
UT Austin Computer Science Technical Report TR-09-39. Under double-blind submission to PLDI 2010.

Jinn: Synthesizing a Dynamic Bug Detector
for Foreign Language Interfaces ∗

Byeongcheol Lee
University of Texas at Austin

bclee@cs.utexas.edu

Martin Hirzel
IBM Watson Research Center

hirzel@us.ibm.com

Robert Grimm
New York University
rgrimm@cs.nyu.edu

Ben Wiedermann Kathryn S. McKinley
University of Texas at Austin
{ben,mckinley}@cs.utexas.edu

Abstract
Programming language specifications mandate static and dynamic analyses
to preclude syntactic and semantic errors. Although individual languages
are usually well-specified, composing languages in multilingual programs
is not. Because multilingual programs are prevalent, poor specification is a
source of many errors. For example, virtually all Java programs compose
Java and C with the Java Native Interface (JNI). Unfortunately, JNI is
informally specified and thus, Java compilers and virtual machines (VMs)
check only a small subset of JNI constraints. Worse, Java compiler and VM
implementations inconsistently check constraints.

This paper’s most significant contribution is to show how to synthesize
dynamic analyses from state machines to detect foreign function interface
(FFI) violations. To demonstrate the generality of our approach, we build
FFI state machines that encode specifications for JNI and Python/C. Al-
though we identify over a thousand FFI correctness constraints, we show
that they fall into three classes and a modest number of state machines en-
code them. From these state machines, we generate context-specific FFI
dynamic analysis. For Java, we insert this analysis in a library that inter-
poses on all language transitions and thus is compiler and VM independent.
We call the resulting dynamic bug detection tool Jinn. We show Jinn detects
and diagnoses a wide variety of FFI bugs that other tools do not. This paper
lays the foundation for better specification and enforcement of FFIs and a
more principled approach to developing correct multilingual software.

1. Introduction
Programming language designers often spend years on precisely
specifying their languages, including formalizing and standardizing
them [9, 12, 19]. Likewise language implementors exert consider-
able effort towards enforcing these specifications through static and
dynamic checks. Many developers, however, compose multiple lan-
guages to reuse legacy code and leverage the languages best suited
to their needs. Such multilingual programs require additional spec-
ification, i.e., a foreign function interface (FFI) that defines how
languages interoperate in the presence of syntactic and semantic
differences. Well-designed and well-specified FFIs include recent
integrated language designs [11, 20] and language binding synthe-
sizers [4, 18], but programmers have not yet widely adopted these
approaches, in part, because it requires re-writing programs.

The FFIs currently in wide use, such as the Java Native Inter-
face (JNI) and Python/C, are large, under-specified, and hard to use

∗ This work is supported by NSF SHF-0910818, NSF CSR-0917191, NSF
CCF-0811524, NSF CNS-0719966, NSF CCF-0429859, Samsung Founda-
tion of Culture, Intel, IBM, CISCO, Google, and Microsoft. Any opinions,
findings, and conclusions expressed herein are the authors and do not nec-
essarily reflect those of the sponsors.

correctly. They have hundreds of API calls, each with many com-
plex usage rules. For example, while JNI is well-encapsulated and
portable, it has 229 API calls and over 1,500 usage rules. Much
of this complexity is due to the impedance mismatch between lan-
guages, e.g., differences in object models, memory management,
and exceptions. Example API calls include: look up a class by name
and return its class descriptor; look up a method by class descriptor
and signature and return a method descriptor; and invoke a method
by its descriptor. Usage rules include: when a program calls from
C to Java, it must not have a pending Java exception; and when a
program needs more than 16 local cross-language pointers, it must
make an extra request [16].

Voluminous, complex, and context-dependent FFI rules lead to
three problems. (1) Many rules prevent sound and complete static
FFI usage validation and thus only dynamic checking can validate
them. (2) Complex under-specified rules lead to inconsistent lan-
guage implementations. Even if different implementations enforce
a given rule, they produce divergent results in some cases, such as
signaling an exception versus terminating the program. (3) Writing
correct FFI code that follows the rules is hard for programmers. As
a direct consequence of these three problems, real-world multilin-
gual programs are full of FFI bugs [7, 8, 13, 14, 15, 21, 22].

This paper significantly improves on this sorry state by present-
ing a systematic and practical approach to dynamic FFI validation.
We first demonstrate that JNI’s 1,500+ usage rules boil down to the
following three classes of rules, parameterized by the FFI methods
and their arguments:

JVM state constraints: restrictions on JVM state that require a
specific JVM thread context, critical section state, and/or ex-
ception state.

Type constraints: restrictions on parameter types, parameter val-
ues (e.g., NULL or not NULL), and semantics (e.g., no writing
to a final field).

Resource constraints: restrictions on the number of multilingual
pointers and on the lifetime of resources such as locks, meta-
data, and memory.

We then show how to express these rule classes with state ma-
chines, which precisely capture illegal FFI usage.

The most significant contribution of this paper is the design, im-
plementation, and demonstration of a dynamic analysis synthesizer
called Jinn that takes these state machines and generates a context-
sensitive dynamic analysis that enforces the FFI specification. We
dynamically and transparently inject the analysis into user code

1 2009/12/11



Production runs JNI error detection in prior work
Dynamic

JNI Pitfall HotSpot J9 Language Static HotSpot J9 Jinn
1. Error checking running crash [11], [20] [13], [15] warning error exception
2. Invalid arguments to JNI functions running crash [11], [20] [8], [22] running crash exception
3. Confusing jclass with jobject crash crash [11], [20] [8] error error exception
6. Confusing IDs with references crash crash [11] [8] error error exception
8. Terminating unicode strings crash running [11], [20] crash running crash, running
9. Violating access control rules NPE NPE [11], [20] NPE NPE exception

11. Retaining virtual machine resources leak leak [11], [20] [13] crash error exception
12. Excessive local reference creation leak leak running error exception
13. Using invalid local references crash crash [11] [13] error error exception
14. Using the JNIEnv across threads running crash [11] error crash exception
16. Bad critical region deadlock deadlock [11] [13] running warning exception

Table 1. JNI pitfalls and effects. Running: continues to execute in spite of undefined JVM state. Warning: prints a warning message, and
keeps running. Error: prints a warning message and aborts. NPE: raises a null pointer exception. Exception: raises a Jinn JNI failure exception.

by using language interposition implemented with vendor-neutral
JVM interfaces. The JVM loads Jinn together with the program
during start-up, and then Jinn interposes on all Java and C tran-
sitions. To the JVM, Jinn looks like normal user code, whereas to
user code, Jinn is invisible. Jinn checks FFI constraints at every lan-
guage transition, thus diagnosing bugs when the program actually
violates an FFI constraint.

Jinn is more practical than the state-of-the-art in finding JNI
bugs, in part because it does not depend on the JVM or C compiler.
Furthermore, Jinn is complementary to static analysis, because
it has no false positives and finds only exercised bugs. At the
same time, static tools cannot conclusively identify some dynamic
resource bugs that Jinn does find. The experimental results section
shows that Jinn works with unmodified programs and VMs, incurs
only a modest overhead, and that programmers can examine the full
program state when Jinn detects a bug.

While we explore JNI in depth, we show that the Python/C FFI
has similar characteristics: three rule classes encoded in state ma-
chines express hundreds of FFI usage rules. These rule classes stem
from a set of fundamental language semantic mismatches: whereas
C relies on manual resource management and is only weakly typed,
higher-level languages like Java and Python automate memory
reclamation, provide a stronger typing discipline (whether static or
dynamic), enforce well-formed resource access, and automate error
propagation. We implement and evaluate a bug detector that checks
a subset of the FFI rules we identified for Python/C to provide fur-
ther evidence for the generality of our approach.

The contributions of this paper include:

• Synthesis of dynamic analysis from state machines that rigor-
ously specify a foreign function interface.
• State machine specifications for JNI based on its informal spec-

ification [16].
• Jinn, a tool generated by our synthesizer, which is the most

practical JNI bug detector to date.
• A demonstration of Jinn on JNI microbenchmarks and on real-

world programs.
• A demonstration of the generality of this approach for Python/C.

We believe that by identifying and capturing the three classes of FFI
constraints, this paper helps lay a foundation for a more principled
approach to designing foreign function interfaces and to developing
correct multilingual software.

2. Motivation and Related Work
This section first shows that JNI has inconsistent implementations
and behaviors, which likely stem from poor specification and cer-
tainly complicate portable JNI programming. We then quantita-
tively and qualitatively compare Jinn to prior work that uses lan-
guage design, static analysis, and dynamic analysis to find and re-
port FFI bugs.

Programming against an FFI is challenging because program-
mers must reason about multiple languages and the interactions of
their semantics. For example, Chapter 10 of the JNI manual iden-
tifies a number of pitfalls [16]. We list the most serious of these in
Table 1, using Liang’s numbering scheme, and also include “bad
critical region” from Chapter 3.2.5 as a 16th pitfall. We created
microbenchmarks to exercise these pitfalls and executed that code
with HotSpot and J9. Columns two and three show the results:
JNI mistakes cause a wide variety of crashes and silent corrup-
tion. Furthermore, the two VMs show different behavior on four
of the ten errors. As shown in columns six and seven, the VMs do
not do much better when we turn on built-in JNI checking with the
-Xcheck:jni command-line flag.

Table 1 also compares language designs, static analysis tools,
and our Jinn implementation. An empty entry indicates that we are
not aware of a language feature or static analysis that handles this
pitfall. We fill in entries based on our reading of the literature [8,
11, 13, 15, 20, 22]. we did not execute the static tools or re-write
our microbenchmarks. Language designs cover the widest class of
JNI bugs [11, 20], but new languages require developers to rewrite
their code. Static analysis can catch some of these pitfalls, but, in
general, dynamic and static analysis are complimentary: dynamic
analysis misses unexercised bugs, whereas static analysis reports
false positives.

The last column shows that Jinn detects nine of ten serious
and common errors. Error 8 does not actually violate JNI usage
rules, but may cause memory corruption in C code and is platform
dependent. When Jinn detects any of the other errors, it throws
a JNI failure exception and stops execution to help programmers
debug. Jinn works out-of-the-box on unmodified JNI, which makes
it practical for use on many existing programs. It systematically
finds more errors than all the other approaches.

2.1 Language Approaches to FFI Safety
Two language designs propose to replace the JNI. SafeJNI [20]
combines Java with CCured [17], and Jeannie safely and directly
nests Java and C code into each other using quasi-quoting [11].
Both SafeJNI and Jeannie define their language semantics such that

2 2009/12/11



static checks catch many errors and both add dynamic checks in
translated code for other errors. From a purist perspective, prevent-
ing FFI bugs while writing code is more satisfying than spending
time to fix them after the fact. Another approach generates lan-
guage bindings for annotated C and C++ header files [4]. Ravitch
et al. reduce the annotation burden for this approach [18]. Jinn is
more practical than these approaches, because it does not require
developers to annotate or rewrite their code in a different language.

2.2 Static FFI Bug Checkers
A variety of static analyses verify foreign function interfaces [7,
8, 13, 15, 21, 22]. Static analysis frameworks that use finite state
machines (FSMs) to express specifications [6, 10] are similar in
spirit to Jinn: whereas they generate static analysis, we generate
dynamic analysis from more general constraints. All static analysis
approaches suffer from false positives, whereas Jinn will never
generate false positives. On the other hand, dynamic analysis only
finds bugs when they actually occur, so Jinn is complementary to
these static analyses. Yet Table 1 shows that Jinn finds strictly more
JNI bugs than the static analyzers. Furthermore, static analysis
requires access to the complete C source code of native libraries,
whereas Jinn requires no source code access. Finally, Jinn accepts
all native languages. For instance, Jinn found FFI bugs in the
Subversion Java binding written in C++, which is currently not
handled by static JNI bug-finders [8, 13, 15].

2.3 Dynamic FFI Bug Checkers
Some JVMs provide built-in dynamic JNI bug checkers, enabled by
the -Xcheck:jni command-line flag, and print warning messages
when they detect incorrect JNI usage. While convenient, these er-
ror checkers only cover limited classes of bugs, and the JVMs of
different vendors implement them inconsistently. The Blink debug-
ger provides JNI bug checkers that work consistently for different
JVMs, but the coverage of checked bugs is limited to only two
classes: validating exception state and nullness constraints [14].
These two kinds of checks are easy to implement, because they
require no preparatory bookkeeping.

Jinn covers a larger class of JNI bugs, works consistently with
any JVM that implements the JVMTI, and explicitly throws an ex-
ception at the point of failure. An FFI specification must be en-
forced consistently across language implementations to support a
principled approach to software quality. For instance, a graphical
user interface program cannot display messages for a JNI bug from
the JVM built-in checkers. In contrast, Jinn throws an exception for
the JNI bug, and if desired, the program can report the exception in
a dialog. When the error message and calling context from the ex-
ception do not suffice to find the cause of the failure, programmers
may rerun the program with Jinn and a Java debugger. The Java de-
bugger catches the exception, and the programmer can access the
program state at the point of failure.

We are the first to synthesize a bug detector for an FFI from a
specification, but prior work has synthesized other dynamic analy-
ses from specifications. Allan et al. turn FSMs into dynamic anal-
yses by using aspect-oriented programming [2]. Chen and Rosu
synthesize dynamic analyses from a variety of specification for-
malisms, including FSMs [5]. And Arnold et al. implement FSMs
for bug detection in a JVM, and control the runtime overhead by
sampling [3]. Like these approaches, Jinn turns specifications in
the form of more general state machines into a dynamic bug detec-
tor. Whereas the previous work can only handle a single language
at a time, Jinn focuses on catching multilingual bugs.

3. Synthesizing FFI Bug Detectors
This section starts with some JNI background and an example JNI
bug to motivate our use of state machines for JNI specification.

1. JNIEXPORT void JNICALL Java Callback bind(JNIEnv *env,
2. jclass clazz, jclass receiver, jstring name, jstring desc)
3. { /* Register an event call-back to a Java listener. */
4. EventCallBack* cb = create event callback();
5. cb->handler = callback;
6. cb->receiver = receiver ; /* receiver is a local reference.*/
7. cb->mid = find java method(env, receiver, name, desc);
8. if (cb->mid != NULL) enable callback(cb);
9. else destroy callback(cb);

10. } /* receiver is a dead reference. */

11. static void callback(EventCallBack* cb, Event* event) {
12. JNIEnv* env = find env pointer from current thread();
13. jvalue* jargs = marshal event(cb, env, event);
14. /* Here is a bug: the invalid local reference of cb->receiver. */
15. (*env)->CallStaticVoidMethodA(
16. env, cb->receiver, cb->mid, jargs);
17. }

Figure 1. JNI invalid local reference error in a call-back routine
from GNOME (Bug 576111) [23].

Section 3.2 then describes how to synthesize a dynamic FFI bug
detector from this specification, and Section 4 presents our JNI
constraint classification, descriptions of individual constraints, and
their representations as state machine specifications. We use state
machines, instead of finite state machines, to enforce constraints
that need to take into account resources and calling context.

The JNI is designed to hide JVM implementation details from
native code, while also supporting high-performance native code.
Hiding JVM details from C code makes multilingual Java and C
programs portable across JVMs and gives JVM vendors flexibility
in memory layout and optimizations. Achieving portability together
with high performance leads to 229 API functions and over 1,500
usage rules. For instance, JNI has functions for calling Java meth-
ods, accessing fields of Java objects, obtaining a pointer into a Java
array, and many more. To hide JVM implementation details, these
functions go through an indirection, such as method and field IDs,
or require pinning arrays by the garbage collector. Developers us-
ing JNI avoid much of the indirection overhead on the C side by
caching method and field IDs, by distinguishing thread-local from
global references, and by manually releasing pinned resources.

3.1 Example FFI Bug
Figure 1 shows a simplified version of an FFI bug from the
GNOME project Bugzilla database (Bug 576111) [23]. We use
this bug to illustrate how programmers violate low-level FFI con-
straints and to motivate our use of state machines for rigorous spec-
ification. GNOME is a graphical user interface that makes heavy
use of several C libraries, and it has a variety of language bindings
for C++, Java, Ruby, C#, and Python. Line 1 defines a C function
Java Callback bind that implements a Java native method using the
JNI. An example call from Java to C takes the following form:

Callback.bind(receiverClass, “methodName”, “description”);
This call invokes the C function Java Callback bind, which allo-
cates a new C heap object cb storing the receiver class and method
name passed as parameters from Java. Line 11 defines a C function
callback that uses the cb object to call from C code to the speci-
fied Java method. Line 15 shows this call from C to Java. It uses a
JNI API function CallStaticVoidMethodA, residing in a struct refer-
enced by the JNI environment pointer env.

This code is buggy. The parameter receiver in Line 2 is a local
reference. A local reference in JNI is only valid until the enclosing
function returns, because, otherwise, it might inhibit garbage col-
lection. In this case, the receiver becomes invalid when the function
returns at Line 10. However, the receiver escapes from the function
when Line 6 stores it in a heap object. Line 16 retrieves receiver

3 2009/12/11



Before 
acquire 

Acquire 

Released Error: 
dangling 

Use Release 

Acquired 

Line 1 Line 16 Line 10 

Figure 2. A state machine to track the reference error in Figure 1.

from the heap and uses it as a parameter to CallStaticVoidMethodA.
At this point, receiver is a dangling reference, and the JVM may
already have reclaimed and reused it. Using receiver produces un-
specified results. The JNI specification merely says that it is invalid,
but leaves the consequences up to the vendor’s Java implementa-
tion [16]. This kind of bug is difficult to find with static analysis,
because it involves complex data flow through the heap, and com-
plex control flow through disjoint indirect calls and returns across
languages. For instance, the syntax analysis in J-BEAM [13] misses
this bug, and the static type and data-flow analyses in Table 1 gen-
erate hundreds and thousands of false alarms.

The state machine specification in Figure 2 describes how using
a reference after release leads to an error. When control enters
the function in Line 1, the state machine for the receiver object
transitions to the Acquired state. When control leaves the function
in Line 10, the state machine transitions from the Acquired state to
the Released state. Jinn dynamically performs these state transitions
on each method invocation for the actual parameter. If, at some
later time, Line 16 uses receiver, the state machine transitions from
the Released state to the Error: dangling state. Other resource usage
state machines follow this pattern and are described in Section 4.

3.2 Dynamic Analysis Synthesis
We use state machine specifications like the one in Figure 2 to syn-
thesize a dynamic analysis. Each state machine specification may
describe several state transitions, which in turn may be triggered
by any number of language transitions. The cross-product of these
possibilities yields thousands of checks in the dynamic analysis.
For example, before Line 15 in Figure 1, the analysis must ensure
at least eight constraints:

• The Java interface pointer, env, matches the current C thread.
• The current JVM thread does not have pending exceptions.
• The current JVM thread does not have any open critical and

direct access to any Java objects.
• cb->mid is not NULL.
• cb->receiver is not NULL.
• cb->receiver is not a dangling JNI reference.
• cb->receiver is a reference to a Java Class object.
• The formal arguments of cb->mid are compatible with the ac-

tual arguments in cb->receiver and jargs.

Hand-coding all these constraints would be tedious and error-
prone. Instead, we designed a system that synthesizes a dynamic
analysis from state machine specifications. The specification of a
single state machine includes three components:

State Representation: Information about the program execution
that represents the current state of the state machine. For exam-
ple, Jinn represents the Acquired state of Figure 2 by recording
the reference in an analysis-internal thread-local list.

Trigger Checks: Code that checks whether a state machine transi-
tion triggers. Each state transition occurs at a language bound-
ary. For example, when Java calls function Java Callback bind

in Figure 1, the state machine instance for each argument
transitions from the Before acquire state to the Acquired state.
When the method exits and control returns to Java, each ar-
gument transitions from the Acquired state to the Released

analysis 
driver

state machine
specifications

Jinn Synthesizer

custom
exception

libjinn.so

Figure 3. Structure of Jinn Synthesis.

state. An important special case is the trigger check for tran-
sitions to an error state. For example, the call to JNI function
CallStaticVoidMethodA at Lines 15–16 in Figure 1 causes the
state machine in Figure 2 to transition to the Error: dangling
state, because the cb->receiver reference has been released.

State Transformers: Code that changes the state representation
to encode a state machine’s transition to a new state. For ex-
ample, when the state machine in Figure 2 transitions from
Before acquired to Acquired, the state transformer inserts the ref-
erence into the list of acquired references.

To synthesize an analysis from a collection of state machines, the
programmer writes code that expresses the three components of
each state machine specification. This code serves as input to the
following algorithm:

Algorithm 1 Given state machine specifications, synthesize a dy-
namic analysis by augmenting FFI functions.

1: for each state machine specification M do
2: for each state transition sa → sb ∈ M do
3: for each FFI function f that triggers sa → sb do
4: augment f with the following synthesized code:
5: for each instance m of M do
6: if the [Trigger Check] for (sa → sb) succeeds then
7: execute the [State Transformer] code to change

the [State Representation] of m from sa to sb.

The algorithm first computes the cross product of machine transi-
tions and FFI functions, then generates a wrapper for each FFI func-
tion that performs the appropriate state transformations and error
checking. This functionality is the core of the Jinn Synthesizer com-
ponent in Figure 3. The synthesizer takes two additional inputs: an
analysis driver and a custom exception. The analysis driver initial-
izes the state data and dynamically injects the generated, wrapped
FFI functions into a running program. The custom exception de-
fines how the dynamic analysis reports errors.

The output of the synthesizer is Jinn—a shared object file
that the JVM dynamically loads using the JVM tools interface
(JVMTI). Jinn monitors runtime events and program state. When
Jinn detects a bug, it throws the custom exception. If the exception
is not handled, the JVM prints a message with the JNI constraint vi-
olation and the faulting JNI function call. If Jinn is invoked within
a debugger, the programmer can inspect the call chain, program
state, and other potential causes of the failure.

Our discussion now turns to the three classes of JNI constraints
that Jinn monitors. These three classes collectively can be described
with nine state machine specifications, which encompass the more
than 1,500 usage rules described in the JNI manual.

4. JNI Constraint Classification
We classify JNI constraints into three classes. (1) JVM state con-
straints ensure that the JVM is in the right state before calls from C.

4 2009/12/11



Constraint Count Description
JVM state constraints

JNIEnv* state 229 Current thread matches
JNIEnv* thread.

Exception state 209 No exception pending
for sensitive call.

Critical-section state 225 No critical section
open for sensitive call.

Type constraints
Nullness 416 Parameter is not null.
Fixed typing 145 Parameter matches

API function signature.
Entity-specific typing 130 Parameter matches

Java entity signature.
Access control 54 Written field is non-final.

Resource constraints
Manually-managed resource 11 No overflow, leak, dangling

reference, or double-free.
Semi-automatic resource 269 No overflow, leak, dangling

reference, or double-free.
Table 2. Classification and Number of JNI constraints.

(2) Type constraints ensure that C passes valid arguments to Java.
(3) Resource constraints ensure that C code manages JNI resources
correctly. Table 2 summarizes these constraints and indicates the
number of times Jinn’s language interposition agent checks them.
For example, the “JNIEnv* state” constraint appears 229 times, be-
cause Jinn checks its validity in all 229 JNI functions. The remain-
der of this section discusses all these constraints in detail.

4.1 JVM State Constraints
To enter the JVM through any JNI function, C code must satisfy
three conditions. (1) The JNI environment pointer JNIEnv* and the
caller belong to the same thread. (2) Either no exception is pending,
or the callee is exception-oblivious. (3) Either no critical region is
active, or the callee is critical-region oblivious.

JNIEnv* thread constraints. All calls from Java to C implicitly
pass a pointer to the JNIEnv structure, which specifies the JVM-
internal and thread-local state. All calls from C to Java must ex-
plicitly pass the correct pointer when invoking a JNI function. Jinn
tracks JNIEnv pointers by associating the native thread ID with its
JNIEnv* on thread creation and discarding that mapping on thread
termination. For each JNI call, Jinn looks up the expected JNIEnv*

based on the thread’s ID and compares it to the actual pointer, re-
porting a bug if the pointers differ. We summarize this constraint
checking as follows.

JNIEnv* State: Current thread matches JNI* thread.
State: Map from thread IDs to expected JNIEnv* pointers.
Check: Verify actual JNIEnv* matches expected pointer.

JVM exception constraints. When Java code throws an exception
and returns to C, the C code does not automatically transfer control
to the nearest exception handler: the program must explicitly con-
sume or propagate the pending exception. This constraint results
from the semantic mismatch in how C and Java handle exceptions.

To consume a pending exception, the programmer selects from
four JNI functions that query and clear the pending exception. To
propagate the pending exception to Java code, the programmer se-
lects from 16 JNI functions that release JVM resources. All these
20 JNI functions can be called while an exception is pending in
the current thread (they are exception-oblivious). The program-
mer must not call any of the remaining 209 functions (they are

Error 

Any JNI call 

Exception clear 
or return to Java 

Exception- 
sensitive call 

Any JNI call Exception- 
oblivious call 

No except. 
pending 

Exception 
pending 

Figure 4. Exception states in JNI.

Error 

Get critical 
resource 

Release cri- 
tical resource 

Critical section 
sensitive call 

Critical section 
sensitive call 

Get or release 
critical resource 

Not in criti- 
cal section 

In critical 
section 

Figure 5. Critical section states in JNI.

exception-sensitive). Validating this constraint requires the follow-
ing state and actions.

Exception state: No exception is pending upon entry to an
exception-sensitive call.

State: Map from thread IDs to pending Java exceptions.
Check: Verify current thread has no pending exception.

Figure 4 illustrates the JNI exception states. When Java calls C
code, no exception is pending in the current thread. Any JNI func-
tion may or may not throw an exception, transitioning to the “ex-
ception pending” state. The JVM internally records this state tran-
sition for each Java thread, so Jinn does not need to perform any
bookkeeping at this point. At each call to an exception-sensitive
function, Jinn calls ExceptionCheck to check whether an excep-
tion is pending. This call is exception-oblivious. If an exception is
pending, Jinn wraps that exception in an error report to the user.

JVM critical section constraints. JNI gives C code direct access
to the memory underlying a string or array on demand (with two
functions: GetStringCritical and GetPrimitiveArrayCritical).
The C code should subsequently release the critical resource (with
ReleaseStringCritical and ReleasePrimitiveArrayCritical).
The C code is expected to hold these resources for a short time,
because the JVM may implement this feature by disabling the
garbage collector to prevent the objects from moving. These four
functions are thus considered critical-section insensitive and the
remaining 225 JNI function calls are critical-section sensitive. To
prevent deadlock, the C code may not call JNI sensitive functions
if the current thread has an outstanding “Get” without a matching
“Release.”

Figure 5 illustrates JNI critical-section state tracking. Jinn in-
struments the four “Get” and “Release” calls to increment and
decrement a thread-local counter. When the counter crosses the
threshold between 0 and 1, the state transitions between non-critical
and critical. Jinn checks that the state is zero before each call to any
of the 225 critical-section sensitive functions.

Critical-section state: No critical section is open when call-
ing a JNI critical-section sensitive function.

State: Map from thread IDs to critical-section counts.
Check: Verify critical-section count is zero.

4.2 Type Constraints
When Java code calls a Java method, the compiler and JVM check
type constraints on the parameters. But when C code calls a Java

5 2009/12/11



method, the compiler and JVM do not check type constraints,
and type violations cause unspecified JVM behavior. For example,
given the Java code: Collections.sort(ls, cmp); the Java com-
piler checks that class Collections has a static method sort, and
that the actual parameters ls and cmp conform to the formal pa-
rameters of sort. Given the equivalent code expressed with Java
reflection:

Class clazz = Collections.class;
Method method = clazz.getMethod(

"sort", List.class, Comparator.class);
method.invoke(Collections.class, ls, cmp);

the Java compiler cannot statically verify the safety, but the JVM
throws an exception at runtime to maintain safety. With JNI, this
code reads:

jclass clazz = (*env)->FindClass(env,
"java/util/Collections");

jmethodID method=(*env)->GetStaticMethodID(env, clazz,
"sort","(Ljava/lang/List;Ljava/util/Comparator;)V");

(*env)->CallStaticVoidMethod(env,clazz,method,ls,cmp);

The compiler and JVM do not check any constraints on Collections,
sort, ls, or cmp. Furthermore, there are additional JNI-specific pa-
rameters env, clazz, and method with their own type constraints,
which the compiler and JVM do not check either. This section
details the type constraints and how Jinn checks them.

Nullness. Some parameters are not allowed to be null. For exam-
ple, parameters env, clazz, and method in CallStaticVoidMethod(env,

clazz, method, ls, cmp) must not be null. Some JNI functions
accept null parameters, for example, for the initial array elements
in NewObjectArray. Since the JNI specification is not always clear
on which parameters may be null, we determined these constraints
experimentally. In the end, we found 416 non-null constraints in
various JNI functions. Nullness checking requires no preparatory
Jinn bookkeeping.

Nullness: Parameter is not null.
State: No state.
Check: Verify actual parameters are not NULL.

Legal types. Type constraints require the runtime type of actu-
als to conform to the formals. In the simple case, the type is fixed
by the JNI function. For example, in CallStaticVoidMethod(env,

clazz, method, ls, cmp), the clazz actual must always conform
to type java.lang.Class, irrespective of the value of method. We
carefully reviewed the JNI specification to determine all the “fixed”
type constraints, i.e., where the C parameter declaration in the
specification (such as jstring) has a well-defined corresponding
Java type (e.g., java.lang.String). While most functions have
such fixed type constraints, JNI also contains 13 functions with
type constraints that are only specified in the explanation. For in-
stance, FromReflectedMethod has a jobject parameter, whose ex-
pected type is either java.lang.reflect.Method or java.lang.-

reflect.Constructor. To check all type constraints, Jinn obtains
the class of the actual using GetObjectType and then checks com-
patibility with the expected type through IsAssignableFrom.

Fixed typing: Parameter matches API function signature.
State: No state.
Check: Verify types of actuals conform to formal parameters.

JNI refers to Java fields and methods via IDs. For example, in
CallStaticVoidMethod(env, clazz, method, ls, cmp), param-
eter method is a method ID. In this case, the method must be static,
and the method parameter determines constraints on the other pa-
rameters. In particular, the clazz must declare the method, and ls

and cmp must conform to the formal parameters of the method.

JNI resource 

JNI reference  JVM resource 

Local  Global  Weak global  Monitor  String  Array 

Semi‐
automa*c 

Manual acquire and release calls 

Figure 6. Classification of JNI resources.

Before 
acquire 

Error: 
overflow 

Acquire 

Released 

Error: 
leak 

Error: 
dangling 

Error: 
double-free 

Acquire 
Lifetime 
expires Use Release 

Release 

Acquired 

Use 

Figure 7. Resource states.

Entity-specific typing: Parameter matches Java field or
method signature.

State: Map from member IDs to their signatures.
Check: Verify actual parameters match member IDs.

A plethora of JNI functions call Java methods or access Java fields.
In all cases, the entity identifier constrains types of method param-
eters or field values, the receiver class (for static entities) or ob-
ject (for instance entities), and the proper JNI function to use. Jinn
records method and field signatures upon return from JNI functions
that produce method and field IDs. Jinn checks all these IDs con-
form when a JNI function uses them.

Access control. Even when type constraints are satisfied, Java se-
mantics may prohibit accesses based on visibility and final modi-
fiers. For example, in SetStaticIntField(env, clazz, fid, 42),
the field identified by fid may be private or final, in which case the
assignment follows questionable coding practices. It is not imme-
diately clear exactly which accesses should be allowed from JNI
based on visibility and final constraints. After some investigation,
we found that JNI usually ignores visibility, but honors the final

modifier. Ignoring visibility rules seems surprising, but as it turns
out, this permissiveness is consistent with the behavior of reflec-
tion when setAccessible(true) was successful. Honoring final

is common sense: despite the fact that reflection can also mutate
final fields, doing so interferes with JIT optimizations and concur-
rency, and complicates the Java memory model. Jinn thus warns
against it. Jinn records whether each field is final upon return from
JNI functions that produce field IDs. Jinn checks that JNI does not
attempt to write final fields.

Access control: Written field is non-final.
State: Map field IDs and access modifiers.
Check: Verify destination field is not final in calls to

Set<Type>Field and SetStatic<Type>Field.

4.3 Resource Constraints
Figure 6 shows the six kinds of JNI resources. A JNI reference is
an opaque pointer from C to a Java object. Local JNI references are
limited to the current calling context and thread. Different threads
and calling contexts may access global references. Weak global
references are the same as global references, but do not prevent the

6 2009/12/11



garbage collector from collecting their referent. A JVM resource
is a JVM-internal object used through JNI. In particular, a monitor
is a mutual exclusion primitive, and strings and arrays are treated
as resources if JNI pins or copies them. The programmer must
manually call acquire and release functions for all JNI resources
except for local references, which are managed semi-automatically.

APIs with manual or semi-automatic memory management suf-
fer from well-known problems. Figure 7 shows the state of a single
resource (in contrast to Figures 4 and 5, which show the state of an
entire JVM thread). An acquire at insufficient capacity causes an
overflow; a missing release at the end of the lifetime causes a leak;
a use after releasing corrupts JVM state through a dangling ref-
erence; and a second release after releasing is a double-free. Jinn
checks for all these errors.

For the five kinds of manually-managed resources shown in
Figure 6, JNI has separate acquire and release APIs, and Jinn
checks that they do not enter any of the error states from Figure 7.
Jinn enters the resource into a table upon acquire, and removes it
from that table upon release. This bookkeeping is practical when
programs keep a modest number of manually-managed resources.
If this assumption does not hold, the developer can configure Jinn
to only check resource management during testing.

Jinn checks the four error cases from Figure 7 as follows.
(1) The JVM throws an out-of-memory exception upon overflow;
Section 4.1 describes how Jinn checks for exception states. (2) A
leak becomes evident when the JVM terminates before the re-
source is released; Jinn detects that when Jinn’s resource table is
non-empty upon JVM shutdown. (3) Jinn can not always check for
dangling references because it only interposes on language transi-
tions; but it can check for one important case, namely when the user
passes a dangling reference (such as a released global reference) to
a JNI function, in which case Jinn reports an error. (4) Jinn reports
a double-free if the user releases a resource that is no longer stored
in Jinn’s resource table.

Manually-managed resources: No overflow, leak, dangling
reference, or double-free.

State: A list of allocated resources.
Check: Verify C code handles overflow and does not leak,

use-after-release, and double-free resources.

JNI manages local references semi-automatically: acquire and re-
lease are more often implicit than explicit. Native code implicitly
acquires a local reference when a Java native call passes it to C,
or when a JNI function returns it. The JVM releases local ref-
erences automatically when native code returns to Java, but the
user can also manually release one (DeleteLocalRef) or several
(PopLocalFrame) local references. Jinn enters the resource into a
table upon acquire and removes it upon release.

Semi-automatic resources: No overflow, leak, dangling ref-
erence, or double-free.

State: Map lists of local references and capacities.
Check: Verify number of local reference is below capacity,

and check leak, dangling-reference, and double-free.

Jinn performs bookkeeping to support overflow checks. The JNI
specification only guarantees space for up to 16 local references.
If more are needed, the user must explicitly request additional
capacity with PushLocalFrame, and later release that space with
PopLocalFrame. Jinn keeps track of local frames and checks the
four error cases from Figure 7 as follows. (1) Jinn detects overflow
if the current local frame has been used to capacity. (2) JNI releases
individual local references automatically; Jinn checks for leaked
local reference frames when native code returns to Java. (3) Jinn
checks that local references passed as parameters to JNI functions

are not dangling and, furthermore, belong to the current thread.
(4) A double-free occurs when DeleteLocalRef is called twice
for the same reference, or when there is nothing left to pop for a
PopLocalFrame.

5. Experimental Results
This section evaluates the performance, coverage, and usability of
Jinn to support our claim that it is the most practical FFI bug finder
to date.

5.1 Methodology
Experimental environments. We used two production JVMs,
Sun Hotspot Client 1.6.0 10 and IBM J9 1.6.0 SR5. We conducted
all experiments on a Pentium D T3200 with 2GHz clock, 1MB L2
cache, and 2GB main memory. The machine runs Ubuntu 9.04 on
Linux kernel 2.6.28-11.

JNI programs. We used several JNI programs: microbench-
marks, SPECjvm98, DaCapo, Subversion 39004 (2009-08-31),
Java-gnome-4.0.10, and Eclipse 3.4. The microbenchmarks are
a collection of eleven small synthetic JNI programs that violate
constraints. Each microbenchmark violates one dynamic constraint
and illustrates a programming pitfall [16] in the third column from
Table 1. SPECjvm98 and DaCapo are written in Java, but exercise
native code in the system library. Java-gnome-4.0.10 and Eclipse
mix Java and C in user-level libraries. Except for Eclipse 3.4, we
use fixed inputs.

Dynamic JNI checkers. We compare three dynamic JNI check-
ers: runtime checking in IBM and SUN JVMs, which is turned on
by the -Xcheck:jni option, and Jinn, which is turned on by the
-agentlib:jinn option in any JVM.

Experimental data. We collected timing and statistics results by
taking the median of 30 trials to statistically tolerate experimental
noise. The runtime systems show non-deterministic behavior from
a variety of sources: micro-architectural events, OS scheduling, and
adaptive JIT optimizations.

5.2 Performance
This section evaluates the performance of Jinn. Table 3 shows the
results. Jinn adds instructions to every language transition between
a JVM and native library to interpose and check transitions. The
second column counts the total number of transitions between Java
and C in the system library in the JVM. The third column is ex-
ecution time of runtime checking for Hotspot 1.6.0 10. For Jinn,
interposing transitions in the fourth column adds framework level
overhead, and checking transitions in the fifth column represents
the total overhead. Execution times are normalized to the produc-
tion run of Hotspot 1.6.0 10 without runtime checking.

The transition count in the first column does not correspond di-
rectly to the overall execution overhead, because the transitions are
a total number, whereas the overhead is normalized. For instance,
jython has the highest total transition count, but not the highest rel-
ative overhead. The fop benchmark showed the highest overhead,
which is consistent over both runtime checking and Jinn because
transitions are a significant part of fop’s overall execution.

On average, Jinn has a modest 14% execution time overhead,
which is 10% more overhead than for runtime checking. This result
is quite natural, because the runtime checking inside the JVM does
not have to pay the 8% overhead of interposing transitions. If we
subtract the interposition overhead, Jinn’s pure overhead is only
6%, which is comparable to the overhead of run time checking.

7 2009/12/11



Benchmark Environmental Normalized execution time
transition Runtime Jinn

counts checking Interposing Checking
transitions transitions

antlr 460,904 1.09 1.02 1.12
bloat 816,188 1.02 1.10 1.18
chart 981,481 1.03 1.08 1.16
eclipse 8,816,273 1.06 1.15 1.22
fop 1,977,263 1.10 1.12 1.47
hsqldb 205,191 1.03 1.09 1.12
jython 56,342,261 1.03 1.06 1.16
luindex 1,385,126 1.06 1.08 1.15
lusearch 3,369,800 0.99 1.05 1.15
pmd 905,431 1.03 1.07 1.12
xalan 1,153,419 1.04 1.12 1.15
compress 15,929 1.01 1.07 1.08
jess 152,986 1.05 1.21 1.14
raytrace 30,195 1.04 1.09 1.13
db 133,853 1.02 1.02 1.02
javac 255,019 1.00 1.02 1.02
mpegaudio 46,314 1.02 1.01 1.02
mtrt 31,864 0.99 1.13 1.14
jack 1,303,835 1.09 1.14 1.28
GeoMean 1.04 1.08 1.14

Table 3. Performance characteristics of Jinn with Hotspot VM
1.6.0 10.

WARNING in native method: JNI call made with exception pending at
BadErrorChecking.call(Native Method) at
BadErrorChecking.main(BadErrorChecking.java:5)

WARNING in native method: JNI call made with exception pending at
BadErrorChecking.call(Native Method) at
BadErrorChecking.main(BadErrorChecking.java:5)

(a) Hotspot
JVMJNCK028E JNI error in GetMethodID: This function

cannot be called when an exception is pending
JVMJNCK077E Error detected in BadErrorChecking.call()V
JVMJNCK024E JNI error detected. Aborting.
JVMJNCK025I Use -Xcheck:jni:nonfatal to continue running

when errors are detected.
Fatal error: JNI error

(b) J9
Exception in thread "main" JNIAssertionFailure:
An exception is pending in CallVoidMethod.
at jinn.JNIAssertionFailure.assertFail
at BadErrorChecking.call(Native Method)
at BadErrorChecking.main(BadErrorChecking.java:5)

Caused by: jinn.JNIAssertionFailure:
An exception is pending in GetMethodID.
... 3 more

Caused by: java.lang.RuntimeException:
checked by native code
at BadErrorChecking.foo(BadErrorChecking.java:9)
... 2 more

(c) Jinn

Figure 8. Error messages from JVM runtime checkings, and Jinn
for a microbenchmark violating the exception state constraint in
Section 4.1.

5.3 Coverage of Jinn and JVM Runtime Checking
This section evaluates coverage of Jinn and shows that Jinn covers
qualitatively and quantitatively more JNI bugs than the state-of-
art dynamic checking in production JVMs. We run our eleven
microbenchmark with Hotspot, J9, and Jinn.

Quality. Figure 8 compares representative error messages from
Hotspot, J9, and Jinn for the BadErrorChecking microbenchmark,
which violates the exception state constraints in Section 4.1. The

C code in the benchmark ignores an exception from Java code,
and calls two JNI functions: GetMethodID and CallVoidMethod.
Hotspot reports that there were two illegal JNI calls, but does not
identify the offending JNI function calls. J9 reports the first JNI
function (GetMethodID), but does not show the calling context for
the first bad JNI call because J9 aborts the JVM.

Jinn reports all the illegal JNI calls and their calling contexts,
and includes the source location of the Java exception at line 9 of
BadErrorChecking.java. In addition to the precise report, Jinn’s
error handler naturally inter-operates with debuggers. For instance,
jdb and Eclipse JDT may catch the checker’s custom exception,
and programmers can inspect Java state to find the cause of failure.
With Jinn, the Blink will present the programmer a full program
state at the JNI error [14]. For instance, Blink presents the full
calling context consisting of both Java and C frames.

Quantity. The behaviors of the production runs vary among run-
ning, crash, and null pointer exception, and none of them is correct.
The runtime checking in the JVMs shows inconsistent behavior in
more than half of the microbenchmark (7 of 11). Jinn is the only dy-
namic bug-finder that consistently covers the JNI bugs in the eleven
microbenchmark and throws an exception. Quantitative coverages
of Jinn, Hotspot, and J9 are 100%, 63% (7/11), and 63% (7/11)
when bug reports are warning, error, and exception. Jinn’s bug re-
ports were 21% larger than the combined reports from Hotspot and
J9 (9/11).

5.4 Usability with Open Source Programs
This section evaluates the usability of Jinn based on our experience
of running Jinn over Subversion, Java-gnome, and Eclipse. All
these open-source programs are in wide industrial and academic
use with a long revision history. These case studies show how Jinn
finds errors in widely-used programs.

5.4.1 Subversion
Running Subversion’s regression test suite under Jinn, we found
two overflows of local references and one dangling local reference.

Overflow of local reference. Jinn found that Subversion allocated
more than 16 local reference in two call sites to JNI functions:
line 99 in Outputer.cpp and line 144 in InfoCallback.cpp. The
original program with the leak allocated more than 16 local refer-
ences without asking for more capacity. With Jinn, when the num-
ber of active local references reaches the capacity (e.g., 16) and the
program calls a JNI function, Jinn throws an exception. The prob-
lematic allocation source line is:
jstring jreportUUID = JNIUtil::makeJString(info->repos_UUID);

After looking at the calling context, we found that the program
misses a call to DeleteLocalRef. We inserted the following lines:
env->DeleteLocalRef(jreportUUID);
if (JNIUtil::isJavaExceptionThrown()) return NULL;

After re-compiling, the program passed the regression test. With
our patch, the number of active local references never exceeded 8.

Use of dangling local reference. The use of a dangling local
reference happens at the execution of a C++ destructor when the
C++ variable path goes out of scope in file CopySources.cpp.

{
JNIStringHolder path(jpath);
env->DeleteLocalRef(jpath);

} /* The destructor of JNIStringHolder is executed here. */

At the declaration of path, the constructor of JNIStringHolder

stores the JNI local reference jpath in the member variable
path::m jtext. Later the call DeleteLocalRef releases the jpath

local reference, and thus, path::m jtext becomes dead. When

8 2009/12/11



the program exits from the C++ block, it calls the destructor of
JNIStringHolder. Unfortunately, this destructor uses the dead JNI
local reference:

JNIStringHolder::~JNIStringHolder() {
if (m_jtext && m_str)

m_env->ReleaseStringUTFChars(m_jtext, m_str);
}

The JNI function ReleaseStringUTFChars uses the dangling JNI
reference (m jtext). This bug is not syntactically visible to the pro-
grammer because the C++ destructor feature obscures control flow
when releasing resources. In our experience, this bug did not di-
rectly crash production JVMs. We looked at the internal implemen-
tation of ReleaseStringUTFChars in an open-source Java virtual
machine (Jikes RVM). In Jikes RVM, ReleaseStringUTFChars ig-
nores its first parameter, and thus, it does not matter that it is a
dangling reference. If other JVMs are implemented similarly, this
bug will remain hidden. But the code represents a time bomb, be-
cause the bug will be exposed as soon as the program runs on a
JVM where the implementation of ReleaseStringUTFChars uses
its first parameter. For example, a JVM may represent strings in
UTF8 representation internally as proposed by Zilles [24] and then
share them directly with JNI.

5.4.2 Java-gnome
Running Java-gnome’s regression test suite under Jinn, we found
one nullness bug and one dangling local reference.

Nullness. We rediscovered a bug that was previously reported by
Lee et al. in their Blink debugger paper [14]. Note, however, that
unlike their work, Jinn does not require debugger.

Use of dangling local reference. We rediscovered a bug that was
reported to the Java-gnome developers as bug 576111. A Java-
gnome developer confirmed that the bug should be fixed. It violates
a constraint of semi-automatic resources. Jinn reports that Line 348
of binding java signal.c violates a constraint:

(*env)->CallStaticVoidMethodA(env, bjc->receiver,
bjc->method, jargs);

The bjc->receiver is a dead local reference. This bug did not crash
Hotspot and J9, but as noted before, bugs that are only benign due
to implementation characteristics of a specific JVM vendor and are
represent time bombs and should be fixed.

5.4.3 Eclipse 3.4
We opened a Java project in Eclipse-3.4, and Jinn reported one
violation of the entity-specific subtyping constraint in line 698 of
callback.c in its SWT 3.4 component.

result = (*env)->CallStaticSWT PTRMethodV(env, object, mid, vl);

The object must point to a Java class which has a static Java
method identified by mid. The actual class did not have the static
method, but its superclass declares the method. It is challenging
for the programmer to ensure this constraint, because the source of
the error involves dynamic call-back control and a Java inner class.
Because the production JVM may not use object, this bug survived
multiple revisions.

6. Generalization
To demonstrate that our approach generalizes to other languages,
we apply it to the Python/C API [1]. This FFI is similar to JNI
in that its FFI usage rules reduce into the same three classes. The
Python/C API differs from JNI in that it is lower-level and bakes
in some of the Python interpreter’s implementation details. This
tight coupling between interface and implementation makes it more
difficult for us to interpose upon language transitions. This section

describes how the usage rules for the Python/C API resemble and
depart from JNI rules. We synthesized a dynamic checker for a
subset of these rules.

6.1 Python/C Constraint Classification
Like JNI, the Python/C API specification describes numerous rules
which constrain how programmers can combine Python and C.
These constraints fall into the same basic classes we discussed in
Section 4: (1) interpreter state constraints, (2) type constraints, and
(3) resource constraints.

State constraints. The Python/C API constrains the behavior of
exceptions and threads. Python/C’s exception constraints are sim-
ilar to JNI’s. Python/C’s thread constraints differ from JNI’s, be-
cause Python’s threading model is simpler than Java’s. For each
instantiation of the Python interpreter, a thread must possess the
Global Interpreter Lock (GIL) to execute. The Python interpreter
contains a scheduler that periodically acquires and releases the GIL
on behalf of a program’s threads.

The Python/C API permits C code to release and re-acquire the
GIL around blocking I/O operations. The API permits C code to
create its own threads and bootstrap them into Python. Because C
code may manipulate thread state directly, the programmer may
write code that deadlocks. For example, the programmer may acci-
dentally acquire the GIL twice. The book-keeping mechanisms for
JNI from Section 4.1 also apply to Python/C.

Type constraints. Because Python is a dynamically typed lan-
guage, Python/C’s types are less constrained than JNI’s. The
Python interpreter performs dynamic type checking for many op-
erations on built-in types. Sometimes, however, the interpreter for-
goes these checks—as well as some null-checks—for performance
reasons. If a program passes an unexpected value to a Python/C
API, the program may crash or exhibit undefined behavior. Inter-
posing on these calls would slow the interpreter, but would enable
more reliable bug-reporting for mixed-language programs.

Resource constraints. Python employs reference counting for
memory management. In Python code, reference counting is trans-
parent and fully automatic. Native code programmers must instead
manually increment and decrement a Python object’s reference
count, according to the API manual’s instructions. The Python/C
API manual defines a notion of reference ownership. Each refer-
ence that co-owns an object is responsible for decrementing the
object’s reference count when it no longer requires that object. Ne-
glecting decrements leads to memory leaks. C code may keep and
borrow a reference. Borrowing a reference does not increase its
reference count, but using a borrowed reference to a freed object
causes a dangling reference error. The Python/C API manual de-
scribes co-owned and borrowed references, and it specifies which
kinds of references are returned by the various API functions. A
dynamic checker must track the state of these references in order to
report usage violations to the user.

Figure 9 contains an example Python/C function that misman-
ages its references. The reference first in Line 6 is borrowed from
the reference pythons. When Line 8 decrements the reference count
for pythons, it dies. The Python/C API manual states that the pro-
gram should no longer use first, but the program uses this refer-
ence at Line 10. This use is a dangling reference error, and leads to
inconsistent program behavior.

Although the usage classes for Python/C are similar to those
of JNI, the design and implementation of Python/C presents some
challenges to synthesizing a dynamic checker for Python that inter-
poses on language transitions.

9 2009/12/11



1. static PyObject* dangle bug(PyObject* self, PyObject* args) {
2. PyObject *pythons, *first;
3. /* Create and delete a list with a string element.*/
4. pythons = Py BuildValue(”[ssssss]”,
5. ”Eric”, ”Graham”, ”John”, ”Michael”, ”Terry”, ”Terry”);
6. first = PyList GetItem(pythons, 0);
7. printf(”1. first = %s.\n”, PyString AsString(first));
8. Py DECREF(pythons);
9. /* Use dangling reference. */

10. printf(”2. first = %s.\n”, PyString AsString(first));
11. /* Return ownership of the Python None object. */
12. Py INCREF(Py None);
13. return Py None;
14. }

Figure 9. Python/C API dangling reference error. The borrowed
reference first becomes a dangling reference when pythons dies.

6.2 Interposing Transitions
Our dynamic checking is based on language interposition. In the
case of JNI, the JVMTI provides interposition. Unfortunately, the
Python interpreter does not have JVMTI-equivalent interface. We
analyzed the Python.h header file for Python 2.6.4 and modified the
interpreter to implement interposition. In the course of our modi-
fication, we faced and solved three challenges: (1) variadic func-
tions with missing non-variadic counterparts, (2) prevalent use of
C macros, and (3) use of Python/C functions inside the interpreter.

Variadic functions. A variadic C function takes a variable num-
ber of arguments. Wrapping variadic functions requires an equiv-
alent non-variadic function. For instance, printf takes a variable
number of arguments, and the wrapper may use its equivalent non-
variadic function, vprintf. Seventeen functions in Python/C are
variadic, but twelve of them do not have a non-variadic equivalent.
We added twelve non-variadic functions to the Python interpreter,
so that the dynamic analysis may wrap all of Python/C’s variadic
functions. For instance, we added a PyObject VaCallFunction for
the variadic function PyObject CallFunction. This extension was
almost mechanical because the variadic functions internally contain
code for non-variadic functions.

Macro functions. The Python/C API makes extensive use of C
macros. Some macros directly modify interpreter state without exe-
cuting a function call. Because the Python/C API does not contain a
function call for this behavior, our dynamic analysis has nothing to
interpose and it cannot track the behavior. We replaced five macros
that manage cross-lingual references with equivalent functions, so
that our analysis may interpose upon reference management. The
remaining approximately 300 macros needed no replacement, be-
cause they already correspond to a Python/C API function or they
do not modify interpreter state. Programmers must re-compile their
extension modules against our customized interpreter, but they do
not need to change their code.

Shared use of Python/C. Both the Python interpreter and user
modules can call Python/C API functions, which makes it difficult
to detect application language transitions. Furthermore, perform-
ing dynamic analysis during interpreter-internal calls would signif-
icantly slow down the interpreter. To solve this problem, we dupli-
cate approximately 400 Python/C functions into two versions, one
public and one interpreter-internal. We then used automatic code-
rewriting to change the interpreter so it only calls the internal ver-
sions, which do not perform interposition. The public versions wrap
the internal versions and perform interposition.

6.3 Synthesizing Dynamic Checkers
We implemented an interposition framework for Python/C and used
it to synthesize a use-after-release checker. The synthesizer takes a

specification file that lists which functions return new or borrowed
references. The resulting synthesized checker can detect the dan-
gling reference bug in Figure 9. The checker keeps track of refer-
ence state for borrowed and co-owned references. Each borrower
is associated with a co-owner. For example, the checker determines
that python is a co-owned reference and that first borrows from
python. When a co-owner relinquishes its hold on a reference by
decrementing its count, all its borrowed references become invalid.
If the program references invalid, borrowed references—as Fig-
ure 9 does at Line 10—then the checker signals an error.

Our checker permits each borrowed reference to correspond
to only one co-owner. The Python/C API manual is not clear
on whether a borrowed reference can correspond to multiple co-
owners. If a borrowed reference may have multiple co-owners,
then the checker may report false positives. We could enforce a
many-owner model for borrowed references.

7. Conclusion
Many programs are multi-lingual, and bugs at the language bound-
ary are frequent. We propose specifying foreign function interfaces
(FFIs) with state machines, which encode how to properly deal
with cross-language state, type, and resource constraints. This pa-
per shows how to use synthesis to automate turning these state ma-
chine specifications into dynamic bug checkers. We applied our ap-
proach to synthesize dynamic bug checkers for two FFIs: the FFI
between Java and C, and the FFI between Python and C. Our syn-
thesized bug checker for the Java/C FFI is called Jinn, and has un-
covered previously unknown bugs in widely-used Java native li-
braries. Our approach to multi-lingual bug correction is the most
practical and effective one to date.

Acknowledgments
We thank Mike Bond, Jungwoo Ha, and Jennifer Sartor for help-
ful discussions; Mike Bond for helpful feedback on the text and
his suggestion of wrapping Python/C macros; Jungwoo Ha for ex-
plaining some details of hardware performance counter libraries;
and Jennifer Sartor for referring to Accordion Arrays.

References
[1] Python/C API reference manual. http://docs.python.org/c-api, Nov.

2009.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to AspectJ. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 2005.

[3] M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient runtime for detecting
defects in deployed systems. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2008.

[4] D. M. Beazley. SWIG: An easy to use tool for integrating scripting languages
with C and C++. In USENIX Tcl/Tk Workshop (TCLTK), 1996.

[5] F. Chen and G. Rosu. MOP: An efficient and generic runtime verification
framework. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2007.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In International Conference on
Software Engineering (ICSE), 1999.

[7] M. Furr and J. S. Foster. Checking type safety of foreign function calls. In
Programming Language Design and Implementation (PLDI), 2005.

[8] M. Furr and J. S. Foster. Polymorphic type inference for the JNI. In European
Symposium on Programming (ESOP), 2006.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, third edition, June 2005.

[10] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific, static analyses. In Programming Language Design
and Implementation (PLDI), 2002.

10 2009/12/11



[11] M. Hirzel and R. Grimm. Jeannie: Granting Java native interface developers
their wishes. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2007.

[12] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall, second edition, Apr. 1988.

[13] G. Kondoh and T. Onodera. Finding bugs in Java native interface programs. In
International Symposium on Software Testing and Analysis (ISSTA), 2008.

[14] B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley. Debug all your code:
Portable mixed-environment debugging. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2009.

[15] S. Li and G. Tan. Finding bugs in exceptional situations of JNI programs. In
Computer and Communications Security (CCS), 2009.

[16] S. Liang. The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[17] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of
legacy code. In Principles of Programming Languages (POPL), 2002.

[18] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic generation of
library bindings using static analysis. In Programming Language Design and
Implementation (PLDI), 2009.

[19] B. Stroustrup. The C++ Programming Language. Addison-Wesley, special
edition, Feb. 2000.

[20] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and D. Wang.
Safe Java native interface. In International Symposium on Secure Software
Engineering (ISSSE), 2006.

[21] G. Tan and J. Croft. An empirical security study of the native code in the JDK.
In Usenix Security Symposium (SS), 2008.

[22] G. Tan and G. Morrisett. ILEA: Inter-language analysis across Java and C. In
Object-Oriented Programming Systems and Applications (OOPSLA), 2007.

[23] The GNOME Project. GNOME bug tracking system. Bug 576111 was opened
2009-03-20. http://bugzilla.gnome.org.

[24] C. Zilles. Accordion arrays: Selective compression of unicode arrays in Java.
In International Symposium on Memory Management (ISMM), 2007.

11 2009/12/11


