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 CONSTRUCTING DRIVABILITY MAPS FROM 3D LASER RANGE DATA FOR 
AUTONOMOUS VEHICLES

 Abstract
The  field  of  robotics  is  making  successful  progress  towards  endowing  robots  with  human-like 

capabilities. One example is the well-known DARPA Urban Challenge, which demonstrated an autonomous 
ground vehicle with sophisticated software that could drive itself while preparing for interaction with other 
vehicles, human beings,  and obstacles on the road. In the recent DARPA Urban Challenge, road blockage 
locations were unknown to contestants but pre-specified routes were provided that included all accessible road 
segments and other information such as waypoints, stop sign locations, and lane width. When driving a car in 
real life, human beings may not have knowledge of drivable road segments in advance. Instead, they make 
decisions on how to drive based on what they see at the moment. Hence, it is necessary for the autonomous 
vehicles to have the same capability to recognize the drivable roads at their current positions. Murarka and 
Kuipers presented a real-time stereo vision based mapping algorithm for identifying and modeling various 
hazards in urban environments by constructing a 3D model and segmenting it into distinct traversable ground 
regions [1]. However, their algorithm works in real-time for the robot's immediate vicinity of 10 x 10 meters. 
This is a relatively small space compared to our vehicle's immediate vicinity of 120 x 120 meters. The goal of 
this thesis is to present a revision of their algorithm that will allow the vehicle to discover accessible road 
segments along its path without relying on pre-specified routes. This will be particularly important in off-road 
situations where accessible road segments may not be pre-defined. This algorithm is expected to significantly 
improve the vehicle's  performance in detecting and avoiding obstacles  as well  as navigating safely to  the 
destination.

I. Introduction
This research is closely related to the Simultaneous Localization and Mapping (SLAM) problem in which 

an autonomous robot is programmed to build a map of an unknown environment and update this map during 
navigation. SLAM consists of two parts: localization and mapping. Most robots are equipped with a method of 
determining odometry, which describes the robot's relative position after every time step. However, odometry 
is rarely able to determine the exact location of the robot. Instead, it provides locations with uncertainties. 
Localization  algorithms  take  into  account  odometry,  sensor  readings,  and  an  environment  overview  to 
estimate the true location of the robot. Thus, the localization algorithm depends on the environment that is built 
by a mapping algorithm.

In order to construct a map of an unknown environment, the robot acquires data of the environment from its 
sensors. Sensors send out sensor signals and collect the returned signal information that represents locations of 
the reflected objects in the environment. Then, the occupancy grid mapping algorithm represents the map of 
the environment with reflected objects' positions in a two dimensional space (Figure 1).

Figure 1
Each cell of the occupancy grid is free, occupied, or unknown. Initially, all cells in the occupancy grid are 
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marked as  unknown. When the sensor signals return the coordinates of the reflected objects, the  ray-tracing 
method is invoked to find the open space represented by the free  cell. First, the ray-tracing method sets the 
cells that  contain locations of the reflected objects  as  occupied.  Then, this method iterates through points 
(marked as blue dots in the Figure 1) along the rays that connect the coordinates of the reflected objects and 
the current position of the robot and marks these corresponding cells as free.

The occupancy grid mapping algorithm is implemented with a probabilistic method since sensor signals are 
also subject to noise and uncertainties. A cell can be marked as occupied by some previous sensor signals then 
marked as free later, and vice versa. To accommodate the uncertainties of sensor signals, each cell in the grid 
contains a value: 0 is  unknown, a positive value is  occupied, and a negative value is  free. The  ray-tracing 
method will update these values by adding a positive number to cells classified as  occupied  and a negative 
number to cells classified as free. At the end, we have the map represented by free, occupied, and unknown 
cells. 

However, implementing a 2D occupancy grid on our autonomous vehicle demonstrates some weaknesses. 
First, 2D occupancy grids do not provide any information about the height of the reflected objects despite the 
fact that some sensors are capable of giving (x,y,z) coordinates. Thus, there is no distinction between a small 
object that the vehicle could drive over and a large object that must be avoided. In order to construct more 
detailed maps for a fully autonomous system, it is necessary to expand the occupancy grid to three dimensions. 
Many  researchers  have  addressed  3D  mapping,  but  they  often  have  problems  demonstrating  that  their 
algorithm can work in real-time on a fully autonomous system. In addition, a 3D occupancy grid might require 
a large amount of memory that could create a problem for some autonomous systems. The second weakness of 
the occupancy grid is that the ray-tracing method can become increasingly expensive with large numbers of 
sensor  signals  and  a  huge  environment.  Implementing  a  3D occupancy  grid  is  a  challenge  for  our  fully 
autonomous  vehicle,  which  requires  real-time computation.  This  motivates  us to  implement  Murarka  and 
Kuipers' mapping algorithm for wheeled robots.

Murarka and Kuipers proposed a mapping algorithm for the Intelligent Wheelchair research project. They 
focus on using the stereo vision camera as the primary sensor rather than the laser sensors. Instead of building 
a complete 3D model of the environment, their goal is to construct a hybrid 3D map of safe and unsafe regions 
for the robot's local surrounding environment. They introduce a fast method for segmenting ground surfaces by 
representing the point cloud data as planar regions. Their algorithm stores data points in an x-y grid and sets 
the highest  point's  z value as  the cell  height.  Each planar  region is  defined  to  be an  h-meter-high set  of 
continuous cells.  Then,  the algorithm segments  the grid into planar  regions.  With the assumption that  the 
current position of the robot is the ground surface, the computer searches for adjacent planar regions of the 
ground surface that the robot can traverse. The set of all traversable planar regions from the robot's current 
position is called a drivability map. 

Their algorithm for segmenting and constructing a drivability map is very fast and has been demonstrated 
to work well with the wheelchair robot. However, the local surrounding area of the wheelchair is only 10 x 10 
meters. On the other hand, our autonomous vehicle has to deal with a local surrounding area of 120 x 120 
meters. Furthermore, the vehicle also has to interact with many more fast-moving objects on the roads than the 
wheelchair does. My specific research contribution is to apply, extend, and implement a revised version on 
Murarka and Kuipers' algorithm to define drivable road segments and obstacles using the data points from our 
laser sensor so that it does not require excessive computations in order to process the 100,000 data points 
provided every 1/10th of a second.

This thesis describes the implementation of our revision of Murarka and Kuipers’ algorithm by setting up 
our occupancy grid and adapting their algorithm, which was originally designed for a small system with a 
stereo vision camera, to our autonomous vehicle with a laser sensor. There are three main differences in our 
revision of their algorithm. First, we skip the ray-tracing method in our algorithm. The ray-tracing method was 
designed for robots that can only send out one sensor signal at a particular rotational direction and finds the 
open space at different distances by iterating through points along that sensor signal. On the other hand, at a 
particular rotational direction, our laser sensor sends out 64 laser rays that are capable of finding the  open 
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space at many different distances. Moreover, Murarka and Kuipers' algorithm uses a stereo vision camera that 
gives a lot of noise in the data whereas our laser sensor gives highly accurate data points. In their work, they 
still have to perform the ray-tracing method to eliminate the noise. With the high accuracy of our laser sensor, 
we can safely assume that we will not have to worry about noise and errors. Second, we make our grid as a 
radial grid (r-θ grid) that resembles a Polar Coordinate system for the vehicle's local surroundings rather than 
the conventional x-y grid. Third, we tested the algorithm mostly in outdoor environments where the  local 
surrounding area is as far as 60 meters away from the vehicle, which is much larger than the wheelchair's local 
surroundings.

II. Background
1. Overview of the laser sensor – Velodyne HDL-64E
The primary laser sensor of our autonomous vehicle is the Velodyne 3D HDL-64E lidar [9],  which is 

mounted on top of the vehicle to collect detailed information of the car’s surrounding environment. This state-
of-the-art sensor spins and sends out laser rays to determine the 3D coordinates of the reflected objects. The 
HDL-64E operates on a rather simple premise: instead of a single laser firing through a rotating mirror, 64 
lasers are mounted on upper and lower blocks of 32 lasers each, and the entire unit spins. This design allows 
for 64 separate lasers to fire thousands of times per second, providing exponentially more data points per 
second and a much richer point cloud than conventional designs. The unit inherently delivers a 360-degree 
horizontal  field  of  view  (FOV)  and  a  26.8  degree  vertical  FOV.  Additionally,  the  state-of-the-art  signal 
processing and waveform analysis are employed to provide high accuracy and extended distance sensing and 
intensity data. The HDL-64E is rated to provide usable returns up to 120 meters.

Figure 2
Based on many data sets that were collected from the Velodyne, we decided to use all data points within 

the radius of 60 meters from the vehicle and ignore anything outside that radius. Indeed, only a small fraction 
of the data points can go beyond 60 meters from the vehicle at any rotational direction. These data points are 
sparsely distributed and do not give us much useful information to analyze the accessible road segments. At the 
rate that we operate the Velodyne, it returns approximately 1 million data points in 1 second. The Velodyne 
finishes each revolution in 1/10th of a second and returns approximately 100,000 data points. It provides much 
more data points than many sensors and gives us more detailed information about the car’s local surrounding 
environment.  However,  this  vast  amount  of  data  presents  a  computational  challenge,  especially  since our 
autonomous vehicle emphasizes real-time computation.

2. Approaches
As mentioned in previous sections, we take a different approach in storing the data points into the radial 
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grid instead of the conventional x-y grid since we have to work with a larger local surrounding area. The local 
surrounding area of the car contains all data points within the radius of 60 meters from its current position. If 
we store the data points into an x-y grid, the size of the grid has to be 120 x 120 meters. If the size of each cell  
is 0.25 x 0.25 meters, the grid will have 230,000 cells. The cells that are farther away from the current position 
of the car will have less data points and will be more likely to be empty. Storing an x-y grid of 230,000 cells 
wastes  most  of the allocated memory since the Velodyne returns approximately 100,000 data  points  each 
revolution and, at most, only 100,000 cells (less than half of the grid size) have usable information. In addition, 
the data points that are farther away from the car spread out more than the data points that are close to the car. 
Keeping the same cell size will leave a lot of empty cells that disconnect these points from the rest of the 
environment. Hence, we store data into a radial grid with 64 rows and 360 columns. 64 rows correspond to 64 
laser rays of Velodyne and 360 columns represent the rotational angle of these 64 laser rays. The cell sizes get 
larger as they are farther away from the origin. This approach allows us to store a smaller size grid, 64 by 360, 
which has about 23,000 cells and is only 10% of the x-y grid approach. Plus, this approach minimizes the 
potential  problem of having many empty cells and prevents  data points that  are farther  away from being 
disconnected from the rest of the environment. 

Since the primary goal of this research is to allow the vehicle to make optimal decisions at its current 
position, the computer only needs to keep its local drivability map. Every time the vehicle moves to a different 
position, it does not need to take previous  drivability maps into consideration. Thus, at the end of each of 
Velodyne’s revolutions, a new local drivability map will be created and incorporated with the path-planning 
algorithm to  make  the  optimal  decision.  This  map  will  not  be  reused  for  the  next  Velodyne  revolution. 
Although  keeping  the  local  drivability  map rather  than  the  global  drivability  map  might  increase 
computational time and reduce accuracy, the algorithm is expected to run fast enough to overcome the increase 
in  computational  time  and,  with  the  vast  amount  of  data  from  the  Velodyne,  reconstructing  new  local 
drivability maps each time still  provides highly accurate results.  This approach saves us from keeping the 
global drivability map that might accumulate a large amount of memory storage over time.

Our high-level approach is after the laser sensor finishes one revolution: the computer (1) collects detailed 
sensor information from the car’s immediate vicinity and puts these data points into a radial grid, (2) applies 
this algorithm to determine accessible roads and obstacles then constructs a drivability map, and (3) makes an 
optimal choice from the current position of the vehicle to the destination. In order for this approach to be 
feasible, the entire process must run in real-time to guarantee that the vehicle's motion will never be interrupted 
by incomplete computations of the algorithm.

III. Related works
This research project is related to two research interests in Computer Science. The first one aims at using 

mobile robots with laser range finders to reconstruct a 3D model of an unknown environment. The second 
research interest is the DARPA Urban Challenge that applies a model of the environment to determine the 
autonomous vehicle's motion. 

1. 3D model reconstruction
There has been a huge interest in computer graphics to develop many algorithms that fully reconstruct the 

surfaces of 3D objects given their Point Cloud Data (PCD). Hahnel, Burgard, and Thurn [2] published their 
paper that applies the 3D surface reconstruction to build 3D models. In contrast with the surface reconstruction 
algorithm in computer graphics, the robot's sensors produce noise and errors in the data. They focus on using a 
mobile robot with laser range finders to collect PCD that automatically generates simplified 3D models of 
indoor and outdoor environments. Their method is expected to be a great utility for architecture, the video 
game industry,  or emergency crews operating at  a  hazardous site.  It  would reduce human intervention in 
reconstructing 3D objects and, thus, reduce cost as well as danger. Their algorithm records data points from the 
robot's laser sensors. Then, they obtain a polygonal model by connecting the consecutive 3D points that are 
close to each other. This polygonal model is an approximation of the environment. Finally, they apply the 
planar approximation to create the smooth surfaces. This planar approximation starts with a randomly chosen 
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point in the 3D region and finds the maximum set of points in the neighborhood that can fit into a plane. The 
optimal  plane for  a  set  of  points  minimizes the sum of squared  distance  from points  to the plane.  They 
continuously merge the neighboring polygons in the same plane to the larger polygons until no more polygons 
can be merged. At the end, they obtain a simplified 3D model of the environment with smooth surfaces. The 
authors state that for a typical data set consisting 200,000 surfaces, a naïve implementation on a standard PC 
requires over 10 hours to extract all planes. We will not apply this algorithm for our vehicle that requires real-
time computations. However, we will apply their  planar approximation method to find the best fitting plane 
for a set of continuous data points.

In  Leaving Flatland: Toward Real-time 3D Navigation  [3], the authors present a 3D mapping algorithm 
that builds a polygonal model of the world using a RHex six-legged walking robot with stereo vision cameras 
developed by Boston Dynamics. Their algorithm decomposes 3D workspace into local 2D regions. For each 
PCD returned from the cameras, they construct a local octree. This octree will be divided into the cells whose 
sizes are no smaller than h. Then, in each cell of a local octree, they examine the set of points to which they 
will fit a plane and define a polygon. After constructing the polygons, they will find all overlapping octree cells 
and compare all colliding polygons. If two polygons are similar, they will compute a new polygon that is the 
average and best fit for them. This algorithm focuses on building a 3D map. Their system might stand for a few 
seconds to  gather  information  and  build  the map.  Building and merging polygons  would provide a  good 
approximation for the 3D model of the environment. Compared to our vehicle, which might be moving at high 
speeds while gathering data and computing desired output, we may not have enough time to build and merge 
all polygons. The authors state that their algorithm would build about ten thousand polygons before merging 
them, which is very difficult for our fast-moving system to process. Furthermore, their RHex six-legged robot 
has the capability of running at a high speed on flat ground, crawling over mountains, and climbing stairs to 
collect data points at any surface. On the other hand, our vehicle can only drive on flat or gradual inclined 
surfaces and may not gather enough data points to build a complete 3D model. Therefore, instead of building a 
complete 3D model of the vehicle's surrounding environment, we will concentrate on recognizing the drivable 
road segments of the local map. 

2. DARPA Urban Challenge
In  ten Urban Challenge papers that were published in  Journal of  Field Robotics,  2008, none of them 

mentioned that their algorithms would build a complete 3D model of the vehicle's surroundings. Alternatively, 
they provide a 2D map with additional information about traversable ground regions. 

In the 2007 DARPA Urban Challenge, the Cornell team [5] and MIT team [6] took a similar approach in 
building the local map of the vehicle's surrounding environment. The Cornell team constructed the  vehicle-
centric map of the local surroundings of the autonomous vehicle. The MIT team built the local frame of the 
vehicle's  surroundings.  Both the  vehicle-centric  map  and the  local  frame are  in  the Euclidean  coordinate 
system, which is different from our Polar Coordinate local drivability map. Both teams combined data returned 
from many different sensors and resolved conflicts to update their local maps to find the traversable ground 
regions.

The Stanford's Junior team [7] relied on the Velodyne as the primary sensor for obstacle detection. They 
took  into  account  the expansion  and compression  of  concentric  rings  of  data  points.  They  computed  the 
expected distance between these rings of data points on flat ground with no obstacles to measure the terrain 
slope. This approach is very similar to our approach of constructing the radial grid using the distance between 
the  laser  rays  and  the  rotational  angles.  They  still  kept  the  environment's  global  map  but  addressed  its 
downside for accumulating static data over time. To accommodate this problem, their algorithm performed a 
local visibility calculation to detect roads and obstacles.

The  AnnieWay team [8] took a completely different approach. They constructed global maps instead of 
local  maps.  They  used  a  grid  that  always  centered  at  the vehicle's  position  and  aligned it  with  a  global 
coordinate  system.  They  integrated  the  data  from laser  scanners  in  a  3D environment  into  a  global  2D 
occupancy grid map and computed the evidence if a cell in the grid was an obstacle. Hence, the vehicle built a 
2D map of the global environment while navigating.
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IV. The algorithm
1. Setting up the data structure
Each data point p has the form of (x, y, z). Each cell on the grid contains the highest point and its segment 

ID. All data points will be put into an r-θ grid in which each row represents distance from the center and each 
column represents the rotational angle. This is a different approach of storing data points compared to Murarka 
and Kuipers' algorithm, which stores data points in an x-y grid. Since there are only 64 laser rays fired at each 
rotational angle, our grid consists of 64 rows. Each row is expected to contain one concentric ring of data 
points in the absence of obstacles on flat ground. Each column represents a rotational angle of one degree and 
is expected to store all data points fired from 64 laser rays at that rotational angle.

As the laser rays move further out, the cell size is bigger since the difference between the consecutive 
elements of  r_bench will get larger, and, therefore, we will begin to lose accuracy. However,  with a large 
number of data points from the Velodyne, any obstacle within the radius of 60 meters from the car will be 
detected.  We  will  not  worry  about  obstacles  that  are  farther  than  60  meters  because  the  Velodyne  will 
eventually detect those obstacles when the vehicle moves closer to them.

Each data point in one revolution of the Velodyne is converted from the Velodyne’s frame of reference to 
the vehicle’s frame of reference and processed with the following steps:

(1) Compute the distance d of this data point from the current position of the car using its x and y values. If 
d is greater than 60 meters, this data point will be dropped and no further processing needed. Otherwise, d is 
used to determine the row index of this data point.

(2) Compare the distance  d with each element of  r_bench array to find the row index of this data point. 
Row index of the data point is i if d is greater than r_bench[i] and less than r_bench[i+1].

(3) Convert the data point’s rotational angle from radians to degrees to find its column index.
(4) Use the row and column index to locate the cell and add this data point to this cell.
Each cell of the grid keeps the data point with highest z value and uses it to define the cell’s height. When a 

data point is added to a particular cell, this cell processes the point by doing one of the following:
Case 1: If the cell is empty (has no data point), the cell is set to not empty and the height of the cell is the z 

value of the data point that is just added. This data point is stored as the highest data point of the cell.
Case 2: If the cell is not empty, the data point’s z value is compared with the height of the cell. If this point's 

z value is less than or equal to the cell’s height, this point is ignored. If this point's z value is greater than the 
cell’s current height, the cell replaces its height with the new data point’s z value and its highest point with this  
data point.

After all data points in one revolution of the Velodyne are added, the grid is a hybrid 3D model of the 
vehicle’s local surroundings. Each cell’s height is the highest z value of all data points added to that cell. The 
cell’s height is the key information for segmenting the 3D model and constructing the drivability map.

2. Overhanging objects problem
Overhanging objects are a problem that Murarka and Kuipers do not mention in their paper. However, it is 

necessary to address this problem since overhanging objects might interrupt the vehicle's motion even if the 
vehicle can safely drive under them. 

In the radial grid, each cell keeps its highest point that is used for segmenting the 3D model; thus, there is 
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no distinction between an overhanging object  of  height  h and an obstacle  of height  h.  Both of  them are 
automatically classified as obstacles of height  h. In some cases, an overhanging object of height  h  is high 
enough for the car to continue driving forward while an obstacle of height  h blocks some parts of the road. 
Thus, we reconsider how high the overhanging objects can be so that the car can drive under them.

The vehicle can only drive under the overhanging objects if they are higher than the car, 2.2 meters. There 
are four cases shown in Figure 4: the obstacle is higher than the car (top-left), the overhanging object is higher 
than the car (top-right), the obstacle is lower than the car (bottom-left), and the overhanging object is lower 
than the car (bottom-right).

Figure 4

As demonstrated in Figure 4, the vehicle can continue driving forward when the overhanging object is 
higher than the vehicle (top-right). We define 2.5 meters, which is slightly higher than the car, as the cut-off 
height. Any data points that are higher than 2.5 meters are ignored. The computer stores the data points that are 
equal or below 2.5 meters. The vehicle only sees obstacles and overhanging objects below 2.5 meters and 
considers them as road blockages. Any overhanging objects above 2.5 meters are not considered since the car 
can safely drive forward without recognizing the existence of these overhanging objects. Obstacles above 2.5 
meters would have the height of 2.5 meters, which makes no change in the vehicle’s decision not to drive 
forward. This height cut-off technique saves the computer from the expensive ray-tracing method and quickly 
distinguishes obstacles and overhanging objects.

Setting up the radial grid
Input: S = set of data points of (x,y,z,Θ) form in one Velodyne's revolution
Output: grid = radial grid of vehicle's local surroundings in which each cell stores the highest data point
For each point p(xk,yk,zk,Θk) in S
{

d = SquareRoot(xk*xk + yk*yk); //compute distance of point p from vehicle's position
if (d > 60) continue; //ignore point more than 60 meters away
if (zk

 
> 2.5) continue; //ignore point higher than 2.5 meters

row_index = -1;
for j=1 to 64 //find the row index
{

if (d<=r_bench[j])
{

row_index = j;
break;
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}
}
new_Θ = (180/π)*Θk; //convert rotational angle from radian to degree
if (new_Θ>360)  

                new_Θ =  new_Θ – 360;
if ( new_Θ<0)  

                new_Θ =  new_Θ + 360;
column_index = floor(new_Θ);
adjustHeight( grid[row_index][column_index],  p ) //add point p to the cell

}

function adjustHeight
Input: C = cell of the radial grid, 
          p = data point of (x,y,z,Θ) form
Output C = cell of the radial grid with highest_point and unit_height readjusted
highest_point = data point with the highest z values added to C
unit_height = the highest point's z value in term of unit height (0.25 meters)
if (C is empty)
{

highest_point = p;
unit_height = floor(p.z/0.25); //Calculate unit height of the cell

}
else
{

if (highest_point.z < p.z)
{

highest_point = p;
unit_height = floor(p.z/0.25); //Calculate new unit height of the cell

}
}

3. Segmenting
After putting all data points into the radial grid, the  segmenting procedure is invoked. This  segmenting 

procedure finds the potentially reachable cells from the vehicle’s current position then separates these cells into 
segments. Each segment is a 0.25-meter-high set of adjacent cells. We refer 0.25 meters as 1 unit height. Thus, 
all cells in the same segment have the same  unit height  although their height difference can be up to 0.25 
meters. And cells are considered as potentially reachable from each other if they are adjacent and their height 
difference is 1 unit height, from 0.25 meters to 0.5 meters.

All potentially reachable cells are kept in the  neighbor list that is initially empty. We start exploring the 
local map by segmenting it from the current position of the car, namely cell (0,0) of the r-θ grid. Cell (0,0) is 
the first cell added to the neighbor list and current segment is initialized to 0. All cells in the grid have their 
segment ID initialized to -1.

For each cell  (r,t) in the neighbor list, the  recursive segmenting procedure is called with the value of the 
current segment to examine the adjacent cells of (r,t). Each adjacent cell of (r,t) falls into one of the following 
three categories:

(1) If the adjacent cell has the same  unit height with  (r,t), we set this cell’s  segment ID  to the value in 
current segment and call the recursive segmenting procedure on this adjacent cell. 

(2) If the difference in unit height between (r,t) and the adjacent cell is 1, we append this adjacent cell to the 
neighbor list to examine after we finish with the current segment.

(3) If the difference is more than 1 unit height, we ignore this cell since it is too high for the car to move 
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from its current position.
The recursive segmenting procedure exits when all cells that belong to the current segment are found. Then, 

we look for next cells in the neighbor list to find a new cell (r,t) that is not assigned to any segment, increment 
current segment   by 1, and call the  recursive segmenting procedure with the new cell  (r,t) and the updated 
current segment. We only examine the next cell that is not in any segment since one cell can appear multiple 
times in the  neighbor list or some of the cells in the remaining  neighbor list are already assigned to some 
segments.
 When all the cells in the neighbor list get examined, we will have the potentially drivable segments that are 
adjacent to each other and the height of two adjacent segments will not exceed 1 unit height. The remaining 
cells that do not belong to any segment are either empty, disconnected from the current position of the car, or 
their height is much higher than the potential drivable segments. Empty cells are considered as the unknown 
regions where the algorithm does not apply the next steps: plane fitting and drivability map construction. For 
any non-empty cells that are disconnected from the vehicle or have obstacles, we increment the number of 
segments by 1 and set the segment ID of these non-empty cells to the last segment, which is reserved for the 
unreachable cells. The plane fitting and  drivability map construction procedures are not applied to the last 
segment.

4. Plane fitting
The plane fitting procedure takes the set of cells in each segment and returns the best fit 3D plane for the 

highest data point in each cell. We assume that the car always drives on a flat surface. Therefore, it is necessary 
to fit a plane into the cells that are in the same segment to determine whether the car can drive through these 
cells. Given the list of all cells that belong to a segment, to find the best fit plane, we extract the highest point 
stored in each cell, and add these points to the list of points, which is used to find the equation of the plane. 
Then, for each segment that has 3 or more cells, we iterate through all of these data points and apply the least 
square formula to get the 3D plane equation for that segment.

∑ xi
2 ∑ xiyi ∑ xi a ∑ zixi

∑ xiyi ∑ yi
2 ∑ yi * b = ∑ ziyi

∑ xi ∑ yi ∑ 1 c ∑ zi

A           *     X = B
X = A-1 B

We obtain the 3D plane equation z = ax + by + c by solving the matrix equation above. We store each 
output a, b, and c in an array of size 3 for all segments in a list called planes that are indexed by the segment 
number. Each cell  can easily access its plane equation by indexing its  segment ID in the  planes list.  The 
equations of the planes determine the drivability of the segments.

Function Plane_fitting
Input Cell_list = list of cells belong to segment k
Output X = array of [a,b,c] form represented the plane equation z = ax + by + c
A = 3 by 3 matrix, initialized to 0;
B = 3 by 1 matrix, initialized to 0;
if (size(Cell_list)<3) X = [0,0,0]
else
{ 
      for highest point p(xi,yi,zi,Θi) in each cell C of Cell_list
      {
           A1,1 = A1,1 + xi*xi;
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           A1,2 = A1,2 + xi*yi;
           A1,3 = A1,3 + xi;
           A2,2 = A2,2 + yi*yi;
           A2,3 = A2,3 + yi;
           A3,3 = A3,3 + 1;
           B1 = B1 + zi*xi;
           B2 = B2 + zi*yi;
           B3 = B3 + zi;
      }
     A2,1 = A1,2;
     A3,1 = A1,3;
     A3,2 = A2,3;
     X = inverse(A)*B
}

5. Local drivability map construction
After fitting a 3D plane to each segment, a local drivability map is constructed. This local drivability map 

contains the set  of segments that are drivable from segment  0 . A segment is defined to be drivable from 
another segment by three criteria:

1) The height difference of two adjacent segments' boundary cells is no more than 1 unit height.
2) When fitting the plane equation of segment s1 to the boundary cells of segment s2, the difference in z 

values does not exceed 1 unit height.
3) All continuous boundary cells of two adjacent segments have to be at least 3 meters wide so that the car 

can drive from one segment to the other.
If all three criteria above are met, a segment is drivable from another segment and we mark these segments 

as drivable from one another.
After identifying drivable segments using the criteria above, we start from segment 0, which is the current 

position of the car, and look for the segments that are drivable from segment 0.
Step 1: Add segment 0 to the initially empty queue.
Step 2: Extract a segment s from the queue, look for all segments that are drivable from segment s, and add 

all of them to the queue. Then, rename segment s as 0. Step 2 is repeated until the queue is empty.
When the queue is empty, the local drivability map is constructed from all the segments that are drivable 

directly  or  indirectly  from segment  0  and renamed as segment  0 using the  procedures above.  This  local 
drivability  map will  be  incorporated  with  the  state-of-the-art  path-planning  algorithm to find the optimal 
driving direction.

V. Experiment and evaluation
Our experiment and evaluation has two parts: demonstrating the correctness of the implementation that 

uses the radial grid and adjusting parameters so that the algorithm can run under 0.1 seconds. We demonstrated 
the correctness of the implementation by taking snapshots of various locations including flat ground surface, 
hills with small inclined angles, and roads with overhanging tree branches. In each case, we expected this 
algorithm to identify the flat ground that the vehicle can drive to. Then we compared it  with the existing 
algorithm implemented in the car, the height difference algorithm. The height difference algorithm classifies a 
cell in the grid as an obstacle when the height difference between the highest and lowest data points is above a 
certain threshold. Finally, we measured the running time of the algorithm when the car completely constructs 
the drivability map for each location and considered readjusting the size of the grid's column to achieve faster 
computation.

In all pictures, the blue region is the  drivable part of the road, black regions are obstacles, and all other 
regions are non-drivable.
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Figure 5 (a) Figure 5 (b)

We began our experiment with an easy scenario in which the vehicle was on a flat ground surface and there 
were not many obstacles around it. In this easy case, the vehicle quickly computed the local drivability map 
that contains most of its local surroundings. Since there was not any significant difference in the height of the 
local surroundings, there was a small number of segments in the maps. Thus, it did not take much time to 
merge segments together and construct a large drivability map (Figure 5 (a) and (b)).

Next, we took the car to a road that has both upward and downward slope surfaces (Figure 6 (a)) and 
expected the drivability map to include all road surfaces.
 

Figure 6 (a)

This  algorithm  captures  very  well  almost  all  road  surfaces  including  downward  and  upward  sloping 
surfaces of the road in Figure 6 (b). 
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Figure 6 (b)
Compared to the height difference algorithm implemented in the car, the old algorithm failed to define the 

upward sloping road as  drivable in Figure 6 (c) where the  drivable region is colored in blue and the  non-
drivable region is colored in red.

Figure 6(c)
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Then we took the car to a road where there were fences, walls, or trees on either side. The vehicle was 
under some overhanging tree branches. We expected this algorithm to define the road and the parts under the 
tree branches as drivable.

Figure 7 (a)
 This algorithm effectively identified the road under the tree as  drivable in Figure 7 (b). This algorithm 
defined everything behind the fence as a non-drivable region. This is a reasonable and expected result since the 
vehicle cannot reach the region behind the fence. In addition, it captured the curve of the road very well.

Figure 7 (b)
In Figure 7 (c),  the  height  difference algorithm also  failed to define the region of the road  under the 

overhanging tree branch as drivable. The height difference algorithm classified the segment behind the fence as 
drivable but the vehicle can never reach it.
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Figure 7 (c)
To further demonstrate that this algorithm can correctly identify the overhanging objects lower than 2.5 

meters as obstacles and marks everything behind the obstacles as  non-drivable (not in blue), we manually 
added some data points into Figure 7. It produced the desired drivability map in which the blue segment stops 
at the position of the overhanging object (Figure 8).

Figure 8
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The  percentage  of  the  drivability  map size  in  the  local  map  varies  depending  on  the  vehicle's  local 
surroundings. The more obstacles that existed in the local surroundings, the smaller the size of the drivability 
map became. Overall, the algorithm correctly defines the drivability map by recognizing the continuous road 
segments. It adapts well to the change in the road's slopes and curves.

Figure Description Drivability map size

Figure 5 Flat ground with no obstacles 98.90%

Figure 6 Downward slope with obstacles on both sides 63.40%

Figure 7 Flat road with obstacles on both sides 78.30%

Figure 8 Figure 8 with an overhanging object added in 
front of the vehicle

37.00%

 The running time was measured by executing the program on the vehicle's computer. The running time of 
the algorithm also varies depending on the grid column size and the local map. With the grid's column size of 1 
degree, it is not possible for the algorithm to run in real-time. However, when we increase the column size to 2 
and 4 degree, it is more likely that the algorithm will run in real-time.

Size of radial grid's column (degree) Running Time (second)

1 0.09 – 0.13 

2 0.05 – 0.08

4 0.03 – 0.06

VI. Future Work
The remaining work  of this  project  is  to  integrate  the  drivability  map  with the existing path-planning 

algorithm. With the drivability map being constructed, we reused the path-planning algorithm that was already 
implemented in the vehicle using a Voronoi-style skeleton [4]. Given any two points in a graph, the Voronoi 
diagram is constructed by the set of points that are equal distance to these two points. Thus, instead of finding 
the set of points that are equal distance to any two points, the computer finds the set of points that are equal 
distance to any obstacles. We call these points the safe points. This set of safe points determines the path for 
the vehicle to move from one point to another without hitting any obstacle. The distance from these points to 
the obstacles is called the safety radius.

Figure 9
In the figure above, the red lines represent the set of points that are equal distance to any obstacles, and we 

call it the safe path. To move to the destination, the vehicle chooses which direction to drive based on how far 
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it must follow the safe path to reach the destination. Every time the vehicle moves, its location is updated on 
the  safe  path.  The vehicle's  location must  be within the  safety  radius of its  closest  safe point. Then,  the 
vehicles  recomputes  the  next  safe  point on  its  safe  path and  drives  to  that  point  until  the  safe  point is 
reasonably close to  the destination.  This  state-of-the-art  path-planning  algorithm worked smoothly on our 
vehicle in 2007 DARPA Urban Challenge.

Although we tested the algorithm in various locations, there were not many interactions among the vehicle 
and other obstacles on the roads. We have not taken the vehicle out to roads that allow high speeds such as 
freeways and highways where the demand for quick responses to dynamic obstacles on the road is higher. It is 
also necessary to test the vehicle performance in places where there is no pre-defined road segments and the 
vehicles will have to truly rely on the algorithm to define the road. It might be useful to acquire more data from 
other laser sensors on the vehicle rather than using only data from Velodyne. More data from sensors will 
improve the accuracy of the local drivability map. However, this will again increase the amount of data, which 
will raise the computational challenge.

VII. Conclusion
Murarka and Kuipers' algorithm has been proven to work in real-time. However, the local surrounding area 

of their mobile robot is only 10 x 10 meters. This is a relatively smaller space than our autonomous vehicle's 
local surroundings of 120 x 120 meters. My research applies  and extends their algorithm with three main 
differences: (1) the  ray-tracing method is skipped due to the sufficient amount of data that is given by the 
Velodyne, (2) the local surrounding environment is represented by an r-θ grid rather than an x-y grid, (3) we 
tested  the algorithm in  mostly  outdoor  environments  where there  are  many significant  height  differences 
among many parts of the vehicle's  local  surroundings.  In  addition,  my research addresses the problem of 
overhanging objects and proposes a quick and simple solution that still produces the desired result. Compared 
to the height difference algorithm previously implemented in the vehicle, this algorithm is expected to improve 
the  vehicle's  performance  in  detecting  obstacles,  defining  drivable regions,  and  navigating  safely  to 
destinations while interacting with other obstacles on the road in real-time. This is the important progress 
towards having fully autonomous vehicles in urban traffic.
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