the second
part of the procedure discussed in the previous section. In
the suppression mode, when the relay bitsrbits.x[a→b] in
the rerouting tableRR.xof nodex have the value 11, node
x recognizes that it is a relay node for linka→b and so it
sends anotify(x, a→b) message to its next hop for reaching
nodea, which either drops the message (as explained below)
or forwards the message to its next hop for reaching nodea.
Thus, if this notify message is not dropped along the way,
then this message will travel along the routeR(x, a) from
node x to nodea. If the notify(x, a→b) message reaches,
along this route, a nodey where the relay bitsrbits.y[a→b]
in the rerouting tableRR.y have the value 11, then node
y drops thenotify(x, a→b) message knowing that its own
notify(y, a→b) message is sufficient for nodea to have one
relay node for linka→b.

If the suppression mode is used in networkN1 in Figure
1, then for reroute linka→b,

the notify message from nodei is dropped by nodeh
the notify messages fromh is dropped byg

Thus, nodea ends up receiving notify messages concern-
ing link a→b from only nodeg instead of all the three relay
nodes:g, h and i.

The actions of a nodex concerning the sending and
receiving of notify messages are shown in Algorithm 3.

Algorithm 3 : Actions of nodex on sending and receiving relay
notify messages

/* ---------sending action----------- */
for sr→sn ∈ rlink.x do1

if (rbits.x[sr→sn] == 11) then2
sendnotify(x, sr→sn) to nexthop.x[sr];3

end4
end5

/* ---------receiving action--------- */
rcv notify(z,sr→sn) from a neighbor ydo:6

if x == sr then7
add z to relay.x[sr→sn]8

else if (rbits.x[sr→sn] == 11) then9
suppressnotify(z,sr→sn)10

else11
forward notify(z,sr→sn) to nexthop.x[sr]12

end13

VI. SIMULATION RESULTS

We now evaluate the performance of our IP fast reroute
mechanism for various size of shared risk link groups (i.e.,
the number of links that are members of a SRLG) using
simulations. Through simulation, we intend to answer the
following questions: 1) What is the repair coverage for vari-
ous size of SRLGs? 2) what is the efficiency of suppression
under different size of SRLGs? 3) What is the chance that
a node can have multiple relay nodes to choose for various
size of SRLGs? Will the suppression affect this? 4) What
is the overhead of using a relay path, which may include
several relays for links in the same SRLG, instead of using
the re-converged shortest path? How does the suppression
affect this?

We conduct our simulations using two general networks,
generated using the BRITE tool [1]. The first network
satisfies the power law distribution based on the Barabasi-
Albert model with parameterm = 2. The second is a random
network based on the Waxman model with parametersα =
0.15 andβ = 0.2. We have experimented with a variety of
network size from tens of nodes to hundreds of nodes, with
both types of topologies. For each toplogy with E edges,
we randomly select S edges,1 ≤ S ≤ 5 that are close to
each other to form a SRLG (the number of hops between the
first selected edge and any other selected edge is no larger
than 0.6 the maximum number of hops in the network). For
S = 1, we count every single link failure. For S> 1, we
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generate up to 1000 different SRLG failures and make sure
each SRLG is not a cut of the topology graph.

Let repair coverage be the percentage of source-
destination pairs in which, when the linksource→sink of
a SRLG used to traverse packets from the source to the
destination fails, the source can reroute around any failed
link in the same SRLG which appears along the path to
reach the destination. To compute repair coverage for SRLG
link failures, for every sourcesr in a source-destination pair
sr→d, we iteratively mark all the links that belong to the
same SRLG as failed and compute all the relay nodes for
that failed link. Then we compute the percentage of source-
destination pairssr→d in which the sourcesr can find a
relay node to reach that destinationd. And obviously when
the link is not used from the source to any destination, the
case is not counted.
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Figure 1. Repair coverage of SRLG failures for Barabasi-Albert networks
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Figure 2. Repair coverage of SRLG failures for Waxman networks

Figure 1 and 2 show the repair coverage for SRLG failures
for Barabasi-Albert and Waxman network respectively. For
both Barabasi-Albert and Waxman network, no matter what

is the size of the network, the repair coverage for smaller
SRLG size is greater than the repair coverage for larger
SRLG size. However, when the network size is at least
100 nodes, the SRLG size does not have much effect on
the repair coverage and our IP fast reroute mechanism can
achieve close to 100% repair coverage in these cases.
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Figure 3. Suppress ratio of relay notify messages for Barabasi-Albert
networks
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Figure 4. Suppress ratio of relay notify messages for Waxman networks

We measure the efficiency of suppression usingsuppress
ratio, which is defined as the percentage of suppressed
relay notify messages. As shown in Figure 3 and 4, in
both Barabasi-Albert and Waxman networks, the size of the
SRLG does not affect the suppress ratio much. And when the
network size is at most one hundred nodes, the suppress ratio
is between 50% and 75%. If the network size is larger than
one hundred nodes, then the suppress ratio is about 80%.
This demonstrates that suppression will effectively save the
processing overhead for the source node and the bandwidth
in the network.

In both Barabasi-Albert and Waxman networks, no matter
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Figure 5. Probability of more than one relay node for SRLG failures in
Barabasi-Albert networks
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Figure 6. Probability of more than one relay node for SRLG failures in
Waxman networks

what’s the size for the SRLG, when the network size is over
one hundred nodes and there is no suppression, the chance
that a source node can find multiple relay nodes to choose
from instead of only one relay node is over 97%, shown
in Figure 5 and 6. While in the suppression mode, since
some relay notify messages are suppressed, the chance that
a source node can find multiple relay nodes drops to over
88% in Waxman networks and to about 80% in Barabasi-
Albert networks. However, we will show that the suppression
mode will not affect the best relay node in terms of reroute
path length and it also gives a source node better choices in
terms of reroute path length.

For a reroute link, the pre-computed alternative path
through a relay node is not necessarily the shortest path.
This is because only the source node of the reroute link is
aware of the failure and no other nodes are. So compared to
the globally re-converged shortest path (which requires the
convergence time for the failure to propagate throughout the
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Figure 7. The average path stretch when choosing different relay nodes
for SRLG failures in nonsuppression mode for Barabasi-Albert networks
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Figure 8. The average path stretch when choosing different relay nodes
for SRLG failures in nonsuppression mode for Waxman networks

network), IP fast reroute gains the lossless forwarding with
a possible longer path penalty. However, we show that the
penalty is not significant. Letpath stretchbe the ratio of the
length of the pre-computed alternative path going through
the relay node(s) divided by the length of the shorted path
after re-convergence. When a source node finds that there
are multiple relay nodes for a reroute link, which relay node
should the source choose? We examine three choices in
terms of path stretch: the closest relay node to the source,
the farthest relay node to the source and a random relay
node.

In nonsuppression mode (i.e., suppression is not applied),
the average path stretch when choosing difference relay
nodes for different size of SRLG failures, in Barabasi-
Albert and Waxman networks is shown in Figure 7 and 8
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respectively. In both networks, no matter what’s the size of
the SRLG failures, choosing the closest relay node gives
the smallest path stretch, less than 1.6 compared to the re-
converged shortest path length, while choosing the farthest
relay node gives the largest path stretch. A random relay has
the stretch in between the above two.
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Figure 9. The average path stretch when choosing different relay nodes
for SRLG failures in suppression mode for Barabasi-Albert networks
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Figure 10. The average path stretch when choosing differentrelay nodes
for SRLG failures in suppression mode for Waxman networks

Figure 9 and 10 show the corresponding path stretch under
the suppression mode. It is clear that suppression will not
affect the path stretch for closest relay nodes. However, since
suppression filters some farther relay nodes which tend to
have larger stretch, the average path stretch for both farthest
relay nodes and the random relay nodes is reduced under
suppression mode. So a source can also randomly choose a
relay node with stretch lower than or about 2 in both types
of networks.

VII. R ELATED WORK

Recently, IP Fast Reroute (IPFRR) has been proposed
to recover from failures as soon as a failure is detected
using IP-based schemes [25]. However, existing proposals,
except [26] which requires substantial number of additional
IP addresses, mainly focus on how to handle a single link
failure or dual-link failures [3], [4], [6], [14], [16], [19],
[23]. Also, most of existing proposals assume each node
has the knowledge of some global topology information [3],
[4], [6], [8], [14], [16]–[18], [22], [23], [26]. Instead, our
work focuses on shared risk link group failures and assumes
that each node has neither global connectivity informationof
the network nor additional global IP addresses information
associated with each node. The idea of precomputing backup
paths is also explored for BGP [15], [22], [24], [27], [28].

The IPFRR framework [25] requires each router to proac-
tively compute an alternative forwarding path that do not
use the failed link or node. Thus, when a failure is actually
detected, the alternative path is immediately used during
the routing convergence process to avoid dropping packets.
Once the routing converges on the new topology, normal
routing paths are used to forward packets and each router
recomputes a new reroute path after the topology changes.
An IPFRR scheme should be able to avoid micro-loops [7],
[9], [11]. Francois et al. [10] and Gjoka et al. [13] evaluate
the coverage of several IPFRR mechanisms.

Both Loop-free Alternates [4] and U-turn Alternates [3]
pre-computes an alternate next hop before a single link
failure. Since these two mechanisms find alternates only
among next hops, the coverage is not high even for single
link failures.

Tunnels [6] is more generalized than the above two
mechanisms in the sense that it is not limited to only use next
hops as tunnel endpoints, which have loop-free paths to the
destination. But again it can only handle single link failures
and is only designed for link state protocols. Also it requires
a significant number of computations of shortest paths since
it computes a reroute path for each of the neighbors of the
sink node.

In Multiple Routing Configurations (MRC) [16], each
router pre-computes a number of topology configurations
by removing rerouted links. Failure Insensitive Routing
(FIR) [23] exploits interface-specific forwarding. Both MRC
and FIR focus on single link failures. Failure-Carrying
Packets (FCP) [17] uses the packet header to carry the
list of failed links and requires potentially expensive dy-
namic computation to route that packet, with the goal of
convergence-free routing. Path splicing [22] creates multiple
routing trees and allows packets to switch paths by inserting
a new packet header. It requires that every node computes
k shortest path trees and stores k forwarding table entries
for each destination. All these mechanisms require every
node to have the knowledge of network topology. In [19],
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Li et al. explored the idea of using relay nodes to achieve IP
fast reroute around single link failures based only on local
information.

Kini et. al. [14] proposed an approach to handle two
simultaneous link failures by assigning three additional
addresses to each node. Their approach also requires every
node to be aware of the network topology.

In Not-via [26], to reroute around a failed link, a special
Not-via addresses has to be allocated for the sink node re-
garding that link and advertised over the network. Therefore,
each node in Not-via needsd additional Not-via addresses
for all the links for which it is a source node, whered is the
degree of that node. These additional IP addresses have to be
globally known, even when a link is currently not intended
to be a reroute link. This significantly increases the size
of the routing table and consequently lower the efficiency
of forwarding even when there is no failures. Recent work
from Li et al. [18] try to improve the efficiency of Not-via
by aggregation, but it requires special allocation schemesof
Not-via addresses. Enyedi et al. [8] try to reduce the number
of Not-via addresses but they also assume the knowledge of
global connectivity information.

VIII. C ONCLUDING REMARKS

We have presented an IP fast reroute mechanism for
Shared Risk Link Group failures in routing protocols without
global topology information. In our mechanism, any nodex
can advertise that it needs to be able to reroute around a
link x→y when this link fails. Then we leverage a set of
relay nodes, computed in advance of any link failures, to
tunnel the reroute packets around each failed link right after
the detection of a failure. Each node uses a fully distributed
algorithm to decide automatically whether it can serve as a
relay node for a reroute link or not to avoid all link failures
in the same SRLG. Notify messages are sent to the source of
a reroute link from relay nodes. We proposed a suppression
mode to greatly reduce the number of notify messages.
Moreover, our tunneling scheme ensures that loops are never
formed even when any number of links fail.

Through simulations on different topologies, we con-
firmed that our mechanism can achieve close to 100% repair
coverage in different types and various sizes of networks for
different SRLG size. The average length of a reroute path is
around 1.5 the re-converged optimal paths. As expected, the
suppression is quite effective and cut 80% of notify messages
in a network of reasonable size (≥100).

Our future work includes migrating our IP fast reroute
mechanism to interdomain routing protocols. Using our
mechanism, each AS can potentially leverage the existing
Internet topology to achieve fast reroute around Shared Risk
Link Group Failures, without changing the BGP advertising
and decision process.
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