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Abstract tiality and integrity, but HTTPS is widely shunned by

. , . . . many websites. The performance overheads caused by
While there is no guarantee of HTTP page integrity, thiSt) 5 are not the only reason for this contradictory sit-
issue is left unaddressed in discussions of web security, 501 |t also results from the end-to-end security of
Though HTTPS can be used to solve the HTTP page ingr1pg \which prevents websites from distributing the
tegrity problem, HTTPS is shunned by web communi-cqnient over the Internet to reduce bandwidth and la-

ties due to the performance overheads caused by TL ency. These “World Wide Woes” will continue unless

Worse yet, HTTPS inherently breaks the distributed na;, 4 13xe proactive actions against them.

ture of the web by disallowing caching. The end-t0- e yecent trends of web attacks show that web attacks
end security guarantee of HTTPS only allows web con-, o 1ore evolved and advanced than ever before. Cookie

tents served by origin web servers, not caching proxieg,yesdropping such as Side Jacking[15] occurred in 2007
or Content Delivery Networks (CDN). Unsurprisingly, 5,4 showed that authentication cookies can be eaves-

HTTPS is overkill for many applications and is avoided dropped and replayed while a user is using HTTP af-

by many websites. Thus, webpages are completely 0peg, the yser is authenticated by HTTPS. More advanced
to attacks against HTTP page integrity. Based on thesgqyie theft was found as Surf Jacking[14] in 2008. An
observations, we have designed a lite protocol for Sextacker impersonates any website using ARP poisoning
cure web, HTTP Integrity (HTTPI). HTTPI relies on ,nq regirects a user to any target website to steal cookies.
HTTPS to share session keys and use them for keyedy, 509 the first Man-in-the-Middle (MITM) attack in
hashing HTTP pages. We show that HTTPI can be réyhe \yep was introduced as SSLStrip[32]. Most HTTPS-
liably used for many applications, since many web at-gnapjed websites allow a user to initiate an HTTPS ses-
tacks target integrity rather than confidentiality. In arde sion with HTTP. If a user types an URL witholt t ps,

to avoid breaking the caching mechanism of the web, Wy ¢ 1, is ysed for the default scheme for a website. Then,
decouple HTTP headers and contents for keyed-hashmgne website redirects the useittot ps. SSLStrip makes

Web servers can cache or precompute contents hashingle of this convention and establishes an HTTP con-

for static contents and many studies show that dynami¢,otion between a user's browser and an attacker, and

contents can be cached as well. Therefore, the perfolsgiapiishes an HTTPS connection between an attacker
mance degradation caused by HTTPI can go unnonceQnd a target website. Though SSLStrip shows how to
by users. use an HTTP-to-HTTPS redirection and attacks against
HTTPS, this possibly points out the vulnerability against
1 Introduction HTTP page |_ntegr|ty._ _Any attgcker can modn‘y_ HTTP
pages and inject malicious scripts or steal session cook-

As the World Wide Web focuses on scalability and per-1€S unnoticed by a user even when the user browses a
formance rather than security, it suffers widely from €gitimate website[42]. As long as this HTTP integrity
classes of attacks including server impersonation, meg2roblem remains, itis doomed to be a future disaster.
sage modification, cookie theft and cookie injection. D€SPite these complications, the available defense of
Contributing to these problems, wireless networks pro-HTTP is not beyond the Same-Origin Policy (SOP). In
liferate, and any attacker can easily eavesdrop and mogrder o understand SOP, we need to consider SOP in
ify traffic from web clients in his or her proximity areas. the context of a model using both subjects and objects.
HTTPS can stop these problems by providing confidenSOP is access control policy for a browser. Subjects



are any HTML documents or loaded scripts and objects  HTTP/1.1[25] and using redirection messages like
are DOM objects, Cookies[31], and HTML documents. status code 301 (Moved Permanently), 303 (See
Subjects can access objects if subjects satisfy all the  Other), and 307 (Temporary Redirect). If an
matching rules with objects depending on the types of HTTPS page contains HTTP links, HTTP links can
SOP. We define SOP and Cookie SOP as follows: be used to break the security of HTTPS[5].

e SOP: SubjectS can access objecO only if
protocols = protocolp, domaing = domaing,
andports = porto

We will describe the security guarantees of HTTPI in
Section 4. In Section 5, we will show that these guar-
antees can defend against many attacks including server
e Cookie SOP: Subjec can access cooki@ only  impersonation, message modification, cookie injection
if domaing = domaino, paths = patho, and — and cookie theft.
protocolg = “hitps” whensecureo = true This paper is organized as follows: Section 2 discusses
. . . why we should use HTTPI instead of HTTP, HTTPS,
Each attribute has the different matching rule. Thegng HTTP Authentication in terms of server authenti-
matching rule for the protocol and the port attribute ca4ion, client authentication, integrity, and confidehtia

follows equality. ~ The protocol attribute of subjects v, section 3 presents our design of HTTPI focusing on
should be equal to that of objects and the port attribute ofjT1p| sessions. and cookies. Section 4 shows five se-

subjects should be equal to that of objects. The ma\tchingurity guarantees that HTTP!I provides. In Section 5, we

rule for the domain attribute in SOP and Cookie SOP¢ateqorize and analyze web attacks and show that many
follows thelongest suffix rule The longest suffix of the |\ ap attacks are related to integrity, and attacks not de-
domain attribute in objects should match that in subjectsfanged by HTTPI also can not be defended by HTTPS.
Likewise, the matching rule for the path attribute follows gaction 6 describes our implementation in detail. Sec-
the longest prefix rule The longest prefix of the path i, 7 compares the performance of HTTP!I in terms of
attribute in objects should match that in subjects. Sopthroughput, and CPU time with HTTP and HTTPS, and

seems effective against unauthorized access 10 Weffisesses HTTPI performance in terms of bandwidth and

objects, but it can be breached by an attacker due tyency. Section 8 reviews related work. Finally, Sec-
the lack of integrity in HTTP. HTTP’s dependence {jon 9 summarizes and concludes our work.
on SOP without integrity causes the following four ar-

chitectural problems, which will be detailed in Section 5.
2 Motivation

P1. Misbinding: An attacker can impersonate a Webln this section, we discuss why we should use HTTPI

server by associating an attacker's IP address with, 0.4 of HTTP, HTTPS, or HTTP Authentication by
i\ﬂfgltlrgglte Web.ts;]tesl dqtr_nalrg nﬁngr an attacker Scomparing them in terms of server authentication, client
address with a legiimate 1~ address. authentication, integrity and confidentiality. We summa-
P2. Message modification: An attacker can modifyfize our analysis in Table 1.
HTTP headers[27, 28] or contents[40]. If an at-
tacker injects a malicious script or a link to a mali-O|2 1 Why Not HTTP?

cious scriptin an HTTP page, the script is execute

in the context of the HTTP page. HTTP[9] is a request and response protocol and if a web
P3. Cookie injection and theft: An attacker can client sends an HTTP request to a web server, the web

overwrite the cookies in a user's browser with client receives an HTTP response from the web server.

the attackers cookies[29]. An attacker can If each request and response is defined as a transaction,

steal cookies from users by eavesdropping[15] Oreach transaction is independentand thus HTTP is a state-

impersonation[14] and replay the cookies. Theseless protocol. In order to manage states among trans-

problems can be resolved by setting the secure ate_lctions, cookies[31] were proposed to manage states in

tribute for cookies. However, a study shows that Oneweb clients. Web servers send cookies, texts with names

third of 30 websites did not set the secure attribute2"d values pairs, to web clients and set cookies to them
for authentication cookies5]. and web clients send the cookies in subsequent requests
to the same web server to notify the states of the web
P4. HTTP-HTTPS interaction: The security of HTTPS clients. Due to these facts, HTTP is scalable and con-
can be broken by using the redirection from HTTP tributes to the success of the current web architecture.
to HTTPS[32]. The HTTP-to-HTTPS redirec- In spite of the success, the integrity problems of HTTP
tion can be done by upgrading to TLS within are widely under appreciated. HTTP has no server and



| | Server Auth| Client Auth | Integrity | Confidentiality |

HTTP

HTTPS v v v
HTTPS with Password v v v v
HTTP Authentication v v

HTTPI v v
HTTPI with Password v v v

Table 1: Comparisons between HTTPI, HTTP, HTTPS, and HTTEhéatication

client authentication. HTTP messages can be modifietHTTP/1.0[3] and user names and passwords are sent in
and eavesdropped in-transit. clear text, and Digest Authentication[11] is proposed to
remedy the problem by sending user names and pass-
words by hashing. Since HTTP Authentication relies
2.2 Why Not HTTPS? on a password system for client authentication, HTTP

HTTPS[41] is TLS[6] over HTTP, and provides confi- Authentication has inherent proplems from the pass-
dentiality, integrity, and server authentication. HTTPSWOrd system. HTTP Authentication does not provide
provides the strongest security guarantee among HTTS€rver authentication, and HTTP Authentication is vul-
HTTPS, HTTP Authentication and HTTPI. If HTTPS is Nerable to Man-in-the-middle (MITM) attacks. Though
used between a web client and a web server, HTTPS!TTP Authentication provides integrity, many features
pages can not be modified and eavesdropped in-transi'® optional and never used in practice. We found that
and many web attacks can be mitigated. Even with thes&Pache 2.2.11 web server did not implement the op-
strong security improvements, HTTPS has not replace&onal content integrity feature for Digest Authen_uca-
HTTP completely. HTTPS is used minimally when it fion- HTTP header fields are not protected by digest,
is required for authentication, online shopping and on-but some selective header fields such as the request-uri
line banking. Currently, HTTPS is shunned by manyvalue and the method value from the Request-Line are
websites due to primarily performance degradation. If1ashed. Thus, HTTP Authentication does not provide
HTTPS affects only the performance, HTTPS will be COmMPplete integrity. Most of all, HTTP Authentication is

adopted completely as computers and networks are mucilunned by many websites and Form-based Authentica-
faster than now in the future. The more reasonable antion is readily adopted due to usability[45]. HTTP Au-

swer to the phenomena must be more fundamental ithentication invokesapa_ssword dialpg box depepde_nton
web architecture, and HTTPS does break the current weBrowsers, and does not integrate with web applications.
architecture. HTTP is a distributed information system hough HTTP Authentication can be better than Form-
depending on many intermediary entities between a Wegasgd Authentication in term_s of se;cunty, HTTP Authen-
client and a web server such as proxies and gateways, afiation confuses users and is avoided by many users.
HTTP pages are cached in caching proxies and replicated
in gateways as Content Delivery Networks (CDNs)[12].
On the other hand, HTTPS provides the end-to-end se2'4 Why HTTPI?

curity, and any HTTPS pages can not be cached by proxoyr HTTP| provides integrity and server authentica-
ies and gateways, but should be served by origin wels, by keyed-hashing HTTP header fields and contents.
servers. Furthermore, HTTPS pages can not be increg,r HTTP| does not provide client authentication like
mentally rendered and_HTTPS pages |QOk more slugg|s_lp1-|—TpS’ but HTTPS and our HTTPI can support client
to users. These facts increase bgndmdth and Iatgncy IButhentication by adopting a password system. The most
the Internet. In many web applications such as social nefgjstinctive feature that our HTTPI does not support is
working websites like Facebook and news websites lik&;qonfigentiality compared to HTTPS. The rational behind
the New York Times, HTTPS is overkill since confiden- ihis is two fold. First, encrypted pages can not be cached

tiality is not as critical as other websites. and break the web architecture: HTTPS uses different
keys for different sessions, a page in one session can
2.3 Why Not HTTP Authentication? not be the same page in another session if pages are en-

crypted. Second, HTTPS security is overkill for many
HTTP Authentication[10] is access authentication pro-applications since confidentiality is not required for ev-
tocol, and provides client authentication based on &ry application. Therefore, we sacrifice confidentiality
password system. Basic Authentication is proposed irfor two benefits. First, our HTTPI pages can be cached



like HTTP pages and our HTTPI does not break the curverifies the HMAC header field, and can accept or reject
rent web architecture. Second, our HTTPI performs betthe HTTP response.

ter than HTTPS without encryption. We show that manyIn order to share a session key between the web client
web attacks are related with integrity rather than confi-and the web server, we use TLS[6] to establish an

dentiality in Section 5. HTTPI session between the web client and the web
server. Though we adopt TLS to establish an HTTPI

session in our approach, we can use Diffie-Hellman[7]

3 Design or SRP[46] to exchange session keys.

In this section, we explain our design of HTTPI sessions

and cookies. HTTPI sessions are decided by the two pa-

rameters such as a session id and a session key. Every 183-3 Session Table

guest and response includes a session id and the session ) )

id is associated with the session key during an HTTPIAS HTTPS manages a session table in a web server,
session establishment. The session id and the session kBl TP requires a web server to manage a session table.
server. We define when to terminate the HTTPI sessioft® 2. The amount of information in the session table in
and introduce a cookie verifier to prevent cookies fromth® web serveris notas large as thatin HTTPS. Similarly,
being forged and replayed. the session table of a web client is illustrated in Figure 3.
The primary key for the session table in a web client is

. Server URL, and a web client manages one HTTPI ses-
3.1 HTTPI Session sion per a web server. On the other hand, the primary key

When a web client communicates with a web server usfor the session table in a web server is a session id since
ing HTTPI, the web client establishes a session withthe client IP address can not be used to identify the web
the web server by the two parameters such as a sessigHent due to the dynamic IP address changes.

id, and a session key chosen by the web server. After

defining the HTTPI session, the web client and the welb3 4  Session Termination

server can send an HTTP request and an HTTP reply us-

ing HTTPI protocol in Figure 1. We devise two header A Web server can terminate a session in its session table
fields such as the HMAC header field and the HMAC- depending on the expiration time and the number of ses-

control header field in Figure 1. They will be explained sions. First, if a session passes the expiration time in the
in detail in Section 6. The HMAC header field con- session table, the session should be terminated. Second,

tains the session id value, the hash algorithm, and th# the number of sessions exceeds the maximum thresh-
hash value. The HMAC-control header field enables thedld, a web server should remove the session from the
HMAC header field by defining which header fields areoldest ones. On the other hand, a web client does not
included or excluded for hashing. Our first design wasmaintain the expiration time in the session table. Thus,
to compute the hash value for the entire page. Fortuthe web client has no explicit way to terminate an HTTPI
nately,M D5(Content) is defined as Content-MD5[36], session. However, if a web server receives an HTTP re-
and the hash value of the HMAC header field can be comguest from a web client and can not find the session id
puted with header fields and the session key by enablini) the HTTP request in the session table, the web server
the optional Content-MD5 header field. should reply to the web client that the session is termi-
nated, and the web client should terminate the session
. . record relevant to the web server in the session table. If
3.2 HTTPI Session Establishment the web client wants to visit the website, the web client
We define that a web client and a web server establish aghould re-establish an HTTPI session using HTTPS.
HTTPI session when they share a session key with each

other. With the session key. between the web client and&5 Session Resumption

the web server, the web client keyed-hashes an HTTP

request with the session key and sends the HMAC head@tTTPI session resumption is different from HTTPS ses-
field with the HTTP request to the web server. The websion resumption. Since an HTTPI session id is always
server verifies the HMAC header field and can accept osent in clear text using an HTTP header field, HTTPI
reject the HTTP request. If the HTTP request is verified,session can be resumed without additional handshakes
the web server keyed-hashes an HTTP response witaven though a web client is disconnected from a web
the session key, and sends the HMAC header field wittserver. On the other hand, HTTPS session can not be
the HTTP response to the web client. The web clientresumed without fast handshakes since the session id of



B — W: Host, Method, Request-uri, Cookie,ser{domain, path, secure}, HM AC, HM AC-control
W — B: status, M D5(Content), HM AC, HM AC-control

Figure 1: HTTPI Protocol

| Session Id] Session Key| Client IP Address| Port Number| Expiration Time|

Figure 2: Session Table in a Web Server

| Server URL]| Session Id| Session Key| Server IP addresk

Figure 3: Session Table in a Web Client

TLS can be only seen when a web client and a web server When W sends an HTTP response to an HTTP re-
exchange hello messages. After handshakes, every megdest,W should use the session key corresponding to the

sage over IP layer is encrypted in HTTPS. session id in the HTTP request to compute the HMAC
header field in the HTTP response. Whgmeceives the
3.6 Verified Cookie HTTP response froril/, B can authenticatd/ by veri-

fying the HMAC header field with the session key asso-
Every cookie that is exchanged by HTTPI has to have atiated with the session id in the HTTP response header.
least three fields as follows: name, value, verifier, and
other fields. We devise a cookie verifier to keyed-hash ]
the value of a cookie as follows: SG2. Message Integrity fromlV to B

Verifier := H(K, SK, Value) From Problem P2 and P4, integrity is required to protect
users from web attacks and we derive message integrity
In our approach, we use server kiyand session key from W to B as follows:
S K to verify cookies. We use a server key to create un-

forgeable cookies by a web client and a session key to  |f web client B receives a message supposedly sent
prevent cookies from being replayed by an attacker. If by some web servell’ in some HTTPI session,
cookies have a verifier in the value of the cookies, we thenB can check that this message was indeed sent
say that the cookies are verified. If the sessionin the ses-  py I/ in this session.

sion table is terminated, all the verified cookies relevant

to the the session id can no longer be used such that the |t p receives a modified message in-transit frfto

web client should also expire all the verified cookies. B, B can detect that the message is not originally sent
from W since the HMAC of the message received from

4 Security Guarantees W is different from the HMAC of the message computed
by B.

In this section, we show security guarantees by HTTPI.

We derive HTTPI security guarantees to resolve prob- .
lems from P1 to P4 in Section 1. HTTPI provides serveroG3. Message Integrity fromB to W

authentication, message integrity, and cookie integsty aSimiIarIy from Problem P2, we derive message integrity
security guarantees to address these problems. We use B t(; W as follows: '

these security guarantees to explain how HTTPI defends

against diverse web attacks in Table 2. . )
If web serverlV receives a request message that is

L supposedly sent (by some unknown web client) in
SG1. Server Authentication some HTTPI session, théiv’ can check that this

From Problem P1 and P4, every request should be pre- ~ Message was indeed sentin the HTTPI session.

ceded by server authentication and we derive server au- ) -~ . .
thentication as follows: If W receives a modified request message in-transit

from B to W, W can detect that the message is not orig-
If web client B succeeds in establishing an HTTPI inally sent fromB since the HMAC of the message re-
session supposedly with some web semérthen  ceived fromB is different from the HMAC of the mes-
the established session is indeed betwBemdil’. sage computed bl



SG4. Cookie Integrity from W to B Server Impersonation

From Problem P3, cookie should not be overwritten, andServer impersonation attacks make use of the lack of
we derive cookie integrity fromil’ to B as follows: any binding whether it is a binding between Domain
Names and IP addresses, or it is a binding between

If there is an established HTTPI session betweerMAC Address and IP address. An attacker provides
web client B and web serveiV, and B receives the IP address of an illegitimate website instead of
some cookie from W during this session, then any that of a legitimate website by compromising Home
attempt by another web servEf’ to send another Routers, rebinding DNS entries with a Delegated DNS
cookiec’ to overwrite the storedin B will fail. or poisoning a DNS cache. For example, Drive-By
Pharming[43, 39, 38], DNS Rebinding[18], and DNS
If W' tries to overwritec with ¢/, B can verifyc’ by ~ cache poisoning[44] are server impersonation attacks.

using the session key associated with the session id in the

response, and computing the HMAC of cookie contents

with the session key. We discuss about this type of cookieMessage Modification

as the cookie verifier in detail in Section 3. o
Message modification attacks make use of the lack

of message integrity in HTTP requests and HTTP
SG5. Cookie Integrity from B to W responses. For example, HTTP messages can be easily
_ modified by many entities in the Internet including ISP
From Problem P3, cookies should not be replayed andq\iders, proxies, and gateways. ISP providers change
we derive cookie integrity fronts to I¥" as follows: pages in-flight with injected advertisements to increase
] N . revenues. On the other hand, proxy servers in some
If web serverlV receives some verified cookie  rganizations filter advertisements and pop-ups to get rid
from web client B while there is an established ¢ annoyances by users[40]. ARP poisoning can be used

HTTPI session betwees and W, then W can 55 3 middleman to modify messages between browsers
check whether: has been sent earlier frofY to 54 web servers.

B during the same session.

If an attacker eavesdrops or steafsom B to IV, and
the attacker replayto W, W can verifyc using the ses-
sion key associated with the session id in the request anfihe risks of cookie injection have been known from
computing the HMAC of cookie contents with the ses-2004[19], and cookie injection can be categorized
sion key. as cross-domain cookie injectiomnd cross security

boundary cookie injectioas follows:

Cookie Injection

5 Attacks Cross-domain cookie injection Cross-domain cookie

. . . injection takes advantage of the length of top level
In this section, we analyze various web attacks and cats

. Homains in the case of country domains, and this
egorize them aattacks defended by HTTRhdattacks ,inerapility is fixed by defining the minimum length

not defended by HTTPSurprisingly, HTTPI can defend ¢, oach domain. As we saw cookie SOP in Section 1,
against many existing attacks, and a new attack like DNS,, e SOP requirengest suffix ruleor the domain
cache poisoning[44] and SSLStrip[32]. Thus, HTTPIIS yrinyte.  Preciselylongest suffix rulefor the domain

coherentin defending against existing attacks and futurg iy, te requiresninimum suffix ruleo that the domain
attacks, which can be categorized in our analysis as iNttribute of a cookie should not be ambiguous. For

Table 2. example, if the top level domain is not a country domain
such as. com the domain attribute of a cookie should
5.1 Attacks Defended by HTTPI include at least the 2nd level domain specific nhame
such asexanpl e. com If the top level domain is a
For attacks defended by HTTPI, we classify them ascountry domain such askr, the domain attribute of
server impersonation, Man-in-the-Middle (MITM), mes- a cookie should include at least the 3rd level domain
sage modification, cookie injection, and cookie theft inspecific name such asxanpl e. co. kr. However,
Table 2. We show how HTTPI protects users from thesecross-domain cookie injection is still effective in the
categories of web attacks using security guarantees inurrent web architecture if an attacker can impersonate
Section 4. any website with a longer or equal domain suffix as a



| Attacks

Examples of Attacks

HTTPI Defenses against Attacks |

Server Impersonation Drive-By Pharming[43, 39, 38], | SG1. Server Authentication

DNS Rebinding[18],

DNS cache poisoning[44]
Man-in-the-Middle SSLStrip[32] SGL1. Server Authentication,

SG2. Message Integrity fromy to B

Message Modification In-flight Page Change[40], SG2. Message Integrity fromy to B,

ARP poisoning[49, 47] SG3. Message Integrity frolg to W
Cookie Injection Session Fixation[29] SG4. Cookie Integrity froniV to B
Cookie Theft Side Jacking[15], Surf Jacking[14] SG5. Cookie Integrity fronB to W

Table 2: Classification of Web Attacks and Defenses by HTTPI

target domain. domai n=exanpl e. com If a cookie is set with
the domain attribute, domai n=exanpl e. com
Cross-security boundary cookie injection Cross an attacker just needs to register a domain name
security boundary cookie injection leverages the lack ofwith evi | . exanpl e. com in a delegated DNS
cross security boundary policy in terms of cookies. Theserver. If the attacker can attract a user to visit
secure attribute of cookies restricts information to flowevi | . exanpl e. com the attacker can harvest cook-
from a higher security level, HTTPS to a lower security ies belong toexanpl e. com Many websites serve
level, HTTP. For example, if cookies are set toseeure users with HTTP after users log in websites with HTTPS
Secure cookies can not be read by HTTP, but can be reade to the performance degradation by TLS. While users
only by HTTPS. This policy effectively prevents Secure log in a website with HTTP, authentication cookies can
cookies from being leaked over HTTP. However, there isbe stolen by attackers if authentication cookies are not
no protection for cookies set over a lower-level security,set to besecure However, if a website would like to
HTTP, to be used over a higher-level security, HTTPS. use an authentication cookie to redirect a user from
HTTPS to HTTP, the authentication cookie must be read
by HTTP and that makes an authentication cookie not
secure

Cookie Theft

Cookies provide the state of browsers from trivial user

information to critical authentication information. If 52  Attacks Not Defended by HTTPI

an attacker steals a user’'s authentication cookie, the

attacker can log in a website as the user. For exampld;or attacks not defended by HTTPI, we explain why
Side Jacking[15] and Surf Jacking[14] are two exampledHTTPI can not defend against these attacks. Interest-
of cookie theft. Side Jacking is a passive cookie theftingly, attacks not defended by HTTPI are not defended
relying on eavesdropping while Surf Jacking is anby HTTPS, either.

active cookie theft by redirecting a user’s browser to

any target website from which an attacker wants toPhishing: Phishing attacks[8] lures users by emails
harvest cookies with message modification. These twado visit illegitimate websites having the same look
attacks can be effectively mitigated by setting cookiesand feel and steal credentials from users. Phishing
with the secure attribute. However, it is not always misleads human perceptions to illegitimate websites by
implemented in practice due twoss-domain redirection masquerading URLs or binding domain names to invalid
and cross-security redirectian Many websites use certificates. HTTPI can not defend against Phishing
multiple web servers to serve their users due to scalaattacks like HTTPS since Phishing attacks leverage the
bility. If | ogi n. exanpl e. comsets cookies with the lack of binding between legitimate websites and human
domain attribute,dormai n=I ogi n. exanpl e. com perceptions. If a user perceives an illegitimate website
the cookies can not be used favw. exanpl e. com as a legitimate website with a masqueraded URL or an
Thus, cookie leaking can be minimized by giving invalid certificate, HTTPI is not effective since HTTPI
a more specific domain name to the domain at-can only protect the user from illegitimate websites
tribute in cookies.  However, ifexanpl e.com impersonating legitimate websites with original URLs.
wants to serve users with multiple web servers,Similarlyy, HTTPS can not defend against Phishing
| ogi n. exanpl e. com should set cookies with attacks if a certificate is issued to illegitimate websites



or if a user accepts invalid certificates. field should be applied to a content after some con-

tent encoding, but before some transfer encoding. This
Cross Site Request Forgery (CSRE)CSRF attacks[48] definition does not address instance manipulations like
make use of the trust that a website has in a user. Ifange-selection or delta encoding and the concept of
a user authenticates to a website and establishes iastance[33] is introduced. Precisely, the Content-MD5
trust between the user and the website, an attackdreader field should be applied to a content after some
can make use of the trust that the website has in theontent encoding and before some instance manipula-
user's browser and delegates unauthorized commandi®ns or some transfer encoding. More precisely, if we
of the attacker to the website with the user’s privilege.consider dynamic contents by server-side scripts, the
The website can check whether HTTP requests com€&ontent-MD5 header field should be applied to a content
from the browser, which established the HTTPI sessiorafter some content encoding and the execution of server-
between the web server and the browser, but can natide scripts, and before some instance manipulations or
check whether HTTP requests are authorized by theome transfer encoding. Currently, Apache 2.2.11 com-
user or not. Similarly, HTTPS can not protect the userputes Content-MD5 for static contents and we imple-
from CSRF attacks since the web server can not checknented the filter to compute the Content-MD5 header
whether HTTP requests are authorized by the user or nofield for dynamic contents.

Cross Site Scripting (XSS) XSS attacks[26] make use .
of the trust that a user has in a website. If a web site 2 DeCOUp“ng Header and Contents

authenticates a user and establishes a trust between gy first design of HTTPI keyed-hash entity-header
website and the user, an attacker can make use of the trugé|gs and an entity-body together. However, it be-

that the user has in the website and delegates unauthgpmes clear shortly that header fields and a content
rized commands of the attacker to the user with the webgnoyid be decoupled for hashing due to the follow-
site’s privilege. The browser can check whether HTTPing two reasons. First, it is inflexible since it still
responses come from the website, which established thean not support caching even without encryption,
HTTPI session between the browser and the web servegng it has no difference from using TLS without
but can not check whether HTTP responses are authQspher only. In fact, TLS supports a null cipher

rized by the web server. Similarly, HTTPS can not pro-feature such as TLE®SAWITH.NULL _SHA or

tect the user from XSS attacks since the web server caft| s RSA WITH_NULL _MD5[6] though they are not
not check whether HTTP responses are authorized by thgseq in practice. Second, it is inefficient since it hurts the

web server or not. pipelining of a web server. The web server can generate
the HMAC header field of an instance after reading the
instance completely.

Our second design of HTTPI separates header fields

We explain implementation details of HTTPI in this sec- from an instance and we use the Content-MDS header

. . . - ._field[36] for contents hashing and keyed-hash header
tion. Hashing header fields and contents seems trivial, . i .
but the devils are in detail. fields with the Content-MD5 header field. It is ad-

vantageous in many ways compared to our initial
design of HTTPI. First, it is flexible to support caching
6.1 Content Hashing since the value of contents hashing does not change

S _ unless the contents change. Contents hashing can be
The Content-MD5 header field is defined as the MD5¢ached or precomputed if a webpage is static. If the

6 Implementation

hash of an entity-body[36] as follows: Content-MD5 header field is computed for a static
_ content initially, the Content-MD5 header field can be
Content-MD5 := H(entity-body) used for other users. Dynamic webpages can be made

possible with two technologies such as client-side scripts
An entity-body is any content-type data applied with and server-side scripts. Since client-side scripts are
some encoding such as compression[9] as follows:  executed in a browser, the contents hashing needs to

consider only server-side scripts for a dynamic webpage.
entity-body := Content-Encoding(Content-Type(data)) A webpage consists of many web objects including

images, stylesheets, and scripts. Contents hashing can
If transfer-coding is applied, it becomes a messagebe precomputed and cached for images and stylesheets
body used to carry the entity-body associated with aralways. Client-side scripts can also be precomputed and
HTTP request or response[9]. The Content-MD5 headecached. Header fields contain more specific information



including date, cookies and sometimes authenticationheader field to note that the origin web server does not
Thus, contents are most likely user-independent andenerate the Date header field.

header fields are user-dependent, and it is reasonable to

separate header fields and contents from an instance for .

hashing. In addition to that, if the Content-MD5 header 4 Caching in HTTPI

field is replaced by the Content-SHA1 header field,In order to support the caching mechanism in HTTP,

which does not exist currently, in the future due to theH-I-TPI is required to keyed-hash header fields selec-
weakness of MDS, the logic of HTTPI needs not to bey ey There are two kinds of header fields depend-
changed. Second, itis efficient not to hurt the pipelining; 4 o the hehavior of caching: end-to-end header fields

of a web server since it only requires to compute the,ny pop hy-hop header fields. The following HTTP/1.1
HMAC of header fields and add the HMAC header field ., jer fields are hop-by-hop headers: Connection, Keep-

as the last header field on the fly instead of waiting forAIive Proxy-Authenticate, Proxy-Authorization, TE
the computation of keyed-hashing of contents as in OUrrailers, Transfer-Encoding and Upgrade[9]. All the

first design. other header fields defined by HTTP/1.1 are end-to-end
header fields. End-to-end header fields should be in-
cluded for computing the HMAC header field, but hop-
6.3 Our New Header Fields by-hop header fields should be excluded. Other hop-by-
hop header fields must be listed in the Connection header
We design two header fields for HTTPI: 1) HMAC field to be introduced into HTTP/1.1 or later[9] and these
2) HMAC-control. We illustrate the HMAC and the header fields should be excluded, too. We found that
HMAC-control header field in Figure 4 and Figure 5, re- Via and Warning header fields can be modified in-transit
spectively. We follow the definitions of Augmented BNF and they should be excluded for computing the HMAC
in [9]. Method Request-URIland Status-Coden Fig- header field.
ure 5 follows the definitions in [9]. The HMAC header Some proxies might convert original contents to some
field contains the session-id value, the hashing algorithnother new formats and can break the Content-MD5
such as md5 or shal and the hash value of header fieldeader field. There are two types of proxies such as a
with the session keyy K. transparent proxy and a non-transparent proxy. A trans-
An HTTP request consists of the request-line, the requegtarent proxy passes requests and responses unmodified
header, and the body. Similarly, An HTTP response conwhereas a non-transparent proxy modifies requests and
sists of the status-line, the response header, and the bodgsponses to convert between image formats for saving
The request-line and the status-line can be changed bgache space or reducing the amount of traffic. Unfortu-
proxies and should not be used for keyed-hashing dinately, if a non-transparent proxy convert original con-
rectly. Moreover, the request-line and the status-line protents to some other new formats, HTTPI can not work
cessing must be tolerant in a web server and a browsesince the Content-MD5 header field will be different for
since they can contain extra spaces and tabs[9]. Howa new format. If an HTTP message includes tie
ever, the values used by an origin server should be keptansformdirective, the cache or the proxy should not
since these values can be modified for attacks. Thehange any aspect of the entity-body specified by the
request-line consists of the method, the request-uri, an@ontent-Encoding, the Content-Range, and the Content-
the http-version, and the status-line consists of the httpType header field including the entity-body itself[9].
version, the status-code, and the reason-phrase. ThuBhus,no-transformshould be used with HTTPI.
we add the method, the request-uri, the http-version, antiVhen a cache makes a request to an origin web server,
the status-code in the HMAC-control header field. Addi- and the origin web server provides a 304 (Not Modified)
tionally, we create thenust-includeind themust-exclude response or a 206 (Partial Content) response, the cache
header fields for the HMAC-control header field. If a then constructs a response and send the response to a
304 (Not Modified) response is used by an origin webbrowser. The 304 response from the origin web server
server,the cache may include more header fields otharontains only header fields and the cache retrieves the
than the header fields received by the origin web serverntity-body stored in the cache entry and combine the
In this case, the origin web server can enumerate all th@eader fields and the entity-body to construct an HTTP
header fields to compute the HMAC in thaust-include response to the browser. The origin web server can still
header field when an HTTP response is received by aise HTTPI for this caching protocol if the origin web
browser. If an origin web server is clockless, the originserver includes the Content-MD5, the HMAC and the
web server does not generate the Date header field, atdiMAC-control header field. Since the HMAC header
proxies may add the Date header field to the header. Ifield is computed only with header fields, the origin web
this case, the origin web server can userthest-exclude server can compute the HMAC header field and the ori-



HMAC: session-id=quoted-string, alg= m@Shal, hash=H(SK,1#header-field)
Figure 4: HMAC Header Field

HMAC-control:  http-version=1*DIGIT, method= Method, regst-uri=Request-URI, status=Status-Code,
must-include=*(header-field), must-exclude=*(headeldfj, nonce=quoted-string

Figure 5: HMAC-control Header Field

gin web server needs to enumerate all the header fields 14000 \ \ e —
to compute the HMAC header field in tmeust-include HTTPS
header field since the cache may include more header 12000 s
fields than the header fields provided by the origin web 10000
server. When the cache receives the 304 response from2
the origin web server, the cache can combine the entity-
body in the cache entry as usual. When the browser re-
ceives the HTTP response from the cache, the browser
can check the HMAC header field by computing all the 4000
enumerated header fields in timeist-includéneader field
and the Content-MD5 of the entity-body. The request to
the 304 response includes the If-Modified-Since or the 0
If-None-Match header field to check whether objects are
modified or not after the browser receives the conten;:igure 6: Throughput of HTTP, HTTPS, and HTTPI in
previously. The If-Modified-Since header field is based g Mbps Ethernet
on the Last-Modified header field and check whether the
objects are modified from the date in the Last-Modified
header field. The If-None-Match header field depends on
the ETag header field and the origin web server should 16
ensure that the ETag header field is uniquely changed
whenever a content is changed. In both cases, the ori-
gin web server might not be able to generate the Last-
Modified or the ETag header field if web objects are
generated dynamically from a database. It is difficult to
know when the objects are generated and how the objects 4
have a unique ETag if they are generated dynamically.
Due to these limitations, Nottingham proposes to use the 6
Content-MD5 header filed for a strong cache validation
with a new header field called-Not-Hashinstead of
the If-Modified-Since and the If-None-Match[37] header _. i )
field. Moreover, MD5 hash can be used to detect dupli-F19uré 7: CPU Time of HTTP, HTTPS, and HTTPI in
cate transfer[34]. A traditional web cache indexes eacht0 Mbps Ethernet
entry by a given URL, but this can cause a redundant pay-
load transfer by a cache miss between proxies and origigy1p with keyed-hashing HTTP header fields including
web servers. Therefore, Content-MD5 can be beneficiglhe content-MD5 header field. In the first request
not only for integrity but also for performance. for each content, the hash of the content is computed
and cached. In the subsequent requests, the hash of
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7 Performance contents is not computed if it is found in the cache, but
is retrieved from the cache. We have chosen Facebook,
7.1 Evaluation the New York Times, and Amazon for our experiments.

Social networking websites like Facebook serve users
We have implemented HTTPI as a module in Apachewith HTTPS for authentication, and users are redirected
version 2.2.11 and tested the performance by modifyindo HTTP. News website like the New York Times do not
httperf version 0.9.0[35]. The first session of HTTPI is deploy HTTPS and serve users only with HTTP. Online
established using HTTPS, and the rest of the sessions us@opping websites like Amazon serve users with HTTP

10



The server throughputis capped by the bandwidth of 100
Mbps. Though this environment might be more realistic,
we have used Gigabit Ethernet for further measurements
to see the performance difference between HTTP and
HTTPI. We have used two Linux machines with Ubuntu
8.04 using Intel Core 2 Duo 3 GHz for a web client and
a web server both with 2 GB of RAM connected with
Gigabit Ethernet. Figure 8 and Figure 9 show our results.
In both environments, HTTPI outperforms HTTPS and
shows less than 10 % performance degradation in all
cases compared to HTTP.
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Figure 8: Throughputof HTTP, HTTPS, and HTTPIin1 7.2 Discussion
Gbps Ethernet
The performance of HTTPI should be considered in the

context of caching as well. The goal of caching in
HTTP/1.1 is to eliminate the need to send requests in
many cases for latency reduction and to eliminate the
need to send full responses for bandwidth reduction, and
HTTPI supports it like HTTP with integrity. In terms
of bandwidth, caching proxies and contents servers can
be still supported and used to reduce bandwidth with
HTTPI. Since the HTTP response does not have to come
all the way from the origin web server, the bandwidth
will be reduced at a web server. In terms of latency, prop-
agation delays can be reduced by placing caching servers
[ close to users. Queuing delays can also be reduced by
Facebook NY Times Amazon precomputing or caching contents. The Contents-MD5

. ] . . header field can be precomputed and cached for static
Figure 9: CPU Time of HTTP, HTTPS, and HTTPI in 1 contents. Many studies have shown that dynamic con-
Gbps Ethernet tents can also be cached[16, 50, 4].

10

HTTP ——
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after authentication and before checkout while users arg  Related Work

browsing the website. One of our authors have scraped

his personal page from Facebook, the index page frong_l Message Integrity Techniques
the New York Times, and his main page from Amazon.
The Facebook page consists of a container HTMLHTTP provides the Content-Length[9] header field and
page about 360 KB and 54 files of images, scripts, andhe Content-MD5[36] header field as message integrity
stylesheets about 1.1 MB. The New York Times pagetechniques. The Content-Length header field indicates
consists of a container HTML page about 140 KB andthe size of the entity-body and it can be used to detect
94 files of images, scripts, and stylesheets about 1.1 MBif HTTP pages are modified. However, it is not difficult
Amazon page consists of a container HTML page abouto modify HTTP pages given the Content-Length header
172 KB and 54 files of images, scripts, and stylesheetsield and the Content-Length header field itself can be
about 484 KB. forged or omitted. The Content-MD5[36] header field
We have used two Linux machines with Ubuntu 8.04can be more reliable than the Content-Length header
using Intel Pentium 4 3.40 GHz for a web client and field since it is hard to find a collision for the Content-
Intel Core 2 2.13 GHz for a web server both with 2GB MD5 header field provided that the Content-MD5 header
of RAM. Each machine is connected with 100 Mbps field can not be modified or omitted. The Content-MD5
link in LANs and 1 Gbps fiber backbone between them.header field is an optional header field and not widely
We have measured server throughput, and CPU timesed due to the overhead of MD5 computation. We found
using httperf by sending GET requests to the web servethat using the Content-MD5 header field is helpful for
for 100 sessions. We ran 10 trials for the experimentanddTTP page integrity and HTTP caching coherence. In
show our results on average in Figure 6, and Figure 7our approach, we have decoupled a content hashing and

11



header hashing by readily adopting the Content-MD58.3  Partial Solutions

header field. With the Content-MD5 header field, HTTPI

uses HMAC[30] to keyed-hash HTTP header fields andThere are several proposals to solve the problems from
HTTP pages can not be modified without being detectedP1 to P4 in Section 1 but none of them address the
Web Tripwire[40] is an integrity mechanism to detect Security guarantees of Section 4 like HTTPI totally.

the modification of HTTP pages in web applications by

comparing requested HTTP pages with the known goodserver Impersonation serverimpersonation attacks are
representations of requested HTTP pages using a trigppossible by many ways such as Pharming[43, 39, 3§],
wire script. The detection mechanism of Web Tripwire DNS rebinding[18], DNS cache poisoning[44], and
is limited to received contents, especially only an HTML ARP poisoning[49, 47]. Locked Same Origin Policy
page and there is no page integrity from a client to a wel{LSOP)[20] is proposed to solve Dynamic Pharming
server. In addition to that, there is no message integrityattacks. LSOP assumes that users accept invalid cer-
about HTTP redirection or error messages though thestficates in Dynamic Pharming attacks. If accepting
redirection or error message are easily used by attackeisvalid certificate are allowed as an assumption, it could
to trick users. Web Tripwire requires more bandwidth for cause more problems. Furthermore, LSOP solutions can
the known good representations about 17 %. HTTPI renot address Dynamic Pharming attacks when it comes
quires two more header fields and the size of these heades use HTTP. Any solutions to defend against DNS
fields does not vary depending on the size of contentsmisbinding such as Pharming, DNS rebinding, and DNS
but Web Tripwire requires more bandwidth depending oncache poisoning can not be used to defend against MAC
the size of contents. Nevertheless, Web Tripwire is notaddress mishinding by ARP poisoning and vice versa.
cryptographically secure and a false positive and a fals€&urthermore, any one solution of the set of problems
negative can occur. On the other hand, HTTPI providesn server impersonation attacks can not address another
a complete solution for message integrity in HTTP pagegproblem in the same set of problems. HTTPI can address
without a false positive and a false negative. HTTPIthe set of problems like server impersonation attacks
provides message integrity for both HTTP requests andvith server authentication.

HTTP responses and for any web objects. Saltzman and

Sharabani proposes HTTP Response Signing[42], butjeader Modification: HTTP headers are consistently
signing requires more computation than hashing and igttacked whereas HTTP header fields are proposed to
only protects HTTP responses. defend against web attacks. The HTTP Referer header
field can be used to mitigate CSRF attacks, but the
HTTP Origin header field[2] is proposed due to the
privacy leaks by the HTTP Referer header field. More
HTTPI is analogous to IPsec[24] in terms of design.header fields can be proposed to ensure security in the
HTTPI provides integrity as IPsec provides integrity with future, but these header fields can be modified without
IP Authentication Header (AH)[22]. On the other hand, any proper header protection. HTTPI provides message
HTTPS provides both integrity and confidentiality as integrity for HTTP header fields, and HTTPI can be
IPsec provides both with IP Encapsulation Security Paycomplementary to many proposals for security relying
load (ESP)[23]. on HTTP header fields.

While IPsec[24] is a protection mechanism for the IP

layer, HTTPI is a protection mechanism for the Applica- Cookie Theft: several approaches are proposed for
tion layer and especially HTTP. HTTPI uses a session iccookie protection. SessionLock[1] protects users
to identify a corresponding session key for each sessiorfrom cookie eavesdropping. SessionLock secures web
Using the session id in HTTP header fields is similar tosessions from SideJacking[15] using a session secret
the Security Parameter Index (SPI) in IPsec. HTTPI useshared between a browser and a web server over TLS.
a session cache like the security database in IPsec. Sindde browser uses the session secret to authenticate to
HMAC is a keyed hashing Message Authentication Codehe web server using the HMAC of timestamp and the
(MAC), browsers and web servers need to share keysequest URL in every subsequent HTTP request. Fu et
Keys can be shared by using out-of-band methods or apal.[13] proposes to use a server key to protect cookies
propriate cryptographic protocols. HTTPI uses HTTPSfrom being forged, but the cookies using a server key
to share keys between web clients and web servers. IPs@an be replayed until the cookies expire. HTTPI defends
provides two ways to share keys such as manual configagainst cookie eavesdropping by the cookie verifier
uration and Internet Key Exchange (IKE)[21]. Key shar- and protects cookies from being forged and replayed.
ing with IKE in IPsec is similar to that with HTTPS in If a server key is only used, it protects cookies from
HTTPI. being forged, but does not prevent cookies from being

8.2 IPsec Analogy
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replayed. HTTPI protects cookies from being replayedto HTTPS, while its performance and scalability is
by using a session key. comparable to HTTP.

HTTP-To-HTTPS redirection: the HTTP-to-HTTPS

redirection problem is addressed by ForceHTTPS[17]. IfReferences

ForceHTTPS cookie is set or configured by a user, the
user is redirected to HTTPS by URL rewrite rules. Force- [1]
HTTPS is a complementary mechanism for the error
processing mechanism of browsers for HTTPS. On the
other hand, HTTPI is a complementary approach to use
HTTP. ForceHTTPS can be used to solve SSLStrip[32]
like HTTPI.

(2]

9 Conclusion g

By observing and analyzing the types of attacks :such[4
as server impersonation, message modification, cookie
theft and cookie injection, we have found that these
categories of attacks are related to integrity rather than
confidentiality. To counter these types of threats, we
have designed a lite protocol for secure web, HTTPI. 5
By doing so, we have decoupled HTTP headers and
contents for hashing and support the caching mechanism
of HTTP. Thus, HTTPI is scalable like HTTP. We have [g]
shown that the Content-MD5 header field is useful for
caching and security. The Content-MD5 header field is
an optional header field and not widely used by many [7]
websites. We claim that any website reluctant to adopt
the Content-MD5 header field should rethink that the
computational power to compute the Content-MD5 8
header field is not wasted. Rather, it can be payed with a
bigger reward in terms of caching and security.

We have used realistic replicas of websites such aspgj
Facebook for social networking, the New York Times
for news, and Amazon for online shopping for our
experiment and have shown that HTTPI outperforms
HTTPS in terms of throughput, and CPU time. We [10]
have shown less than 10 % performance degradation
compared to HTTP. HTTPS is overkill for these types of
websites and we envision that they will willingly deploy [11]
HTTPI for security without performance penalty.

In our extensive research, we claim that we should adopt
HTTPI in light of performance, usability, and security. In
performance, HTTPI does not degrade the performancE?l
of HTTP and outperforms HTTPS in terms of bandwidth
and latency. In usability, HTTPI is transparent to users
compared to HTTP Authentication. In security, HTTPI
provides reasonable security. Most importantly, we[i3]
should adopt HTTPI as a secure framework for the
future web architecture. since HTTPI does not break
the current web architecture and HTTPI supports the
distributed information system of web architecture by[14
allowing caching. Thus, HTTPI provides performance
and scalability with security — its security is comparable
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