
HTTP Integrity: A Lite and Secure Web against World Wide Woes

Taehwan Choi
Department of Computer Sciences,

University of Texas at Austin

Mohamed G. Gouda
Department of Computer Sciences,

University of Texas at Austin
National Science Foundation

Abstract

While there is no guarantee of HTTP page integrity, this
issue is left unaddressed in discussions of web security.
Though HTTPS can be used to solve the HTTP page in-
tegrity problem, HTTPS is shunned by web communi-
ties due to the performance overheads caused by TLS.
Worse yet, HTTPS inherently breaks the distributed na-
ture of the web by disallowing caching. The end-to-
end security guarantee of HTTPS only allows web con-
tents served by origin web servers, not caching proxies
or Content Delivery Networks (CDN). Unsurprisingly,
HTTPS is overkill for many applications and is avoided
by many websites. Thus, webpages are completely open
to attacks against HTTP page integrity. Based on these
observations, we have designed a lite protocol for se-
cure web, HTTP Integrity (HTTPI). HTTPI relies on
HTTPS to share session keys and use them for keyed-
hashing HTTP pages. We show that HTTPI can be re-
liably used for many applications, since many web at-
tacks target integrity rather than confidentiality. In order
to avoid breaking the caching mechanism of the web, we
decouple HTTP headers and contents for keyed-hashing.
Web servers can cache or precompute contents hashing
for static contents and many studies show that dynamic
contents can be cached as well. Therefore, the perfor-
mance degradation caused by HTTPI can go unnoticed
by users.

1 Introduction

As the World Wide Web focuses on scalability and per-
formance rather than security, it suffers widely from
classes of attacks including server impersonation, mes-
sage modification, cookie theft and cookie injection.
Contributing to these problems, wireless networks pro-
liferate, and any attacker can easily eavesdrop and mod-
ify traffic from web clients in his or her proximity areas.
HTTPS can stop these problems by providing confiden-

tiality and integrity, but HTTPS is widely shunned by
many websites. The performance overheads caused by
TLS are not the only reason for this contradictory sit-
uation. It also results from the end-to-end security of
HTTPS, which prevents websites from distributing the
content over the Internet to reduce bandwidth and la-
tency. These “World Wide Woes” will continue unless
we take proactive actions against them.
The recent trends of web attacks show that web attacks
are more evolved and advanced than ever before. Cookie
eavesdropping such as Side Jacking[15] occurred in 2007
and showed that authentication cookies can be eaves-
dropped and replayed while a user is using HTTP af-
ter the user is authenticated by HTTPS. More advanced
cookie theft was found as Surf Jacking[14] in 2008. An
attacker impersonates any website using ARP poisoning
and redirects a user to any target website to steal cookies.
In 2009, the first Man-in-the-Middle (MITM) attack in
the web was introduced as SSLStrip[32]. Most HTTPS-
enabled websites allow a user to initiate an HTTPS ses-
sion with HTTP. If a user types an URL withouthttps,
http is used for the default scheme for a website. Then,
the website redirects the user tohttps. SSLStrip makes
use of this convention and establishes an HTTP con-
nection between a user’s browser and an attacker, and
establishes an HTTPS connection between an attacker
and a target website. Though SSLStrip shows how to
use an HTTP-to-HTTPS redirection and attacks against
HTTPS, this possibly points out the vulnerability against
HTTP page integrity. Any attacker can modify HTTP
pages and inject malicious scripts or steal session cook-
ies unnoticed by a user even when the user browses a
legitimate website[42]. As long as this HTTP integrity
problem remains, it is doomed to be a future disaster.
Despite these complications, the available defense of
HTTP is not beyond the Same-Origin Policy (SOP). In
order to understand SOP, we need to consider SOP in
the context of a model using both subjects and objects.
SOP is access control policy for a browser. Subjects

1



are any HTML documents or loaded scripts and objects
are DOM objects, Cookies[31], and HTML documents.
Subjects can access objects if subjects satisfy all the
matching rules with objects depending on the types of
SOP. We define SOP and Cookie SOP as follows:

• SOP: SubjectS can access objectO only if
protocolS = protocolO, domainS = domainO,
andportS = portO

• Cookie SOP: SubjectS can access cookieO only
if domainS = domainO, pathS = pathO, and
protocolS = “https” whensecureO = true

Each attribute has the different matching rule. The
matching rule for the protocol and the port attribute
follows equality. The protocol attribute of subjects
should be equal to that of objects and the port attribute of
subjects should be equal to that of objects. The matching
rule for the domain attribute in SOP and Cookie SOP
follows thelongest suffix rule. The longest suffix of the
domain attribute in objects should match that in subjects.
Likewise, the matching rule for the path attribute follows
the longest prefix rule. The longest prefix of the path
attribute in objects should match that in subjects. SOP
seems effective against unauthorized access to web
objects, but it can be breached by an attacker due to
the lack of integrity in HTTP. HTTP’s dependence
on SOP without integrity causes the following four ar-
chitectural problems, which will be detailed in Section 5.

P1. Misbinding: An attacker can impersonate a web
server by associating an attacker’s IP address with
a legitimate website’s domain name or an attacker’s
MAC address with a legitimate IP address.

P2. Message modification: An attacker can modify
HTTP headers[27, 28] or contents[40]. If an at-
tacker injects a malicious script or a link to a mali-
cious script in an HTTP page, the script is executed
in the context of the HTTP page.

P3. Cookie injection and theft: An attacker can
overwrite the cookies in a user’s browser with
the attacker’s cookies[29]. An attacker can
steal cookies from users by eavesdropping[15] or
impersonation[14] and replay the cookies. These
problems can be resolved by setting the secure at-
tribute for cookies. However, a study shows that one
third of 30 websites did not set the secure attribute
for authentication cookies[5].

P4. HTTP-HTTPS interaction: The security of HTTPS
can be broken by using the redirection from HTTP
to HTTPS[32]. The HTTP-to-HTTPS redirec-
tion can be done by upgrading to TLS within

HTTP/1.1[25] and using redirection messages like
status code 301 (Moved Permanently), 303 (See
Other), and 307 (Temporary Redirect). If an
HTTPS page contains HTTP links, HTTP links can
be used to break the security of HTTPS[5].

We will describe the security guarantees of HTTPI in
Section 4. In Section 5, we will show that these guar-
antees can defend against many attacks including server
impersonation, message modification, cookie injection
and cookie theft.
This paper is organized as follows: Section 2 discusses
why we should use HTTPI instead of HTTP, HTTPS,
and HTTP Authentication in terms of server authenti-
cation, client authentication, integrity, and confidential-
ity. Section 3 presents our design of HTTPI focusing on
HTTPI sessions, and cookies. Section 4 shows five se-
curity guarantees that HTTPI provides. In Section 5, we
categorize and analyze web attacks and show that many
web attacks are related to integrity, and attacks not de-
fended by HTTPI also can not be defended by HTTPS.
Section 6 describes our implementation in detail. Sec-
tion 7 compares the performance of HTTPI in terms of
throughput, and CPU time with HTTP and HTTPS, and
discusses HTTPI performance in terms of bandwidth and
latency. Section 8 reviews related work. Finally, Sec-
tion 9 summarizes and concludes our work.

2 Motivation

In this section, we discuss why we should use HTTPI
instead of HTTP, HTTPS, or HTTP Authentication by
comparing them in terms of server authentication, client
authentication, integrity and confidentiality. We summa-
rize our analysis in Table 1.

2.1 Why Not HTTP?

HTTP[9] is a request and response protocol and if a web
client sends an HTTP request to a web server, the web
client receives an HTTP response from the web server.
If each request and response is defined as a transaction,
each transaction is independent and thus HTTP is a state-
less protocol. In order to manage states among trans-
actions, cookies[31] were proposed to manage states in
web clients. Web servers send cookies, texts with names
and values pairs, to web clients and set cookies to them
and web clients send the cookies in subsequent requests
to the same web server to notify the states of the web
clients. Due to these facts, HTTP is scalable and con-
tributes to the success of the current web architecture.
In spite of the success, the integrity problems of HTTP
are widely under appreciated. HTTP has no server and

2



Server Auth Client Auth Integrity Confidentiality

HTTP
HTTPS X X X

HTTPS with Password X X X X

HTTP Authentication X X

HTTPI X X

HTTPI with Password X X X

Table 1: Comparisons between HTTPI, HTTP, HTTPS, and HTTP Authentication

client authentication. HTTP messages can be modified
and eavesdropped in-transit.

2.2 Why Not HTTPS?

HTTPS[41] is TLS[6] over HTTP, and provides confi-
dentiality, integrity, and server authentication. HTTPS
provides the strongest security guarantee among HTTP,
HTTPS, HTTP Authentication and HTTPI. If HTTPS is
used between a web client and a web server, HTTPS
pages can not be modified and eavesdropped in-transit
and many web attacks can be mitigated. Even with these
strong security improvements, HTTPS has not replaced
HTTP completely. HTTPS is used minimally when it
is required for authentication, online shopping and on-
line banking. Currently, HTTPS is shunned by many
websites due to primarily performance degradation. If
HTTPS affects only the performance, HTTPS will be
adopted completely as computers and networks are much
faster than now in the future. The more reasonable an-
swer to the phenomena must be more fundamental in
web architecture, and HTTPS does break the current web
architecture. HTTP is a distributed information system
depending on many intermediary entities between a web
client and a web server such as proxies and gateways, and
HTTP pages are cached in caching proxies and replicated
in gateways as Content Delivery Networks (CDNs)[12].
On the other hand, HTTPS provides the end-to-end se-
curity, and any HTTPS pages can not be cached by prox-
ies and gateways, but should be served by origin web
servers. Furthermore, HTTPS pages can not be incre-
mentally rendered and HTTPS pages look more sluggish
to users. These facts increase bandwidth and latency in
the Internet. In many web applications such as social net-
working websites like Facebook and news websites like
the New York Times, HTTPS is overkill since confiden-
tiality is not as critical as other websites.

2.3 Why Not HTTP Authentication?

HTTP Authentication[10] is access authentication pro-
tocol, and provides client authentication based on a
password system. Basic Authentication is proposed in

HTTP/1.0[3] and user names and passwords are sent in
clear text, and Digest Authentication[11] is proposed to
remedy the problem by sending user names and pass-
words by hashing. Since HTTP Authentication relies
on a password system for client authentication, HTTP
Authentication has inherent problems from the pass-
word system. HTTP Authentication does not provide
server authentication, and HTTP Authentication is vul-
nerable to Man-in-the-middle (MITM) attacks. Though
HTTP Authentication provides integrity, many features
are optional and never used in practice. We found that
Apache 2.2.11 web server did not implement the op-
tional content integrity feature for Digest Authentica-
tion. HTTP header fields are not protected by digest,
but some selective header fields such as the request-uri
value and the method value from the Request-Line are
hashed. Thus, HTTP Authentication does not provide
complete integrity. Most of all, HTTP Authentication is
shunned by many websites and Form-based Authentica-
tion is readily adopted due to usability[45]. HTTP Au-
thentication invokes a password dialog box dependent on
browsers, and does not integrate with web applications.
Though HTTP Authentication can be better than Form-
based Authentication in terms of security, HTTP Authen-
tication confuses users and is avoided by many users.

2.4 Why HTTPI?

Our HTTPI provides integrity and server authentica-
tion by keyed-hashing HTTP header fields and contents.
Our HTTPI does not provide client authentication like
HTTPS, but HTTPS and our HTTPI can support client
authentication by adopting a password system. The most
distinctive feature that our HTTPI does not support is
confidentiality compared to HTTPS. The rational behind
this is two fold. First, encrypted pages can not be cached
and break the web architecture: HTTPS uses different
keys for different sessions, a page in one session can
not be the same page in another session if pages are en-
crypted. Second, HTTPS security is overkill for many
applications since confidentiality is not required for ev-
ery application. Therefore, we sacrifice confidentiality
for two benefits. First, our HTTPI pages can be cached

3



like HTTP pages and our HTTPI does not break the cur-
rent web architecture. Second, our HTTPI performs bet-
ter than HTTPS without encryption. We show that many
web attacks are related with integrity rather than confi-
dentiality in Section 5.

3 Design

In this section, we explain our design of HTTPI sessions
and cookies. HTTPI sessions are decided by the two pa-
rameters such as a session id and a session key. Every re-
quest and response includes a session id and the session
id is associated with the session key during an HTTPI
session establishment. The session id and the session key
are managed by a session table in a web client and a web
server. We define when to terminate the HTTPI session
and introduce a cookie verifier to prevent cookies from
being forged and replayed.

3.1 HTTPI Session

When a web client communicates with a web server us-
ing HTTPI, the web client establishes a session with
the web server by the two parameters such as a session
id, and a session key chosen by the web server. After
defining the HTTPI session, the web client and the web
server can send an HTTP request and an HTTP reply us-
ing HTTPI protocol in Figure 1. We devise two header
fields such as the HMAC header field and the HMAC-
control header field in Figure 1. They will be explained
in detail in Section 6. The HMAC header field con-
tains the session id value, the hash algorithm, and the
hash value. The HMAC-control header field enables the
HMAC header field by defining which header fields are
included or excluded for hashing. Our first design was
to compute the hash value for the entire page. Fortu-
nately,MD5(Content) is defined as Content-MD5[36],
and the hash value of the HMAC header field can be com-
puted with header fields and the session key by enabling
the optional Content-MD5 header field.

3.2 HTTPI Session Establishment

We define that a web client and a web server establish an
HTTPI session when they share a session key with each
other. With the session key between the web client and
the web server, the web client keyed-hashes an HTTP
request with the session key and sends the HMAC header
field with the HTTP request to the web server. The web
server verifies the HMAC header field and can accept or
reject the HTTP request. If the HTTP request is verified,
the web server keyed-hashes an HTTP response with
the session key, and sends the HMAC header field with
the HTTP response to the web client. The web client

verifies the HMAC header field, and can accept or reject
the HTTP response.
In order to share a session key between the web client
and the web server, we use TLS[6] to establish an
HTTPI session between the web client and the web
server. Though we adopt TLS to establish an HTTPI
session in our approach, we can use Diffie-Hellman[7]
or SRP[46] to exchange session keys.

3.3 Session Table

As HTTPS manages a session table in a web server,
HTTPI requires a web server to manage a session table.
The session table in the web server is illustrated in Fig-
ure 2. The amount of information in the session table in
the web server is not as large as that in HTTPS. Similarly,
the session table of a web client is illustrated in Figure 3.
The primary key for the session table in a web client is
Server URL, and a web client manages one HTTPI ses-
sion per a web server. On the other hand, the primary key
for the session table in a web server is a session id since
the client IP address can not be used to identify the web
client due to the dynamic IP address changes.

3.4 Session Termination

A web server can terminate a session in its session table
depending on the expiration time and the number of ses-
sions. First, if a session passes the expiration time in the
session table, the session should be terminated. Second,
if the number of sessions exceeds the maximum thresh-
old, a web server should remove the session from the
oldest ones. On the other hand, a web client does not
maintain the expiration time in the session table. Thus,
the web client has no explicit way to terminate an HTTPI
session. However, if a web server receives an HTTP re-
quest from a web client and can not find the session id
in the HTTP request in the session table, the web server
should reply to the web client that the session is termi-
nated, and the web client should terminate the session
record relevant to the web server in the session table. If
the web client wants to visit the website, the web client
should re-establish an HTTPI session using HTTPS.

3.5 Session Resumption

HTTPI session resumption is different from HTTPS ses-
sion resumption. Since an HTTPI session id is always
sent in clear text using an HTTP header field, HTTPI
session can be resumed without additional handshakes
even though a web client is disconnected from a web
server. On the other hand, HTTPS session can not be
resumed without fast handshakes since the session id of

4



B → W : Host, Method, Request-uri, Cookieuser{domain, path, secure}, HMAC, HMAC-control

W → B : status, MD5(Content), HMAC, HMAC-control

Figure 1: HTTPI Protocol

Session Id Session Key Client IP Address Port Number Expiration Time

Figure 2: Session Table in a Web Server

Server URL Session Id Session Key Server IP address

Figure 3: Session Table in a Web Client

TLS can be only seen when a web client and a web server
exchange hello messages. After handshakes, every mes-
sage over IP layer is encrypted in HTTPS.

3.6 Verified Cookie

Every cookie that is exchanged by HTTPI has to have at
least three fields as follows: name, value, verifier, and
other fields. We devise a cookie verifier to keyed-hash
the value of a cookie as follows:

Verifier := H(K, SK, Value)

In our approach, we use server keyK and session key
SK to verify cookies. We use a server key to create un-
forgeable cookies by a web client and a session key to
prevent cookies from being replayed by an attacker. If
cookies have a verifier in the value of the cookies, we
say that the cookies are verified. If the session in the ses-
sion table is terminated, all the verified cookies relevant
to the the session id can no longer be used such that the
web client should also expire all the verified cookies.

4 Security Guarantees

In this section, we show security guarantees by HTTPI.
We derive HTTPI security guarantees to resolve prob-
lems from P1 to P4 in Section 1. HTTPI provides server
authentication, message integrity, and cookie integrity as
security guarantees to address these problems. We use
these security guarantees to explain how HTTPI defends
against diverse web attacks in Table 2.

SG1. Server Authentication

From Problem P1 and P4, every request should be pre-
ceded by server authentication and we derive server au-
thentication as follows:

If web clientB succeeds in establishing an HTTPI
session supposedly with some web serverW , then
the established session is indeed betweenB andW .

When W sends an HTTP response to an HTTP re-
quest,W should use the session key corresponding to the
session id in the HTTP request to compute the HMAC
header field in the HTTP response. WhenB receives the
HTTP response fromW , B can authenticateW by veri-
fying the HMAC header field with the session key asso-
ciated with the session id in the HTTP response header.

SG2. Message Integrity fromW to B

From Problem P2 and P4, integrity is required to protect
users from web attacks and we derive message integrity
from W to B as follows:

If web clientB receives a message supposedly sent
by some web serverW in some HTTPI session,
thenB can check that this message was indeed sent
by W in this session.

If B receives a modified message in-transit fromW to
B, B can detect that the message is not originally sent
from W since the HMAC of the message received from
W is different from the HMAC of the message computed
by B.

SG3. Message Integrity fromB to W

Similarly, from Problem P2, we derive message integrity
from B to W as follows:

If web serverW receives a request message that is
supposedly sent (by some unknown web client) in
some HTTPI session, thenW can check that this
message was indeed sent in the HTTPI session.

If W receives a modified request message in-transit
from B to W , W can detect that the message is not orig-
inally sent fromB since the HMAC of the message re-
ceived fromB is different from the HMAC of the mes-
sage computed byW .

5



SG4. Cookie Integrity from W to B

From Problem P3, cookie should not be overwritten, and
we derive cookie integrity fromW to B as follows:

If there is an established HTTPI session between
web clientB and web serverW , andB receives
some cookiec from W during this session, then any
attempt by another web serverW ′ to send another
cookiec′ to overwrite the storedc in B will fail.

If W ′ tries to overwritec with c′, B can verifyc′ by
using the session key associated with the session id in the
response, and computing the HMAC of cookie contents
with the session key. We discuss about this type of cookie
as the cookie verifier in detail in Section 3.

SG5. Cookie Integrity from B to W

From Problem P3, cookies should not be replayed and
we derive cookie integrity fromB to W as follows:

If web serverW receives some verified cookiec
from web clientB while there is an established
HTTPI session betweenB and W , then W can
check whetherc has been sent earlier fromW to
B during the same session.

If an attacker eavesdrops or stealsc from B to W , and
the attacker replayc to W , W can verifyc using the ses-
sion key associated with the session id in the request and
computing the HMAC of cookie contents with the ses-
sion key.

5 Attacks

In this section, we analyze various web attacks and cat-
egorize them asattacks defended by HTTPIandattacks
not defended by HTTPI. Surprisingly, HTTPI can defend
against many existing attacks, and a new attack like DNS
cache poisoning[44] and SSLStrip[32]. Thus, HTTPI is
coherent in defending against existing attacks and future
attacks, which can be categorized in our analysis as in
Table 2.

5.1 Attacks Defended by HTTPI

For attacks defended by HTTPI, we classify them as
server impersonation, Man-in-the-Middle (MITM), mes-
sage modification, cookie injection, and cookie theft in
Table 2. We show how HTTPI protects users from these
categories of web attacks using security guarantees in
Section 4.

Server Impersonation

Server impersonation attacks make use of the lack of
any binding whether it is a binding between Domain
Names and IP addresses, or it is a binding between
MAC Address and IP address. An attacker provides
the IP address of an illegitimate website instead of
that of a legitimate website by compromising Home
Routers, rebinding DNS entries with a Delegated DNS
or poisoning a DNS cache. For example, Drive-By
Pharming[43, 39, 38], DNS Rebinding[18], and DNS
cache poisoning[44] are server impersonation attacks.

Message Modification

Message modification attacks make use of the lack
of message integrity in HTTP requests and HTTP
responses. For example, HTTP messages can be easily
modified by many entities in the Internet including ISP
providers, proxies, and gateways. ISP providers change
pages in-flight with injected advertisements to increase
revenues. On the other hand, proxy servers in some
organizations filter advertisements and pop-ups to get rid
of annoyances by users[40]. ARP poisoning can be used
as a middleman to modify messages between browsers
and web servers.

Cookie Injection

The risks of cookie injection have been known from
2004[19], and cookie injection can be categorized
as cross-domain cookie injectionand cross security
boundary cookie injectionas follows:

Cross-domain cookie injection: Cross-domain cookie
injection takes advantage of the length of top level
domains in the case of country domains, and this
vulnerability is fixed by defining the minimum length
for each domain. As we saw cookie SOP in Section 1,
cookie SOP requireslongest suffix rulefor the domain
attribute. Precisely,longest suffix rulefor the domain
attribute requiresminimum suffix ruleso that the domain
attribute of a cookie should not be ambiguous. For
example, if the top level domain is not a country domain
such as.com, the domain attribute of a cookie should
include at least the 2nd level domain specific name
such asexample.com. If the top level domain is a
country domain such as.kr, the domain attribute of
a cookie should include at least the 3rd level domain
specific name such asexample.co.kr. However,
cross-domain cookie injection is still effective in the
current web architecture if an attacker can impersonate
any website with a longer or equal domain suffix as a

6



Attacks Examples of Attacks HTTPI Defenses against Attacks

Server Impersonation Drive-By Pharming[43, 39, 38], SG1. Server Authentication
DNS Rebinding[18],
DNS cache poisoning[44]

Man-in-the-Middle SSLStrip[32] SG1. Server Authentication,
SG2. Message Integrity fromW to B

Message Modification In-flight Page Change[40], SG2. Message Integrity fromW to B,
ARP poisoning[49, 47] SG3. Message Integrity fromB to W

Cookie Injection Session Fixation[29] SG4. Cookie Integrity fromW to B

Cookie Theft Side Jacking[15], Surf Jacking[14] SG5. Cookie Integrity fromB to W

Table 2: Classification of Web Attacks and Defenses by HTTPI

target domain.

Cross-security boundary cookie injection: Cross
security boundary cookie injection leverages the lack of
cross security boundary policy in terms of cookies. The
secure attribute of cookies restricts information to flow
from a higher security level, HTTPS to a lower security
level, HTTP. For example, if cookies are set to besecure,
Secure cookies can not be read by HTTP, but can be read
only by HTTPS. This policy effectively prevents Secure
cookies from being leaked over HTTP. However, there is
no protection for cookies set over a lower-level security,
HTTP, to be used over a higher-level security, HTTPS.

Cookie Theft

Cookies provide the state of browsers from trivial user
information to critical authentication information. If
an attacker steals a user’s authentication cookie, the
attacker can log in a website as the user. For example,
Side Jacking[15] and Surf Jacking[14] are two examples
of cookie theft. Side Jacking is a passive cookie theft
relying on eavesdropping while Surf Jacking is an
active cookie theft by redirecting a user’s browser to
any target website from which an attacker wants to
harvest cookies with message modification. These two
attacks can be effectively mitigated by setting cookies
with the secure attribute. However, it is not always
implemented in practice due tocross-domain redirection
and cross-security redirection. Many websites use
multiple web servers to serve their users due to scala-
bility. If login.example.com sets cookies with the
domain attribute,domain=login.example.com,
the cookies can not be used forwww.example.com.
Thus, cookie leaking can be minimized by giving
a more specific domain name to the domain at-
tribute in cookies. However, ifexample.com
wants to serve users with multiple web servers,
login.example.com should set cookies with

domain=example.com. If a cookie is set with
the domain attribute, domain=example.com,
an attacker just needs to register a domain name
with evil.example.com in a delegated DNS
server. If the attacker can attract a user to visit
evil.example.com, the attacker can harvest cook-
ies belong toexample.com. Many websites serve
users with HTTP after users log in websites with HTTPS
due to the performance degradation by TLS. While users
log in a website with HTTP, authentication cookies can
be stolen by attackers if authentication cookies are not
set to besecure. However, if a website would like to
use an authentication cookie to redirect a user from
HTTPS to HTTP, the authentication cookie must be read
by HTTP and that makes an authentication cookie not
secure.

5.2 Attacks Not Defended by HTTPI

For attacks not defended by HTTPI, we explain why
HTTPI can not defend against these attacks. Interest-
ingly, attacks not defended by HTTPI are not defended
by HTTPS, either.

Phishing: Phishing attacks[8] lures users by emails
to visit illegitimate websites having the same look
and feel and steal credentials from users. Phishing
misleads human perceptions to illegitimate websites by
masquerading URLs or binding domain names to invalid
certificates. HTTPI can not defend against Phishing
attacks like HTTPS since Phishing attacks leverage the
lack of binding between legitimate websites and human
perceptions. If a user perceives an illegitimate website
as a legitimate website with a masqueraded URL or an
invalid certificate, HTTPI is not effective since HTTPI
can only protect the user from illegitimate websites
impersonating legitimate websites with original URLs.
Similarly, HTTPS can not defend against Phishing
attacks if a certificate is issued to illegitimate websites

7



or if a user accepts invalid certificates.

Cross Site Request Forgery (CSRF): CSRF attacks[48]
make use of the trust that a website has in a user. If
a user authenticates to a website and establishes a
trust between the user and the website, an attacker
can make use of the trust that the website has in the
user’s browser and delegates unauthorized commands
of the attacker to the website with the user’s privilege.
The website can check whether HTTP requests come
from the browser, which established the HTTPI session
between the web server and the browser, but can not
check whether HTTP requests are authorized by the
user or not. Similarly, HTTPS can not protect the user
from CSRF attacks since the web server can not check
whether HTTP requests are authorized by the user or not.

Cross Site Scripting (XSS): XSS attacks[26] make use
of the trust that a user has in a website. If a web site
authenticates a user and establishes a trust between the
website and the user, an attacker can make use of the trust
that the user has in the website and delegates unautho-
rized commands of the attacker to the user with the web-
site’s privilege. The browser can check whether HTTP
responses come from the website, which established the
HTTPI session between the browser and the web server,
but can not check whether HTTP responses are autho-
rized by the web server. Similarly, HTTPS can not pro-
tect the user from XSS attacks since the web server can
not check whether HTTP responses are authorized by the
web server or not.

6 Implementation

We explain implementation details of HTTPI in this sec-
tion. Hashing header fields and contents seems trivial,
but the devils are in detail.

6.1 Content Hashing

The Content-MD5 header field is defined as the MD5
hash of an entity-body[36] as follows:

Content-MD5 := H(entity-body)

An entity-body is any content-type data applied with
some encoding such as compression[9] as follows:

entity-body := Content-Encoding(Content-Type(data))

If transfer-coding is applied, it becomes a message-
body used to carry the entity-body associated with an
HTTP request or response[9]. The Content-MD5 header

field should be applied to a content after some con-
tent encoding, but before some transfer encoding. This
definition does not address instance manipulations like
range-selection or delta encoding and the concept of
instance[33] is introduced. Precisely, the Content-MD5
header field should be applied to a content after some
content encoding and before some instance manipula-
tions or some transfer encoding. More precisely, if we
consider dynamic contents by server-side scripts, the
Content-MD5 header field should be applied to a content
after some content encoding and the execution of server-
side scripts, and before some instance manipulations or
some transfer encoding. Currently, Apache 2.2.11 com-
putes Content-MD5 for static contents and we imple-
mented the filter to compute the Content-MD5 header
field for dynamic contents.

6.2 Decoupling Header and Contents

Our first design of HTTPI keyed-hash entity-header
fields and an entity-body together. However, it be-
comes clear shortly that header fields and a content
should be decoupled for hashing due to the follow-
ing two reasons. First, it is inflexible since it still
can not support caching even without encryption,
and it has no difference from using TLS without
cipher only. In fact, TLS supports a null cipher
feature such as TLSRSA WITH NULL SHA or
TLS RSA WITH NULL MD5[6] though they are not
used in practice. Second, it is inefficient since it hurts the
pipelining of a web server. The web server can generate
the HMAC header field of an instance after reading the
instance completely.
Our second design of HTTPI separates header fields
from an instance and we use the Content-MD5 header
field[36] for contents hashing and keyed-hash header
fields with the Content-MD5 header field. It is ad-
vantageous in many ways compared to our initial
design of HTTPI. First, it is flexible to support caching
since the value of contents hashing does not change
unless the contents change. Contents hashing can be
cached or precomputed if a webpage is static. If the
Content-MD5 header field is computed for a static
content initially, the Content-MD5 header field can be
used for other users. Dynamic webpages can be made
possible with two technologies such as client-side scripts
and server-side scripts. Since client-side scripts are
executed in a browser, the contents hashing needs to
consider only server-side scripts for a dynamic webpage.
A webpage consists of many web objects including
images, stylesheets, and scripts. Contents hashing can
be precomputed and cached for images and stylesheets
always. Client-side scripts can also be precomputed and
cached. Header fields contain more specific information

8



including date, cookies and sometimes authentication.
Thus, contents are most likely user-independent and
header fields are user-dependent, and it is reasonable to
separate header fields and contents from an instance for
hashing. In addition to that, if the Content-MD5 header
field is replaced by the Content-SHA1 header field,
which does not exist currently, in the future due to the
weakness of MD5, the logic of HTTPI needs not to be
changed. Second, it is efficient not to hurt the pipelining
of a web server since it only requires to compute the
HMAC of header fields and add the HMAC header field
as the last header field on the fly instead of waiting for
the computation of keyed-hashing of contents as in our
first design.

6.3 Our New Header Fields

We design two header fields for HTTPI: 1) HMAC
2) HMAC-control. We illustrate the HMAC and the
HMAC-control header field in Figure 4 and Figure 5, re-
spectively. We follow the definitions of Augmented BNF
in [9]. Method, Request-URI, andStatus-Codein Fig-
ure 5 follows the definitions in [9]. The HMAC header
field contains the session-id value, the hashing algorithm
such as md5 or sha1 and the hash value of header fields
with the session key,SK.
An HTTP request consists of the request-line, the request
header, and the body. Similarly, An HTTP response con-
sists of the status-line, the response header, and the body.
The request-line and the status-line can be changed by
proxies and should not be used for keyed-hashing di-
rectly. Moreover, the request-line and the status-line pro-
cessing must be tolerant in a web server and a browser
since they can contain extra spaces and tabs[9]. How-
ever, the values used by an origin server should be kept
since these values can be modified for attacks. The
request-line consists of the method, the request-uri, and
the http-version, and the status-line consists of the http-
version, the status-code, and the reason-phrase. Thus,
we add the method, the request-uri, the http-version, and
the status-code in the HMAC-control header field. Addi-
tionally, we create themust-includeand themust-exclude
header fields for the HMAC-control header field. If a
304 (Not Modified) response is used by an origin web
server,the cache may include more header fields other
than the header fields received by the origin web server.
In this case, the origin web server can enumerate all the
header fields to compute the HMAC in themust-include
header field when an HTTP response is received by a
browser. If an origin web server is clockless, the origin
web server does not generate the Date header field, and
proxies may add the Date header field to the header. In
this case, the origin web server can use themust-exclude

header field to note that the origin web server does not
generate the Date header field.

6.4 Caching in HTTPI

In order to support the caching mechanism in HTTP,
HTTPI is required to keyed-hash header fields selec-
tively. There are two kinds of header fields depend-
ing on the behavior of caching: end-to-end header fields
and hop-by-hop header fields. The following HTTP/1.1
header fields are hop-by-hop headers: Connection, Keep-
Alive, Proxy-Authenticate, Proxy-Authorization, TE,
Trailers, Transfer-Encoding and Upgrade[9]. All the
other header fields defined by HTTP/1.1 are end-to-end
header fields. End-to-end header fields should be in-
cluded for computing the HMAC header field, but hop-
by-hop header fields should be excluded. Other hop-by-
hop header fields must be listed in the Connection header
field to be introduced into HTTP/1.1 or later[9] and these
header fields should be excluded, too. We found that
Via and Warning header fields can be modified in-transit
and they should be excluded for computing the HMAC
header field.
Some proxies might convert original contents to some
other new formats and can break the Content-MD5
header field. There are two types of proxies such as a
transparent proxy and a non-transparent proxy. A trans-
parent proxy passes requests and responses unmodified
whereas a non-transparent proxy modifies requests and
responses to convert between image formats for saving
cache space or reducing the amount of traffic. Unfortu-
nately, if a non-transparent proxy convert original con-
tents to some other new formats, HTTPI can not work
since the Content-MD5 header field will be different for
a new format. If an HTTP message includes theno-
transformdirective, the cache or the proxy should not
change any aspect of the entity-body specified by the
Content-Encoding, the Content-Range, and the Content-
Type header field including the entity-body itself[9].
Thus,no-transformshould be used with HTTPI.
When a cache makes a request to an origin web server,
and the origin web server provides a 304 (Not Modified)
response or a 206 (Partial Content) response, the cache
then constructs a response and send the response to a
browser. The 304 response from the origin web server
contains only header fields and the cache retrieves the
entity-body stored in the cache entry and combine the
header fields and the entity-body to construct an HTTP
response to the browser. The origin web server can still
use HTTPI for this caching protocol if the origin web
server includes the Content-MD5, the HMAC and the
HMAC-control header field. Since the HMAC header
field is computed only with header fields, the origin web
server can compute the HMAC header field and the ori-

9



HMAC: session-id=quoted-string, alg= md5| sha1, hash=H(SK,1#header-field)

Figure 4: HMAC Header Field

HMAC-control: http-version=1*DIGIT, method= Method, request-uri=Request-URI, status=Status-Code,
must-include=*(header-field), must-exclude=*(header-field), nonce=quoted-string

Figure 5: HMAC-control Header Field

gin web server needs to enumerate all the header fields
to compute the HMAC header field in themust-include
header field since the cache may include more header
fields than the header fields provided by the origin web
server. When the cache receives the 304 response from
the origin web server, the cache can combine the entity-
body in the cache entry as usual. When the browser re-
ceives the HTTP response from the cache, the browser
can check the HMAC header field by computing all the
enumerated header fields in themust-includeheader field
and the Content-MD5 of the entity-body. The request to
the 304 response includes the If-Modified-Since or the
If-None-Match header field to check whether objects are
modified or not after the browser receives the content
previously. The If-Modified-Since header field is based
on the Last-Modified header field and check whether the
objects are modified from the date in the Last-Modified
header field. The If-None-Match header field depends on
the ETag header field and the origin web server should
ensure that the ETag header field is uniquely changed
whenever a content is changed. In both cases, the ori-
gin web server might not be able to generate the Last-
Modified or the ETag header field if web objects are
generated dynamically from a database. It is difficult to
know when the objects are generated and how the objects
have a unique ETag if they are generated dynamically.
Due to these limitations, Nottingham proposes to use the
Content-MD5 header filed for a strong cache validation
with a new header field calledIf-Not-Hash instead of
the If-Modified-Since and the If-None-Match[37] header
field. Moreover, MD5 hash can be used to detect dupli-
cate transfer[34]. A traditional web cache indexes each
entry by a given URL, but this can cause a redundant pay-
load transfer by a cache miss between proxies and origin
web servers. Therefore, Content-MD5 can be beneficial
not only for integrity but also for performance.

7 Performance

7.1 Evaluation

We have implemented HTTPI as a module in Apache
version 2.2.11 and tested the performance by modifying
httperf version 0.9.0[35]. The first session of HTTPI is
established using HTTPS, and the rest of the sessions use

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Facebook NY Times Amazon

T
hr

ou
gh

pu
t(

K
B

/s
)

HTTP
HTTPS
HTTPI

Figure 6: Throughput of HTTP, HTTPS, and HTTPI in
100 Mbps Ethernet

 4

 6

 8

 10

 12

 14

 16

 18

Facebook NY Times Amazon

C
P

U
 T

im
e(

s)

HTTP
HTTPS
HTTPI

Figure 7: CPU Time of HTTP, HTTPS, and HTTPI in
100 Mbps Ethernet

HTTP with keyed-hashing HTTP header fields including
the Content-MD5 header field. In the first request
for each content, the hash of the content is computed
and cached. In the subsequent requests, the hash of
contents is not computed if it is found in the cache, but
is retrieved from the cache. We have chosen Facebook,
the New York Times, and Amazon for our experiments.
Social networking websites like Facebook serve users
with HTTPS for authentication, and users are redirected
to HTTP. News website like the New York Times do not
deploy HTTPS and serve users only with HTTP. Online
shopping websites like Amazon serve users with HTTP

10



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Facebook NY Times Amazon

T
hr

ou
gh

pu
t(

K
B

/s
)

HTTP
HTTPS
HTTPI

Figure 8: Throughput of HTTP, HTTPS, and HTTPI in 1
Gbps Ethernet

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Facebook NY Times Amazon

C
P

U
 T

im
e(

s)

HTTP
HTTPS
HTTPI

Figure 9: CPU Time of HTTP, HTTPS, and HTTPI in 1
Gbps Ethernet

after authentication and before checkout while users are
browsing the website. One of our authors have scraped
his personal page from Facebook, the index page from
the New York Times, and his main page from Amazon.
The Facebook page consists of a container HTML
page about 360 KB and 54 files of images, scripts, and
stylesheets about 1.1 MB. The New York Times page
consists of a container HTML page about 140 KB and
94 files of images, scripts, and stylesheets about 1.1 MB.
Amazon page consists of a container HTML page about
172 KB and 54 files of images, scripts, and stylesheets
about 484 KB.
We have used two Linux machines with Ubuntu 8.04
using Intel Pentium 4 3.40 GHz for a web client and
Intel Core 2 2.13 GHz for a web server both with 2GB
of RAM. Each machine is connected with 100 Mbps
link in LANs and 1 Gbps fiber backbone between them.
We have measured server throughput, and CPU time
using httperf by sending GET requests to the web server
for 100 sessions. We ran 10 trials for the experiment and
show our results on average in Figure 6, and Figure 7.

The server throughput is capped by the bandwidth of 100
Mbps. Though this environment might be more realistic,
we have used Gigabit Ethernet for further measurements
to see the performance difference between HTTP and
HTTPI. We have used two Linux machines with Ubuntu
8.04 using Intel Core 2 Duo 3 GHz for a web client and
a web server both with 2 GB of RAM connected with
Gigabit Ethernet. Figure 8 and Figure 9 show our results.
In both environments, HTTPI outperforms HTTPS and
shows less than 10 % performance degradation in all
cases compared to HTTP.

7.2 Discussion

The performance of HTTPI should be considered in the
context of caching as well. The goal of caching in
HTTP/1.1 is to eliminate the need to send requests in
many cases for latency reduction and to eliminate the
need to send full responses for bandwidth reduction, and
HTTPI supports it like HTTP with integrity. In terms
of bandwidth, caching proxies and contents servers can
be still supported and used to reduce bandwidth with
HTTPI. Since the HTTP response does not have to come
all the way from the origin web server, the bandwidth
will be reduced at a web server. In terms of latency, prop-
agation delays can be reduced by placing caching servers
close to users. Queuing delays can also be reduced by
precomputing or caching contents. The Contents-MD5
header field can be precomputed and cached for static
contents. Many studies have shown that dynamic con-
tents can also be cached[16, 50, 4].

8 Related Work

8.1 Message Integrity Techniques

HTTP provides the Content-Length[9] header field and
the Content-MD5[36] header field as message integrity
techniques. The Content-Length header field indicates
the size of the entity-body and it can be used to detect
if HTTP pages are modified. However, it is not difficult
to modify HTTP pages given the Content-Length header
field and the Content-Length header field itself can be
forged or omitted. The Content-MD5[36] header field
can be more reliable than the Content-Length header
field since it is hard to find a collision for the Content-
MD5 header field provided that the Content-MD5 header
field can not be modified or omitted. The Content-MD5
header field is an optional header field and not widely
used due to the overhead of MD5 computation. We found
that using the Content-MD5 header field is helpful for
HTTP page integrity and HTTP caching coherence. In
our approach, we have decoupled a content hashing and

11



header hashing by readily adopting the Content-MD5
header field. With the Content-MD5 header field, HTTPI
uses HMAC[30] to keyed-hash HTTP header fields and
HTTP pages can not be modified without being detected.
Web Tripwire[40] is an integrity mechanism to detect
the modification of HTTP pages in web applications by
comparing requested HTTP pages with the known good
representations of requested HTTP pages using a trip-
wire script. The detection mechanism of Web Tripwire
is limited to received contents, especially only an HTML
page and there is no page integrity from a client to a web
server. In addition to that, there is no message integrity
about HTTP redirection or error messages though these
redirection or error message are easily used by attackers
to trick users. Web Tripwire requires more bandwidth for
the known good representations about 17 %. HTTPI re-
quires two more header fields and the size of these header
fields does not vary depending on the size of contents,
but Web Tripwire requires more bandwidth depending on
the size of contents. Nevertheless, Web Tripwire is not
cryptographically secure and a false positive and a false
negative can occur. On the other hand, HTTPI provides
a complete solution for message integrity in HTTP pages
without a false positive and a false negative. HTTPI
provides message integrity for both HTTP requests and
HTTP responses and for any web objects. Saltzman and
Sharabani proposes HTTP Response Signing[42], but
signing requires more computation than hashing and it
only protects HTTP responses.

8.2 IPsec Analogy

HTTPI is analogous to IPsec[24] in terms of design.
HTTPI provides integrity as IPsec provides integrity with
IP Authentication Header (AH)[22]. On the other hand,
HTTPS provides both integrity and confidentiality as
IPsec provides both with IP Encapsulation Security Pay-
load (ESP)[23].
While IPsec[24] is a protection mechanism for the IP
layer, HTTPI is a protection mechanism for the Applica-
tion layer and especially HTTP. HTTPI uses a session id
to identify a corresponding session key for each session.
Using the session id in HTTP header fields is similar to
the Security Parameter Index (SPI) in IPsec. HTTPI uses
a session cache like the security database in IPsec. Since
HMAC is a keyed hashing Message Authentication Code
(MAC), browsers and web servers need to share keys.
Keys can be shared by using out-of-band methods or ap-
propriate cryptographic protocols. HTTPI uses HTTPS
to share keys between web clients and web servers. IPsec
provides two ways to share keys such as manual config-
uration and Internet Key Exchange (IKE)[21]. Key shar-
ing with IKE in IPsec is similar to that with HTTPS in
HTTPI.

8.3 Partial Solutions

There are several proposals to solve the problems from
P1 to P4 in Section 1 but none of them address the
security guarantees of Section 4 like HTTPI totally.

Server Impersonation: server impersonation attacks are
possible by many ways such as Pharming[43, 39, 38],
DNS rebinding[18], DNS cache poisoning[44], and
ARP poisoning[49, 47]. Locked Same Origin Policy
(LSOP)[20] is proposed to solve Dynamic Pharming
attacks. LSOP assumes that users accept invalid cer-
tificates in Dynamic Pharming attacks. If accepting
invalid certificate are allowed as an assumption, it could
cause more problems. Furthermore, LSOP solutions can
not address Dynamic Pharming attacks when it comes
to use HTTP. Any solutions to defend against DNS
misbinding such as Pharming, DNS rebinding, and DNS
cache poisoning can not be used to defend against MAC
address misbinding by ARP poisoning and vice versa.
Furthermore, any one solution of the set of problems
in server impersonation attacks can not address another
problem in the same set of problems. HTTPI can address
the set of problems like server impersonation attacks
with server authentication.

Header Modification: HTTP headers are consistently
attacked whereas HTTP header fields are proposed to
defend against web attacks. The HTTP Referer header
field can be used to mitigate CSRF attacks, but the
HTTP Origin header field[2] is proposed due to the
privacy leaks by the HTTP Referer header field. More
header fields can be proposed to ensure security in the
future, but these header fields can be modified without
any proper header protection. HTTPI provides message
integrity for HTTP header fields, and HTTPI can be
complementary to many proposals for security relying
on HTTP header fields.

Cookie Theft: several approaches are proposed for
cookie protection. SessionLock[1] protects users
from cookie eavesdropping. SessionLock secures web
sessions from SideJacking[15] using a session secret
shared between a browser and a web server over TLS.
The browser uses the session secret to authenticate to
the web server using the HMAC of timestamp and the
request URL in every subsequent HTTP request. Fu et
al.[13] proposes to use a server key to protect cookies
from being forged, but the cookies using a server key
can be replayed until the cookies expire. HTTPI defends
against cookie eavesdropping by the cookie verifier
and protects cookies from being forged and replayed.
If a server key is only used, it protects cookies from
being forged, but does not prevent cookies from being

12



replayed. HTTPI protects cookies from being replayed
by using a session key.

HTTP-To-HTTPS redirection : the HTTP-to-HTTPS
redirection problem is addressed by ForceHTTPS[17]. If
ForceHTTPS cookie is set or configured by a user, the
user is redirected to HTTPS by URL rewrite rules. Force-
HTTPS is a complementary mechanism for the error
processing mechanism of browsers for HTTPS. On the
other hand, HTTPI is a complementary approach to use
HTTP. ForceHTTPS can be used to solve SSLStrip[32]
like HTTPI.

9 Conclusion

By observing and analyzing the types of attacks such
as server impersonation, message modification, cookie
theft and cookie injection, we have found that these
categories of attacks are related to integrity rather than
confidentiality. To counter these types of threats, we
have designed a lite protocol for secure web, HTTPI.
By doing so, we have decoupled HTTP headers and
contents for hashing and support the caching mechanism
of HTTP. Thus, HTTPI is scalable like HTTP. We have
shown that the Content-MD5 header field is useful for
caching and security. The Content-MD5 header field is
an optional header field and not widely used by many
websites. We claim that any website reluctant to adopt
the Content-MD5 header field should rethink that the
computational power to compute the Content-MD5
header field is not wasted. Rather, it can be payed with a
bigger reward in terms of caching and security.
We have used realistic replicas of websites such as
Facebook for social networking, the New York Times
for news, and Amazon for online shopping for our
experiment and have shown that HTTPI outperforms
HTTPS in terms of throughput, and CPU time. We
have shown less than 10 % performance degradation
compared to HTTP. HTTPS is overkill for these types of
websites and we envision that they will willingly deploy
HTTPI for security without performance penalty.
In our extensive research, we claim that we should adopt
HTTPI in light of performance, usability, and security. In
performance, HTTPI does not degrade the performance
of HTTP and outperforms HTTPS in terms of bandwidth
and latency. In usability, HTTPI is transparent to users
compared to HTTP Authentication. In security, HTTPI
provides reasonable security. Most importantly, we
should adopt HTTPI as a secure framework for the
future web architecture. since HTTPI does not break
the current web architecture and HTTPI supports the
distributed information system of web architecture by
allowing caching. Thus, HTTPI provides performance
and scalability with security – its security is comparable

to HTTPS, while its performance and scalability is
comparable to HTTP.

References

[1] A DIDA , B. Sessionlock: securing web sessions against eaves-
dropping. InWWW ’08: Proceeding of the 17th international
conference on World Wide Web(New York, NY, USA, 2008),
ACM, pp. 517–524.

[2] BARTH, A., JACKSON, C., AND M ITCHELL , J. C. Robust de-
fenses for cross-site request forgery. InCCS ’08:Proceedings of
the 15th ACM Conference on Computer and Communications Se-
curity (CCS 2008)(2008).

[3] BERNERS-LEE, T., FIELDING , R., AND FRYSTYK, H. Hyper-
text Transfer Protocol – HTTP/1.0. RFC 1945 (Informational),
May 1996.

[4] BOUCHENAK, S., COX, A., DROPSHO, S., MITTAL , S.,
AND ZWAENEPOEL, W. Caching Dynamic Web Content:
Designing and Analysing an Aspect-Oriented Solution. In
ACM/IFIP/USENIX 7th International Middleware Conference
(Middleware-2006)(Melbourne, Australia, Nov. 2006).

[5] CHEN, S., MAO, Z., WANG, Y.-M., AND ZHANG, M. Pretty-
bad-proxy: An overlooked adversary in browsers https deploy-
ments. InIn Proceedings of the 2009 IEEE Symposium on Secu-
rity and Privacy(2009).

[6] D IERKS, T., AND RESCORLA, E. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
Aug. 2008.

[7] D IFFIE, W., AND HELLMAN , M. E. New directions in cryptog-
raphy.IEEE Transactions on Information Theory IT-22, 6 (1976),
644–654.

[8] FELTEN, E. W., BALFANZ , D., DEAN, D., AND WALLACH ,
D. S. Web spoofing: An internet con game. In20th National
Information Systems Security Conference (Baltimore, Maryland)
(October 1997).

[9] FIELDING , R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. Updated by RFC 2817.

[10] FRANKS, J., HALLAM -BAKER, P., HOSTETLER, J.,
LAWRENCE, S., LEACH, P., LUOTONEN, A., AND STEW-
ART, L. HTTP Authentication: Basic and Digest Access
Authentication. RFC 2617 (Draft Standard), June 1999.

[11] FRANKS, J., HALLAM -BAKER, P., HOSTETLER, J., LEACH,
P., LUOTONEN, A., SINK , E.,AND STEWART, L. An Extension
to HTTP : Digest Access Authentication. RFC 2069 (Proposed
Standard), Jan. 1997. Obsoleted by RFC 2617.

[12] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZI ÈRES, D.
Democratizing content publication with coral. InNSDI’04: Pro-
ceedings of the 1st conference on Symposium on Networked Sys-
tems Design and Implementation(Berkeley, CA, USA, 2004),
USENIX Association, pp. 18–18.

[13] FU, K., SIT, E., SMITH , K., AND FEAMSTER, N. Dos and
don’ts of client authentication on the web. InProceedings of the
10th USENIX Security Symposium(Washington, D.C., August
2001). An extended version is available as MIT-LCS-TR-818.

[14] GAUCI , S. Surf jacking - ”https will not save you”.
http://enablesecurity.com/2008/08/11/
surf-jack-https-will-not-save-you, August
2008.

13



[15] GRAHAM , R. Sidejacking with hamster. http:
//erratasec.blogspot.com/2007/08/
sidejacking-with-hamster_05.html, August 2007.

[16] IYENGAR, A., AND CHALLENGER, J. Improving web server
performance by caching dynamic data. InIn Proceedings of
the USENIX Symposium on Internet Technologies and Systems
(1997), pp. 49–60.

[17] JACKSON, C., AND BARTH, A. Forcehttps: protecting high-
security web sites from network attacks. InWWW ’08: Proceed-
ing of the 17th international conference on World Wide Web(New
York, NY, USA, 2008), ACM, pp. 525–534.

[18] JACKSON, C., BARTH, A., BORTZ, A., SHAO, W., AND

BONEH, D. Protecting Browsers from DNS Rebinding Attacks.
In In Proceedings of ACM CCS 07(2007).

[19] JOHNSTON, P., AND MOORE, R. Multiple browser cookie in-
jection vulnerabilities.http://www.westpoint.ltd.uk/
advisories/wp-04-0001.txt, September 2004.

[20] KARLOF, C., SHANKAR , U., TYGAR, J. D.,AND WAGNER, D.
Dynamic pharming attacks and locked same-origin policies for
web browsers. InCCS ’07: Proceedings of the 14th ACM confer-
ence on Computer and communications security(New York, NY,
USA, 2007), ACM, pp. 58–71.

[21] KAUFMAN , C. Internet Key Exchange (IKEv2) Protocol. RFC
4306 (Proposed Standard), Dec. 2005. Updated by RFC 5282.

[22] KENT, S. IP Authentication Header. RFC 4302 (Proposed Stan-
dard), Dec. 2005.

[23] KENT, S. IP Encapsulating Security Payload (ESP). RFC 4303
(Proposed Standard), Dec. 2005.

[24] KENT, S., AND SEO, K. Security Architecture for the Internet
Protocol. RFC 4301 (Proposed Standard), Dec. 2005.

[25] KHARE, R., AND LAWRENCE, S. Upgrading to TLS Within
HTTP/1.1. RFC 2817 (Proposed Standard), May 2000.

[26] KLEIN , A. Cross site scripting explained. Sanctum Security
Group, June 2002.

[27] KLEIN , A. Exploiting the xmlhttprequest object in ie–referrer
spoofing and a lot more...http://www.cgisecurity.
com/lib/XmlHTTPRequest.shtml, September 2005.

[28] KLEIN , A. Forging http request headers with flash actionscript.
http://www.securiteam.com/securityreviews/
5KP0M1FJ5E.html, July 2006.

[29] KOLŠEK, M. Session fixation vulnerability in web-based appli-
cations. www.acros.si/papers/session_fixation.
pdf, December 2002.

[30] KRAWCZYK , H., BELLARE, M., AND CANETTI , R. HMAC:
Keyed-Hashing for Message Authentication. RFC 2104 (Infor-
mational), Feb. 1997.

[31] KRISTOL, D., AND MONTULLI , L. HTTP State Management
Mechanism. RFC 2965 (Proposed Standard), Oct. 2000.

[32] MARLINSPIKE, M. New techniques for defeating ssl/tls.
http://www.blackhat.com/presentations/
bh-dc-09/Marlinspike/BlackHat-DC-%
09-Marlinspike-Defeating-SSL.pdf, February
2009.

[33] MOGUL, J.,AND HOFF, A. V. Instance Digests in HTTP. RFC
3230 (Proposed Standard), Jan. 2002.

[34] MOGUL, J. C., CHAN , Y. M., AND KELLY, T. Design, imple-
mentation, and evaluation of duplicate transfer detectionin http.
In NSDI’04: Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation(Berkeley, CA,
USA, 2004), USENIX Association, pp. 4–4.

[35] MOSBERGER, D., AND JIN , T. httperf—a tool for measuring
web server performance.SIGMETRICS Perform. Eval. Rev. 26,
3 (1998), 31–37.

[36] MYERS, J., AND ROSE, M. The Content-MD5 Header Field.
RFC 1864 (Draft Standard), Oct. 1995.

[37] NOTTINGHAM , M. Inherent http coherence.http://www.
mnot.net/papers/coherence.html.

[38] RAMZAN , Z. Dns pharming attacks using rogue dhcp.
http://www.symantec.com/connect/blogs/
dns-pharming-attacks-using-rogue-%dhcp,
December 2008.

[39] RAMZAN , Z. Drive-by pharming in the wild.
http://www.symantec.com/connect/blogs/
drive-pharming-wild, January 2008.

[40] REIS, C., GRIBBLE, S. D., KOHNO, T., AND WEAVER, N. C.
Detecting in-flight page changes with web tripwires. InNSDI’08:
Proceedings of the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation(Berkeley, CA, USA, 2008),
USENIX Association, pp. 31–44.

[41] RESCORLA, E. HTTP Over TLS. RFC 2818 (Informational),
May 2000.

[42] SALTZMAN , R.,AND SHARABANI , A. Active man in the middle
attacks. OWASP AU 2009, Feburuary 2009.

[43] STAMM , S., RAMZAN , Z., AND JAKOBSSON, M. Drive-by
pharming. InICICS (2007), pp. 495–506.

[44] US-CERT. Multiple dns implementations vulnerable to
cache poisoning.http://www.kb.cert.org/vuls/id/
800113.

[45] VENNERS, B. Http authentication woes. http:
//www.artima.com/weblogs/viewpost.jsp?
thread=155252, April 2006.

[46] WU, T. The secure remote password protocol. InIn Proceed-
ings of the 1998 Internet Society Network and Distributed System
Security Symposium(1997), pp. 97–111.

[47] ZDRNJA, B. Massive arp spoofing attacks on web sites.http:
//isc.sans.org/diary.html?storyid=6001, March
2009.

[48] ZELLER, W., AND FELTEN, E. W. Cross-site request forgeries:
Exploitation and prevention. Tech. rep., Department of Com-
puter Science, Center for Information Technology Policy, Prince-
ton University, October 2008.

[49] ZHANG, K. Arp spoofing http infection malware.
http://securitylabs.websense.com/content/
Blogs/2885.aspx, December 2007.

[50] ZHU, H., , AND YANG, T. Class-based cache management for
dynamic web content. InIEEE INFOCOM (2001), pp. 1215–
1224.

14


