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Parkinson’s, Alzheimer’s, and Huntington’s Diseases are primarily caused by a biological phe-

nomenon called protein aggregation. Protein aggregation occurs when multiple proteins stick to-

gether, which renders the proteins useless and also blocks other proteins from performing their job.

If we can understand how to prevent protein aggregation, we can gain insight into how to treat

related diseases. Since mutations in proteins can change the probability of that protein to aggre-

gate, we want to find the set of substitutions that gives the lowest such probability. It is infeasible

to attempt to optimize the aggregation propensity with mutations in a laboratory because it could

take up to six months to make one mutant, so computational optimization is the only alternative.

Thus, we think of a protein as a string with a specific alphabet, and we think of the probability that

aggregation occurs as a real-numbered score associated with a given string. Different character

substitution in the string (mutations in the protein) can change the aggregation score. We present

an algorithm that lowers aggregation score under biological constraints; the algorithm limits out-

puts to those which have the same biological function as the input string, minimize the Hamming

distance of the input and output string, and minimize running time. Our implementation of the

algorithm minimizes the aggregation score of the input string by an average of 40 percent on a set

of over 30 test strings that come from the yeast organism S. cerevisiae. To achieve this result, we

experimented with optimizing pieces of the algorithm which have an effect on the output: threshold

variables which determine equivalence classes, equations which choose one string over another

and which determine internal state changes, and the maximum number of steps allowed. However

we have not only created a procedure that can lower aggregation probability, but a procedure that

can be generalized to a broader set of optimization problems beyond protein aggregation.
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1 Introduction

1.1 Background Information

Proteins are essential parts of life and participate in almost every process within cells. Protein ag-

gregation occurs when proteins adhere to each other, thus rendering them useless. These clumps

also block non-clumped proteins from doing their job within the cell. For example, protein aggre-

gation in humans causes Alzheimer’s, Parkinson’s, and Huntington’s Diseases. Furthermore, over

30 proteins in the yeast Saccharomyces cerevisiae are known to aggregate. The study of cells in

yeast can provide clues to the causes and possible treatments for the diseases caused by protein

aggregation in humans. There is also a basic science motivation for studying protein aggregation;

changing the degree to which proteins aggregate allows us to study properties of proteins inde-

pendently from aggregation. For example, some cystosolic proteins form punctate foci in yeast

under starvation-like conditions; one theory states that these punctate foci contain aggregated pro-

teins. Different mutants with increased or decreased propensity to aggregate must be realized in

the laboratory and monitored under fluorescent microscopy to evaluate this theory.

The amount of aggregation a protein experiences depends upon the amino acids that comprise

that protein. Each mutation in a protein can change the probability that the protein aggregates. One

method to minimize the aggregation propensity of a protein would be to express numerous mutants

in the laboratory and determine which aggregates the least. However, optimizing the aggregation

of proteins is infeasible in a laboratory, taking up to six months to create just one mutant. Thus we

want to computationally optimize proten aggregation propensity. For the computational problem,

we can think of a protein as a string with an alphabet of size 20, where each character represents

one of the 20 essential amino acids; we think of a mutation as a character substitution.

As a note, proteins mutate in three main ways: substitutions, insertions, and deletions. We

make a simplifying assumption that proteins only mutate by substitutions. This assumption will

not create invalid outputs, but rather leaves a part of the search space unexplored. Therefore the

aggregation scores of our algorithm’s outputs may be further optimized by looking at insertions

and deletions.

1.2 The Problem

Mathematically, our goal is to find an algorithm, call it AGG-MIN, that takes three inputs: a func-

tion F that assigns aggregation scores, a functionQ that determines equality of biological function,

and a string p0 that represents a protein, and outputs a string pout with a lower aggregation score
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than p0. We see that

AGG-MIN : P × F̂ × Q̂→ P

where P is the set of all strings that can represent proteins, F̂ is the set of all F functions, and Q̂ is

the set of all Q functions.

The input function F will be used to determine the aggregation score for the protein strings. F

takes as input a string p and outputs a positive real number r representing the aggregation score of

the protein described by p. So

F : P → R+

where P is the set of strings that can represent proteins. In our implementation we use the TANGO

[2][5][7] algorithm as the F function in which lower aggregation score represents a lower propen-

sity of the protein to aggregate. The Q input is a boolean function Q that will determine whether

two proteins have the same biological function. Mathematically,

Q : P × P → {true, false}

This function is necessary for meaningful output because we want to isolate changes in aggregation

propensity from changes in biological function.

Since the difficulty of expressing proteins in a laboratory depends directly upon the number of

mutations in the output protein from the original, we want AGG-MIN to minimize the Hamming

distance of p0 and pout. To create a well defined optimization problem, we take the minimization

of Hamming distance as secondary to the minimization of aggregation score. So the minimization

problem has three distinct goals:minimize F score, maintain the biological function of the input,

and minimize Hamming distance.

1.3 Computational Complexity

For any given input string, p0, we can write the length of p0 as Lp0 . Since the alphabet we are

working with has a size of 20 letters, the total number of possible strings with a Hamming distance

of one from p0 (single-substitutions) is 19 · Lp0 . Furthermore, 20Lp0 strings exist with different

combinations of substitutions.

We see that the search space of the problem is exponential, since we must look at 20Lp0 mutant

strings to find the one with the overall minimal aggregation score. Algorithms that run in expo-

nential time are infeasible to compute on modern computers. However, a majority of strings in the

search space will not preserve the biological function of p0. We define a mutable position to be
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an index i in p0 in which any character substitution does not alter the biological function. Thus, if

there are m mutable positions (m ≤ Lp0), then we need only consider 20m mutants.

1.4 Contributions

In this thesis, we formalize the protein aggregation problem in order to have a well-defined opti-

mization problem to work with. We use the simulated annealing heuristic to minimize the aggrega-

tion score of any input protein, and our implementation of the algorithm minimizes this score by an

average of 40% on a set of over 30 test strings that come from the yeast organism S. cerevisiae. To

achieve this result, we experimented with optimizing pieces of the algorithm which have an effect

on the output: threshold variables which determine equivalence classes, equations which choose

one string over another and which determine internal state changes, and the maximum number of

steps allowed. Since the procedures for creating protein mutants in the laboratory are time and

labor intensive, this algorithm provides insight that would be otherwise unattainable. Scientists

can use the output from our algorithm to determine how to cure diseases genetically, to create

medicines that modify the proteins so they aggregate less, or to gain general insight about protein

aggregation.

2 The Algorithm AGG-MIN

2.1 The Q Function

There is currently no algorithm for taking as input two protein strings and determining whether

they have the same biological function. However, well-tested proxies for the Q function do exist.

We use one of these proxies along with domain knowledge to determine a set of indices in the

string in which no mutation will alter the biological function.

2.2 Outline of AGG-MIN

Input: A string p0 and a function F as described above

1. Determine the set MP of mutable positions

2. Score all single substitutions with F , mutating the input only in positions x ∈MP

3. Using the scores from step (2), determine the set GMP of good mutable positions
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4. Use optimization heuristics to determine the best combination of mutations

Output: Among the strings with minimal F score, a string pout with minimal Hamming

distance from p0 and with Q(p0, pout) = true

2.3 Determining Mutable Positions

We use a biology domain tool called the Basic Local Alignment Search Tool (BLAST) [1][9] to

determine which indices in an arbitrary input string are mutable. The BLAST algorithm aligns p0

with a specified number of closest matches among all known protein strings. So

BLAST : P × N→ Pn

where Pn is a list of n elements from P . An alignment that does not allow gaps in known sequences

is used because we are interested only in character substitutions, not insertions or deletions. This

method is valid for determining mutable positions because the BLAST databases only contain those

proteins found in nature, and therefore any mutation of the input string is valid in some string that

is close to the input in nature. Furthermore, there is a very low probability that the first n strings

returned by BLAST are not related to the input string. As a note, we see that if the input is a real

protein, then p0 will be one of the n strings returned by the BLAST algorithm.

For each index i in the strings returned by BLAST, AGG-MIN counts the number that differ

from p0 in that position. Define DIFFn
p0

(i) as the number of strings returned by BLAST that differ

from the p0 at index i. Thus 0 ≤ DIFFn
p0

(i) ≤ n, and of course DIFFn
p0

(i) is only defined for

0 ≤ i < Lp0 .

Now we need a boolean function to determine whether a given index is a mutable position. We

define the function MUT as:

MUTn,t
p0

(i) =


1 (true)

DIFFn
p0

(i)

n ≥ t

0 (false)
DIFFn

p0
(i)

n < t

where t is some threshold value chosen such that 0 < t < 1. A threshold value is needed because

as n increases, the number of indices that have DIFFp0(i) > 0 also increases due to the nature of

the BLAST algorithm. Such an increase occurs because the more strings the BLAST algorithm is

asked to return, the more dissimilar the return strings will be from the input, since BLAST ranks
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based on similarity of return strings to the input.

The MUT function determines which indices in the string are mutable and acts as a proxy for the

Q function needed for the optimization. By focusing the algorithmic mutation on the indices i for

which MUTn,t
p0

(i) is true, AGG-MIN eliminates a large number of indices in the string as mutation

candidates.

Define the set MP of mutable positions as

MPn,t
p0

= {i : MUTn,t
p0

(i) = true}

and take m to be the number of mutable positions for a given input as

m = |MPn,t
p0
|

For each position i where MUTn,t
p0

(i) is false, 19 single mutations are eliminated, and a factor of

20 is shaved off the number of strings with multiple mutations in the search space.

In the current implementation of the algorithm, n = 20 and t = 3
5 . These are somewhat arbitrary

but created to both maximize results while minimizing false-positives. Testing of these variables is

discussed later. We also discuss ways to improve these values through machine learning.

2.4 Scoring Single Mutations

Using the set of mutable positions, AGG-MIN produces a 20 ×m matrix of strings with all of the

possible single character mutations. The algorithm then assigns a score to each of these strings

using the F function. AGG-MIN searches through this matrix of single mutated strings and saves

the sequence with the lowest score as a quick final step to this part of the process.

2.5 Finding Good Mutable Positions

We find that a very small percentage of the strings created in the previous step of the algorithm have

a significantly different F score from the input string. Therefore, mutations at certain indices affect

the score of the string significantly more than other indices (figure 1). We refer to such indices as

good mutable positions and the set of such positions as GMP .

To find the set of good mutable positions, we define a variable d that serves as a constant differ-

ence percentage and will be used as a threshold. The difference variable d could be optimized with

further research, just as n and t can be. In our implementation of the algorithm, we take d = 1.05
which represents a five percent difference bracket.
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Figure 1: This plot shows the aggregation score for all single mutations of ADE4 that the algorithm looks at. Each set
of nineteen consecutive points represents a given mutable position in the string. We see that mutations in certain indices
affect the aggregation score of the string a large amount, and mutations in other positions do not affect the aggregation
score at all. This gives us a way to eliminate a large number of positions so finding the optimal set of mutations is easier.

Using a brute force approach, AGG-MIN loops through all of the single character mutations and

their scores to build the list of good mutable positions. When a mutated string has an aggregation

score that is further than d from the score for the input, then the index at which that string was

mutated is added to the list of good mutable positions. Formally,

GMP d
MP = {i : ∃pi s.t. i ∈MP AND either

d · F (pi) < F (p0) OR

d · F (p0) < F (pi)}

where pi is a string of length Lp0 with a mutation in position i.

Due to the existential in the formula, it is possible that there exist multiple strings pi that would

warrant adding a particular position to set of good mutable positions. As a precaution, the list is

checked to make sure that a given position is not added more than once.
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2.6 Multiple Character Mutations

Attempting to determine the combination of mutations that yields the lowest aggregation score is

a complex computational problem. Even though the number of indices that need to be mutated in

this step has been reduced, the problem still has a search space of size 20|GMP d
MP |. We must devise

a clever method to find the optimal value since this search space is exponentially large. We must

also remember the main goal of the algorithm: among the strings with minimal F score and with

the same biological function as the input, output the mutant with minimal Hamming distance from

p0.

Since we have eliminated indices that would change the biological function of the string, we

are left with mutants with the same biological function as the input. Another characteristic of

an optimal mutant is that it has minimal Hamming distance from the input. There are specific

substitution matrices for calculating a protein-specific Hamming distance that accounts for the

likelihood of each character substitution as well as the number of mutations in the string. We use

the BLOSUM [4] substitution matrix to create our Hamming distance function B where

Bp0 : P → Z

This Hamming distance function outputs higher numbers for more likely sets of substitutions and

lower numbers for less likely sets of substitutions. We know that

Bp0(p0) ≥ Bp0(p)

for any protein p (of length Lp0) due to the nature of the substitution matrix.

Since AGG-MIN optimizes multiple variables, it needs a separate comparator method for de-

termining if a given string is better than another in the context of an input string. Now define a

selecting method, SEL where

SELp0 : P 2 → P

as SELp0(a, b) = 

a if F (a) < F (b)
d

b otherwise if F (a) > d · F (b)
a otherwise if F (a) < d · F (b) & Bp0(a) ≥ Bp0(b)
b otherwise if F (a) > F (b)

d & Bp0(a) ≤ Bp0(b)
a otherwise if F (a) ≤ F (b)
b otherwise
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We note two important mathematical properties of the function SEL. First, SEL is reflexive,

meaning that

SELp0(a, a) = a

Second, the function SEL is symmetric, which means

SELp0(a, b) = SELp0(b, a)

If the selecting function does not have these properties then the results of the algorithm would not

make sense. We must now define a method that uses this selecting function to find the mutant string

that minimizes the aggregation score.
Simulated annealing [8] is an optimization heuristic used for computing a good approximation

for the optimal value in a large, discrete search space. We can describe the simulated annealing pro-
cess with a state machine; the initial state is the the input string. Each step of the algorithm moves
the state machine to a random neighbor state (string with one mutation from the current state) with
some probability that depends on the values of F and B and how many steps the algorithm has
completed. The design of the algorithm, an adaptation of the Metropolis-Hastings algorithm[3][6],
tends toward more random state changes during the early stages so that it does not become stuck at
local minima.

SIMULATED-ANNEALING(s0, nmax, ethresh)

1 s← s0; e← F (s) � Initial state & energy
2 sbest ← s; ebest ← e

3 n← 0 � Count iterations
4 while n < nmax & ethresh < e

5 do � While time remains
6 snew ← NEIGHBOR(s)
7 enew ← F (snew) � New Best?
8 if SELs0(snew, sbest) = snew

9 then � Save new state
10 sbest ← snew

11 ebest ← enew

12 if M(s0, s, snew, e, enew,
n

nmax
)

13 then � Change state
14 s← snew; e← enew

15 n← n+ 1
16 return sbest
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The general simulated annealing heuristic is as follows: starting from state s0 and continuing

to a maximum of nmax steps, or until a state with aggregation score (energy) of ethresh or better

is achieved. The method call to NEIGHBOR(s) generates a random neighbor of a state s, and the

method call to RANDOM generates a random floating point number in the range [0, 1]. The call

to M(s0, s, snew, e, enew,
n

nmax
) represents an acceptance probability for moving to the new state,

snew.

The above simulated annealing process above provides a good framework for the multiple mu-

tation optimization. However, there are a few implementation details that need to be worked out.

First, the process starts with s0 as the input string p0. Next the value of nmax must be determined;

this bounds the amount of time spent in the simulated annealing process. AGG-MIN takes

nmax = 3 · |GMP |2

because it serves to maintain the worst-case asymptotic analysis of the algorithm while being large

enough to produce good results in practice. We define the NEIGHBOR of a string p ∈ P as a

string p′ ∈ P reachable by exactly one character substitution in a good mutable position. At

each step, the simulated annealing method considers some neighbor (snew) of the current state (s)

and probabilistically determines whether to move to the new state. For minimization, we specify

ethresh = 0 to circumvent getting a “good enough” answer since we already have a tight asymptotic

bound using nmax.

It is difficult to define a method M that decides whether to move to the new state. We take a les-

son from the original Metropolis approach to the Monte Carlo method; if SELs0(s, snew) = snew

then the algorithm moves to the new state (M = 1, or true). In the case where SELs0(s, snew) = s

the algorithm moves to the new state with some probability. We formally define M as

M(s0, s, snew, e, enew,
n

nmax
) =

1 if SELs0(s, snew) = snew

1 if RANDOM < 1
2 −

3
10 ·

n
nmax

− 3
5 ·

enew−e
e

0 otherwise

The definition of M follows the requirements specified by the simulated annealing process;

M is non-zero when e < enew and in general the number of random state changes decreases as

n increases. Furthermore, it follows convention that the probability of accepting a state change

decreases when the difference between enew and e increases. Therefore small uphill moves, or bad
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state changes, are more tolerable than large uphill moves.

2.7 The Final Step - Putting
Everything Together

The simulated annealing process produces a string sbest ∈ P on which we can perform few quick

checks to maximize the B score (minimize Hamming distance) of the final output. The first check

takes

pbest = SELp0(sbest, pbest single)

where pbest single is the single substitution with the best score. The AGG-MIN algorithm then takes

pbest and attempts to replace each of the substitutions with the character from p0 at that index. This

replacement guarantees an increase in the B score and is only kept if the F score is within d of

F (pbest). Therefore, the final F score will be within d of the aggregation score for pbest. After

completing this relatively quick step of the process, AGG-MIN returns this optimal string (pout).

2.8 Implementation Details

AGG-MIN is implemented in Perl 5.8 and uses the Scalar::Util library. There is a copy

of the BLOSUM62 substitution matrix hard-coded into the algorithm for use as the B function.

Netblast version 2.2.18 (Windows, Macintosh, or Linux), used for finding mutable positions, is

available from the NCBI website at http://www.ncbi.nlm.nih.gov/

BLAST/download.shtml. The algorithm we present uses the Tango algorithm, version 2.3

(Windows or Linux), available from the CRG website at http://tango.crg.es, as the F

scoring function.

3 A Walkthrough for Gln-1

Here we give a walkthrough of AGG-MIN for one of the test inputs, the yeast protein gln-1. The first
step of the algorithm finds that 62 of the 300 indices within gln-1 are mutable. The algorithm then
calculates the F scores for the input string and the 1178 single substitution strings. The F score for
gln-1 is 932.43, and the lowest single substitution’s aggregation score is 515.36, which represents
a maximum of a 44.7% change in F score by a single mutation. Of the 62 mutable positions found
in the first step of the process, only nine of these are deemed good mutable positions (figure 2).
Concretely,

GMP 1.05
MP = {20, 22, 23, 24, 92, 96, 98, 185, 222}
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This set represents fewer than 3% of the positions in the input string. As specified by the algorithm

we present,

nmax = 3 · 92 = 243

After completing these 243 iterations, the algorithm eliminates those mutations it deems unneces-

sary, and outputs a string and corresponding score to a file. Due to its stochastic nature, each time

the algorithm runs it produces a slightly different result, but over ten trials, the minimal aggregation

scores were between 38 and 43, with an average of five substitutions. This represents an impressive

aggregation score drop of over 95%. The best string found over these ten trial runs has an aggrega-

tion score of 40.15, with five mutations, and a B score of 21 (calculated only in the good mutable

positions). It is clear that the algorithm is highly successful in minimizing the aggregation score as

compared to the score of the input and even far below the score for the best single mutation string.

Figure 2: This plot shows the aggregation score for all single mutations of GLN1. Nine of the 62 mutable positions are
determined to be good mutable positions, an 85 % drop of indices that the algorithm needs to mutate to find the optimal
set of mutations. The best single mutant reduces the aggregation score by 45% and the output of AGG-MIN reduces the
aggregation score by 95%.
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4 Asymptotic Runtime Analysis

The worst-case runtime analysis of AGG-MIN as described and implemented is τ ·Θ(n2), where τ

is the worst-case runtime analysis of the F algorithm. Therefore, the runtime of the algorithm we

present is dependent upon the input algorithm. This dependency is one of the motivating factors for

determining good mutable positions; to decrease the number of calls to the aggregation prediction

algorithm. Although determining good mutable positions cannot change the worst-case analysis of

the algorithm, it decreases the expected runtime of the algorithm. This asymptotic analysis also

shows that the runtime of AGG-MIN is proportional to the square of the length of the input string.

Without prior knowledge of the F algorithm, a better analysis than T (n) = τ · Θ(n2) cannot be

provided.

5 On the Performance
of AGG-MIN

5.1 Objectives

Although we cannot formally prove that AGG-MIN finds the minimal value in the search space, we

can comment how the algorithm satisfies each of its objectives:

1. Do not change biological function

2. Minimize F score

3. Maximize B score (minimize Hamming distance)

5.2 Changing Biological Function

Since no algorithm exists to predict the function of a protein, we cannot prove that the biological

function of pout is the same as that of p0. However we use the most recognized way for determin-

ing indices that are important to the function by looking at which indices are conserved over the

evolution of the protein. Thus the algorithm only mutates in positions which have mutated many

times in nature. By using this well-known method we can be very certain that the function of the

output and the input of AGG-MIN have the same biological function.
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5.3 Optimization of F Score

We can easily prove that the output pout of the algorithm has F score less than or equal to that of

the input string p0 because in the worst case the algorithm returns p0. In the cases where the set

of good mutable positions is non-empty, we should be able to say that the final score will be at

least d% better than the input, or F (pout) ≤ d · F (p0). Since we are also optimizing for B score,

this property does not hold, as the F score is allowed to decrease by d %, which means that in the

worst case (excluding no change), there will be a d2 % change, which is far less since 1 < d < 2
(0% < d < 100%). We know that the F score never grows by running the algorithm, but we

cannot mathematically prove how well the optimization does due to the unknown nature of the F

algorithm.

5.4 Maximization of B Score

Upfront we know that Bp0(p0) ≥ Bp0(pout) because of the values in the BLOSUM substitution

matrix. So if the algorithm guarantees the maximal B score, then no work would need to be done

since the string with maximal B score is the input p0. However, we output the string with the

maximal B score among the set of strings with minimal F score. Strings with score within d of

the one with the absolute minimal F score comprise this set. This reasoning inspired the logic in

the selection function that consults the B score only when the two F scores are close. We can

therefore conclude that the B score is maximal within the range minimal F score.

5.5 Minimization of Mutations

Minimizing the number of mutations is the last objective for the algorithm because the number

of mutations for an optimal string is unknown. Minimization of mutations is favored since it

makes realizing proteins in the laboratory easier and increasesB score. Since the algorithm checks

which mutations it can eliminate (without worsening the F score too much) as a finalization step,

we conclude that the algorithm outputs a string with minimal Hamming distance from the input.

Furthermore, any other method for minimizing mutations would interfere with the optimization

process by favoring strings with fewer mutations, and inputs for which an optimal string has many

mutations would never be found.
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Sequence Name |MP| |GMP| Single Combinatorial Total Search Space Size
ADE4 74 14 1406 588 1994 1.64 · 1018

ADE5,7 157 32 2983 3072 6055 4.29 · 1041

ADE12 63 17 1197 867 2064 1.31 · 1022

ADE17 75 14 1425 588 2013 1.64 · 1018

ADH2 27 7 513 147 660 1.28 · 109

ALA1 128 10 2432 300 2732 1.02 · 1013

ARC1 18 7 342 147 489 1.28 · 109

CDC19 70 26 1330 2028 3358 6.71 · 1033

CDC60 197 21 3743 1323 5066 2.10 · 1027

CPR6 39 16 741 768 1509 6.55 · 1020

GLN1 45 16 855 768 1623 6.55 · 1020

GLN4 147 21 2793 1323 4116 2.10 · 1027

HSC82 12 2 228 40 268 400
HSP82 12 1 228 20 248 20
HTS1 26 4 494 48 542 1.60 · 105

ILS1 182 26 3458 2028 5486 6.71 · 1033

IRA1 84 7 1596 147 1743 1.28 · 109

KIC1 41 10 779 300 1079 1.02 · 1013

PAB1 243 50 4617 7500 12117 1.13 · 1065

RPL4B 43 8 817 192 1009 2.56 · 1010

RPS11B 15 2 285 40 325 400
SBP1 4 2 76 40 116 400
SSB1 40 24 760 1728 2488 1.68 · 1031

SSB2 41 19 779 1083 1862 5.24 · 1024

STI1 201 12 3819 432 4251 4.10 · 1015

THS1 35 4 665 48 713 1.60 · 105

TPS2 67 11 1273 363 1636 2.05 · 1014

UGA1 111 21 2109 1323 3432 2.10 · 1027

UGP1 44 11 836 363 1199 2.05 · 1014

UGT51 245 93 4655 25947 30602 9.90 · 10120

VAS1 128 19 2432 1083 3515 5.24 · 1024

AVERAGE: 84.32 17 1602.13 1762.71 3364.84 3.19 · 10119

Table 1: This table shows the number of mutable positions and good mutable positions found for our test set of inputs
when n = 20 and t = 0.6. The table also displays the number of single and combinatorial mutations run by the
algorithm and the size of the combinatorial search space with substitutions only in the good mutable positions. The size
of the search space is far too large in which to compute every value, so we use a heuristic to find a near optimal value in
a feasible amount of time.
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6 Testing AGG-MIN

Unless otherwise specified, all testing was run on an implementation of the algorithm that uses

values n = 20, t = 0.6, and d = 1.05.

6.1 Difficulty of Testing AGG-MIN

It is hard to test AGG-MIN because there are no methods for determining the function of a protein

without synthesizing it in the laboratory. One possible way to test the algorithm would be to

synthesize some of the outputs in the lab, but this is both time and labor intensive, as creating one

mutant in the lab can take up to six months. So this is not a feasible way to test the algorithm

on a large scale, although it should happen at some point for some inputs. We provide different

methods for systematically testing the different parts of the algorithm and the algorithm as a whole

using a test set of over thirty inputs which are found in yeast. These inputs have all been shown

to aggregate under different conditions and have large variations in biological function. We take

biologically dissimilar inputs so that we can test if the algorithm does well on all inputs, not just

those with certain properties.

6.2 Total Number of Mutations and Actual Running Times

Table 1 displays the number of single and combinatorial mutations that AGG-MIN scores at run-

time, along with the total number of combinatorial mutations possible when performing substitu-

tions only in good mutable positions. The algorithm minimizes the score of the inputs well despite

only looking at a small fraction of the total search space. This reduction in search space directly

relates to a reduction in the runtime of the algorithm, and we get the running time of the algorithm

to be

T (m, g) = (19m+ 3g2) · τ

where m is the number of mutable positions, |GMP | = g, and τ is the running time of the F

scoring algorithm. We compare this running time to the exponential size of the search space and

find

19m+ 3g2 � 20g

(19m+ 3g2) · τ � τ · 20g

T (m, g)� τ · 20g
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Sequence Original Score Best Single Score Score Reduction
ADE4 2321.12 1286.64 44.57%

ADE5,7 3446.90 2842.85 17.52%
ADE12 1700.18 1493.44 12.16%
ADE17 2468.47 1563.94 36.64%
ADH2 1710.38 1113.61 34.89%
ALA1 4364.86 3882.86 11.04%
ARC1 1312.31 922.99 29.67%
CDC19 1818.91 1437.74 20.96%
CDC60 3292.16 2868.34 12.87%
CPR6 307.16 272.11 11.41%
GLN1 1203.32 617.27 48.70%
GLN4 1642.93 1176.31 28.40%
HSC82 3058.57 2885.66 5.65%
HSP82 3262.96 3118.80 4.42%
HTS1 1612.41 1370.09 15.03%
ILS1 4663.93 3908.94 16.19%
IRA1 30882.53 29503.69 4.46%
KIC1 1479.82 1170.23 20.92%
PAB1 626.33 393.88 37.11%

RPL4B 1629.31 1458.74 10.47%
RPS11B 99.94 78.21 21.74%

SBP1 381.82 360.48 5.59%
SSB1 477.27 307.43 35.59%
SSB2 716.42 356.42 50.25%
STI1 684.52 338.82 50.50%
THS1 1850.66 1467.03 20.73%
TPS2 3358.36 3003.28 10.57%
UGA1 1757.66 1127.00 35.88%
UGP1 1669.59 1235.13 26.02%

UGT51 5419.57 4902.44 9.54%
VAS1 3876.68 3339.69 13.85%
AVG: 22.69%

Table 2: This table shows the aggregation scores for the test inputs, along with the best single mutation scores and
percent reductions from the original scores. AGG-MIN achieves slightly better than a twenty percent optimization by
looking only at strings with a Hamming distance of one from the input, and we see that the best single mutation scores
range anywhere from 4 to 50 percent. By looking at combinatorial mutations, we will find that we can reduce the
aggregation score almost two times as much as with single mutations.
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for all g > 1, since m ≥ g by definition (since MP ⊆ GMP ). Therefore the algorithm reduces

the problem to a manageable size; the algorithm is a heuristic with polynomial worst-case running

time.

The average number of F scorings performed by the algorithm is less than 3400 over the test

set of inputs, and the average search space is over 3 · 10119. We find that on average about half of

the computation time is spent in each the single mutation and multiple mutation phases. Since the

computation time is evenly split, we would achieve much better performance if we could eliminate

all or most of the combinatorial mutation step.

6.3 Single Mutations Only

We must run all of the single substitutions in the mutable positions, but what happens if we skip

the combinatorial evaluation? We can see (table 2) that single mutations minimize the aggregation

score by an average of about 22 percent, and the percent of score reduction ranges anywhere from

four to fifty percent. We want to ensure that the combinatorial mutation can reduce the aggregation

score more.

We observe that if two single mutations each give a good score, the string with both of those

mutations will not necessarily have a better score, let alone a good score at all. Therefore the

optimization is much harder because we cannot just find the best mutation in each position and

combine them all to get the optimal global string. Furthermore, the single mutations alone do not

optimize the inputs enough to just stop after this step in the algorithm, so we go on to examine

combinatorial mutations of the input string.

6.4 The Simple Test

To test the AGG-MIN algorithm, we use a set of over thirty proteins found yeast which are known to

aggregate. The main test we perform is the obvious test of the algorithm: run it over many different

inputs and examine the results (table 3). Assuming correctness of our proxy to the Q function

input, we judge these results based on our metrics for an optimal value. The percent of reduction

in the aggregation score ranges between 4 to 95 percent, which tells us that either the algorithm

does not find a good minimum for all inputs or that a good minimum does not exist for some inputs.

Whatever the case for the individual inputs, it is clear that with an almost 40 % average aggregation

score reduction, the AGG-MIN does its job well. Furthermore, with an average Hamming distance

(number of mutations in each output) of slightly over four, these outputs can be more easily tested

and implemented in the laboratory than mutants with a higher number of mutations.
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Sequence Name |MP| |GMP| % GMP #Mutations In Score Out Score Reduction
ADE4 74 14 18.9 3 2321.12 1148.67 50.51%

ADE5,7 157 32 20.4 11 3446.90 818.56 76.25%
ADE12 63 17 27.0 3 1700.18 1331.48 21.69%
ADE17 75 14 18.7 6 2468.47 747.31 69.73%
ADH2 27 7 25.9 2 1710.38 888.47 48.05%
ALA1 128 10 7.8 3 4364.86 3454.05 20.87%
ARC1 18 7 38.9 1 1312.31 922.99 29.67%
CDC19 70 26 37.1 8 1818.91 740.44 59.29%
CDC60 197 21 10.7 4 3292.16 2291.63 30.39%
CPR6 39 16 41.0 1 307.16 272.11 11.41%
GLN1 45 16 35.6 5 1203.32 62.19 94.83%
GLN4 147 21 14.3 7 1642.93 722.96 56.00%
HSC82 12 2 16.7 1 3058.57 2885.66 5.65%
HSP82 12 1 8.3 1 3262.96 3118.80 4.42%
HTS1 26 4 15.4 1 1612.41 1370.09 15.03%
ILS1 182 26 14.3 9 4663.93 2613.82 43.96%
IRA1 84 7 8.3 1 30882.53 29503.69 4.46%
KIC1 41 10 24.4 4 1479.82 893.79 39.60%
PAB1 243 50 20.6 11 626.33 118.75 81.04%

RPL4B 43 8 18.6 1 1629.31 1458.74 10.47%
RPS11B 15 2 13.3 1 99.94 78.21 21.74%

SBP1 4 2 50.0 1 381.82 360.48 5.59%
SSB1 40 24 60.0 3 477.27 233.74 51.03%
SSB2 41 19 46.3 4 716.42 248.49 65.32%
STI1 201 12 6.0 2 684.52 335.71 50.96%
THS1 35 4 11.4 1 1850.66 1467.03 20.73%
TPS2 67 11 16.4 5 3358.36 2627.29 21.77%
UGA1 111 21 18.9 7 1757.66 595.04 66.15%
UGP1 44 11 25.0 3 1669.59 1050.42 37.09%

UGT51 7245 93 38.0 14 5419.57 2331.10 56.99%
VAS1 128 19 14.8 7 3876.68 2156.11 44.38%

AVERAGE: 84.32 17 23.3 4.23 39.20%

Table 3: This table shows the size of sets within the algorithm for the test inputs. From this table we learn that with
n = 20 and t = 0.6 we get an average aggregation score reduction of over 39 percent. Furthermore, the average
Hamming distance between the input and output is slightly over four. Thus, the proteins will be easier to realize in a
laboratory than if there were a mutation in each good mutable position, an average of 17 per output.
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With combinatorial mutations, AGG-MIN minimizes the F score for the test set of proteins

almost twice as much as with single mutations alone. This is impressive since we have seen that

the single and combinatorial mutation phases of the algorithm each take about the same number

of steps in practice. This larger score reduction also answers our question about whether we can

eliminate the part of the algorithm that scores combinatorial mutations.

6.5 Determining the t Value

Determining a value for the threshold t that performs well requires a large amount of experimen-

tation. Finding a value for t that is “just right” would be difficult since a value too low or too high

would break certain aspects of the algorithm. If t is too small, then the set of mutable positions will

be larger, meaning a larger set of good mutable positions and a longer running time. Furthermore,

by allowing for a larger set of mutations to be valid, it is more likely that the output will be biolog-

ically dissimilar to the input, which would break our proxy to the Q function. If t is too large, the

opposite problem occurs; the set of mutable and good mutable positions is smaller, resulting in a

short computation time, which may not be enough to find an optimal solution in the undoubtedly

large search space.

Since the t value, as used in AGG-MIN, only directly affects the set MP , the entire algorithm

must be run to test a particular value of t on a particular input. As with many other parts of

the algorithm, it is not known what a good value for t should realistically be from a biological

standpoint. The only hint that we can take from biology into determining the correct value for t

is that we would rather t be too small and produce an output with a less optimal F score than if

t were large, producing an output that is less likely to have the same biological function as the

input. Thus, we start from the high end of the 0 < t < 1 range for the threshold and work from

one to zero to determine which value gives the best overall results. Determining this value requires

running an entirely new set of tests to determine the largest value of t that gives good results on

average. We run the simple test again, with t = 0.7, 0.8, and 0.9. In figure 3 we can see the results

for the average score reduction percentage in these tests.

We can now examine the graph in figure 3 to determine the best value for the threshold variable.

The similar patterns in the lines which represent our different optimization criteria makes the inter-

pretation much easier. For number of GMPs, mutations in the output, and percent score reduction,

the lines each have a linear slope over the values t = 0.7 to 0.9. However the points where t = 0.6
change the slope of these lines drastically, which indicates that this is the largest t value that dis-

plays significantly better output than the value above it. The pattern of linearity between t = 0.7
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Figure 3: This graph shows the average values of pieces of the algorithm for varying t thresholds. We see that the
values for everything except the number of mutable positions are close to linear for the values t = 0.7 through t = 0.9,
meaning the score reduction follows the number of good mutable positions. t = 0.6 is the best threshold because of the
change in this pattern at this value shows that each mutations has a larger effect on the aggregation score.

and t = 0.9 does not emerge in the line representing the number of mutable positions, but this

metric still shows a slope increase when moving from t = 0.7 to t = 0.6. We have now found the

largest value of t that shows a considerable difference in the average number of mutable positions,

good mutable positions, and aggregation score.

Because the graph in figure 3 and corresponding values are based on averages from the test

set of proteins, they may not accurately represent each individual input. Therefore we look at a

select few inputs, each dissimilar in biological property, so we get a spread of inputs with varied

characteristics. We pick the inputs that give the best, the worst, and an average optimization. These

inputs are GLN1 (best), HSP82 (worst), and ADE4 (average).

We first examine the graph for GLN1 (figure 4(a)), the input with the best optimization output

from AGG-MIN. The number of good mutable positions and number of mutations in the output are

both fairly linear for the varying values of t, consistent with the trend of the average. The number

of mutable positions also follows the pattern of linearity with a slight jump at the low value of t.

The percent of aggregation score reduction is relatively constant for t ≤ 0.8. We see that with

t = 0.9, AGG-MIN finds no good mutable positions and having |GMP = 0| means that the value
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(a) AGG-MIN values for GLN1 with varying t

(b) AGG-MIN values for HSP82 with varying t

(c) AGG-MIN values for ADE4 with varying t

Figure 4: These graphs show varying t values for particular test inputs: the input which gets the best optimization,(a),

the input which gets the worst optimization, (b), and a random input, (c). We see that a threshold that is too large will

not yield a large enough search space for some inputs. We also notice a plateau of the score reduction in (a) and (c),

which could mean that we have found a minimum for these inputs based on our optimization definition.
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of t is too large. However we see that all other values of t in the range tested yield approximately

equivalent aggregation score reductions. So instead of letting t range between zero and one, we

should let t range from zero to the largest value that yields a non-zero number of good mutable

positions. We do see a jump in the number of mutable and good mutable positions with t = 0.6
which leads to an increased B score of the output and validation of t = 0.6 as a choice of the final

threshold value.

The graph for the worst optimization (figure 4(b)) displays some peculiar patterns. The patterns

do not match those of the averages or GLN1. The number of mutable and good mutable positions

does not increase between the t = 0.8 and t = 0.7. Furthermore, the values of all the metrics except

the number of mutable positions are zero for t > 0.6. Since HSP82 is the worst-optimized input

from the test set, a spike in score reduction at t = 0.6 validates this choice as the final threshold for

AGG-MIN.

We can see in figure 4(c) that ADE4 follows the same linear with a jump pattern for decreasing

t in all categories except score reduction. ADE4 matches the pattern in the other three categories,

which means the choice of t = 0.6 looks good. However, we need to determine why the percent

reduction does not follow the pattern of the average. We see that the percent reduction does increase

each time t decreases, however the large jump occurs in between t = 0.9 and t = 0.8. Since the

algorithm finds no good mutable positions with t = 0.9, we again invalidate this value on the

graph because the algorithm could not mutate the input string and terminated early. We see that

the aggregation score and number of mutations in the output are minimal when t = 0.6, again

validating this value as the final choice for use in AGG-MIN.

As a note on the performance of the algorithm, based on the value of the threshold, we see that

all of the metrics in these all of these examples are non-decreasing as t decreases. This behavior is

expected, even taking into account the randomness of the algorithm. The non-decreasing property

means that if the t value chosen for the average is slightly low for a particular input, the algorithm

will still find a good set of mutations. Therefore, choosing the t value for the average does not

sacrifice performance in minimization of F score for any input.

6.6 Determining the M Function; the Metropolis Approach

The M function that determines whether to move to a new state is another customizable piece of

the simulated annealing process. The Metropolis approach [6] accepts a state change that reduces

the aggregation score and accepts a state change that increases the aggregation score with some

probability. This approach to accepting state changes has been tested and proven over many opti-
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mization problems in different fields [3]. The only modification that we make is establishing the

threshold for the probability of accepting a random state change.

6.7 Determining the Value of nmax

To find the best value for nmax, we assign a large value and look at the aggregation scores during

the simulated annealing process. One such example of this process can be seen in figure 5. We

use these graphs to determine how many steps it takes for the process to find a mutant with a

minimal aggregation score. Because the number of good mutable positions is small, we did not

want to use a constant larger than the average number of good mutable positions, so we get that

nmax = 3 · |GMP |2.

Figure 5: This plot shows the aggregation scores for each mutant during the simulated annealing process for GLN1.
We see that we cannot lower the number of steps in this step of the algorithm because of the number of steps that it takes
to reach a mutant with an optimal score.

6.8 The GMP Fallacy

Looking at the percentage of reduction of aggregation score in the tables above, we see that in a

few cases the algorithm produces an output with less than a five percent (d) optimization when

|GMP | > 0. We note that the algorithm takes a position as a good mutable position if there is
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some mutation in that position where the score is d or more percent away, whether the new score

is higher or lower than the original score. The algorithm does this for two reasons; first, we know

that certain positions affect the F score more than others, and in a multiple mutation setting these

positions may be helpful in attaining a string with lower aggregation score. Second, using this

definition of a good mutable position makes implementing a solution which can find the string

with either the minimum or the maximum aggregation score much easier. Thus, there might be no

single mutation that decreases the F score, which could lead to no minimization of the F score

with a non-zero amount of good mutable positions. Furthermore, the last step of the algorithm tries

to decrease the Hamming distance of the output from the input, which may lead to a string with

a slightly larger aggregation score for the output. This fallacy about the good mutable positions

needs to be understood to correctly test the AGG-MIN algorithm.

6.9 Other Performance Metrics

We have mainly discussed minimization of aggregation score as a metric for how well AGG-MIN

optimizes a particular input. We have also touched briefly on the substitution B score, the Ham-

ming distance, and the number of F scorings done throughout the procedure as possible secondary

metrics to aggregation score optimization. Other metrics may include actual runtime of the algo-

rithm and

6.10 AGG-MIN Variations

Throughout the implementation and testing process of the AGG-MIN algorithm, we find many dif-

ferent ways to change the algorithm in small ways that have an impact on the performance and what

we can learn from the outputs. Here we explore some variations of the AGG-MIN implementation

and what can be learned through each of the exercises.

6.10.1 Stricter Mutations

One change to the algorithm which affects all of the stages of mutation is to look only at mutations

that occur in nature. Instead of finding mutable positions, we look at the single substitutions for all

possible mutations returned by the BLAST procedure. Using the aggregation scores for the single

substitution strings, we can find good mutable positions in the same manner as before. However,

in the combinatorial mutation we have a restricted list of substitutions that could occur at each

index. This greatly increases the probability that a given output of the algorithm will have the same
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biological function as the input (a stricter proxy for the Q function). Furthermore, we have less

of a need to rely on the B substitution score because we know that the mutation occurs in nature,

which makes implementing the algorithm somewhat simpler. The one caveat to this variation of

AGG-MIN is that the set of possible algorithmic mutation would be smaller, leading to outputs with

higher F scores.

We implemented this version of the algorithm and used the same set of protein inputs to test

it. Our results are not surprising; in almost all cases the output string has an F score between the

best single mutation and the output of the normal version of AGG-MIN. However we find that

most scores are closer to those of the best single substitutions than to those of the combinatorial

mutations in the regular version; this means that the extra computational time to find multiple

mutations in this new method is not worthwhile since we could just use the single substitutions

from the regular version. We also observe more mutations in the string (larger Hamming distance)

since each position has fewer options for mutation, which goes against one of the objectives of the

algorithm - to minimize the number of mutations in the output string. Because of these drawbacks,

this design is less viable than the regular algorithm, but works well when the user is extremely

cautious about mutations that do not occur in nature.

6.10.2 Using a Different n

We decided that n would have a value of 20 to both get a sizable F score reduction and to limit

false positives, however varying n in the algorithm leads to differing results. Before exploring the

results of this change, let us explore what changing n means to the algorithmic process. The n

value matters when using the BLAST algorithm for finding proteins which exist in nature that are

close to the input. So a smaller n value returns fewer sequences, and fewer positions vary from the

input in each string. Because there is less variance between the strings, a constant t threshold value

will lead to fewer good mutable positions, so the t value has to be adjusted for each different n

used. Similarly, for large n values there is more variation between the strings returned by BLAST

and the input string, so a constant threshold value leads to a larger set of mutable positions.

After experimenting with a different values of n (taking n = 10, 20, 40, 80), we find that

a value of twenty gave consistent results with a medium value of t. In tests with n = 10, the

algorithm does not find enough good mutable positions for a good combinatorial mutation. In tests

with n = 40 and n = 80, BLAST returns too many strings that are not biologically related to the

input. Having a value for n that is too large breaks our proxy for the Q function. Therefore we

chose the value of n = 20 so that the average number of mutable positions is enough to optimize
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the score without taking too much computational time and avoiding false positives. However,

changing the value of n gives another dimension of control, and with the correct t value may yield

better results than the algorithm we present.

7 Conclusion

We have solved a biological problem that is unsolvable in a laboratory setting. We have formalized

the protein aggregation problem as a well-defined mathematical optimization and have created a

heuristic for solving this optimization. We have also implemented the algorithm that we present

and find that it minimizes the aggregation score of our test inputs by an average of forty percent.

Computationally, our algorithm could be further evaluated by running it over a larger set of inputs.

To truly confirm the results of the algorithm, the different outputs are being created in the laboratory

and compared to the inputs by testing the amount of time it takes for the proteins to fully aggregate.

The performance of the algorithm that we have presented certainly improves with improved

techniques for predicting the aggregation of proteins because such functions are inputs. The per-

formance could also be improved by further research on the threshold values t and d, especially

in determining how to have dynamic instead of static values. By creating techniques to fine-tune

these values for each input, the optimization should give better results. Furthermore, we could test

the value of nmax in order to reduce the actual running time of the algorithm; we want to find the

smallest value that gives outputs will minimal aggregation scores.

Because there are many different properties of proteins that depend on the amino acid sequence,

we can generalize the algorithm that we have presented to solve a large variety of biological prob-

lems such as optimizing protein electrostatics.
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