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Artificial intelligence research is ushering in an era of sophisticated, mass-market

transportation technology. While computers can fly a passenger jet better than a

human pilot, people still face the dangerous yet tedious task of driving. Intelli-

gent Transportation Systems (ITS) is the field focused on integrating information

technology with vehicles and transportation infrastructure. Recent advances in ITS

point to a future in which vehicles handle the vast majority of the driving task. Once

autonomous vehicles become popular, interactions amongst multiple vehicles will be

possible. Current methods of vehicle coordination will be outdated. The bottleneck

for efficiency will no longer be drivers, but the mechanism by which those drivers’

actions are coordinated.

Current methods for controlling traffic cannot exploit the superior capabili-

vii



ties of autonomous vehicles. This thesis describes a novel approach to managing au-

tonomous vehicles at intersections that decreases the amount of time vehicles spend

waiting. Drivers and intersections in this mechanism are treated as autonomous

agents in a multiagent system. In this system, agents use a new approach built

around a detailed communication protocol, which is also a contribution of the the-

sis. In simulation, I demonstrate that this mechanism can significantly outperform

current intersection control technology—traffic signals and stop signs.

This thesis makes several contributions beyond the mechanism and protocol.

First, it contains a distributed, peer-to-peer version of the protocol for low-traffic

intersections. Without any requirement of specialized infrastructure at the intersec-

tion, such a system would be inexpensive and easy to deploy at intersections which

do not currently require a traffic signal. Second, it presents an analysis of the mech-

anism’s safety, including ways to mitigate some failure modes. Third, it describes

a custom simulator, written for this work, which will be made publicly available

following the publication of the thesis. Fourth, it explains how the mechanism is

“backward-compatible” so that human drivers can use it alongside autonomous vehi-

cles. Fifth, it explores the implications of using the mechanism at multiple proximal

intersections. The mechanism, along with all available modes of operation, is imple-

mented and tested in simulation, and I present experimental results that strongly

attest to the efficacy of this approach.
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Chapter 1

Introduction

Few concepts, if any, embody the goals and aspirations of artificial intelligence as well

as fully autonomous robots. Countless films and stories have been made that focus

on a future filled with such humanoid agents which, when not violently overthrowing

their human masters, complete menial tasks, run errands, or carry out jobs that

humans cannot or will not do. However, machines that sense, think about, and

take actions in the real world around us are no longer just the stuff of science

fiction and fantasy. Research initiatives like Robocup [Noda et al., 2006] and the

DARPA Grand Challenge [DARPA, 2007a] have shown that current AI can produce

autonomous, embodied, competent agents for complex tasks like playing soccer or

navigating the Nevada Desert, respectively. While certainly no small feat, traversing

a barren desert devoid of pedestrians, narrow lanes, and multitudes of other fast-

moving vehicles is not a typical daily task for humans. As Gary Bradski, a researcher

at Intel Corp. said following the successful completion of the 2005 Grand Challenge

by “Stanley,” a modified Volkswagen Touareg, “Now we need to teach them how to

drive in traffic” [Johnson, 2005].

In modern urban settings, automobile traffic and collisions lead to endless

frustration as well as significant loss of life, property, and productivity. A 2004 study
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of 85 U.S. cities by researchers at Texas A&M University estimated the annual time

spent waiting in traffic at 46 hours—more than a whole work week—per capita,

up from 16 hours in 1982 [Texas Transportation Institute, 2004]. Americans burn

approximately 5.6 billion gallons of fuel each year simply idling their engines. All

told, the annual financial cost of traffic congestion has swollen from $14 billion to

more than $63 billion (in 2002 US dollars) in this period. The cost of all the wasted

time and fuel due to congestion pales in comparison to the costs associated with

automobile collisions. A report by the National Highway Traffic Safety Administra-

tion (NHTSA) puts the annual societal cost of automobile collisions in the U.S. at

$230 billion [National Highway Traffic Safety Administration, 2002].

Fully autonomous vehicles may be able to spare us much, if not nearly all of

these costs. An autonomous driver agent can much more accurately judge distances

and velocities, attentively monitor its surroundings, and react instantly to situations

that would leave a (relatively) sluggish human driver helpless. Furthermore, an

autonomous driver agent will not get sleepy, impatient, angry, or drunk. Alcohol,

speeding, and running red lights are the top three causes of automobile collision

fatalities. Autonomous driver agents — properly programmed — would eliminate

all three.

A fully autonomous vehicle that will drive in traffic will have to do every-

thing from obeying the speed limit and staying in its lane to detecting and tracking

pedestrians or choosing the best route to the mall. While this is certainly a complex

task, advances in artificial intelligence, and more specifically, Intelligent Transporta-

tion Systems (ITS)[Bishop, 2005], suggest that it may soon be a reality. Cars can

already be equipped with features of autonomy such as adaptive cruise control, GPS-

based route planning [Rogers et al., 1999; Schonberg et al., 1995], and autonomous

steering [Pomerleau, 1993; Reynolds, 1999]. Some current production vehicles even

sport these features. DaimlerBenz’s Mercedes-Benz S-Class has an adaptive cruise
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control system that can maintain a safe following distance from the car in front of

it, and will apply extra braking power if it determines that the driver is not braking

hard enough. Both Toyota and BMW are currently selling vehicles that can parallel

park completely autonomously, even finding a space in which to park without driver

input.

Autonomous vehicles are coming. In this thesis, I describe a well-defined

multiagent framework and show that it can dramatically improve the safety and

efficiency of roadways with autonomous vehicles, specifically at intersections.

1.1 Multiagent Systems

As autonomous vehicles become ubiquitous, the possibility of autonomous interac-

tions among multiple vehicles becomes an interesting issue. Multiagent Systems

(MAS) is the subfield of AI that aims to provide both principles for construction of

complex systems involving multiple agents and mechanisms for coordination of inde-

pendent agents’ behaviors [Wooldridge, 2002]. Automobile traffic as it stands today

is a vast multiagent system involving millions of heterogeneous agents: commuters,

truck drivers, pedestrians, cyclists, and even traffic-directing police officers. The

mechanism that coordinates the behavior of these agents is a complex conglomera-

tion of laws, signs, and signalling systems that vary slightly from state to state and

widely from country to country. The mechanism is designed to work closely with

the agents — the humans — that populate the multiagent system. Traffic signals

leave time in between green signals to allow slower or perhaps impatient drivers to

clear intersections. Street signs are bright colors to make them easier to see and

simple (i.e. they don’t convey much information) to make them easy to understand.

Drivers must maintain a sufficient following distance to make up for slow reaction

times. Speed limits ensure that humans can process all the necessary information

about the position and velocities of other vehicles in order to operate their vehicles
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safely. Safety buffers of myriad sorts are built into almost every part to compensate

for the limitations of humans.

The first autonomous vehicles will undoubtedly need to work within this

system. Processing-intensive vision algorithms will identify and extract semantic

information from signs and signals, special subroutines will ensure that the vehicles

do not exceed the speed limit, and in the middle of the night, with not another

moving vehicle for blocks, an autonomous vehicle will come to a stop at a red light.

However, once most vehicles are autonomous and the limitations are eliminated, it

does not make sense to use a mechanism designed to control fundamentally different

agents — it will be inefficient, both in terms of processing power and getting vehicles

to their destinations.

Replacing this soon-to-be-outdated mechanism is inherently a multiagent

challenge for several reasons. First, there are no viable single-agent solutions; one

computer cannot handle all the vehicles in the world. Second, with vehicles con-

stantly entering and leaving countries, states, cities, and towns, any solution will

have to be flexible and distributed. Third, the different agents have separate, and

sometimes conflicting objectives. As with human-driven vehicles, autonomous vehi-

cles will act in their own self-interest, attempting to minimize travel time, distance,

and fuel use. Other agents may aim to maximize social welfare, minimizing these

quantities for the average vehicle. Finally, even if a single computer could control a

city’s worth of traffic, it would be a very sensitive point of failure.

1.2 Intersections

On the open road, automobiles can be more or less completely autonomous. Fur-

thermore, there is little need for more than a simple reactive behavior that keeps

the vehicle in the lane, maintains a reasonable distance from other vehicles, and

avoids obstacles. Even lane changing can be safely and efficiently accomplished by

4



an autonomous vehicle [Hatipo et al., 1997]. Open-road driving is more or less a

solved problem. The problem itself is not too difficult: there are no pedestrians

or cyclists and vehicles travel in the same direction at similar velocities; relative

movement is smooth and rare.

Intersections are a completely different story. Vehicles are constantly crossing

paths, frequently in different directions. A vehicle approaching an intersection can

quickly find itself in a situation in which a collision is unavoidable, even when it

has acted optimally. Traffic statistics support the sensitive nature of intersections.

Vehicle collisions at intersections account for anywhere between 25% and 45% of

all collisions. As intersections make up a very small portion of the roadway, this is

a wildly disproportionate amount. Collisions at intersections tend to involve cars

traveling in different directions, and thus they frequently result in greater injury and

damage. Most modern-day intersections are controlled with traffic signals or stop

signs, the former usually reserved for larger, busier intersections. At the busiest of

intersections—freeway interchanges—large, extremely expensive cloverleaf junctions

are built.

With the vastly improved precision control and sensing that autonomous ve-

hicles will offer, there must be a more efficient and safe way to manage intersections.

Imagine the scenario in which an autonomous vehicle stops at a red signal in the

middle of the night with no other vehicles nearby. At the very least, the vehicle

should be able to communicate its presence to the intersection, which can verify

that no other vehicles are nearby, and turn the signal green for the stopped vehicle.

In a more ambitious implementation, the intersection could turn the signal green

preemptively, obviating the stop altogether.

1.3 This Thesis

Motivated by the preceding discussion, this thesis answers the following question:
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To what extent and how can a multiagent intersection

control mechanism take advantage of the capabilities of

autonomous vehicles in order to make automobile travel

safer and faster?

In order to answer this question, this thesis is organized according to the following

subgoals, each of which is a contribution of the thesis.

1. Problem definition

First, this thesis contributes a careful and specific problem definition. This

definition includes a set of desiderata describing a successful solution, including

safety, efficiency, and feasibility requirements.

2. Performance metric

A multitude of solutions may exist for any given problem. In order to compare

possible solutions (and find the best one), this thesis introduces the concept

of delay—the increase in travel duration caused by the intersection.

3. Novel intersection control mechanism

Today’s intersection control mechanisms were designed to work with humans.

This thesis presents a solution designed from the ground up to take advantage

of the special abilities of autonomous vehicles. The solution is based on a

reservation paradigm, in which vehicles “call ahead” to reserve space-time in

the intersection.

4. Detailed protocol

A multiagent system is defined by the interactions of its agents. Because this

thesis aims to create a multiagent solution, it must specify how the agents

will be expected to behave with respect to one another, including exactly

how they will communicate. This specification takes the form of a detailed
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protocol, complete with message types and fields, an intended semantics, and

interaction rules governing expected message responses.

5. Custom simulator

Because the vast majority of computer-assisted traffic research focuses on im-

proving or studying current methods of traffic control, existing simulators do

not give enough flexibility or control to specify fundamentally different inter-

section control mechanisms without extensive source code understanding and

alteration. Additionally, many simulators model in much more detail than is

necessary for the purposes of this research. This thesis research thus includes

an extensive implementation component, including not only the framework for

simulating vehicles, but also the driver agents, communication protocol, and

control mechanisms.

6. Agent algorithms

While agent interactions define a multiagent system, the behaviors of the

agents themselves often most directly contribute to the performance of the

system as a whole. The protocol makes certain guarantees about the system

(e.g. safety, robustness under communication failure), but it also defines very

large strategy spaces for the agents. The main technical contribution of this

thesis is an extensive exploration of these spaces. Strategies for all agents in

the system are examined, including adaptive strategies.

7. Empirical evaluation

Before a new mechanism can be considered for deployment in the real world,

it must perform quantifiably better than both current methods and ideally all

other possible solutions. This thesis provides detailed empirical results, in a

variety of settings, including some in which human drivers are present.

8. Feasibility analysis for implementation and deployment
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For such a system to be useful, it must be realizable in some form. Regard-

less of how well it performs, if it is prohibitively expensive or complicated

to deploy, it will remain only a concept. In addition to a discussion of the

issues and challenges associated with putting the system into operation, this

thesis provides a transitional method by which the system can be smoothly

and incrementally deployed.

The remainder of this thesis is organized as follows. Chapter 2 introduces

the main concepts behind the Autonomous Intersection Management (AIM) system.

The protocol by which this system operates is specified in Chapter 3. Chapters 4

and 5 describe our implementations of the intersection manager and driver agents,

respectively. In Chapter 6, I introduce the custom simulator created for evaluating

the AIM system. I present our experimental results on the base AIM system in

Chapter 7. Chapter 8 presents the first extension to the base AIM system, that

allows the system to be used with a mix of autonomous and human drivers, with

an efficiency penalty that shrinks as the proportion of human drivers decreases.

Chapter 9, contains a failure-mode analysis that explores some of the worst-case

scenarios and how to mitigate or prevent them. The second major extension, which

allows the AIM system to function safely at networks with multiple equipped inter-

sections, is presented in Chapter 10. In Chapter 11, I discuss other work in a variety

of fields that is either directly related or focused on requisite technologies. Finally,

Chapter 12 concludes.

8



Chapter 2

The Autonomous Intersection

Management System

This chapter introduces the core idea of the thesis, namely reservation-based inter-

section management. This chapter does not give specific details on implementation

and evaluation—those can be found in Chapters 3, 4, 5, and 7—but rather provides a

high-level overview of the challenges and concepts used to address those challenges.

First, it lays out the desiderata we have established for any system that would

replace our current system of intersection management for human-driven vehicles.

Then it describes the types of agents and the multiagent systems those agents will

form as part of the intersection control mechanism.

2.1 Desiderata

Replacing modern intersection control with a robust, multiagent framework is a

complex, multi-part problem. In order to choose directions in which to focus my

research as well as establish a set of criteria by which to judge such a framework, this

section enumerates an important set of properties I believe any intersection control
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mechanism for autonomous vehicles should have.

2.1.1 Autonomy

Each vehicle should be an autonomous agent. If the entire mechanism were centrally

controlled, it would be more susceptible to single point failure, require massive

amounts of computational power, and would exert unnecessary control over vehicles

in situations where they are perfectly capable of controlling themselves.

2.1.2 Low Communication Complexity

By keeping the number of messages and amount of information transmitted to a

minimum, the system can afford to put more communication reliability measures

in place. Furthermore, each vehicle, as an autonomous agent, may have privacy

concerns which should be respected. Keeping the communication complexity low

will also make the system more scalable.

2.1.3 Sensor Model Realism

Each agent should have access only to sensors that are available with current-day

technology. The mechanism should not rely on fictional sensor technology that may

never materialize.

2.1.4 Protocol Standardization

The mechanism should employ a simple, standardized protocol for communication

between agents. Without a standardized protocol, each agent would need to under-

stand the internal workings of every agent with which it interacted. This requirement

would forbid the introduction of new agents into the system. An open, standardized

protocol would make adoption of the system easier and simpler for private vehicle

manufacturers.
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2.1.5 Deadlock/Starvation Avoidance

Deadlocks and starvation should not occur in the system. Any vehicle approaching

an intersection should eventually make it through, even if it is better for the rest of

the agents to leave that vehicle stranded.

2.1.6 Incremental Deployability

The system should be incrementally deployable, in two senses. First, it should be

possible to set up selected intersections to use the system, and then slowly expand

to other intersections as needed. Second, the system should function even with

few or no autonomous vehicles. At any stage of deployment, be it an increase in

the proportion of autonomous vehicles or number of equipped intersections, overall

performance of the system should improve, and there should be a benefit to early

adopters. At no point should there exist a net disincentive to continue deploying

the system.

2.1.7 Safety

Excepting for gross vehicle malfunction or extraordinary circumstances (natural dis-

asters, etc.), as long as they follow the protocol, vehicles should never collide in the

intersection. Note that no stronger guarantee is possible — as with modern mech-

anisms, a suicidal human driver can always steer a vehicle into oncoming traffic.

Furthermore, the system should be safe in the event of total communication fail-

ure. If messages are dropped or corrupted, the safety of the system should not be

compromised. It is impossible to prevent all negative effects due to communication

failures, but those negative effects should be isolated to efficiency. If a packet gets

dropped, it can make someone arrive 10 seconds later at their destination, but it

should not cause a collision.
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2.1.8 Efficiency

Vehicles should get across the intersection and on their way in as little time as pos-

sible. To quantify efficiency, we introduce delay, defined as the amount of additional

travel time incurred by the vehicle as the result of passing through the intersection.

2.2 New Traffic, New Management

Of the desiderata, modern-day traffic signals and stop signs completely satisfy all

but the last one. While many accidents take place at intersections governed by

traffic signals, these accidents are rarely, if ever, the fault of the traffic signal system

itself, but rather that of the human drivers. However, traffic signals and stop signs

are not very efficient. Not only do vehicles traversing intersections equipped with

these mechanisms experience large delays, but the intersections themselves can only

manage a somewhat limited amount of traffic. Any stretch of open road can accom-

modate a certain level of traffic at a given velocity. Obviously, the capacity of an

intersection involving such a road is bounded above by the capacity of the road. The

capacity of traffic signals and stop signs is much less than that of the roads that feed

into them. Much of this inefficiency is due to large allowances for the inadequacies

of human drivers: slow reaction times, poor perception, and tendency to drive while

impaired. With the introduction of computerized drivers that do not possess these

deficiencies, the large allowances required for human drivers are no longer necessary.

Removing these allowances enables the intersection control mechanism presented in

this thesis to exceed the efficiency of traffic signals and stop signs without sacrificing

any of the other properties.
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2.2.1 Agents

Keeping the desiderata in mind, we developed a multiagent approach to get ve-

hicles through intersections more efficiently. This approach involves two classes of

agents: driver agents that control the vehicles, and arbiter agents called intersection

managers at some intersections. When an intersection manager is present and coor-

dinating the traversal of the intersection, it is called a Vehicle-To-Infrastructure or

Vehicle-To-Intersection (V2I) system. When no intersection manager is present, the

vehicles must operate in a completely distributed Vehicle-To-Vehicle (V2V) manner.

Driver Agents

An agent is an entity that can sense its environment and take actions that have an

effect on that environment. In general, a driver agent can be any agent that drives

a vehicle, including a human driver. However, in this thesis, when I refer to a driver

agent, I usually mean a computer program that controls some amount of the driving

of a vehicle—at the very least, the acceleration and steering, but potentially route

or even destination choice. In some of the future work discussed in this thesis, I

mention hybrid driver agents, which include both a computer program and a human

working together to operate the vehicle.

Intersection Managers

Analagous to the definition of a driver agent, an intersection manager is simply an

agent that controls access to an intersection. An intersection with an intersection

manager is referred to as a managed intersection, while one without an intersection

manager is unmanaged. While not every intersection requires a dedicated inter-

section manager, having an intersection manager allows vehicle to coordinate their

interactions with a higher degree of precision, resulting in more throughput and less

wasted time.
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2.2.2 V2I

In modern-day traffic systems, different intersections may be controlled via different

mechanisms. For example, at an intersection with extremely little traffic, there

may be no explicit management whatsoever. Drivers may be expected to watch for

other vehicles and in the rare even of encountering one, work out which will yield

to the other by visual cues such as waving the other driver on. As intersections

become more heavily used, a two- or four-way stop may be created. At even busier

intersections, more sophisticated systems that do not always require a stop such as

traffic signals or a roundabout may be used.

Analagously, autonomous intersections with heavier traffic require more ex-

plicit management. These scenarios are called “Vehicle-to-Intersection” or “Vehicle-

to-Infrastructure” (V2I) scenarios. In V2I scenarios, an intersection manager is

present at the intersection, and it is the responsibility of this intersection manager

to resolve the conflicts between vehicles’ trajectories.

The Reservation Paradigm

The driver agents “call ahead” and attempt to reserve a block of space-time in the

intersection. The intersection manager decides whether to grant or reject requested

reservations according to an intersection control policy. If the request is granted,

the driver agent may proceed through the intersection in accordance with the reser-

vation. If the request is rejected, the driver agent must make another request,

and cannot cross until one of its requests is granted. Figure 2.1 shows one inter-

action between a driver agent and an intersection manager. The system functions

analagously to a human attempting to make a reservation at a hotel — the potential

guest specifies when he or she will be arriving, how much space is required, and how

long the stay would be; the human reservation agent determines whether or not to

grant the reservation, according to the hotel’s reservation policy. Just as the guest
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does not need to understand the hotel’s decision process, the driver agents should

not require any knowledge of how the policy the intersection manager uses to make

its decision. In addition to confirming the request made by the driver agent, the

intersection manager may also respond with counter-offers.

REQUEST

Intersection

Control Policy

REJECT

CONFIRM

Preprocess

P
o

st
p

ro
ce

ss

Yes,

Restrictions

No, Reason

Driver

Agent

Intersection Manager

Figure 2.1: One of the driver agents attempts to make a reservation. The intersection
manager responds based on the decision of an intersection control policy.

Technological Basis

In order for a driver agent to communicate with an intersection early enough, it may

have to transmit messages as far as 200 meters, which at 25 m/s (approximately 56

miles per hour) is 8 seconds before reaching the intersection. By placing transmitters

and receivers along the roadway approaching the intersection, even a system cre-

ated from off-the-shelf wireless networking components (802.11b/g/n) would likely

be sufficient for decent performance. However, automotive equipment manufacturers

are already building application-specific hardware, such as the Denso Corporation’s

Wireless Safety Unit (WSU), which is a small, embedded machine that uses Digi-

tal Short-Range Communications (DSRC)—part of the IEEE 801.11p standard—to

enable vehicles and intersections to communicate over distances of 300 meters or

more [Denso Corporation, 2006]. These WSUs are no more expensive than a stan-

dard traffic-signal installation (on the order of a few thousand dollars) and can be

deployed quickly and easily. This same hardware could fill the hardware require-
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ments for driver agents as well—it is engineered to withstand the extreme conditions

of operation on a motor vehicle. The marginal cost per-vehicle to add such equip-

ment would likely be even lower, as most vehicles already contain sophisticated

computer hardware that could handle much of these responsibilities. Economies of

scale would further reduce the costs of such hardware. The reservation paradigm

also relies on all agents having reasonably synchronized clocks. Fortunately, such

synchronization can be easily achieved using any combination of GPS and network-

based clock synchronization systems like the Network Time Protocol (NTP).

2.2.3 V2V

At intersections with very light to moderate traffic, the cost of installing, running,

and maintaining the hardware required to operate an intersection manager may

outweigh the benefits. In cases such as this, it would be nice still to get some

of the benefits of autonomous vehicles. In particular, if vehicles can cross without

stopping and with little slowing when few other vehicles are present, the intersection

will still be much more efficient than comparable modern-day intersections. In order

to attain this efficiency, the vehicles must resolve conflicts without the assistance of

an arbiter agent. While this problem is well-understood in distributed systems, the

added complexity of moving vehicles, each with substantial inertia, makes this case

more interesting in this context. This scenario is referred to as a “Vehicle-to-Vehicle”

(V2V) scenario, as vehicles communicate only with each other.

Distributed Consensus

In distributed systems, the problem of consensus is that of getting a group of pro-

cesses to agree in the presence of potential failures [Pease et al., 1980]. While this

problem can be impossible to solve in bounded time [Fischer et al., 1985], the prob-

lem solved in the V2V scenario differs in two important ways. First, we insist that
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all messages sent between vehicles are digitally signed to ensure that the identity of

the sending vehicle is known. If the identity of the sending vehicle can not be as-

certained with absolute certainty, the message is ignored. Vehicles can thus be held

responsible for their messages. We set up the algorithm in such a way that, with

some minor external monitoring (similar to modern-day speed-traps), driver agents

have no incentive to falsify their information. Second, we do not technically need a

full consensus every time—we only need to make sure that vehicles only enter the

intersection if they will not collide with one another. If for some extremely unlikely

reason the vehicles cannot agree, none of them will enter the intersection, and the

system will fall back to a stop sign–like mode.

The idea behind our V2V paradigm is that vehicles broadcast intended tra-

jectories to all nearby vehicles, and via a conflict-resolution algorithm, come to an

agreement on which vehicles are permitted to follow their broadcasted trajectories

and which are not. While such a paradigm can lead to vehicle collisions in theory,

as a result of massive (and unnoticed) communication failures, a production system

can be built to guarantee that communication failures of this sort do not occur.

Technological Basis

In the absence of a fixed transmitter and receiver, the V2V scenario requires vehicles

to communicate over longer distances than a comparable V2I scenario. Instead of

communicating with an agent stationed at the intersection, a vehicle 200 meters from

the intersection may need to communicate with a different vehicle 200 meters from

the intersection in the opposite direction. Most of the time it will not be an issue, as

these intersections are specifically chosen to have very little traffic. Thus, if a conflict

exists between two vehicles’ exepected trajectories, there should be ample space-time

in the intersection to accomodate them both with only a small adjustment. However,

even intersections with light traffic sometimes experience unexpected temporary
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bursts of traffic. In this case, an ad-hoc wireless dissemination algorithm like RAPID

can be used to ensure that the information in vehicles’ transmissions reaches even the

furthest approaching vehicles [Drabkin et al., 2007]. Given that current automotive

wireless communications standards include reliable transmission at ranges of 300

meters and greater, and that these distances will continue to grow as the technology

improves, such sophisticated solutions will likely be unnecessary. As with the V2I

scenario, the V2V system relies on synchronized clocks. Since we again assume that

vehicles have access to GPS signals, sufficiently accurate synchronization is readily

available.
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Chapter 3

Communication Protocol

The key difference between a multiagent system and a system that just happens

to have multiple agents is the interactions of the agents. In order for agents to

interact, there must be some standardized mechanism for communication. Whether

this communication is stigmergic, such as in swarm-intelligences like a colony of ants

or bees, or more direct and intentional, some mechanism must exist. By creating an

explicit communication protocol, we define the system for which a limitless variety of

agents can be created. In this chapter, I present our communication protocol, which

uses both direct agent-to-agent and broadcast transmissions. The protocol consists

of a fixed set of message types, each with various fields for storing information, as

well as rules that must be obeyed concerning the sending and receiving of these

messages, as well as the actions that may or may not be taken by an agent that has

received or sent them. Some of these message types, fields, and rules (marked with

a †) are additions necessary for networks of multiple intersections. These messages

often refer to the Admission Control Zone (ACZ), a region beyond the intersection

to which the intersection manager can control access. The ACZ is discussed in detail

in Chapter 10.
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3.1 Message Types

The vehicles and intersection manager are each restricted to a few types of messages

with which they must coordinate.

3.1.1 Vehicle → Intersection

There are eight types of messages that can be sent from vehicles to the intersection.

Request

A driver agent sends the Request message in two cases: either it does not have a

reservation and wishes to make one, or it has a reservation and wishes to change

it. Each Request can contain multiple proposals, ordered from most desirable

to least desirable. In addition to one or more proposals, the Request contains

the properties of the vehicle (ID number, size, etc.). Each proposal contains the

properties of the proposed reservation (arrival time, arrival velocity, arrival lane,

etc.). This message also communicates the vehicle’s status as an emergency vehicle

(in an emergency situation). In practice, this would be implemented using a secure

method such that normal vehicles could not impersonate emergency vehicles. Such

methods are well understood and the details of the implementation are beyond the

scope of this research.

This message has 13 fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

vehicle length — the length of the vehicle in meters.

vehicle width — the width of the vehicle in meters.
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maximum acceleration — the maximum rate, in meters per second squared, at

which the vehicle can accelerate.

minimum acceleration — the minimum rate, in meters per second squared, at

which the vehicle can accelerate (i.e. negative number representing maximum

deceleration).

minimum velocity — the minimum velocity, in meters per second, at which the

vehicle can travel (usually a negative value indicating travel in reverse).

front wheel displacement — the distance, in meters, between the front of the

vehicle and the front axle.

rear wheel displacement — the distance, in meters, between the front of the

vehicle and the rear axle.

max steering angle — the maximum number of radians in either direction away

from directly ahead (0) to which the front wheels can be turned for the pur-

poses of steering.

max turn per second — the maximum angular velocity, in radians per second, at

which the vehicle can turn its wheels.

emergency — a Boolean value representing whether or not this is an emergency

vehicle in an emergency situation.

traversal proposals — a list of proposals for traversing the intersection, ordered

from highest to lowest desirability. Each proposal has 5 fields:

arrival lane — a unique identifier for the lane in which the vehicle will be

when it arrives at the intersection.

departure lane — a unique identifier for the lane in which the vehicle desires

to exit the intersection.
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arrival time — the absolute time at which the vehicle will arrive at the

intersection.

arrival velocity — the velocity, in meters per second, at which the vehicle

expects to be traveling when it arrives at the intersection.

maximum velocity — the maximum velocity, in meters per second, at which

the vehicle can make the indicated traversal.

Cancel

A driver agent sends a Cancel message when either it no longer desires its current

reservation or it no longer believes it can maintain its current reservation.

It has 3 fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

reservation id — the unique identifier for the reservation to be canceled, which

was obtained from the intersection when the reservation was confirmed.

Done

This message is sent when the vehicle has completed its traversal of the intersection.

It has 2 fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.
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Away†

This message is sent when the vehicle has exited the Admission Control Zone (ACZ)

for the lane in which it currently is. The ACZ is an area beyond the intersection

to which the Intersection Manager can control access. See Chapter 10 for a full

description.

It has 2 fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

ACZRequest†

A driver agent sends an ACZRequest when it wants to enter a lane within an

Admission Control Zone (ACZ).

It has 5 fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

start lane — a unique identifier for the lane in which the vehicle currently is, or

−1 if the vehicle is not currently in a lane.

target lane — a unique identifier for the lane the vehicle wishes to enter.

vehicle length — the length of the vehicle in meters.
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ACZCancel†

A driver agent sends an ACZCancel when it no longer wants to or no longer

believes it is able to enter a lane in accordance with the parameters of the latest

ACZConfirm it has received.

It has 3 fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

ticket number — the highest ticket number of any ACZConfirm received by

the driver agent from the current intersection manager, which represents the

current agreement for the driver agent’s vehicle to enter a lane within the

Admission Control Zone (ACZ).

ACZEntered†

A driver agent sends an ACZEntered when it has finished entering a lane within

an Admission Control Zone (ACZ) via the parameters of the latest ACZConfirm

it has received.

It has three fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

ticket number — the ticket number of the ACZConfirm in accordance with

which the driver agent changed lanes.
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ACZExit†

A driver agent sends an ACZExit when it leaves an Admission Control Zone (ACZ)

by exiting the roadway, as opposed to by getting far enough away from the inter-

section.

It has two fields:

source id — the vehicle’s unique identification number (VIN).

destination id — the identification number of the intersection manager to which

the message should be delivered.

3.1.2 Intersection → Vehicle

There are five types of messages that can be sent from intersections to vehicles.

Confirm

This message is a response to a vehicle’s Request message. It does not always mean

that one of the proposals transmitted by the vehicle were acceptable. It could, for

example, contain a counter-offer by the intersection. The reservation parameters in

this message are implicitly accepted by the vehicle, and must be explicitly canceled

if the driver agent of the vehicle does not approve. Note that this “push” semantics

is safe even with faulty communication—the worst that can happen is that the

intersection reserves space that does not get used. Included in the message are

acceleration constraints determined by the intersection. These are stored as a run-

length encoded list of rates and durations. How the list is created depends on the

intersection manager. The vehicle’s safety must be guaranteed if it adheres to the

list.

It has 11 fields:
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source id — the identification number of the intersection manager sending the

message.

destination id — the unique identification number (VIN) of the vehicle to which

the message should be delivered.

reservation id — a unique identifier for the reservation just created. This value

increases monotonically to ensure that the recipient knows which message is

the most recent.

arrival time — the absolute time at which the vehicle is expected to arrive.

early error — the maximum amount of time, in seconds, before the arrival time

at which the vehicle may arrive at the intersection.

late error — the maximum amount of time, in seconds, after the arrival time

at which the vehicle may arrive at the intersection.

arrival lane — a unique identifier for the lane in which the vehicle should arrive

at the intersection.

departure lane — a unique identifier for the lane in which the vehicle should

depart the intersection.

arrival velocity — the velocity, in meters per second, at which the vehicle

should arrive at the intersection. A negative number signifies that any ve-

locity is acceptable.

acz distance† — the length of road, in meters, after the intersection, that is gov-

erned by an Admission Control Zone (ACZ).

accelerations — a run-length encoded description of the expected acceleration,

in meters per second squared, of the vehicle as it travels through the inter-

section. Here, a run-length encoded description is a sequence of order pairs
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of acceleration and duration—starting with the instant the vehicle enters the

intersection, it should maintain each acceleration for the duration with which

it is paired. If the sequence is empty, this signifies that any accelerations are

acceptable, however vehicles are responsible for maintaining a safe distance

from vehicles in front of them.

Reject

By sending a Reject message, an intersection manager can inform a driver agent

that none of the parameters sent in the latest Request were acceptable, and that

the intersection either could not or did not want to make a counter-offer.

This message has 4 fields:

source id — the identification number of the intersection manager sending the

message.

destination id — the unique identification number (VIN) of the vehicle to which

the message should be delivered.

next communication — the absolute time at which subsequent Request messages

will be accepted by the intersection manager.

reason — the reason why the Request was rejected. This can be one of 12 values:

MALFORMED — the Request message was not formed properly, or contained

no traversal proposals.

EMERGENCY — the intersection is currently shut down due to an emergency

situation

TIMEOUT — the Request was sent before the sending vehicle was permitted

to do so.
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EMERGENCY VEHICLE — the intersection manager is temporarily suspending

reservations in all of the proposed arrival lanes due to the presence of an

emergency vehicle.

TURN FORBIDDEN — the proposed combination of arrival and departure lanes

is not permitted by the intersection manager.

TIME TRAVEL — the proposed arrival times are all in the past.

FUTURE LIMIT — the proposed arrival times are all too far in the future.

RESERVATION DISTANCE — the intersection manager is not currently granting

reservations to vehicles arriving in any the proposed lanes that are as far

from the intersection as the requesting vehicle.

STOP REQUIRED — the intersection manager will not grant a reservation ex-

cept in the case that the requesting vehicle is stopped at the intersection.

NO CLEAR PATH — the intersection manager was unable to find a clear, safe

path through the intersection using any of the parameters provided.

ACZ CAPACITY† — the intersection manager did not have sufficient capacity

in the Admission Control Zone for a proposed departure lane.

NONE — no reason given.

Emergency-Stop

The Emergency-Stop message is sent when the intersection manager has deter-

mined that a collision or similar problem has occurred in the intersection. This

message informs the receiving driver agent that no further reservation requests will

be granted, and if possible, the vehicle should attempt to stop instead of entering

the intersection, even if it has a reservation.

It has 2 fields:
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source id — the identification number of the intersection manager sending the

message.

destination id — the unique identification number (VIN) of the vehicle to which

the message should be delivered.

ACZConfirm†

The ACZConfirm message is a response to a vehicle’s ACZRequest indicating

that the vehicle may change lanes inside an Admission Control Zone (ACZ).

It has 6 fields:

source id — the identification number of the intersection manager sending the

message.

destination id — the unique identification number (VIN) of the vehicle to which

the message should be delivered.

ticket number — a unique identifier for this confirmation. This value increases

monotonically to ensure that the recipient knows which message is the most

recent.

start lane — a unique identifier for the lane in which the vehicle has permission

to change out of, or −1 if the vehicle is not currently in a lane.

target lane — a unique identifier for the lane the vehicle has permission to enter.

acz distance — the length of road, in meters, after the intersection, that is gov-

erned by an Admission Control Zone (ACZ).

ACZReject†

An ACZReject message is a response to a vehicle’s ACZRequest indicating that

the vehicle may not change lanes as requested.
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It has 3 fields:

source id — the identification number of the intersection manager sending the

message.

destination id — the unique identification number (VIN) of the vehicle to which

the message should be delivered.

reason — the reason why the ACZRequest was rejected. This can be one of 4

values:

MALFORMED — the Request message was not formed properly, or contained

no traversal proposals.

EXISTING TICKET — the vehicle already has permission according to a pre-

vious ACZConfirm and must cancel first.

ACZ CAPACITY — the intersection manager did not have sufficient capacity in

the Admission Control Zone to permit the lane change.

NONE — no reason given.

3.1.3 Vehicle → Vehicle

In the event that no intersection manager is available, vehicles can coordinate using

the vehicle-to-vehicle (V2V) messages. While not as efficient or robust as vehicle-to-

intersection (V2I), this portion of the protocol can be used at intersections without

any additional infrastructure. There are two types of messages that vehicles can

send to one another. Much of the work on V2V scenarios was done in collabora-

tion with Mark VanMiddlesworth, whom the author would like to recognize for his

contribution.
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Claim

The Claim message is broadcast by a vehicle when it wishes to stake out space-time

in an intersection not governed by an intersection manager.

It has 8 fields:

source id — the sending vehicle’s unique identification number (VIN).

message id — a monotonically increasing number greater than that of any different

previously broadcast message.

intersection id — a unique identifier for the intersection the vehicle wishes to

traverse.

stopped at intersection — whether or not the vehicle is stopped at the inter-

section.

arrival lane — a unique identifier for the lane in which the vehicle plans to arrive

at the intersection.

departure lane — a unique identifier for the lane in which the vehicle plans to

depart the intersection.

arrival time — the absolute time at which the vehicle plans to arrive at the

intersection.

departure time — the absolute time at which the vehicle plans to depart the

intersection.

Clear

The Clear message is broadcast by a vehicle when it no longer wishes to traverse

the intersection.

It has 3 fields:
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source id — the sending vehicle’s unique identification number (VIN).

message id — a monotonically increasing number greater than that of any different

previously broadcast message.

intersection id — a unique identifier for the intersection for which the vehicle

no longer wishes to stake out its previous Claim.

3.2 Protocol Actions

Because the protocol contains both vehicle-to-intersection (V2I) and vehicle-to-

vehicle (V2V) components, there are two distinct sets of rules that agents must

follow, depending on which category describes the scenario. In the V2I case, there

are rules for both the driver agents in the vehicles and the intersection managers

stationed at the intersection. In the V2V case, as there is no intersection manager,

there are only rules for the driver agents.

3.2.1 V2I Rules

In the V2I scenario, driver agents rely on the intersection manager to ensure that

they cross the intersection safely. Because the system must be robust to commu-

nications failures, there is an inherent “push” semantics, meaning that when the

intersection sends a Confirm (or ACZConfirm) message, the intended recipient

agrees with stipulations in those messages implicitly. If, in fact, the driver agent

does not agree, the burden is on that driver agent to communicate that fact. The

rules and the messages are designed around this semantics to ensure that if a mes-

sage is lost, the worst possible outcome is space-time reserved in the intersection

that goes unused, and not a collision.
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Driver Agent Rules

As part of the V2I protocol, driver agents controlling vehicles must obey the follow-

ing rules:

1. A vehicle may only traverse an intersection in accordance with reservation

parameters contained in a Confirm message sent by that intersection’s inter-

section manager.

2. † A vehicle may only enter the roadway or change lanes inside the Admis-

sion Control Zone (ACZ) of an intersection in accordance with the parameters

contained in a ACZConfirm message sent by the intersection manager con-

trolling the intersection out of which the roadway or lanes exit.

3. A vehicle must transmit a Done message when it has completed its traversal

of the intersection.

4. † A vehicle must transmit an Away message when it has reached a point at

least as far away from the intersection as the acz distance parameter in the

Confirm or ACZConfirm which permitted it to traverse the intersection or

change lanes, respectively.

5. † If the acz distance parameter in the Confirm or ACZConfirm message

received by a vehicle is zero or less, the vehicle is itself solely responsible for

determining whether it is safe to depart the intersection or change lanes.

6. † Vehicles must make every effort to clear an intersection’s Admission Control

Zone expeditiously.

Intersection Manager Rules

The intersection manager must make the following guarantee:
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1. If a vehicle crosses the intersection in accordance with the most recent Con-

firm message issued by the intersection manager to that vehicle, it must be

safe from collisions while in the intersection.

3.2.2 V2V Rules

The foundation upon which the V2V portion of the protocol rests is that driver

agents have an understanding about which vehicle is expected to yield in any given

situation. By having a mutually accepted and understood set of rules, any individual

driver agent knows that violating them could result in a collision involving its vehicle.

Just as a human driver knows to stop at a red signal (even though nothing prevents

him or her from driving through), agents will necessarily be designed to follow the

rules, lest their vehicles and occupants be damaged. Each vehicle, given complete

information, will will run the same algorithms, and get the same results.

Conflict, Priority, Dominance, and Permissibility

To facilitate the description of the rules governing the V2V protocol, we define the

following relations on Claim messages.

Conflict Two Claim messages are said to conflict if all of the following are true:

• The intersection id fields of the two messages are identical.

• The paths determined by the arrival lane and departure lane fields are

not compatible (compatible paths do not intersect).

• The time intervals are not disjoint.

Priority We define the relative priority of two Claim messages based on the

following rules, presented in order from most significant to least significant:
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1. If one message specifies an arrival time in the past (i.e. the vehicle is already

in the intersection) and another message specifies an arrival time in the

future, the message with the arrival time in the past has priority.

2. If one message specifies that the sending vehicle is stopped at the intersection,

but the other does not, the Claim that specifies the sending vehicle is stopped

at the intersection has priority.

3. If neither message specifies that the sending vehicle is stopped at the intersec-

tion, the Claim with the earliest exit time has priority.

4. If both messages specify that the sending vehicles are stopped at the intersec-

tion, and are in roads that are the same or duals of each other (the same road

but in a different direction), then if one message has the same arrival lane

as its departure lane, that message has priority.

5. If both messages specify that the respective sending vehicles are stopped at

the intersection, the Claim whose arrival lane is “on the right” has priority.

Here, “on the right” is defined similarly to current traffic laws regarding four-

way stop signs. This binary relation on the incident lanes is globally available

as a characteristic of the intersection.

6. If priority cannot be established by the previous rules, the Claim with the

lowest vehicle id has priority.

.

Dominance Given two claims c1 and c2, we say that c1 dominates c2 if c1 and

c2 conflict and c1 has priority over c2. The dominance graph G of a set of claims

C = {c1, c2, . . . , cn} is a digraph with vertices V (G) = {v1, v2, . . . , vn}, and directed

edges E(G) = {(vi, vj)|ci dominates cj}.
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Permissibility Each Claim in a set of Claims C is classified as either permissible

or nonpermissible by repeating the following steps in order until all Claims are

classified.

1. For each ci ∈ C, if ∀cj ∈ C such that cj dominates ci and cj is classified

nonpermissible, ci is classified permissible.

2. For each ci ∈ C, if ∃cj ∈ C such that cj dominates ci or ci dominates cj , and

cj is classified permissible, ci is classified nonpermissible.

3. Let C ⊂ C be the current set of unclassified Claims. Let Cdom be {c ∈ C|∃d ∈

C, c dominates d}. Let cmin ∈ Cdom be the Claim in Cdom with the lowest VIN.

Classify cmin permissible. Perform this step only if no vertices were labeled in

steps 1 or 2. In practice, this is an exceedingly remote possibility.

This protocol is designed with the goal of incentive compatibility: reduc-

ing opportunities for vehicles to benefit by misrepresenting their traversal parame-

ters. We thus consider two important theoretical properties of this classification of

Claims. First, it is a partition: all Claims are either permissible or nonpermissible.

Second—and most importantly—the set of permissible Claims in C corresponds to

a maximal independent set in the dominance graph of C (adding any additional

Claim from C would remove its independence). If any vehicle with a nonpermis-

sible Claim attempts to traverse the intersection, it does so at its own peril. Note

that in general, finding a maximum independent set is NP-complete, and therefore

the algorithm may not always return the largest possible set of Claims [Garey and

Johnson, 1979].

Figure 3.1 shows three dominance graphs, in which vertices are labeled with

the VIN of the Claim with which they correspond. In 3.1(b), the Claim with VIN

37 is added, substantially altering the partition of permissible and nonpermissible

Claims. In 3.1(c), a cycle is broken by making the Claim with VIN 2 permissible,
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however, this does not yield the maximum independent set, which would be the

Claims with VINs 17, 42, and 66.

2415 90

714485

(a) A simple case with no cycles

2415 90

714485

37

(b) Adding a new Claim

982 17

423166

(c) Breaking cycles requires step 3

Figure 3.1: Three different dominance graphs for three sets of Claims. A di-
rected edge indicates dominance, a bold circle indicates a permissible Claim, while
a dashed circle indicates a nonpermissible Claim.

Driver Agent Rules

A driver agent using the V2V protocol to traverse an intersection must obey the

following rules:

1. A vehicle may not enter the intersection if its current Claim is nonpermissible

in the set of current Claims of which it is aware. Because the permissible

Claims form a maximal independent set, any vehicle that violates this rule

risks a collision with another vehicle.

2. A vehicle may not enter the intersection without first broadcasting its Claim

for at least 0.5 seconds.
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3. A vehicle must vacate (or make every effort to vacate) the intersection at or

before the exit time specified in its most recent Claim.

4. A vehicle must follow a reasonable path from the point of entry into the

intersection to the point of departure out of the intersection. This means, for

example, that a vehicle going straight through the intersection without turning

must remain within its lane, while a vehicle turning must not interfere with

any compatible paths through the intersection.

5. The stopped at intersection field of an agent’s Claim must be true if and

only if the agent’s vehicle is stopped at the intersection.

6. The arrival time field of an agent’s Claim must be in the past if and only

if the agent’s vehicle is in the intersection.

Effects of Communication Failure

Because the V2V protocol does not have the “push” semantics of the V2I protocol,

communication failures can cause safety failures. Because each driver agent must

construct its own dominance graph, if messages are lost, the graph may be altogether

different. As Figure 3.1 demonstrates, a single vertex in the graph can change which

Claims are permissible. This situation could, in turn, lead to a collision if a driver

agent mistakenly determines that its claim is permissible. Because each message

is repeatedly broadcast, a vehicle would have to fail to receive every message from

a vehicle not to notice its presence. Such a scenario is possible in the presence of

complete communication failure on the part of the sending or receiving vehicle. Such

a failure should be easy to detect with redundant transmitters and receivers, as well

as self-diagnostics.

In order to disseminate each vehicle’s Claim as quickly and reliably as pos-

sible, more sophisticated communication mechanisms can be used, which are specif-

38



ically designed for the challenges of ad-hoc wireless networks [Drabkin et al., 2007].

In these mechanisms, message headers are rebroadcast by all vehicles, such that a

vehicle can detect if it has missed a message. In the case that it has, it can request

the full message from the vehicle that rebroadcast the header. For example, imagine

three vehicles, A, B, and C. Vehicle C cannot send or receive messages to or from

vehicle A, but all other communication channels are functioning. In this case, when

vehicle B receives vehicle A’s Claim, it will include that Claim’s header the next

time it rebroadcasts its own Claim. Vehicle C will then notice it has missed this

message, and can request that vehicle B retransmit the message in its entirety on

behalf of vehicle A. The same will be true for any messages of vehicle C’s that

vehicle A missed. Considerations for reliable and quick dissemination are extremely

important in the V2V scenario. If a single vehicle fails to detect even a single other

vehicle, the system has violated its safety properties, even if no collision ensues.
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Chapter 4

Intersection Manager

Implementation

While a protocol can specify the ways that agents can interact in a multiagent

system, it does not specify how those agents will act individually, or which of the

interaction options they will select. As long as an agent obeys the protocol, it

can take any actions it desires. The protocol described in Chapter 3 is meant to

support many heterogenous implementations simultaneously. In order to evaluate

the performance capabilities of the protocols, we must create an implementation

for each type of agent. This thesis demonstrates what is possible with the protocol

using just one implementation. In this chapter, I present our implementation of

the intersection manager, one of which is stationed at each intersection. First,

I introduce FCFS, the intersection control policy we use for the majority of our

experiments. Next, I present some heuristics that we use to make the work of the

intersection control policy easier. Last, I enumerate several alternate policies that

we compare with FCFS in experiments.
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4.1 The FCFS Policy

Although the intersection manager communicates directly with the driver agents,

the intersection control policy is the “brains” behind the operation. Recall that

vehicles need not know anything about the policy, just the protocol. The policy

implementation is completely private to the intersection manager. In this section,

I describe the main intersection control policy used in this work. Because of the

“First Come, First Served” nature of the policy, we call policy “FCFS”. The main

part of the policy—the request processing—is shown in Algorithm 1.

FCFS enables a car to reserve in advance the space-time it needs to cross the

intersection. Planning ahead allows vehicles coming from all directions to traverse

the intersection simultaneously with minimal delay. The policy works as follows:

• The intersection is divided into a grid of square reservation tiles, each of which

measures g meters on a side. We call g the granularity of the policy. The

granularity ratio of the policy is defined as
√
A
g

, where A is the total area of

the intersection. An intersection that consists of exactly one reservation tile

would thus have a granularity ratio of 1, while a square intersection made up

of four reservation tiles would have a granularity ratio of 2. A reservation tile

is essentially a map from times to vehicle ID numbers. If the map contains

the (key, value) pair (t, v), then vehicle v has the tile reserved at time t.

Because our simulator is discretized, our implementation discretizes the map.

However, reservation tiles could also be implemented by mapping intervals

instead of discrete times.

• Upon receiving the reservation parameters from an approaching driver agent,

the policy runs two internal simulations of the trajectory of the vehicle across

the intersection using these parameters (line 6). The first simulation allows

the vehicle to accelerate while in the intersection (line 27), whereas the second
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simulation does not. The simulation lasts until the vehicle exits the intersec-

tion (line 10).

• At each time step of the internal simulation, the policy determines which

reservation tiles will be occupied by the vehicle (line 11).

• If at any time during the simulation the requesting vehicle occupies a reser-

vation tile that is already reserved by another vehicle (line 19), the policy

rejects the request (line 23). Otherwise, the policy accepts the reservation and

reserves the appropriate tiles for the times they will be required (line 35).

Figure 4.1 shows a graphical depiction of the concept behind the FCFS policy.

(a) Successful (b) Rejected

Figure 4.1: The internal simulation of an FCFS policy. The black rectangles rep-
resent vehicles, and the shaded tiles are tiles that are currently reserved. In 4.1(a),
a vehicle’s request is accepted, and the intersection reserves a set of tiles at time
t. In 4.1(b), a second vehicle’s request is rejected because during the simulation of
its trajectory, the policy determines that it requires a tile (darkly shaded) already
reserved by the first vehicle at time t.

While the concept behind FCFS is sound, it requires some modifications be-

fore it will work reliably, safely, and efficiently—even in simulation. In the remainder

of this section, I present these modifications, namely buffers and edge tiles, which

were created in response to early experimental results documented in Chapter 7.

Videos of the aim2 simulator running the FCFS policy can be seen on the videos
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section of the project page at http://www.cs.utexas.edu/~kdresner/aim/.

4.1.1 Buffers

In any system involving physical robots, noise in sensor readings and errors in actua-

tors will inevitably manifest themselves. Even in simulation, artifacts resulting from

the discretization of time are enough to weaken the reservation tiles’ guarantees of

exclusivity. In the intersection, where vehicles move at high speeds in all different

directions, these potential sources of calamity cannot be ignored. For example, what

happens when a driver agent realizes that it will not make its reservation exactly on

time, close enough to the intersection that it is not possible to stop before entering

the intersection? Some sort of safety buffer is required. Two types of buffers are

most natural: space buffers and time buffers. These buffers can be adjusted to guard

against arbitrarily large sensor errors, at an efficiency cost.

Space buffers—buffers whose size is constant—suffice for safety purposes. If

the intersection manager assumes each vehicle is ten times as large in each dimension,

no vehicle should even get close to another vehicle. However, this excessive caution

defeats the point of the intersection manager, which is to leverage the increased

precision of autonomous vehicles. Furthermore, a space buffer does not take into

account the direction of motion of the vehicle. Two vehicles whose paths would

never intersect may begin to interfere with one another’s reservation process if a

large space buffer is used, as in Figure 4.2(a).

Time buffers, on the other hand, do take into account the motion of the

vehicles. If the intersection manager instead assumes that the vehicle might be

early or late, the actual area restricted by this buffer will shrink and grow with the

vehicle’s velocity, and only in the direction of movement. Figures 4.2(b) and 4.2(c)

show how the buffer scales with the speed of the vehicle. Thus, if two vehicles are

traveling along parallel lines, the time buffers for those vehicles should not interfere
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(c) Time buffer, high velocity (d) Hybrid buffer

Figure 4.2: Various styles of buffers designed to cope with sensor noise and actuator
errors. The hatched areas show where buffers would cause reservation conflicts: only
one of each pair of conflicting vehicles would be granted a reservation.

unless those vehicles could potentially collide (they are in the same lane or the lanes

are too close together for the vehicles’ width). Alone, time buffers are not sufficient

to guarantee safety — a small error in lateral positioning (orthogonal to the direction

of motion) may still cause a collision. Figure 4.2(d) shows the best solution: a hybrid

buffer. The hybrid buffer has a time buffer that scales with velocity, as well as a

small space buffer that protects against lateral positioning errors and serves as a

minimum buffer for slow-moving vehicles.

4.1.2 Edge Tiles

When driving on the open road, vehicles must maintain a reasonable following in-

terval (usually measured as an amount of time) between one another. If a vehicle

decelerates suddenly, it puts the vehicle behind it in a dangerous situation—if the

rear vehicle doesn’t react quickly enough, it may collide with the front vehicle. In the

intersection, following intervals are not very practical, because vehicles are traveling

in many different directions. Vehicles in the intersection cannot react normally to

their sensor readings, because the intersection manager may orchestrate some “close
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calls” that would look like a potential collision to a vehicle operating in “open road”

mode. Instead, the vehicles trust the constraints given to them by the intersection

manager. The intersection can guarantee this is safe in the intersection, but when a

vehicle exits the intersection, it may enounter a vehicle that also just left the inter-

section, but at a much slower velocity. As shown in Figures 4.3(a) and 4.3(b), this

situation may lead to an unavoidable collision, with the later vehicle being unable

to stop quickly enough. Even with autonomous vehicles, which can react almost

instantaneously, some amount of following interval is required for vehicles leaving

the intersection.

B
A

(a) A turns right in front
of B.

B A

(b) B cannot stop in time.

AB

(c) B must slow down pre-
emptively.

Figure 4.3: Edge tiles prevent collisions after vehicles leave the intersection.
In 4.3(a), vehicle A turns in front of vehicle B, traveling slowly because it is making
a right turn. In 4.3(b), vehicle B gets through the intersection without incident,
but finds that once it leaves the intersection, it cannot stop before colliding with
vehicle A. The extra buffers on edge tiles, as shown in 4.3(c), prevent vehicle B
from obtaining a reservation which would cause it to exit the intersection too close
to vehicle A. The shaded tiles are edge tiles, while the darkly shaded tiles are the
specific tiles that would prevent the collision in 4.3(a) and 4.3(b).

A first-cut solution to this problem is simply to increase the time buffers

on all reservation tiles to the desired following interval. Thus, if vehicles require a

following interval of one second when exiting the intersection, then no vehicle will

be able to reserve a tile within one second of another vehicle. Vehicles leaving the

intersection in the same lane will not exit within one second of each other, and there
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will be a gap of at least one second between the vehicles. Unfortunately, this wreaks

havoc with FCFS’s ability to conduct vehicles efficiently through the intersection.

The “close calls” from which the system gets its efficiency advantages will no longer

be possible.

Instead, we divide the reservation tiles into two groups. Internal tiles are

tiles that are surrounded on all sides by other reservation tiles. Edge tiles, which are

shown shaded in Figure 4.3(c), are tiles that abut the intersection. At sufficiently

high granularities, edge tiles are a relatively small fraction of the total number of

tiles. It is only on these tiles that we increase the time buffer to the desired following

interval. Because (at sufficiently high granularities) only vehicles leaving by the same

lane will require the same edge tiles, this modification enforces the desired following

intervals without otherwise preventing the intersection from exploiting its ability to

interleave vehicles closely.

4.1.3 Emergency Vehicle Priority

In current traffic laws there are special procedures involving emergency vehicles such

as ambulances, fire trucks, and police cars. Vehicles are required to pull over to the

side of the road and come to a complete stop until the emergency vehicle has passed.

This law exists both because the emergency vehicle may be traveling quickly, posing

a danger to other vehicles, and because the emergency vehicle must arrive at its

destination as quickly as possible—lives may be at stake. Once a system such as

this is implemented, automobile accidents—a major reason emergency vehicles are

dispatched—should be all but eradicated. Nonetheless, emergency vehicles will still

be required from time to time as fires, heart attacks, and other emergencies will

still exist. While we have previously proposed other methods for giving priority

to emergency vehicles [Dresner and Stone, 2006], here we present a new, simpler

method, which is fully implemented and tested.
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Algorithm 1 FCFS’s request processing algorithm. FCFS has persistent state
variables: tiles, a map from tiles and times to vehicles, reservations, a map from
vehicles to sets of tiles, and timeouts, a map from vehicles to times.

1: tc ← the current time
2: if timeouts[vehicle id] < tc then
3: reject the request
4: ta ← proposed arrival time
5: timeouts[vehicle id]← tc +min(0.5, (ta − tc)/2)
6: for acceleration in {true, false} do
7: tile times← {}
8: t← ta
9: V ← temporary vehicle initialized according to reservation parameters

10: while V is in the intersection do
11: S ← tiles occupied by V and V ’s space buffer at time t
12: tile times← tile times ∪ {(t, S)}
13: for all s ∈ S do
14: if s is an edge tile then
15: buf ← edge tile buffer
16: else
17: buf ← internal tile buffer
18: for i = −buf to buf do
19: if tiles[s, t+ i] is reserved by another vehicle then
20: if acceleration then
21: goto line 29
22: else
23: reject the request
24: t← t + time step
25: move V according to physical model
26: if acceleration then
27: increase V ’s velocity by V ’s maximum acceleration
28: break
29:

30: if request is a change then
31: old tile times← reservations[vehicle id]
32: for all (ti, Si) ∈ old tile times do
33: for all s ∈ Si do
34: clear reserved status of tiles[s, ti]
35: for all (ti, Si) ∈ tile times do
36: for all s ∈ Si do
37: tiles[s, ti]← vehicle id
38: reservations[vehicle id]← tile times
39: accept request, return reservation constraints (incl. accelerations)
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Augmenting The Protocol

In order to accommodate emergency vehicles, the intersection manager must first be

able to detect their presence. The easiest way to inform the intersection manager is

by including this information in a field of all request messages. In our protocol, this

field is simply a flag that indicates to the intersection manager that the requesting

vehicle is an emergency vehicle in an emergency situation (lights flashing and siren

blaring). In practice, however, safeguards would need to be incorporated to prevent

normal vehicles from abusing this feature in order to obtain preferential treatment.

These safeguards could be implemented via a secret key instead of simply a boolean

value, or even some sort of public/private key challenge/response mechanism. These

details of the implementation, however, are beyond the scope of this project and are

already a well-studied area of cryptography and computer security.

The FCFS-Emerg Policy

Now that the intersection control policy can detect emergency vehicles, it can pro-

cess reservation requests while giving priority to the emergency vehicles. A first-cut

solution is simply to deny reservations to any vehicles that are not emergency ve-

hicles. However, this solution is not satisfactory, because if all the traffic comes to

a stop due to rejected reservation requests, any emergency vehicles may get stuck

in the resulting congestion. Instead, the FCFS-Emerg policy keeps track of which

lanes currently contain approaching emergency vehicles. As long as at least one

emergency vehicle is approaching the intersection, the policy grants reservations

only to vehicles in those lanes. This restriction ensures that vehicles in front of the

emergency vehicles will also receive priority. Due to this increase in priority, lanes

with emergency vehicles tend to empty very rapidly, allowing emergency vehicles to

proceed relatively unhindered.

To modify the algorithm shown in Algorithm 1, we add a new variable,
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emergency vehicles, which is a map from lanes to sets of vehicle IDs. If the map

contains the (key, value) pair (l, [v1, v2]), then emergency vehicles v1 and v2 are

approaching in lane l. When a request comes in from an emergency vehicle, the

proper mapping is added to emergency vehicles. When a request comes in from

a non-emergency vehicle in lane l, if emergency vehicles contains any mappings

(k, v) such that v is not an empty set, the request is rejected immediately unless

emergency vehicles contains a mapping (l, u) such that u is not empty. A video

of the aim2 simulator running the FCFS-Emerg policy can be found in the video

section of the project page at http://www.cs.utexas.edu/~kdresner/aim/.

4.1.4 Safety Guarantees

Outside of the intersection, it is impossible to guarantee safety. All vehicles retain

autonomy outside the intersection, and can thus do whatever they want, including

deliberately crashing into other vehicles. However, with a few assumptions, we can

make a guarantee about vehicles inside the intersection. Given that vehicles obey

the protocol, and that they do not move extremely fast—for example, in such a

way as to overlap so briefly that FCFS’s internal simulation does not detect it with

discretized time—we can guarantee that two vehicles will never occupy the same

space at the same time. This guarantee follows quite trivially from the fact that

each tile can be beneath only one vehicle at any time.

Outside of the intersection, we may not be able to guarantee safety, but

we can make some safety-related guarantees. Again making the same assumptions

about the way vehicles move, the edge tile buffers guarantee a certain following

distance for all vehicles leaving the intersection. If the edge tiles have a time buffer

of two seconds, we can know for sure that no two vehicles will exit the intersection

in the same lane within two seconds of one another.
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4.2 Other Policies

Because of the layer of abstraction provided by the protocol, the intersection man-

ager can work in an emulation mode, imitating modern-day control mechanisms,

such as the stop sign and traffic signal. Here we briefly explain the implementation

of two intersection control policies designed to mimic these mechanisms.

Stop-Sign Stop signs are traditionally used at intersections with very light traffic.

While they are much more cost-effective and reliable, they cannot provide the

throughput and efficiency of a traffic signal. Thus, there would never be a

reason for our system to emulate a stop sign, however we include a description

for completeness.

Stop-Sign is exactly like FCFS, except that it only accepts reservations from

vehicles that are stopped at the intersection. Any other reservation requests

are rejected with a message indicating the vehicle must stop at the intersection.

The intersection determines whether a vehicle is stopped at the intersection

by examining the difference between the current time and the arrival time in

the request message.

Traffic-Light When the Traffic-Light policy receives a reservation request mes-

sage, it calculates the next time after the proposed arrival time that a sim-

ulated (or real) signal for the sending vehicle’s lane would be green. It then

responds with a confirmation message that reflects this information. Because

confirmation messages have maximum tolerable errors associated with them,

the intersection manager uses these errors to encode the beginning and end of

the green signal period. The Traffic-Light policy can actually be coordi-

nated with real signal timings in order to allow an autonomous vehicle to use

an intersection governed by a traffic signal without having to visually read the

state of the signals.
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4.3 Policy Switching

Because different policies perform differently under various traffic conditions, it

would be useful to have an intersection manager that can switch policies, with-

out having to bring the whole system to a halt. In this section, I explain how our

intersection manager can switch smoothly between policies and briefly discuss the

implications of this ability.

4.3.1 Smoothly Switching Between Two Policies

The simplest way for an intersection manager to switch between two intersection

control policies is to refuse all reservation requests until the intersection is empty, at

which point the manager could resume with the new intersection control policy. This

näıve approach ignores the ability of the vehicles and intersection manager to plan

ahead and schedule around the switchover. Our more efficient solution places only

a small additional requirement on intersection control policies: each policy P must

keep track of the latest time lastP for which any vehicle could be in the intersection.

Initially, lastP is the current time, and P ensures that lastP is always at least as

late as the current time. Whenever P allows a vehicle through the intersection, it

updates lastP such that it is later than any time at which that vehicle could be in

the intersection.

The vast majority of the time, the intersection manager will only be using

a single policy. However, our intersection manager maintains a queue of policies

P0, P1, . . . , Pn, where ∀0 ≤ i < j ≤ n, lastPi
≤ lastPj

. Whenever the intersec-

tion manager wants to switch to a new policy Pn+1, it freezes Pn, and enqueues

Pn+1. If policy P is frozen, it rejects any reservation requests that would cause it

to modify lastP . When a Request message arrives, possibly containing multiple

traversal proposals, the intersection manager must then decide which policy or poli-

cies to use to handle each of the traversal proposals. If a traversal proposal has an
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arrival time of t, it can only be handled by Pi, where i is the smallest value such

that t < lastPi
. In other words, each policy Pi can only handle proposals that have

the vehicle arrive and depart within the time interval (lastPi−1
, lastPi

]. Figure 4.4

provides a depiction of this process. Any proposal that would have a vehicle arrive

within one policy’s interval and depart in another cannot be accepted. Recall from

Chapter 3.1.1 that the traversal proposals are ordered by priority. The first proposal

is the one most desired by the vehicle, whereas the last is the least desired. The

intersection manager should thus try to satisfy the proposals in order from first to

last. Since each of these proposals may need to be handled by a different policy,

each of which may have a different timeframe for responding, it is extremely com-

plicated to develop a system that can test all of the proposals while preserving the

preferences of the vehicle and ensuring that no vehicle holds more than one reser-

vation at a time. Furthermore, situations in which this ability would be necessary

are exceedingly remote. For that reason, we determine which policy should respond

to the first traversal proposal, and then send that policy all the proposals within

that policy’s purview. All other proposals are ignored. This strikes a reasonable

balance between complexity of implementation and catering to the preferences of

the requesting driver agent.

4.4 Timeout

Once a driver agent’s reservation request is rejected, that driver agent may imme-

diately make a new request. Unless the new request is significantly different, it will

most likely be rejected as well. With the exception of the request made immediately

after the first rejected request, a driver agent’s estimate of its arrival at the inter-

section is not likely to change much in the instant between consecutive requests.

Eventually, after the vehicle has decelerated enough or the driver agents with con-

flicting reservations have canceled, the vehicle will obtain a reservation and make it
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P1 P2 P3 P4 P5

1 2416 35

arrival_time = 284 ...

arrival_time = 363 ...

arrival_time = 192 ...

arrival_time = 315 ...

arrival_time = 251 ...

REQUEST message_id = 24...

Figure 4.4: Five policies, P1, P2, . . . , P5 are all enqueued. The first four are frozen,
and for each Pi, lastPi

is shown below the policy name. A Request message comes
in with five traversal proposals. The first must be assigned to P4 because the arrival
time is too late for P3. The second and third traversal proposals are ignored because
they cannot be assigned to P4, but the fourth and fifth proposals can. Note that
any proposal that would cause the vehicle to leave the intersection after time t > 35
will be rejected, because lastP4

= 35.

through the intersection. From the standpoint of the intersection manager, each of

the requests before the successful one are wasted effort. While our policy runs at

most two internal simulations per request, those simulations may be computation-

ally expensive, especially if the FCFS policy has a high granularity. Furthermore,

if each rejected vehicle makes a request at every possible instant, the work can add

up very quickly.

In order to keep the required amount of computation down and discourage

driver agents from overloading the intersection manager with requests, the policy

employs a system of timeouts. Once a driver agent’s request is rejected, subsequent

requests will not be considered until a period of time (determined by the reservation

parameters) has elapsed. When rejecting a request, the policy includes in the rejec-

tion message the time after which it will consider further requests from the driver

agent. In our implementation, this time is equal to t+min(1
2 ,

(ta−t)
2 ), where t is the
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current time and ta is the time of arrival in the request message. This process serves

two purposes. First, it dramatically reduces the amount of computation the pol-

icy needs to do, because the intersection manager receives fewer requests. Vehicles

may not obtain reservations at the earliest moment possible, but the computational

savings are more than worth it. Second, it gives preference to vehicles that will

enter the intersection sooner. If a vehicle is stopped at the intersection, it can send

requests as quickly as it wishes, giving it the best chance of getting a reservation

approved. A vehicle farther away, however, may have to wait the full half-second

before attempting to make another reservation. As a vehicle approaches the inter-

section, if it is unable to procure a reservation, the frequency of opportunities to

send reservation requests increases. In practice, timeouts significantly improve the

performance of the system, allowing it to handle much higher traffic loads while

avoiding backups.

4.5 Reservation Distance

Allowing accelerations in the intersection helps eliminate deadlocks, but other prob-

lems arose in our prototype implementation that significantly impaired the perfor-

mance of the system. Frequently, a lane of traffic would become congested when

many vehicles were spawned in that lane. Even when the simulator stopped spawn-

ing vehicles in that lane, the lane would remain congested. The problem is that

FCFS, as first described, does nothing to control how vehicles in the same lane are

alloted reservations. At best, the frontmost vehicle will get a reservation and make

it through the intersection unhindered. However, this is often not the case. Some-

times the vehicle in front cannot obtain a reservation (due to congestion), and must

decelerate. As shown in Figure 4.5, driver agents in vehicles further back may expect

to accelerate soon and successfully reserve space-time in the intersection that the

frontmost vehicle needs. While all vehicles will eventually make it through (a vehi-
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cle might get a reservation immediately after vehicles behind it cancel), this process

can repeat many times before the frontmost vehicle gets a reservation. In the worst

scenarios, a single vehicle can continue for quite some time to obtain reservations

that prevent the front car from crossing the intersection.

If we could maintain the invariant that vehicles do not get reservations unless

all cars in front of them (in their lane) have reservations, this scenario could be

avoided entirely. A simple way to enforce this would be to insist that no vehicle can

get a reservation unless the vehicle in front of it already has one. Unfortunately,

there is no way to strictly enforce this: vehicles do not communicate their positions

(and even if they did, they could be untruthful).

However, because the vehicles communicate the time at which they plan to

arrive at the intersection, as well as what their velocity will be when they get there

(quantities which the vehicles have no incentive to misrepresent), it is possible to

approximate a vehicle’s distance from the intersection, given a reservation request

by that vehicle. We approximate this distance, which we call the reservation dis-

tance, as va(ta − t), where va is the proposed arrival velocity of the vehicle (at the

intersection), ta is the proposed arrival time of the vehicle, and t is the current time.

This approximation assumes the vehicle is maintaining a constant velocity.

The policy uses the approximation as follows. For each lane i, the policy has

a variable di, initialized to ∞. For each reservation request r in lane i, the policy

computes the reservation distance, d(r). If d(r) > di, r is rejected. If, on the other

hand, d(r) ≤ di, r is processed as normal. If r is rejected after being processed as

normal, di ← min(di, d(r)). Otherwise, di ←∞.

While this heuristic does not guarantee that vehicles only get reservations if

all vehicles in front of them already have reservations, it makes it much more likely.

Two properties make the approximation particularly well-suited to this problem.

First, if a vehicle is stopped at the intersection, its reservation distance will be
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approximated as zero. No vehicle behind it will be granted a reservation before it

is—no smaller reservation distance is possible. Furthermore, because the reservation

distance is the product of the arrival velocity and the time until the vehicle arrives,

as vehicles approach the intersection and slow down, the reservation distance gets

smaller and more accurate. Thus, vehicles most susceptible to the problem described

in Figure 4.5 are the most likely to be protected against it. The second property is

that because the estimate uses the arrival velocity of the vehicle, it overestimates

the distance of vehicles expecting to accelerate significantly before reaching the

intersection. It is this expectation that causes driver agents to reserve space-time

that is needed by vehicles in front of them. Note also that this heuristic only works

within a single lane—each lane keeps track of its own reservation distance.

In the example of Figure 4.5, the white vehicle’s rejected reservation request

would shorten the maximum allowed reservation distance for its lane. This, in turn,

would cause future requests by the shaded vehicles to be immediately rejected, giving

the white vehicle exclusive access (within the lane) to the reservation mechanism.

Once the white vehicle secured a reservation, the reservation distance would be reset

to the maximum, and all vehicles would once again have equal priority.
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d’

d

Figure 4.5: Several vehicles are waiting at the intersection. With a reservation
distance of d, the front (white) vehicle is incapable of obtaining a reservation be-
cause the vehicles behind it (shaded) hold conflicting reservations. Once the white
vehicle’s request is rejected, the reservation distance is decreased to d′. Once the
shaded vehicles cancel their reservations, the white vehicle can obtain a reservation
uncontested.
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Chapter 5

Driver Agent Implementation

One advantage of our intersection control mechanism is its ability to function with

many heterogeneous agents. Intersection managers and driver agents can be imple-

mented in any number of ways, provided they adhere to the protocol. In order to

test the system, an implementation of each type of agent is required. The previous

chapter gave some examples of intersection manager implementations. In this chap-

ter, I describe our implementation of the other main agent in the system, the driver

agent, which controls all aspects of a vehicle’s motion and communication.

Our driver agent is an amalgamation of three separate agents, a pilot, which

controls all the low-level physical motion of the vehicle, a coordinator, which handles

all of the vehicle’s communication and interaction with other agents, and a navigator,

which selects the route the vehicle will take to reach its destination. Figure 5.1

shows the ways in which each component interacts with the environment. The three

sub-agents communicate by modifying variables pertaining to approved reservation

parameters in the enclosing driver agent object. The enclosing driver agent also

contains a finite state machine that controls and changes state in response to the

behavior of the sub-agents.

By separating the different components of the driver agent, it is possible to

use only a subset of them. Because the three components are kept as disjoint as
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Figure 5.1: A diagram of the driver agent architecture. The pilot handles the
physical motion of the vehicle, the coordinator communicates with other agents,
and the navigator uses a map service to help determine routing.

possible, they do not rely heavily on each others’ implementations. For example, the

coordinator needs only to know the vehicle’s current position and velocity, as well

as the location and structure of the next intersection, to make a reservation for the

vehicle. Once the reservation is made, it is up to the pilot to keep the reservation. If

the coordinator determines that keeping the reservation is no longer possible, it can

cancel and make a new reservation. The pilot in this case could even be a human

driver, assisted by cues to speed up or slow down in order to make the reservation.

Of course, the coordinator would need to understand that the pilot had limited

capabilities, and make a reservation with enough leeway to be safe.

5.1 Pilot

The pilot is responsible for directly controlling the physical motion of the vehicle.

Lane keeping, collision avoidance, and velocity control are all within the purview of

the pilot.
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5.1.1 Lane Keeping

Lane keeping is a behavior that consists solely of modifying the steering angle of

the vehicle, and is thus entirely independent of the rest of the pilot’s behavior.

Lane keeping is active at all times—the vehicle is always attempting to stay in its

current lane. The lane-keeping behavior is designed to be robust to sudden lane

reassignment, and this is how both turning and lane changing are implemented:

the driver agent simply changes which lane is its “current” lane, and the pilot uses

the lane-following behavior to steer the vehicle into the correct lane. This process

is entirely smooth, provided the vehicle is traveling at a reasonable velocity—a

condition enforced by other parts of the pilot. As explained in Chapter 6.2.1, lanes

are represented by a directed curve with an associated width. The curve runs down

the exact center of the lane, and by keeping the vehicle evenly straddling the curve,

the pilot ensures the vehicle stays centered in the lane.

The driver agent accomplishes this goal by keeping the front wheels turned

toward a moving point on the segment. This point, which we call the aim point

is farther along the segment than the vehicle. The aim point is computed by first

projecting the point at the front and center of the vehicle onto the line segment,

and then displacing this point in the direction of the line segment by an amount

we call the lead distance. The lead distance is an affine function of the vehicle’s

velocity that is equal to a minimum lead distance when the vehicle is not moving.

The proportional lead distance is necessary because otherwise at high velocities, the

required steering angle may change faster than the pilot can steer, resulting in wildly

erratic steering or the vehicle driving in circles. The minimum lead distance is to

ensure that the lead distance does not get too small, the effect of which is equivalent

to the velocity being too large. By ensuring the aim point is at least some distance

farther down the lane, we know the vehicle will end up in a stable configuration

traveling in the proper direction. Figure 5.2 depicts how the pilot determines the
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lead distance (and subsequent aim point) for different velocities.

ba c

Figure 5.2: A vehicle is attempting to follow the lane. To do so, it first calculates
the point that represents the projection of its position onto the directed line segment
running down the center of the lane (a). Then, depending on its velocity, it displaces
the resulting point in the direction of travel by a small or large amount to obtain the
point at which it should aim its front wheels. For low velocities, the point will not
be displaced much—only enough to ensure the vehicle moves in the correct direction
(b). For higher velocities, the aim point must be farther along the lane, so that the
vehicle’s steering will be more gradual and thus more stable (c).

This method of lane following is of course only one possible method, and

was selected because it is sufficient for our purposes. It also assumes a complete

separation between determining where the lane is—a given in our simulation—and

following the lane. In a real autonomous vehicle, it may be necessary to blur the

line between these two processes. The reservation system’s functionality does not

depend on the driver agent using this particular algorithm, provided the driver agent

turns within some mutually understood constraints.

5.1.2 Collision Avoidance

To avoid hitting vehicles in front of it, the pilot maintains a following distance from

the vehicle in front of it. This following distance is a fixed minimum following dis-

tance of 0.5 meters, plus the amount of distance it would take for the vehicle to

come to a complete stop. In the vast majority of cases, this following distance is

overly conservative. However, improving it would require specific knowledge about
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the velocity and deceleration capabilities of the other vehicle. In a real-world im-

plementation, we might be able to know the velocity of the other vehicle and make

some assumptions about the other vehicle’s performance capabilities, but for this

simulator we do not. Maintaining the following distance is the most important

velocity-modifying task of the pilot, and as such, it takes precedence over all other

tasks. Even if decelerating to maintain the following distance will make the vehicle

miss its reservation, the pilot will still decelerate to avoid getting too near the vehicle

in front of it.

5.1.3 Arriving On Time and Velocity

Secondary to maintaining a safe following distance, the pilot is responsible for ensur-

ing that if the vehicle has a reservation, it arrives at the intersection in accordance

with that reservation. If the vehicle does not have a reservation, the pilot must

prevent the vehicle from entering the intersection at all. In the case of a reservation,

the vehicle must arrive during a particular window of time, and there may also be

restrictions on the vehicle’s velocity at the time of arrival. These restrictions often

take the form of a very specific velocity, but in other cases they may only define a

lower bound on the vehicle’s arrival velocity, to ensure that the vehicle departs the

intersection by a particular deadline. As each case has different requirements on the

vehicle, the pilot has three separate behaviors for meeting arrival parameters: one

for arrival time only, one for arrival time and exact velocity, and one for arrival time

and a minimum velocity. Each behavior must also ensure that the vehicle does not

arrive at too high of a velocity in the case that the vehicle needs to make a turn at

the intersection. Note that none of the behaviors decides when the vehicle should

accelerate, only when it should decelerate. The default action for the pilot is to

accelerate when possible.
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Time Only

If the vehicle needs only to arrive at a specific time, the pilot estimates the distance

the vehicle will travel if it begins decelerating at the next time step and continues

to decelerate until the time of the reservation. If this distance is greater than the

distance to the intersection, that means that the pilot cannot wait until the next

time step to begin deceleration, or it will enter the intersection early. In this case,

the vehicle decelerates. If the distance the vehicle travels is less than or equal to the

distance to the intersection, then it is possible for the pilot to delay the vehicle’s

arrival sufficiently to avoid arriving early. In this case, the vehicle accelerates, if

possible. Figure 5.3 illustrates three possible situations.

Figure 5.3: Three possible scenarios for determining whether or not to decelerate.
Assume that the reservation is at time t and that the distance to the intersection is
vt. If the vehicle decelerates at the next time step and follows the lightest curve, it
will travel the distance under that curve, which is clearly greater than vt, and thus
will arrive too early. The pilot should thus decelerate immediately. The medium
curve shows the vehicle can arrive later than the arrival time, so the pilot should
not decelerate. The darkest curve allows the vehicle to stop completely before the
intersection. In this case, the pilot should also continue to accelerate.
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Time and Exact Velocity

Ensuring that the vehicle arrives on time and with a specific velocity is somewhat

more complicated than time alone. In this case, the pilot calculates the time it will

take to, at the next time step, change as quickly as possible to the target arrival

velocity and then maintain that velocity until arriving at the intersection. Note that

“change as quickly as possible” can mean accelerating or decelerating, depending on

whether the vehicle’s current velocity is above or below the target arrival velocity.

If the time to carry out these actions is less than the time until the reservation, then

the pilot decelerates the vehicle. Additionally, if there is not sufficient time to reach

a velocity at or below the target arrival velocity, the pilot decelerates the vehicle.

Otherwise, the pilot accelerates.

Time and Minimum Velocity

Ensuring that the vehicle arrives on time, but at a velocity at least as great as a

specified minimum arrival velocity is very similar to ensuring the vehicle arrives on

time and with an exact velocity, the difference being that the pilot does not deceler-

ate the vehicle if it believes it will arrive above the minimum arrival velocity. Recall

that for ensuring arrival parameters, the pilot is not responsible for parameters that

are not possible. That task is the purview of the coordinator.

5.2 Coordinator

The coordinator is responsible for all aspects of coordination with other agents,

including intersection managers and other driver agents. Externally, the coordinator

sends and receives messages, but internally, the coordinator also sets the arrival

parameters which the pilot attempts to keep, and ensures that keeping the current

arrival parameters is possible.
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5.2.1 Intersection Type

The first task of the coordinator, as the vehicle approaches an intersection, is to

determine what type of intersection it is. If it is a managed intersection, the coordi-

nator knows it will need to use the V2I protocol. If it is an unmanaged intersection,

the coordinator must use the V2V protocol. The type of intersection is assumed to

be a part of the global map available to the driver agent, and in turn, the coordi-

nator.

5.2.2 Determining Reservation Parameters

The most important and most difficult task of the coordinator is to select the pa-

rameters for the driver agent’s next Request or Claim, the messages that stake

out space-time in the intersection in the V2I and V2V scenarios, respectively. This

complex procedure involves both precise calculation as well as heuristic estimation.

No agent can be entirely sure about the future, so the coordinator first makes some

broad educated guesses about what will happen in the future, and then based on

those guesses, precisely calculates the outcome.

Optimism and Pessimism

A näıve driver agent can perform poorly when, for example, it makes a reservation

while stuck behind a slower-moving vehicle. If the vehicle in front subsequently

accelerates, the driver agent should account for that by accelerating as well (possibly

switching to an earlier reservation).

To account for situations like this one, we added the notion of optimism

and pessimism to the coordinator. An optimistic coordinator assumes it will arrive

at the intersection in the minimum possible time. A pessimistic coordinator, on

the other hand, assumes it will be stuck at its current velocity until it reaches the

intersection. All coordinators begin optimistic. If a coordinator has to cancel its

reservation or alter its Claim because there is no way for it to arrive on time,
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it becomes pessimistic. A coordinator which finds itself no longer stuck behind a

slower vehicle will become optimistic. Due to the relatively infrequent and smooth

transitions through these “moods,” our coordinator agent can take advantage of

improving circumstances without causing it to send excessive numbers of messages

every time conditions change.

Arrival Lane

The first parameter the coordinator fixes when determining arrival parameters is

the arrival lane. In all of our simulations, the arrival lane is the current lane of the

coordinator’s vehicle. However, if we enabled a lane-changing behavior for the driver

agent, it could choose a different lane. Additionally, since a Request message can

contain more than one set of arrival parameters, a vehicle could generate arrival

parameters for more than one lane. If the vehicle acquires a reservation in another

lane that is preferable—perhaps by being earlier—it could then attempt to fulfill

that reservation by first changing lanes. In a V2V scenario, only one Claim can

be generated, and the vast majority of these situations will have only one available

arrival lane, so the coordinator always chooses the current lane.

Departure Lane

In addition to choosing the arrival lane, the coordinator must choose the departure

lane for the vehicle. As part of the information about the intersection, all driver

agents have access to a precomputed map from arrival lanes to an ordered list of

departure lanes. The departure lanes are ordered by distance from the arrival lane,

where the distance from an arrival lane to a departure lane is defined as the distance

from the point the arrival lane enters the intersection to the point the departure lane

exits the intersection. This ordering allows vehicles to determine the shortest route

through the intersection for a given arrival lane and set of candidate departure

lanes. If a vehicle were turning left, the nearest lane would be the leftmost lane of
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the departure road, whereas if the vehicle were turning right, the nearest lane would

be the rightmost lane of the departure road. If the vehicle were not turning, the

nearest lane would be the lane in which the vehicle already is traveling, followed by

the lanes to the right and left of that lane, and then further outward, in a sort of

one-dimensional spiral. Our coordinator has the ability to take advantage of this

information if it is configured to make Requests with more than one set of traversal

parameters. In this case, for each set of traversal parameters beyond the first, it

adds the next furthest departure lane. However, in all of our experimental data, we

only allowed one set of traversal parameters per request, and as such, none of our

experimental data includes this feature.

Maximum Velocity

Once the arrival and departure lanes are fixed, the coordinator can determine the

maximum velocity at which it can safely negotiate the transition between the two

lanes. If a vehicle takes a turn too fast, it may not be able to stay on the road, espe-

cially if the road is wet or icy. Less dramatically, it might also exit the intersection

in excess of the destination lane’s speed limit. The vehicle should only traverse the

intersection at a velocity low enough such that it:

• can maintain control

• obeys all speed limits

• does not cause significant discomfort to its passengers

In the real world, this determination would involve a complicated mathematical

computation involving road conditions, coefficients of static and kinetic friction,

and other parameters beyond the scope of the simulator. In our simulator, the

coordinator determines the maximum speed through a series of internal simulations

that decrease the range of acceptable turn velocities. To begin with, the maximum
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acceptable velocity is the minimum of the speed limits of the arrival and departure

lane and the maximum velocity of the vehicle. Using a binary search–style process,

the coordinator conducts an internal simulation of its vehicle making the intersection

traversal at a velocity equal to the middle of the currently acceptable range of

velocities. At the end of the simulation, when the vehicle exits the intersection,

several quantities are measured, including the angle of departure, the distance from

the vehicle to the center of the departure lane, and the steering angle of the vehicle.

Based on how far these values are from their ideals—the vehicle exits exactly in the

middle of the lane, facing the same direction as the lane, with zero steering angle—

the trial is judged either “safe” or “unsafe”. If the trial is unsafe, the maximum

allowed traversal velocity is lowered to the velocity of that trial. Otherwise, the lower

end of the range (which starts at zero) is increased to the velocity of that trial. The

trials continue until the range is sufficiently small, at which point the lower end of

the range is selected as the maximum traversal velocity for that trajectory. If zero

is selected as the maximum traversal velocity, that trajectory is not allowed for the

vehicle (as it would be unsafe). As an optimization in the simulator, these values

are cached globally for all vehicles with identical properties.

Arrival Time

To estimate the vehicle’s arrival time, the coordinator relies heavily on the opti-

mism/pessimism heuristic. If optimistic, the coordinator assumes that the vehicle

will begin to accelerate immediately to either the vehicle’s top speed or the speed

limit of the current lane, whichever is smaller. The coordinator also assumes that

the vehicle will be able to maintain this velocity for as long as possible (or reach

as near to it as possible) before needing to slow down to ensure that the vehicle

does not arrive at the intersection traveling too quickly to traverse it safely. If pes-

simistic, the coordinator assumes that it will not be able to accelerate beyond its

current velocity, but that it may still need to decelerate so as not to arrive at the
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intersection at too high a velocity.

Arrival Velocity

If it is possible for the vehicle to arrive at or above the maximum traversal velocity,

the coordinator will select that as the arrival velocity. Otherwise, the computation is

slightly more complicated, as it has many separate cases. If the vehicle is currently

traveling at a velocity below the maximum traversal velocity, and the coordinator is

pessimistic, it selects its current velocity as the arrival velocity. If the coordinator

is optimistic, it determines the maximum velocity the vehicle could attain if it

accelerated all the way to the intersection and uses that as the arrival velocity,

unless that velocity is above the maximum traversal velocity, in which case the

maximum traversal velocity is used.

In previous versions of the simulator [Dresner and Stone, 2005], the arrival

time and velocity prediction were not as well separated from the algorithms that

attempted to maintain them. By separating prediction from control—into the coor-

dinator and pilot, respectively—each part becomes much simpler. While this does

limit the sophistication of the algorithms slightly, it makes reasoning about the

correctness or performance of the entire agent much simpler.

5.2.3 Determining Possibility of Current Arrival Parameters

In addition to choosing arrival parameters, it is the coordinator’s responsibility for

determining if these parameters can be met given the vehicle’s current state. While a

vehicle can decelerate whenever it wants, acceleration may be limited by any vehicles

in front of that vehicle. Due to this property, the coordinator need only ensure that

the vehicle will not be too late or too slow—the pilot can ensure that the vehicle

will not be early or too fast by decelerating preemptively. When evaluating whether

its vehicle can arrive on time or at sufficient velocity, the coordinator assumes the

best of all possible worlds. If, by accelerating immediately to its top speed or the
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speed limit (whichever is lesser), the vehicle can arrive early enough and fast enough

at the intersection, the coordinator deems the current arrival parameters possible.

Otherwise, it either sends a Cancel message (in the V2I scenario) or revises its

Claim (in the V2V scenario).

5.2.4 V2V Behavior

In the V2V scenario, the coordinator still uses the same methods to calculate initial

arrival parameters, but it also adds some extra behavior around this calculation.

First, the coordinator does not immediately begin to transmit its calculated Claim.

Instead, it first spends some time listening to the other vehicles’ transmissions, a

behavior we call lurking. Outside of a specified distance, called the lurk distance,

the coordinator is entirely passive, gathering information about other vehicles’ in-

tentions. Once inside the lurk distance, the coordinator will begin transmitting its

latest Claim repeatedly. To choose a Claim, the coordinator first determines its

arrival parameters independently of other vehicles. Next, it determines which of

the other vehicles’ Claims are permissible (will be allowed). The coordinator then

selects the next available time at or after its calculated arrival parameters such that

the resulting Claim will not be dominated by any permissible Claim about which it

knows. In some scenarios, cycles in the dominance graph of the existing Claims will

cause this Claim to be nonpermissible, even though it was not dominated by any

of the previously permissible Claims. In this case, the coordinator finds a more re-

strictive Claim: one that is not dominated by any existing Claim, and is therefore

guaranteed to be permissible. Once the vehicle has passed the point of no return

(it cannot stop before entering the intersection), the vehicle commits to the Claim,

and continues to broadcast it until it has completely traversed the intersection. A

video of this process in action in the aim3 simulator can be seen on the videos page

of the project website at http://www.cs.utexas.edu/~kdresner/aim/.
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5.3 Navigator

Of the three components in our prototype driver agent, the navigator is the only

one that has already been fully realized in a modern vehicle. As such, it is not

surprising that the navigator is the simplest of the three components. Global Po-

sitioning System (GPS) navigation technology exists that, given a starting location

and a destination, can select a route between the two accounting for current traffic

conditions, travel time, and distance. Our navigator is responsible for determining

which way the vehicle will turn at an upcoming intersection. It makes this decision

by calculating the shortest (time) route, calculating the time to traverse a segment

between intersections based on the distance, speed limit, and vehicle’s maximum

velocity. It calculates intersection traversal time in the same manner as the coor-

dinator. To optimize the search process, it uses the A* search algorithm, with a

heuristic distance estimate

g(p) =
d(p, q)

min(vmax, lmax)
,

where d is the Euclidian distance function, p is a point, q is the destination of the

vehicle, vmax is the maximum velocity of the vehicle, and lmax is the maximum

speed limit of any road [Hart et al., 1968]. This method is more than sufficient

for the purposes of the simulator and the small simulated world that the simulator

models. In a real-world implementation, such computation could occur remotely

(perhaps as a service), or involve more sophisticated algorithms. Because of the

infrequence with which routes are calculated and the high tolerance for latency—a

10-second delay for an optimal route is perfectly acceptable—the specifics of the

implementation are not as critical as the other components. Nonetheless, there is a

large space of potential solutions, including multiagent methods, each with its own

benefits and drawbacks. Further discussion of such methods is beyond the scope of

this thesis.
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5.4 Human Driver Agent

In some experiments, we use what we call a “human” driver agent, which is meant

to simulate the important properties of a human driver sharing the road with au-

tonomous vehicles. This driver agent is very similar to the autonomous driver agent

described above, except that it is incapable of wireless communication or any pre-

diction short of that required for distance-keeping. Whereas the autonomous driver

agent understands the periodicity of traffic signals and can predict the next “green”

cycle, the human driver acts only based on the current state of signals. If the signal

is green, it proceeds, if it is yellow or red, it stops if it can, otherwise it proceeds.

The human driver agent also keeps a longer following distance than the autonomous

vehicles. In all other aspects, namely those regarding steering and lane keeping, it

is identical to the autonomous driver agent.
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Chapter 6

Simulator

There are many traffic simulators available for research purposes. Some of these

simulators are designed to model vehicle kinematics with extremely high fidelity,

including tire friction, engine power output, and even aerodynamics. Others deal

with very large networks of roads or freeways, or model traffic flow instead of in-

dividual vehicles [Sukthankar et al., 1995; Helbing et al., 2001]. Many simulators

are designed to model true human behavior, rather than testing custom agent algo-

rithms [Caliper Corporation, 2009]. When this research began, however, none gave

us the ability to easily replace the mechanism by which intersections are governed.

Since that is the main focus of this work, we required a custom simulator. Further-

more, we needed a simulator that could simulate individual vehicles, but we did not

need extremely high fidelity. Rather, we need to be able to simulate a very large

number of individual vehicles, and examine the effect of the vehicles’ interactions at

intersections on the traffic system as a whole, and thus required a simulator that sits

somewhere between the two extremes. Because we were unable to find an “off-the-

shelf” simulator that gave us both the flexibility and the precision that we needed,

we built a custom time-based simulator for our experiments. This simulator has

evolved into a major contribution of the research presented in this thesis, and the

source code will be released upon Publication.
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6.1 A Brief History Of The AIM Simulator

Throughout the research presented in this thesis, our custom simulator has gone

through three major revisions. In the remainder of this chapter, I describe the most

recent and full-featured simulator in detail. However, here I discuss and present the

earlier versions, as some of our experimental results were obtained using the earlier

versions, each of which has various limitations. Furthermore, many of the previous

publications of this research used previous incarnations of the simulator.

6.1.1 The First Simulator

The first version of our simulator, aim1, models a single four-way intersection of per-

pendicular roads. Vehicles cannot turn at the intersection—the driver agent controls

only the vehicle’s velocity. The main purpose of this simulator was to conduct a

proof-of-concept experiment to determine roughly how well the reservation-based

intersection control mechanism compared to a theoretical traffic signal or stop sign.

Communication between agents was synchronous and handled by a method call, with

the driver agents calling methods directly in the intersection manager, of which there

was only one. In addition to being unable to turn, vehicles in the first simulator

were required to maintain a constant velocity while in the intersection. No V2V

communication or coordination was possible.

6.1.2 The Second Simulator

The second version of the simulator, aim2, added the ability for vehicles to turn

and accelerate while in the intersection. By enabling vehicles to accelerate in the

intersection, the simulator could use other intersection control policies besides FCFS,

including emulation of a traffic signal and stop sign—both of which require vehicles

to be able to stop at the intersection and then accelerate. The second version also

added the capability of an intersection manager to control physical signals with a
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signal model, allowing for policies such as FCFS-Signal (see Chapter 8). With

FCFS-Signal, the simulator gained the ability to mix (simulated) human-driven

and autonomous vehicles.

6.1.3 The Current Simulator

The current incarnation of the simulator, dubbed aim3, supports all of the features

of the first two versions, as well as the capability of simulating and managing multi-

ple intersections, parameterized vehicles, vehicle-to-vehicle communication, variable

reliability communication, arbitrarily large queues of policies, piecewise-linear lanes,

and non-rectangular intersection geometries. In the rest of this chapter, I discuss

in detail many of the key elements of this simulator: the modeling of the physical

and geographic layout of the roadways, the vehicles themselves, the communication

model, physical motion, statistics, the overall main loop, and visualization.

6.2 Layout

The part of the simulator that models the infrastructure is the layout. The lay-

out is like a map, containing all the roads and lanes, along with all the important

information about the geometry of those lanes and roads. Such a layout could be

constructed from a predefined format such as DARPA’s Route Network Definition

File (RNDF) [DARPA, 2007b], however it is important to note that this section

describes an internal representation, optimized for use by the simulator—it would

not be practical to store the layout internally as RNDF, because anytime an ele-

ment of the simulator wanted to access information about the layout, the RNDF

content would need to be parsed and analyzed. However, using a format like RNDF

as an input would allow us to define intersections more arbitrarily, but with less

automation. While the simulator could be extended to accept RNDF as an input

or to define certain physical structures more freely, it does not currently have that

capability..
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6.2.1 Lanes

A lane is just that – a model of a lane of traffic. In the simulator, every lane has

three properties, a starting point, an ending point, and a width. Additionally, every

lane may have another lane that leads into it, out of it, or borders it to the right

or left. This “chaining” allows lanes to be created from multiple substituent lanes.

Using only a few base lane implementations, any number of complex lanes can be

created. The only current lane implementation is a line segment lane, so any lanes

must be piecewise linear, however, the interface is such that a lane could be made

from a wide variety of functions such as a cubic curve. Connecting lanes on the

left and right sides allows the creation of multiple-lane roads on which vehicles can

change between the adjacent lanes. In addition to physical properties, lanes also

have a speed limit and a traffic level. The traffic level, measured in vehicles per

second, determines if and how vehicles are spawned in that lane.

6.2.2 Roads

A road is a group of lanes that travel together, in the same direction. At the heart of

the road is a list of lanes, ordered from leftmost to rightmost. Each lane is adjacent

to the lanes before and after it in the list. Because all lanes in a road must travel

in the same direction, if more than one direction of travel is needed, more than one

road is required. For this reason, most roads also have a dual—a separate road that

runs parallel, but in the opposite direction. If road R is the dual of road R′, then

R′ is the dual of R. Thus, most two-way streets are implemented as two roads that

are duals of one another. While we assume throughout all of our experiments that

vehicles drive on the right, this implementation of roads ensures that this need not

be the case. As long as the two roads are duals of one another, everything in the

algorithm will work correctly.
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6.2.3 Defining Intersections

Once roads are defined, we can define intersections of roads. The simulator allows

for the intersection of any set of roads—the set of roads is the only thing from

which the intersection is created. The creation of an intersection from a set of roads

proceeds in three steps, which are illustrated in Figure 6.1.

1. Finding the geometric intersection of all the lanes in all the roads, or more

specifically, the union of the pairwise geometric intersections of all lanes.

2. Extending the intersection by including the area of every lane from a fixed dis-

tance before any part of that lane enters the intersection until a fixed distance

after any part of that lane leaves the intersection. This extension ensures that

lanes always enter the intersection perpendicular to its boundaries, prevents

vehicles from getting too close to one another before entering the intersection,

allows edge tiles to control only entering and exiting vehicles, and handles cases

in which a strict intersection would leave the intersection in several disjoint

pieces that lanes may enter and exit multiple times.

3. Extending the intersection to be its own convex hull. This process eliminates

any remaining “holes” that might be in the intersection, as well as smoothing

out some of the angles that might make for impossibly sharp turns.

(a) Initial set of roads (b) Strict intersection (c) Extension (d) Convex hull

Figure 6.1: The intersection construction process. The initial set of roads is shown
in 6.1(a). Steps 1, 2, and 3, are shown in 6.1(b), 6.1(c), and 6.1(d), respectively.
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6.3 Vehicles

At the very simplest, a vehicle is a rectangle with a fixed length and width—the

simulator does not attempt to model the third dimension (height). But vehicles

in the simulator have a lot of other fixed properties, as well as variable states, in

order to make them more useful for experimentation. The fixed properties include

the location of the front and rear axles and the performance capabilities of the

vehicle. State variables include velocity, acceleration, and absolute position. On

vehicles equipped with a computerized driver agent, more properties may be present,

such as a communication range and queues of messages waiting to be sent or just

received. Despite being just a rectangle, the vehicle model and its associated code

are the single most complicated component of the simulator. Here, I describe this

component in great detail.

6.3.1 Vehicle Properties

At a bare minimum, vehicles in the simulator have the following fixed properties:

Vehicle Identification Number (VIN): a unique numeric identifier for the ve-

hicle

Length: the distance from the front of the vehicle to the rear of the vehicle, in

meters

Width: the distance from one side of the vehicle to the other, in meters

Front Axle Displacement: the distance from front of the vehicle to the front

axle, in meters

Rear Axle Displacement: the distance from front of the vehicle to the rear axle,

in meters
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Maximum Velocity: the maximum speed at which the vehicle can travel, in me-

ters per second

Maximum Acceleration: the maximum rate at which the vehicle can accelerate,

in meters per second squared

Minimum Acceleration: the maximum rate at which the vehicle can decelerate,

in meters per second squared (this is a negative quantity)

Maximum Steering Angle: the maximum angle away from center that the vehi-

cle can turn its front wheels in either direction, in radians

Maximum Steering Rate: the maximum angular velocity at which the vehicle’s

steering angle can be altered, in radians per second

Sensor Range: the furthest distance from the vehicle that its sensors can detect

another vehicle, in meters

Transmission Range: the distance that the vehicle can transmit a wireless signal,

in meters

The constants representing the distance from the front of the vehicle to the

front and rear axles allow more accurate simulation of vehicle turning. Specifically,

they allow the simulator to treat different styles of vehicle differently. The distance

between the front and rear axles is known as the wheelbase. Vehicles with shorter

wheelbases can turn more sharply than those with longer wheelbases—if the simu-

lator is to accurately model turning, it needs access to these important parameters.

Furthermore, a vehicle with a long hood will turn differently than a vehicle whose

front wheels are located nearer to the front of the vehicle.

The maximum steering rate limits the ability of a driver agent to turn the

wheels over time. Even a computerized driver will be limited by the hardware

in the vehicle, and will not be able to adjust the vehicle’s steering infinitely fast.
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This limitation more accurately approximates vehicle turning, including some of

the more dangerous aspects. If the driver cannot turn the wheels instantaneously, it

must ensure that it does not drive around corners at too high a velocity—it may not

be able to straighten out quickly enough and wind up veering off the road instead.

We did not experiment with variable transmission ranges, so for all experi-

ments, our transmission range was 250 meters.

All vehicles also have the following state variables:

Position a Cartesian pair of (x, y) coordinates

Velocity the current forward velocity of the vehicle, in meters per second

Heading the absolute angle (measured from the positive X-axis) of a ray from the

center rear of the vehicle to the center front of the vehicle, in radians

Acceleration the current rate of forward acceleration of the vehicle, in meters per

second squared

Steering Angle the angle to the left of center to which the front wheels of the

vehicle are turned, in radians

The simulator uses a Cartesian coordinate system that could be adapted to

use latitude and longitude via a simple transformation. In this coordinate system,

east is the direction of the positive X axis, and north is the direction of the positive

Y axis. A vehicle with a heading of zero radians would be driving due east, and a

vehicle with a positive steering angle 0 < ψ < π
2 would be turning to the left.

6.3.2 Driver Agent Access To Vehicle Properties And State

Providing driver agents with access to vehicle constants is trivial—they can access

this information at any time and have accurate and precise knowledge of these

quantities. Providing access to the variable state is slightly more complicated. To

80



handle this interplay between driver and vehicle, we provide each vehicle with a set of

gauges. A gauge is a window by which the driver can view the state of the vehicle,

but not always with high accuracy or precision. Depending on how the gauge is

instantiated, it can include several types of noise, as well as be entirely inoperable.

In addition to providing the driver agent with access to internal state, gauges also

allow driver agents to read information from simulated external sensors. These

sensors include a basic interval sensor that reports the distance to the next vehicle

in the current lane, and a more complicated simulated laser range finder that reports

the distance and angle to the closest object in the vehicle’s view. Because simulating

the laser range finder is computationally expensive, and because the interval sensor

is sufficient in most situations, the vehicle can turn off the laser range finder when

it is not needed. If it is off, the laser range finder is not simulated.

There are several facilities in the simulator for driver agents to modify the

state of the vehicle. While clearly a driver agent should not be able to set the

position of a vehicle, it can alter the steering and acceleration, as in a traditional

vehicle. To steer, the driver sets a desired steering angle, and the vehicle moves

the wheels over time toward that steering angle. To change velocity, a driver agent

has several options. It can specify a target velocity—from which the vehicle will

infer the required acceleration in order to reach that target velocity as quickly as

possible—or it can specify both a target velocity and an acceleration, in which case

the vehicle will accelerate at the given rate until it reaches the target velocity.

6.3.3 Vehicle Sensor Data

In addition to gauges that give the driver agent views of the internal state of the

vehicle, there are gauges that give the driver agent information about what is going

on outside the vehicle. These gauges are designed to provide information from

simulated sensors that the vehicle could have. While an actual autonomous vehicle

would have a multitude of outward-facing sensors, including laser range finders,
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short-wave radar, lidar, and video cameras, many of these technologies are either

very difficult to simulate or do not make sense in our simulated environment. To

operate safely in our simulated environment, we have determined that a vehicle

really only needs to sense one thing: how far away the next vehicle in front of it is.

It may not be well-defined as to which vehicle is the next vehicle in front, and so

we created two different sensors that try to accomplish this: a simplified simulated

laser range finder that can be used in any situation, and an interval sensor that

is much cheaper to use computationally, but can only be used when the vehicle is

traveling within a lane.

Simulated Laser Range Finder

Modern laser range finders and distance sensors can provide a large amount of dis-

tance and angle data to a mobile agent. In a real life setting, this information would

definitely prove useful in fine-tuning a driver agent. However, in our simulation, we

must process sensor information for all vehicles simultaneously, and accurately sim-

ulating a full laser-range finder is not feasible. Thus, we use a simple, yet pertinent

sensor reading which the driver agent can use to control its actions with respect to

the other vehicles. A purely straight-ahead sensor suffices when vehicles are trav-

eling only in straight lines. However, when a vehicle turns, it must also take into

account what is going on in the direction in which it is turning. To complicate

matters, when a vehicle is turning it must still take into account what is going on

directly in front of it because at any point it might straighten its wheels and continue

on its current heading. A sensor that points in the same direction as the wheels will

not be sufficient because vehicles coming out of turns may run into vehicles ahead

of them. Instead, our sensor’s scope widens in the direction of the turn, while nar-

rowing slightly from the other side. Figure 6.2 shows a scenario that demonstrates

the concept. As a testament to the sensor’s usefulness, when sent through an in-

tersection without coordination of any kind, vehicles equipped with only this sensor
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are able to avoid many collisions in the intersection, even with moderate amounts of

traffic. The main drawback of this approach is that, unamortized, it requires O(n2)

distance calculations just to determine which vehicles are in range of the sensor.

Figure 6.2: A depiction of the simulated laser range finder sensor model for the
driver agents. The sensor is focused between the gray lines and does not provide
information outside of them. The black line represents the reading provided to the
driver agent.

Interval Sensor

Most of the time, the full simulated laser range finder will not be necessary. Vehicles

spend the vast majority of their time in lanes, and when they are in the intersection—

at least in the V2I scenarios—do not usually need to worry about using their external

sensors. In order to make the simulation faster, we allow the driver agent to disable

the simulated laser range finder, and instead use an even simpler interval sensor,

which reports the distance to the next vehicle in the current lane. To provide input

for this sensor, the simulator creates a list of vehicles for each lane, and then sorts

those vehicles by their distance from the start of the lane. Note that it is possible for
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a vehicle to be in more than one of these lanes if, for example, it is changing lanes.

Vehicles inside intersections are not included. Once each of these lists of vehicles is

sorted, the distances between the successive vehicles are calculated and recorded in

the vehicles’ interval sensor gauges. Instead of requiring O(n2) time to complete, as

with the laser range finder, this process takes only O(n logn) time. Instead of only

being able to simulate tens of vehicles in real time, we can simulate hundreds.

6.3.4 Vehicle Disabilities

In addition to all the things that vehicles can do, the simulator has facilities for

designating what vehicles cannot do. As part of the failure mode analysis, we added

the ability for vehicles to have various disabilities, each of which prevents the vehicle

from taking certain actions. There are 8 disabilities:

NO BRAKES The vehicle cannot decelerate.

STUCK BRAKES The vehicle’s acceleration is set to its minimum value, with a

target velocity of zero and cannot be adjusted.

NO ACCELERATOR The vehicle cannot accelerate.

STUCK ACCELERATOR The vehicle’s acceleration is set to its maximum

value and cannot be adjusted.

LOCKED STEERING The vehicle’s steering angle cannot be altered.

PULLS RIGHT The vehicle’s steering angle is set to its minimum value and

cannot be altered.

PULLS LEFT The vehicle’s steering angle is set to its maximum value and cannot

be altered.

CRASH The vehicle’s velocity and acceleration are set to zero, and the vehicle’s

acceleration cannot be altered.
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6.3.5 Vehicle Statistics

Vehicles also store statistics for the simulator. These statistics include the amount

of information sent and received, the number of intersections traversed, the total

distance traveled, and the total delay experienced by that vehicle.

Communication Statistics

Associated with each message type is a method for computing the size of that

message. Since some messages have variable-length fields, different messages of

the same type may have different sizes. Because bandwidth is not an unlimited

resource, especially in a wireless network, it is important to keep track of the amount

of information traveling between vehicles to ensure that the scenario is realistic.

Whenever a message is sent or received by a vehicle, the size of the message is

added to the log. These quantities are then folded into global totals when the

vehicle is removed from the simulation.

Delay

In Chapter 2.1, we briefly introduced delay—the difference in travel time for a ve-

hicle due to the presence of the intersection and other vehicles. In the simulation,

this quantity is measured on a step-by-step basis. At each step, the simulator deter-

mines what the ideal speed of the vehicle should be. The ideal speed is a function of

the velocity at which it left the previous intersection, the speed limit of the current

lane, and the maximum allowed turn velocity at the next intersection. A vehicle’s

ideal velocity is bounded above by these quantities. More specifically, if a vehicle

has just departed an intersection at velocity v, its current velocity cannot exceed

v+amaxt, where t is the time since it departed that intersection, and amax is the ve-

hicle’s maximum acceleration. Similarly, if a vehicle cannot arrive at an intersection

moving faster than v, then its velocity cannot exceed v+ amint, where t is the time

until it arrives at the intersection, and amin is its minimum acceleration (maximum
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deceleration). Clearly, the vehicle’s speed is bounded above by the speed limit of

the current lane. By taking the minimum of these quantities, we can establish the

ideal velocity of the vehicle. While inside an intersection, the ideal velocity of the

vehicle is calculated similarly, substituting the maximum turn velocity for the speed

limit. Using this ideal velocity, we can determine the ideal amount of time it would

take to cover the distance that the vehicle actually covered in that time step. The

difference between this ideal amount of time, and the actual length of the time step

is the delay experienced by this vehicle in this time step. Because the frequency

of driver agent actions is limited by the frequency of the simulator (50 Hz), a very

small amount of delay may accumulate as an artifact of the discretized time in the

simulator.

6.3.6 Vehicle Archetypes

In order to simulate a variety of vehicles, the simulator includes five predefined

vehicle archetypes: the coupe, sedan, sport/utility vehicle (SUV), van, and bus.

The physical characteristics and performance capabilities of these vehicles are taken

from representative real-world vehicles or estimated where that information was not

readily available. Table 6.1 shows these properties and capabilities.

Name l w vmax vmin amax amin df dr ψmax
∂ψ
∂t max

Coupe 4 1.75 60 −17 4.5 −15 1 3.5 π
3

π
2

Sedan 5 1.85 55 −15 3.25 −13 1.2 4 π
3

π
3

SUV 5.131 2.007 52 −13 3.83 −13 1.18 4.126 π
3

π
3

Van 5.385 2.014 45 −10 3.08 −10 0.58 4.085 π
3

π
3

Bus 15 3 35 −9 1.3 −8 1.5 12 π
4

pi
3

Table 6.1: The different vehicle archetypes defined in the simulator. Properties and
performance capabilities are taken from real vehicles where readily available and
estimated otherwise. The properties are length (l), width (w), maximum velocity
(vmax), minimum velocity (vmin), maxmium acceleration (amax), minimum acceler-
ation (amin), front axle displacement (df ), rear axle displacement (dr), maximum

steering angle (ψmax), and maximum steering rate (∂ψ
∂t max

).
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In addition to these built-in types, the simulator also supports any custom ve-

hicle type, for which all of these values may be changed. Unless specially configured

otherwise, when generating new vehicles, the simulator uses a provided distribution

to probabilistically select from the main vehicle archetypes. For our simulations,

we use only the coupe, sedan, SUV, and van, and generate them with uniform

probability.

6.4 Communication

All communication in the simulator is simulated as if it were point-to-point commu-

nication. Broadcast communication, which is used in the V2V scenarios, is simply

built on top of point-to-point communication: an outgoing broadcast message is

sequentially delivered to all other vehicles in range as if they were the destination.

There is no simulated underlying network architecture for relaying messages to an

ultimate destination. While such a system is certainly worth investigating for a

real-world application, in the simulator it would need to be an explicit part of the

agent behavior.

Each agent that can communicate has two queues of messages, an inbox and

an outbox. In the actual implementation, vehicles have a separate set of queues for

V2V and V2I protocol messages, but it is equivalent to think of them as one set

of queues. Whenever an agent wants to send a message, it places it in the outbox.

Synchronously, the simulator examines all agents’ outboxes, takes any messages in

them, and then conditionally delivers them to their destinations’ inboxes. The next

time the destination agents are able to act, they can examine their inboxes and

take actions based on the messages present. Whether or not an individual message

is delivered is a function of two things: the transmission strength of the sending

agent, and the distance between the sending agent and the receiving agent. The

location of an intersection, for these purposes, is the centroid of the intersection’s
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area. For all of our experiments, we use a very simple function: the message is

delivered if and only if the message strength is greater than or equal to the distance

between the agents. It would be trivial to modify this function to do something

more sophisticated, such as dropping the messages probabilistically as the distance

grew beyond the transmission strength. Because the messages are delivered all at

once in one phase of the simulation, messages sent in one time step do not arrive

until the next time step.

One nice result of explicitly modeling communication (instead of using simple

function calls, as in previous versions of the simulator) is that it allows us to do a

mixed simulation. In a mixed simulation, one or more of the vehicles in the simulator

is an actual physical vehicle. Each real vehicle corresponds to a proxy vehicle in the

simulator whose state—position, velocity, and so forth—are continuously updated

using data from the real vehicle. The real vehicle’s sensors are fed information from

the simulator to make it appear to the real vehicle that the simulated vehicles are

real. This enables us to run experiments involving real vehicles without risking

expensive damage to the real vehicles should something go awry [Nimmagadda,

2009].

6.5 Physical Motion

At each time step, the simulator must update the position of every vehicle. Because

we model only planar vehicle kinematics and not dynamics, we must make a few

assumptions. First, we assume that vehicles do not skid on the road. Second,

we assume that vehicles move according to the following differential equations for

non-holonomic motion:

∂x

∂t
= v · cos(φ)

∂y

∂t
= v · sin(φ)
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∂φ

∂t
= v ·

tanψ

L

In these equations, x, y, and φ describe the vehicle’s position and orientation,

v represents the vehicle’s velocity, ψ describes the vehicle’s steering angle, and L is

the vehicle’s wheelbase. We solve these equations holding v and ψ constant for each

time step.

6.6 Global Statistics

Each vehicle maintains some statistics for itself, but the simulator as a whole also

tracks several statistical quantities:

Completed vehicles the number of vehicles that have completed their journeys.

Total delay the total delay experienced by all vehicles.

Step delay the total delay experienced by all vehicles in the last time step.

Intersection traversals the total number of intersection traversals that have been

made.

Data transmitted the number of bytes of data that have been sent.

Data received the number of bytes of data that have been received.

With the exception of step delay, each of these quantities is a total for all

vehicles that have completed their journeys and been removed from the simulator.

In order to enhance the visual display of the simulator with current views of these

statistics, a sliding window system tracks each of these quantities as they change

over time. The size of the sliding window is modifiable, but is usually set at 30

seconds of simulated time. Thus, for each of these statistics, we can always examine

an average of these values over the last 30 seconds of simulation.
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6.7 The Main Loop

The main loop of the simulator consists of 6 steps. Each loop of the simulator

represents a discrete amount of time t, usually 0.02 seconds.

1. Spawn Vehicles For each lane with a traffic level λ > 0, a vehicle is generated

with probability p = tλ. This vehicle is placed in a queue of vehicles waiting to

spawn in that lane. Then, if there is room in the lane for a vehicle (including

room for it to come to a stop), the first vehicle in the queue for that lane

is spawned at the start of the lane. The traffic spawning in that lane thus

roughly corresponds to a Poisson process with rate parameter λ. The major

difference is that the simulator will never spawn vehicles so close together that

they cannot avoid a collision. It will, however, store the generated vehicles

in the queue and spawn them later, such that the overall number of vehicles

spawned will be the same as if it were a true Poisson process.

2. Provide Sensor Input For each vehicle, that vehicle’s velocity, acceleration,

heading, and position are recorded to the speedometer, accelerometer, com-

pass, and position gauges, respectively. Because the gauges themselves provide

any error or noise to the readings, the true values of these quantities are used.

Additionally, the interval gauge and simplified laser range finder are simulated,

and the results are recorded to the appropriate gauges in the vehicle.

3. Agent Action Driver agents and intersection managers are given a chance to

act. For driver agents, this includes reading any waiting messages, sending

messages, and changing the steering angle or acceleration of the vehicle. For

intersection managers, this involves reading any waiting messages, and allow-

ing intersection control policies to act, which could in turn result in messages

being sent back to vehicles.
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4. Communication For each agent, any messages in that agent’s outgoing mes-

sages queue are conditionally delivered to their destinations.

5. Move Vehicles The positions, velocities, and headings of all vehicles are up-

dated based on the simulator’s physical model.

6. Collision Detection If enabled, each pair of vehicles is examined to determine

if they overlap. If so, both vehicles have their velocity set to 0 and are marked

with the disability CRASH.

7. Cleanup Any vehicle that has traveled outside the simulated area and has ar-

rived at its intended destination is removed from the simulation and any statis-

tics it was keeping are merged with the global statistics in the simulator.

6.8 Visualization

Visualization is an important part of debugging the simulator, as well as making

results easier to interpret. To these ends, we created a visualizer for the simulator

that displays lanes, roads, intersections, and vehicles, as well as all communications

in the simulator. Figure 6.3 shows a screenshot of part of the simulator’s graphical

display. The visualizer also shows current statistics for the simulation, both overall

and using the sliding windows, but the display would be illegible in a figure, and as

such they are not shown here.
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Figure 6.3: A screenshot of the simulator in action, best viewed in color. White
cars are those with confirmed reservations, while yellow cars are those without.
The purple lines show point-to-point communications. In scenarios with broadcast
communication, an expanding purple ring shows a broadcast transmission.

92



Chapter 7

Experimental Results

The previous chapters introduced a novel reservation-based intersection control

mechanism for autonomous vehicles. In this chapter, I present results from ex-

periments that test all of the features introduced in the preceding chapters and

demonstrate that the reservation system has the capability to improve the travel

time of vehicles using it tremendously, as compared to traditional mechanisms

such as stop signs and traffic signals. Our experiments evaluate the performance

of the reservation system using different intersection control policies, amounts of

traffic, granularities, levels of human drivers, and the presence of emergency ve-

hicles. I first compare the system using FCFS to traffic signals of varying cycle

periods using the aim1 simulator. I then show results from aim2, including the

stop sign control policy as implemented under our protocol, comparing these re-

sults to those from the traffic signal experiments. Next, I experiment with allow-

ing vehicles to turn from any lane—something that would be extremely dangerous

without the reservation-based mechanism. Next, I define and evaluate a simple

extension to FCFS: FCFS-Emerg. Finally, I present results from a vehicle-to-

vehicle (V2V) scenario, with no intersection manager. Videos of many of these

scenarios running in the simulator can be viewed at the AIM project’s website at

http://www.cs.utexas.edu/~kdresner/aim/, by selecting the videos page.
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7.1 The Delay Metric

In previous chapters, I have briefly mentioned the main metric used to evaluate

our protocol and agent algorithms: delay. Delay is the increase in travel time

due to the presence of the intersection manager and any congestion from other

vehicles. If a vehicle could travel from its point of origin to its destination in time t

without other vehicles or the intersection to deal with, but it takes time t′ with those

elements present, then the delay experienced by the vehicle is t′ − t. Scientists and

traffic engineers use many different metrics to gauge the performance of intersection

management mechanisms like traffic signals, stop signs, and roundabouts.

One alternate metric is throughput. Throughput measures the maximum

number of vehicles per lane that can pass through the intersection in a given pe-

riod of time. While this is a useful metric, it only captures what happens at the

extremes of the intersection’s capabilities. An intersection may have an extremely

high throughput, but it is quite possible that even with low traffic, vehicles take

quite a long time to cross the intersection. By using delay, we can measure the

capabilities of the intersection management mechanism at many different parts of

the traffic level spectrum. In our experiments, the rate parameter for each lane,

λ, is very closely related to throughput. For most experiments, the two are equal.

As long as the delay is not growing without bound for a particular setting of λ, we

can say that the throughput for the intersection is at least λ. Once traffic starts

to back up without bound, we can say that λ has exceeded the throughput of the

intersection manager. Instead, the metrics should be Delay and throughput can be

thought of as analogous to latency and bandwidth in computer networking. While

decreased network quality usually affects both, the two measure different things.

By measuring delay across a wide variety of traffic levels, I believe we can get a

better picture of an intersection’s efficiency than we could with just throughput.

The point at which the delay begins to increase asymptotically will indicate the
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maximum throughput of the intersection.

A second metric, which we have considered explicitly in some previous pub-

lications, is total accumulated acceleration [VanMiddlesworth et al., 2008]. This

metric measures how much accelerating and decelerating the vehicle does. While

not necessarily correlated with the other metrics, total accumulated acceleration

can provide insight into how fuel-efficient an intersection control mechanism is. A

vehicle that spends less fuel accelerating and wastes less energy by braking will use

less fuel than the same vehicle would otherwise. In addition, a vehicle that does less

acceleration and braking will be more comfortable for its passengers. Acceleration

does not make sense as a primary metric, as the optimal solution is for no vehicle

to move at all. However, as a secondary metric, total accumulated acceleration

can be useful to demonstrate some of the added benefits of an intersection control

mechanism.

I believe delay is the most appropriate metric for this work, especially when

measured for a wide variety of traffic levels. For this reason, I will focus almost

exclusively on delay in this and the following chapters. Note that it may not be

useful to directly compare the metrics as measured in the simulator with real-world

values, as the simulator is not designed to replicate the exact constants of the real

world—values may be off by a constant factor. Instead, we use them to compare

various mechanisms and policies within the simulator.

7.2 Low-Granularity-Ratio FCFS vs. the Traffic Signal

The simplest implementation of FCFS has granularity ratio 1—the entire intersec-

tion is a single reservation tile. While only one vehicle may be in the intersection

at a time, if that vehicle is traveling sufficiently fast, the total amount of time for

which it will occupy the intersection is small. If we increase the granularity ratio to

2, the intersection is no longer entirely exclusive. For example, non-turning vehicles
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traveling north no longer compete for the same reservation tiles as non-turning ve-

hicles traveling south (similarly, eastbound and westbound non-turning vehicles no

longer compete). Here we present our initial results comparing these two instances

of the reservation mechanism and several incarnations of a traffic signal.

7.2.1 Experimental Setup

These experiments were carried out using the first version of the simulator, aim1,

which is fully described in an earlier publication [Dresner and Stone, 2004]. In

this version of the simulator, vehicles are not allowed to turn or accelerate while in

the intersection. These restrictions do not detract from the core challenge of the

problem, and the results are relevant even when the restrictions are relaxed. Each

simulation contains one lane traveling in each direction, the speed limits of which

are 25 meters per second. Traffic spawning probability varies from 0.0001 to 0.02 in

increments of 0.0001, and each configuration runs for 500,000 steps in the simulator,

which corresponds to approximately 2.5 hours of simulated time.

7.2.2 Results

Figure 7.1(a) shows delay times for traffic signal systems with varying periods,

ranging from extremely short (10 seconds) to fairly long (50 seconds). As expected

from real-life experience, short-period traffic signals control light traffic well, while

traffic signals with longer periods work better in heavy-traffic scenarios. When

traffic is sparse, a short period allows vehicles to wait a shorter time before getting

a green signal. In many cities, traffic signal periods are shortened during early

hours of the morning to take advantage of this fact. In scenarios with more densely

packed vehicles, the per-vehicle costs of slowing to a stop and accelerating back to

full speed, as well as the intervals needed to clear out the intersection (the time

during which there is a yellow signal, or all signals are red), tend to dominate. This

makes the longer-period signals better in these situations. In the Figure 7.1(a),
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above a certain traffic level, each of the traffic signal systems reaches what appears

to be a maximum delay level. This is an artifact of the simulator—when the traffic

level gets high enough, the vehicles back up so far that the simulator cannot keep

track of them (it cannot spawn new vehicles, for lack of a place to put them). At

this point, vehicles are arriving at the intersection faster than the traffic signals can

safely coordinate their passage. Thus, the point at which the delay spikes upwards

indicates the maximum throughput of each traffic configuration.
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Figure 7.1: 7.1(a) shows average delays for traffic signal systems with period 10, 30,
and 50 seconds plotted against varying traffic levels along with a 1-tiled reservation-
based system. 7.1(b) shows average delays for granularity-ratio-1 and 2 FCFS poli-
cies with varying traffic levels. Spawning probability was varied in increments of
0.0001, and each configuration was run for 1,000,000 steps of simulation (approxi-
mately 5.5 hours of simulated time). Each direction has 1 lane.

Also in Figure 7.1(a) are the delays for the granularity-ratio-1 and 2 FCFS

policies. With the car spawning probability below about 0.013, the granularity-

ratio-1 policy’s delay is visually indistinguishable from the x-axis, while this is true

for the granularity-ratio-2 reservation system for the whole graph. Figure 7.1(b)

shows the bottom 0.7% of the graph, enlarged to show these results in more detail.

At the vehicle spawning rate of 0.02, all of the traffic signal systems are already

beyond maximum capacity, while the granularity-ratio-2 system is allowing vehicles

through without even adding a tenth of a second to the average vehicle’s travel time.
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7.2.3 The Effects Of Poisson Arrivals

It is difficult to get a fair comparison of traffic signals and FCFS in a single-

intersection scenario. FCFS performs well with vehicles arriving in a Poisson fashion,

whereas traffic signals perform poorly under these conditions. If the traffic coming

into a traffic signal–controlled intersection is properly shaped, traffic signals can in-

cur very low delays (the so-called “green wave”). For this reason, the results in this

section should not be considered the authoritative quantitative comparison between

traffic signals and a multiagent mechanism, as the Poisson arrivals may be favoring

the latter over the former.

7.3 Choosing Granularity

Of note in Figure 7.1(a) is the spike in delay for the granularity-ratio-1 FCFS policy.

The system looks as though it is behaving chaotically—in Figure 7.1(b), delay slowly

and steadily increases with the traffic level, until spiking off the graph when the

probability of spawning a vehicle each time step reaches about 0.013.

With the granularity-ratio-1 system, vehicles traveling parallel to one another

compete for the same tiles. This situation also arises for vehicles in the lanes closest

to the middle of the road whenever the granularity ratio is a small, odd number, as in

Figure 7.2(b). Recall that in the prototype simulator, acceleration in the intersection

is forbidden. Thus, if a vehicle slows down because it cannot obtain a reservation,

when it finally does get a reservation it will be moving slowly for the entirety of the

reservation and occupy the reservation tiles for a longer period of time. The next

car to approach the intersection is therefore more likely to slow down as well. This

process feeds itself and the vehicles slow down more and more. For small to average

amounts of traffic, delays increase, but the system recovers during probabilistically

generated periods of light traffic. However, for very heavy traffic, the intersection

will eventually reach a deadlocked state. Because traffic is generated stochastically,
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this could happen early or late in the experiment. If it happens early, it will have

a large effect on the average delay, whereas if it happens late, the effect will be

smaller. Deadlocking is difficult to measure quantitatively, because as it progresses,

driver agents make reservations for very long periods of time—so long, in fact, that

they overflow the memory of the computer running the simulator. This effect can be

seen in the rough line in Figure 7.1(a). To further explore the effects of granularity,

we ran several more experiments, varying the granularity as well as the number of

lanes.

(a) Granularity ratio 8 (b) Granularity ratio 9

Figure 7.2: Increasing the granularity ratio does not always improve performance.
In 7.2(a), a granularity ratio of 8 suffices. In 7.2(b), increasing the granularity ratio
to 9 actually hurts performance—vehicles traveling parallel to each other (but in
opposite directions) are competing for the middle row of tiles.

7.3.1 Experimental Setup

These experiments were also performed in the aim1 simulator as described in Sec-

tion 7.2.1. Each data point represents 500,000 steps of simulation (approximately

2.5 hours of simulated time). The traffic level is fixed at 0.2 vehicles per second.
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7.3.2 Results

As shown in Figure 7.3, with 2 lanes in each direction, a 2× 2 grid performs better

than a 3× 3 grid. Increasing to a 4× 4 grid is better than 2× 2, but increasing it to

5×5 is again worse. An increase in granularity ratio should correspond to a decrease

in delay. However, for small granularity ratios, incrementing the granularity ratio

from a small even number to a small odd number actually increases delay. In the

case of maximum delay, even the granularity-ratio-2 system performs better than

the granularity-ratio-5 system; the ill effects of odd granularity ratios as shown in

Figure 7.2 tend to slow down a few unfortunate vehicles.
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Figure 7.3: Simulation statistics for FCFS policies with varying granularity. There
are 2 lanes in each direction and the traffic level is 0.2 vehicles per second. Each
experiment is run for 500,000 simulation steps. Note that increasing the granularity
does not always improve performance.

This experiment suggests that FCFS should always be run with granularity

ratio high enough such that vehicles that never cross paths never compete for the

same reservation tiles. As Figure 7.4 shows, more lanes require a higher granularity

ratio (though even with low granularity ratio, the system out-performs the traffic

signal). However, because the computational complexity of the system increases

proportional to the square of the granularity ratio, the granularity ratio should not

be increased indiscriminately.
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Figure 7.4: Average delays for FCFS with independently varying numbers of lanes
and granularity ratio. Increasing the granularity ratio beyond twice the number of
lanes results in only marginal improvements. All simulations were run for at least
500,000 steps. 6 lanes with 1 tile deadlocks and overflows the system memory before
500,000 steps can complete.

7.4 The Full Power of FCFS

While earlier experiments used the aim1 simulator, these experiments use the full

power of FCFS, including turning and acceleration, which were first made possible

in aim2. Because vehicles turn, and thus do not always travel within a line of reser-

vation tiles, increasing granularity beyond twice the number of lanes can improve

performance even more. In addition to FCFS, we evaluate the stop sign policy as

presented in Chapter 4.2.

In Chapter 6, I described how the aim3 simulator measures delay on a time-

step by time-step basis. This capability was not present in aim2, where vehicle

delays were not adjusted to account for the fact that vehicles must slow to make

turns. So while technically, the optimal delay for an individual vehicle is no delay

at all, in aim2, a vehicle could record a small amount of delay just from the need

to slow to avoid losing control. In order to create a worthwhile benchmark against
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which to compare the reservation system, we first empirically measured the optimal

average delay for an intersection manager. To make this measurement, we created

a special control policy that accepts all requests. We also deactivate each vehicle’s

ability to detect other vehicles, eliminating the interactions between them. These

results are presented as the “optimal” control policy, which while optimal in terms

of non-adjusted delay, provides no safety guarantees.

Small intersections with slow-moving traffic tend not to be amenable to con-

trol by traffic signals. Very light traffic can usually regulate itself fairly effectively.

For example, consider an intersection with a stop sign—all vehicles must come to

a stop, but afterwards may proceed if the intersection is clear. In these situations,

a stop sign is often much more efficient than a traffic signal, because vehicles are

never stuck waiting for a signal to change when there is no cross-traffic. The proto-

col enables us to define such a control policy, and we compare it experimentally to

the other policies. Note that this policy is much more efficient than an actual stop

sign, because once the vehicle has stopped at the intersection, the driver agent and

intersection can determine when the car may safely proceed much more precisely

and much less conservatively than a human driver.

7.4.1 Experimental Setup

The simulator simulates 3 lanes in each of the 4 cardinal directions. The speed limit

in all lanes is 25 meters per second. Every configuration shown is run for at least

100,000 steps in the simulator, which corresponds to approximately half an hour of

simulated time. Vehicles that are spawned turn with probability 0.1, and turning

vehicles turn left or right with equal probability. Vehicles turning right are spawned

in the right lane, whereas vehicles turning left are spawned in the left lane. Vehicles

that are not turning are distributed probabilistically amongst the lanes such that

the traffic in each lane is as equal as possible. FCFS and the stop sign (implemented

as an extension of FCFS—see Chapter 4.2) both have a granularity ratio of 24.
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7.4.2 Results

The results for the experiments are shown in Figure 7.5. As expected, the average

delay for the optimal system is positive and nonzero, but very small.

FCFS performs very well, nearly matching the performance of the optimal

policy. At higher levels of traffic, the average delay for a vehicle gets as high as 0.35

seconds, but is never more than 1 second above optimal. Under none of the tested

conditions does FCFS even approach the delay of the traffic signal system from the

previous experiment, shown in Figure 7.1(a).

The stop sign does not perform as well as FCFS, but for low amounts of

traffic, it still performs fairly well, with average delay only about 3 seconds greater

than optimal. However, as the traffic level increases, performance degrades. It is

difficult to imagine a scenario in which this implementation of the stop sign would

actually be used—it requires the same technology as the reservation system, but does

not have any advantages over FCFS—it is presented here only as an approximation

of an actual stop sign.

7.5 Allowing Turns from Any Lane

In traditional traffic systems, especially those with traffic signals, vehicles wishing

to turn onto the cross street must do so from specially designated turning lanes.

This extra lane prevents cars that want to turn from holding up non-turning traffic.

However, with a system like the reservation system, such a specialized lane is no

longer necessary. There is nothing inherent in the reservation system that demands

vehicles turn from any specific lane. Investigating the effects of allowing turning

from any lane produced some surprising results. As seen in Figure 7.6, relaxing

the restriction actually hurts FCFS’s performance slightly. While one might think

this allows the vehicles more flexibility, on average it increases the resources used

by any one turning vehicle. By making left turns from the left lane and right turns
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Figure 7.5: Delays for varying amounts of traffic for FCFS, the stop sign, and the
optimal system.

from the right lane, vehicles both travel a shorter distance and reserve reservation

tiles that are less heavily used. However, these experiments may be misleading.

Vehicles changing lanes to get into a designated turn lane could potentially delay

vehicles behind them in the process. Because have not yet developed a robust lane-

changing behavior in aim3 (which does model lane changing), we have not been able

to experimentally verify this conjecture.

7.6 Emergency Vehicle Experiments

While we have already shown that FCFS on its own can significantly reduce average

delays for all vehicles, FCFS-Emerg helps reduce delays for emergency vehicles even

further.
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Figure 7.6: Comparison of an FCFS policy with traditional turns to one allowing
turning from any lane. Allowing turns from any lane decreases performance slightly,
producing longer delays.

7.6.1 Experimental Setup

To demonstrate this improvement, we ran the simulator with varying amounts of

traffic, while keeping the proportion of emergency vehicles fixed at 0.1% (that is, a

spawned vehicle is made into an emergency vehicle with probability 0.001). Because

of the very small number of emergency vehicles created with realistically low propor-

tions, we ran each configuration (data point) for 100 hours of simulated time—much

longer than the other experiments.

7.6.2 Results

As shown in Figure 7.7, the emergency vehicles on average experience lower delays

than the normal vehicles. The amount by which the emergency vehicles outperform

the normal vehicles increases as the traffic increases, suggesting that as designed,

FCFS-Emerg helps most when more traffic is contending for space-time in the

intersection.
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7.7 V2V Performance

Figure 7.8 shows results from our V2V experiments. In 7.8(a), a single lane enters

and exits the intersection in each direction. At around 0.08 vehicles per second

per lane, the intersection reaches maximum throughput. Above 0.1 vehicles per

second per lane, the simulator becomes saturated and cannot increase the amount

of traffic, so delay levels off. At lower traffic levels, the delay is quite low. In 7.8(b),

the same experiment is run, but with two lanes entering and exiting the intersection

in each direction. This time, the intersection reaches capacity at a lower traffic level

per lane. However, because there are more lanes, the overall traffic level is about

the same (the intersection has about the same throughput). While this might seem

counterintuitive, consider the fact that the intersection is larger, and each trajectory

has many more incompatible trajectories. A vehicle crossing this intersection will

spend more time in the intersection, and block more lanes of traffic while doing so.

It thus stands to reason that on a per-lane basis, the maximum throughput will

decrease. This odd relationship between intersection size and throughput further

reinforces the restriction of the V2V system to small, low-traffic intersections. These

experiments were carried out in the latest version of the simulator, aim3, with equal
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parts coupe, sedan, sport/utility vehicle (SUV), and van (see Chapter 6.3.6 for

descriptions).
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Figure 7.8: Average delay for intersections using the V2V mechanism. The y-axis is
a log scale. The 2-lane intersection can handle less traffic per-lane, but can handle
about the same amount of total traffic.

7.8 Pushing λ In FCFS

The previous section showed results for the V2V system as the traffic per lane, λ,

was increased. The results also gave a good indication of the maximum throughput

under the V2V mechanism. In this section, we perform a similar experiment with

FCFS. By increasing λ until the maximum throughput is reached, we can determine

what that maximum throughput is. Keep in mind that this limit is a function of

more than just the type of policy at work in the intersection manager. The size

of the various buffers also has an effect on how efficient the intersection can be.

In all of these experiments, the static buffer size was 0.5 meters, the time buffer

on internal tiles was 0.25 seconds, and the edge tile time buffer was 2 seconds.

Decreasing these buffers leads to higher throughput, while increasing them leads

to lower throughput. As these buffer settings are somewhat arbitrary, and overall

performance is a function of many more constants in the simulator, the throughput

numbers should not be considered directly comparable to real-world numbers.
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Figure 7.9 shows the results from this experiment. In 7.9(a), a single lane

travels in each direction. As the traffic per lane approaches 0.18 vehicles per second,

the intersection’s maximum throughput is reached. The simulator quickly runs out

of resources to simulate enough vehicles to sustain the growth in delay, which levels

out around 0.2 vehicles per second per lane. For 7.9(b), 7.9(c), and 7.9(d), each

of these transitions happens at a lower traffic level, but the overall throughput of

the intersection still increases, as the effect is not as dramatic as it is with a V2V

intersection. The FCFS policy makes more efficient use of the space-time in the

intersection. These experiments were also carried out in the latest version of the

simulator, aim3, with equal parts coupe, sedan, sport/utility vehicle (SUV), and

van (see Chapter 6.3.6 for descriptions).
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Figure 7.9: Pushing traffic to the maximum level for FCFS-controlled intersections
with 1, 2, 3, and 4 lanes traveling in each direction. The y-axis is a log scale. As
with Figure 7.8, throughput per lane decreases as the number of lanes increases, but
not as dramatically. Overall throughput still increases as more lanes are added.
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Chapter 8

Human Usability

While an intersection control mechanism for autonomous vehicles will someday be

very useful, there will always be people who enjoy driving. Additionally, there will

be a fairly long transitional period between the current situation (all human drivers)

and one in which human drivers are a rarity. Even if switching to a system comprised

solely of autonomous vehicles were possible, pedestrians and cyclists must also be

able to traverse intersections in a controlled and safe manner. For this reason, it

is necessary to create intersection control policies that are aware of and able to

accommodate humans, whether they are on a bicycle, walking to the corner store,

or driving a “classic” car for entertainment purposes. In this section we explain how

we have extended the FCFS policy and the reservation framework to incorporate

human drivers. In order to accommodate human drivers, a control policy must

be able to direct both human and autonomous vehicles, while coordinating them,

despite having much less control and information regarding where and when the

human drivers will be. The main concept behind our extension is the assumption

that there is a human-driven vehicle anywhere one could be. While this may be less

efficient than an approach which attempts to more precisely model human behavior,

it is guaranteed to be safe, one of the desiderata on which we are unwilling to

compromise. Adding pedestrians and cyclists follows naturally, and we give brief
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descriptions of how this would differ from the extensions for human drivers.

Compatibility with human drivers offers more than the ability to handle the

occasional human driver once the levels of human drivers in everyday traffic reaches

a steady state. It will also help facilitate the transition from the current standard—

all human-driven vehicles — to this steady state, in which human drivers are scarce.

In Chapter 2.1, we emphasized the need for incremental deployability. As we will

show experimentally, human compatibility adds significantly to the incremental de-

ployability of the reservation system. We will also show that the specifics of the

implementation offer further benefits: incentives for both communities and private

individuals to adopt autonomous vehicle technology.

8.1 Using Existing Infrastructure

A reliable method of communicating with human drivers is a prerequisite for includ-

ing them in the system. The simplest and best solution is to use something human

drivers already know and understand — traffic signals. Traffic signal infrastructure

is already present at many intersections and the engineering and manufacturing

of traffic signal systems is well developed. For pedestrians and cyclists, standard

“push-button” crossing signals can be used that give enough time for a person to

traverse the intersection. These can also serve to alert the intersection to their

presence.

8.1.1 Signal Models

If real traffic signals are to be used to communicate to human drivers, they must

be controlled and understood by the intersection manager. Thus, we add a new

component to each intersection control policy, called a signal model. The signal

model controls the physical signals as well as providing information to the policy

with which it can make decisions. In more complicated scenarios, the signal model

can be modified by the control policy, for example, in order to adapt to changing
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traffic conditions. The signals have the same semantics as modern-day signals: red

(do not enter), yellow (if possible, do not enter; signal will soon be red), and green

(enter). Each control policy requires a signal model so that human users know what

to do. For instance, the signal model for FCFS keeps all the signals red at all times,

indicating to humans that it is never safe to enter. The Traffic-Light policy’s

signal model, on the other hand, corresponds exactly to the signal system the policy

is emulating. Here, we describe a few signal models used in our experiments.

All-Lanes

In this model, which is very similar to some current traffic signal systems, each

direction in succession gets green signals in all lanes. Thus, all northbound traffic

(turning and going straight) has green signals while the eastbound, westbound,

and southbound traffic all have red signals. The green signals then cycle through

the directions. As it is similar to some current traffic signals, this signal model

is particularly well-suited to controlling distributions of vehicles with significant

contingents of human drivers. We demonstrate this fact in our experimental results.

Figure 8.1 shows a graphical depiction of this signal model. Videos of the aim2

simulator running the FCFS-Signal policy with the All-Lanes signal model can

be seen on the videos section of the project page at http://www.cs.utexas.edu/

~kdresner/aim/.

Figure 8.1: The All-Lanes signal model. Each direction gets all green signals in
a cycle: north, east, south, west. During each phase, the only available paths for
autonomous vehicles with red signals are right turns.
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Single-Lane

In the Single-Lane signal model, the green signal rotates through the lanes one

at a time instead of by direction. For example, the left turn lane of the northbound

traffic would have a green signal, while all other lanes would have a red signal.

Next, the straight lane of the northbound traffic would have a green signal, then

the right turn. Next, the green signal would go through each lane of eastbound

traffic, and so forth. A graphical description of the model’s cycle can be seen in

Figure 8.2. This signal model does not work very well if most of the vehicles are

human-driven, but as we will show, is very useful for intersections which control

mostly autonomous vehicles but need also to handle an occasional human driver.

Videos of the aim2 simulator running the FCFS-Signal policy with the Single-

Lane signal model can be seen on the videos section of the project page at http:

//www.cs.utexas.edu/~kdresner/aim/.

Figure 8.2: The Single-Lane signal model. Each individual lane gets a green signal
(left turn, straight, then right turn), and this process is repeated for each direction.
Note how a smaller part of the intersection is used by human vehicles at any given
time. The rest of the intersection is available to autonomous vehicles.

8.2 The FCFS-Signal Policy

In order to obtain some of the benefits of the FCFS policy while still accommodating

human drivers, a policy needs to do two things:
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1. If a signal is green, ensure that it is safe for any vehicle (autonomous or human-

driven) to drive through the intersection in the lane the signal regulates.

2. Grant reservations to driver agents whenever possible. Autonomous vehicles

can thus move through red signals (whereas humans cannot), provided they

have a reservation—similar to a “right on red”, but extended much further to

other safe situations.

The policy FCFS-Signal, which does both of these, is described as follows:

• As with FCFS, the intersection is divided into a grid of n× n tiles.

• Upon receiving a request message, the policy uses the parameters in the mes-

sage to establish when the vehicle will arrive at the intersection.

• If the signal controlling the lane in which the vehicle will arrive at the inter-

section will be green at that time, the reservation is confirmed.

• If the signal controlling the lane will be yellow, the reservation is rejected.

• If the signal controlling the lane will be red, the journey of the vehicle is

simulated as in FCFS.

• If throughout the simulation, no required tile is reserved by another vehicle or

in use by a lane with a green or yellow signal, the policy reserves the tiles and

confirms the reservation. Otherwise, the request is rejected.

8.2.1 Off-Limits Tiles

Unfortunately, simply deferring to FCFS does not guarantee the safety of the vehi-

cle. If the vehicle were granted a reservation that conflicts with a vehicle following

the physical signals, a collision could easily ensue. To determine which tiles are in

use by the signal system at any given time, we associate a set of off-limits tiles with
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Figure 8.3: FCFS-Signal is the combination of FCFS and a signal model. When
a request is received, FCFS-Signal first checks to see what color the signal will be.
If it is green, it grants the request. If it is yellow, it rejects. If it is red, it defers to
FCFS.

each signal. For example, if the signal for the northbound left turn lane is green

(or yellow), all tiles that could be used by a vehicle turning left from that lane are

considered reserved for the purposes of FCFS. The length of the yellow signal is

adjusted so that vehicles entering the intersection have enough time to clear the

intersection before those tiles are no longer off limits.

8.2.2 FCFS-Signal Subsumes FCFS

Using a traffic signal–like signal model (for example All-Lanes), FCFS-Signal

can behave exactly like Traffic-Light if all drivers are human. With a signal

model that keeps all signals constantly red, FCFS-Signal behaves exactly like

FCFS. In this case, if any human drivers are present it will fail spectacularly, leaving

the humans stuck at the intersection indefinitely. However, in the absence of human

drivers, it will perform exceptionally well. FCFS is just a special case of FCFS-

Signal. We can thus alter FCFS-Signal’s behavior to vary from strictly superior

to Traffic-Light to exactly that of FCFS.

8.3 Human Usability Experiments

In Chapter 7.4, we showed that once all vehicles are autonomous, intersection-

associated delays can be reduced dramatically. The following experiments suggest
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a stronger result: by using the two signal models presented in this Chapter, delays

can be reduced at each stage of adoption. Furthermore, additional incentives exist

at each stage for drivers to switch to autonomous vehicles.

8.3.1 Experimental Setup

For these experiments, we used the aim2 simulator, which models 3 lanes in each

of the 4 cardinal directions. The speed limit in all lanes is 25 meters per second.

For each intersection control policy with reservation tiles, the granularity is 24. The

simulator spawns all vehicles turning left in the left lane, all vehicles turning right in

the right lane, and all vehicles traveling straight in the center lane1. Unless otherwise

specified, each data point represents 180000 time steps, or one hour of simulated

time. Our simulated human-driven vehicles use a two-second following distance, but

use the same lane-following algorithm as the autonomous drivers. They also employ

a “point-of-no-return” mechanism for reacting to signals—if the vehicle can stop at

a yellow or red signal, it does, otherwise it proceeds.

8.3.2 Results

We present the experimental results for the human-compatible policies in two parts.

The first focuses on how these policies can facilitate a smooth transition to an all-

autonomous or mostly-autonomous vehicle system. The second focuses on the incen-

tives throughout this process, both global and individual, to continue deployment of

the system. Combined, these results suggest that an incremental deployment (one

of the desiderata) is both technically possible and desirable.

1This is a constraint we will likely relax in the future. It is included in this work to give the
Single-Lane signal model more flexibility and for a fair comparison to the FCFS policy, which
performs even better in its absence.
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Transition To Full Deployment

The purpose of a hybrid intersection control policy is to confer the benefits of

autonomy to passengers with driver-agent controlled vehicles while still allowing

human users to participate in the system. Figure 8.4 shows a smooth and mono-

tonically improving transition from modern-day traffic signals (represented by the

Traffic-Light policy) to a completely or mostly autonomous vehicle mechanism

(FCFS-Signal with the Single-Lane signal model). In early stages (100%-10%

human), the All-Lanes signal model is used. Later on (less than 10% human),

the Single-Lane signal model is introduced. At each change (both in driver pop-

ulations and signal models), delays are decreased. Notice the rather drastic drop

in delay from FCFS-Signal with the All-Lanes signal model to FCFS-Signal

with the Single-Lane signal model. Although none of the results is quite as close

to the minimum as pure FCFS, the Single-Lane signal model allows for greater

use of the intersection by the FCFS portion of the FCFS-Signal policy, which

translates to higher efficiency and lower delay.
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Figure 8.4: Average delays for all vehicles as a function of traffic level for FCFS-

Signal with two different signal models: the All-Lanes signal model, which is
well-suited to high percentages of human-driven vehicles, and the Single-Lane

signal model, which only works well with relatively few human-driven vehicles. As
adoption of autonomous vehicles increases, average delays decrease.

For systems with a significant proportion of human drivers, the All-Lanes
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signal model works well—human drivers have the same experience they would with

the Traffic-Light policy, but autonomous driver agents have extra opportunities

to make it through the intersection. A small amount of this benefit is passed on to

the human drivers, who may find themselves closer to the front of the lane while

waiting for a red signal to turn green. To explore how much the average vehicle

would benefit, we ran our simulator with the FCFS-Signal policy, the All-Lanes

signal model, and a 100%, 50%, and 10% rate of human drivers. This means that

when a vehicle is spawned, it receives a human driver (instead of a driver agent)

with probability 1, .5, and .1 respectively. As seen in Figure 8.5, as the proportion of

human drivers decreases, the delay experienced by the average driver also decreases.

While these decreases are not as large as those brought about by the Single-Lane

signal model, they are at least possible with significant numbers of human drivers.
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Signal with the All-Lanes signal model. Shown are the results for 100%, 50%,
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Incentives For Individuals

Even without any sort of autonomous intersection control mechanism, there are in-

centives for humans to switch to autonomous vehicles. Not having to do the driving,

as well as the myriad safety benefits are strong incentives to promote autonomous
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vehicles in the marketplace. Our experimental results suggest additional incentives.

Using our reservation system, autonomous vehicles experience lower average delays

than human-driven vehicles and this difference increases as autonomous vehicles

become more prevalent.

Figure 8.6 shows the average delays for human drivers as compared to au-

tonomous driver agents for the FCFS-Signal policy using the All-Lanes sig-

nal model. In this experiment, half of the drivers are human. Humans experi-

ence slightly longer delays than autonomous vehicles, but not worse than with the

Traffic-Light policy (see Chapter 4.2). Thus, by putting some autonomous ve-

hicles on the road, all drivers experience equal or smaller delays as compared to the

current situation. This result is expected because the autonomous driver can do

everything the human driver does and more.
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Figure 8.6: Average delays for human-driven vehicles and all vehicles as a function
of traffic level for FCFS-Signal with the All-Lanes signal model. In this exper-
iment, 50% of vehicles are human driven. Autonomous vehicles experience slightly
lower delays across the board, and human drivers experience delays no worse than
the Traffic-Light policy.

Once the reservation system is in widespread use and autonomous vehicles

make up a vast majority of those on the road, the door is opened to an even more

efficient signal model for the FCFS-Signal policy. With a very low concentration

of human drivers, the Single-Lane signal model can drastically reduce delays, even
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at levels of overall traffic that the Traffic-Light policy cannot handle. Using this

signal model, autonomous drivers can pass through red signals even more frequently

because fewer tiles are off-limits at any given time. In Figure 8.7 we compare the

delays experienced by autonomous drivers to those of human drivers when only 5% of

drivers are human and thus the Single-Lane signal model can be used. While the

improvements using the All-Lanes signal model benefit all drivers to some extent,

the Single-Lane signal model’s sharp decrease in average delays (Figure 8.4) comes

at a high price to human drivers.
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Figure 8.7: Average delays for human-driven vehicles and all vehicles as a function
of traffic level for FCFS-Signal with the Single-Lane signal model. Humans
experience worse delay than with Traffic-Light, but average delay for all vehicles
is much lower. In this experiment, 5% of vehicles are human-driven.

As shown in Figure 8.7, human drivers experience much higher delays than

average. For lower traffic levels, these delays are even higher than those associated

with the Traffic-Light policy. Figure 8.4 shows that at high levels of traffic,

human drivers benefit relative to Traffic-Light. Additionally, intersections using

FCFS-Signal will still be able to handle far more traffic than those using Traffic-

Light.

The Single–Lane signal model effectively gives the humans a high, but

fairly constant delay. Because the green signal for any one lane only comes around

after each other lane has had a green signal, a human-driven vehicle may find itself
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sitting at a red signal for some time before the signal changes. However, since this

signal model would only be put in operation once human drivers are fairly scarce,

the huge benefit to the other 95% or 99% of vehicles far outweighs this cost. A

signal model that detects and reacts to the presence of human drivers might be able

to achieve even better overall performance, without causing the human drivers to

wait as long.

These data suggest that there will be an incentive to both early adopters

(persons purchasing vehicles capable of interacting with the reservation system)

and to cities or towns. Those with properly equipped vehicles will get where they

are going faster (not to mention more safely). Cities and towns that equip their

intersections to utilize the reservation paradigm will experience fewer traffic jams

and more efficient use of the roadways (along with fewer collisions and less wasted

gasoline). Because there is no penalty to the human drivers (which would presum-

ably be a majority at this point), there would be no reason for any party involved

to oppose the introduction of such a system. Later, when most drivers have made

the transition to autonomous vehicles, and the Single-Lane signal model is intro-

duced, the incentive to move to the new technology is increased—both for cities and

individuals. By this time, autonomous vehicle owners will far outnumber human

drivers, who will still benefit when traffic is at its worst.

8.4 Automatic Switching and Policy Selection

A major benefit of the switching mechanism explained in Chapter 4.3 is that the

intersection manager need not always choose a policy capable of handling the max-

imum possible proportion of human drivers. Instead, as traffic conditions change,

the manager can adjust the policy to compensate, increasing efficiency during peri-

ods in which human drivers are more scarce. In this section, I discuss a method for

enabling the intersection manager to, completely autonomously, select and switch
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to a new policy based on the current traffic conditions. Furthermore, this method

does not require the addition of any new sensing infrastructure or communication

from driver agents—it operates entirely by analyzing existing communication.

8.4.1 The Cost Of Switching

During a switch between P and P ′, the mechanism insists that no vehicle can enter

the intersection before lastP unless it also exits before lastP . For a brief instant at

time lastP , there can be no vehicles in the intersection; there is a “wall” (in time)

that cannot be crossed. Autonomous vehicles that would otherwise be in the inter-

section at lastP must accelerate or decelerate such that they get a reservation which

will be completed before lastP or begin after lastP . Placing additional constraints

on the vehicles could decrease the overall efficiency of the intersection, increasing

delays. This would create an interesting tradeoff: switching policies could have a

benefit, but it might not outweigh the cost of making the switch.

However, we determined that with the FCFS-Signal policy, no real tradeoff

exists. FCFS-Signal’s off-limits tiles already create many “walls” (in space) that

cannot be traversed, and the addition of the constraint made by switching does not

have a significant effect. To quantify the effects of switching, we ran a series of

24-hour simulations in which the intersection manager repeatedly “switched” from

an FCFS-Signal policy with the Single-Lane signal model to an identical policy

at regular intervals. In the experiment, we set the vehicle spawning probability to a

moderate 0.01 — enough that vehicles would actually compete for passage through

the intersection, but also low enough to make random congestion unlikely. The base-

line time for a vehicle to complete its trip is 10 seconds — 250 meters at the speed

limit of 25 m/s. By varying the time between switches from 24 hours (effectively∞)

to 5 seconds, we determined that the policy switching has no significant negative

effects until the switches occur extremely frequently. At the highest frequencies,

the “walls” created by the switch create compartments in space-time that are only
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slightly longer than the time it takes a vehicle to traverse the intersection. At this

point, it becomes more difficult for the intersection manager to fit a vehicle into the

available space-time. Table 8.1 presents the results from this experiment.

Period Delay(s) CI(95%)

∞ 2.03 ±0.01

1h 2.03 ±0.01

10m 2.03 ±0.01

1m 2.13 ±0.01

30s 2.20 ±0.01

10s 4.25 ±0.1

5s 5.14 ±0.07

Table 8.1: The policy switching mechanism has no effect on delay until the time
between switches approaches the time it takes to traverse the intersection.

8.4.2 Policy Selection

The two signal models described earlier, All-Lanes and Single-Lane, each define

a different intersection control policy when combined with FCFS-Signal. All-

Lanes is suited to scenarios involving many humans, while Single-Lane is better

for scenarios in which humans are scarce. Determining which policy to use should

thus be as simple as determining how many of the vehicles using the intersection

are not autonomous. Unfortunately, a direct approach would involve additional

expensive infrastructure, either sensors at the intersection or signaling devices on

the human-driven vehicles. The humans drivers may not even be willing to place

such signaling devices on their vehicles due to privacy concerns.

Instead, we base our choices on the information already available to the

intersection manager via the reservation requests made by the autonomous vehicles.

If an autonomous vehicle is stuck behind a human vehicle waiting at a red signal, the

parameters of the autonomous vehicle’s next reservation request will change. It may

even be forced to cancel. One altered message may not contain much information,
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but the intersection manager communicates with many vehicles. By maintaining a

sliding window of statistics from these messages, we can gather enough information

about the current state of traffic such that a trained classifier can select the most

appropriate policy. Our first instinct was to use a regression learner to estimate

the average delay under the various candidate policies, allowing the intersection

manager to choose the policy with the lowest estimate, but the regression learner

proved unreliable. Instead, we learn the choice the intersection manager must make:

which policy to use.

The classifier has 7 inputs:

• The current policy

• The rate (requests/second) at which the intersection manager is receiving

reservation requests

• The rate (cancelations/second) at which the intersection manager is receiving

reservation cancelations

• The rate (changes/second) at which the intersection manager is receiving reser-

vation change requests

• The average time before the start of a reservation that requests are made

• The average velocity at which autonomous vehicles expect to arrive at the

intersection

• The ratio of accepted reservations to total requests

8.4.3 Generating Training Data

We created a large body of training data by simulating over 800 one-hour episodes,

half using All-Lanes and half using Single-Lane. Each episode included a five-

minute “warm-up” period during which no data were recorded, to eliminate the ef-
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fects of starting with an empty intersection. Classifier input data were then recorded

in sliding windows from 2.5 to 30 minutes long. At the end of the episode, we set the

target policy for each generated instance to the policy that had the lowest average

delay at the end of the episode. Each episode used randomized traffic conditions,

however every randomly-generated configuration was used twice — once for each

policy. The spawning rate was chosen uniformly from the interval (0.001, 0.025],

which represents everything from very light to extremely heavy traffic. The propor-

tion of human drivers was chosen uniformly from the interval (0, 0.25]. Above 25%

humans, all but the lightest traffic scenarios favor All-Lanes.

8.4.4 Choosing a Classifier

With this data, we tested many different classifiers using the WEKA machine learn-

ing software [Witten and Frank, 2005]. We evaluated each classifier on each sliding

window size with 10-fold cross-validation. Table 8.2 presents results from four rep-

resentative classifiers: JRip (rules), J48 (decision tree), AdaBoost with decision

stumps, and a neural network. Each classifier used WEKA’s default settings.

Classifier

Window Const. AdaB. J48 JRip N.N.

2.5 min. 66.94 69.03 78.94 79.21 80.19

5 min. 66.95 71.15 80.33 81.23 82.19

10 min. 66.84 70.05 83.23 82.18 83.16

20 min. 65.64 74.10 81.66 81.44 84.88

30 min. 67.82 73.27 85.89 83.16 88.48

Table 8.2: Percentage of correctly classified instances on the training data using
10-fold cross-validation.

The neural network performed the best overall, followed closely by the J48

decision tree. All results were reported by WEKA as statistically significant (with

respect to the constant classifier) with 95% confidence. As we had initially suspected,

the longer sliding windows were much less noisy, and therefore easier to learn. For
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the rest of the chapter, unless otherwise specified, when we refer to the classifier, we

mean the neural network as implemented in WEKA and trained on the data from

the 10-minute sliding windows. While exploring the space of potential training data

might make for an interesting optimization, it is not the main focus of this work,

and thus we fix this variable in order to study other aspects of the mechanism more

closely. Because performance does not vary dramatically over the range tested, we

chose a value near the middle of the range.

8.4.5 Putting the Classifier to Work

We combine the classifier with policy switching by maintaining a sliding window

of data in the intersection manager, which the classifier uses to select a policy at

pre-specified intervals. If the classifier chooses the policy already in use, no switch

occurs. By integrating the trained classifier with the policy switching method, we

produce an intersection manager capable of selecting a policy based on current traf-

fic conditions, inasmuch as the traffic conditions are communicated through the

reservation requests of autonomous vehicles. It is interesting to note that the clas-

sifier’s target task and the simulations which generated its training data are subtly

different. When generating training data, each policy was essentially in a steady

state. However, in the target task the classifier must tolerate the fact that although

current simulator settings may be best served with a particular policy, congestion

created earlier in the experiment — perhaps the result of different simulator settings

or a poor choice of policy — will affect the vehicles currently making reservation

requests.

8.5 Policy Selection Experiments

To evaluate the performance of our classifier-based policy selection, we ran exper-

iments in which the population of drivers was varied over time. The experiments

pitted our autonomous intersection manager against the individual policies amongst
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from which it could choose, as well as a custom policy-switching intersection man-

ager with advance knowledge of which policy worked best for each driver population.

8.5.1 Experimental Setup

In these experiments, the aim2 simulator models a 250m × 250m area with three

lanes of traffic travel in each cardinal direction. Vehicles are limited to a maximum

speed of 25m/s, and the granularity of each policy is 1/24 of the width and height

of the intersection.

The test scenario comprises a series of 72 randomly generated simulator

traffic settings. As with the training data generation, the spawning probability

and human driver proportion were chosen uniformly at random from the intervals

(0.001, 0.025] and (0, 0.25], respectively. Although the settings are randomly gener-

ated, we use the same sequence for each trial. Each trial lasts 72 simulated hours,

with each configuration used for exactly one hour. Performance is measured by cal-

culating the average delay over all vehicles spawned in the 72 hours. The switching

managers use a sliding window to keep an average of all input values from the last

time a decision was made; the size of the sliding window is equal to the time between

potential switches.

8.5.2 A Lower Bound

After analyzing the performance of All-Lanes and Single-Lane throughout the

72-hour trial, we determined which policy worked best for each configuration and

created an intersection manager that switches accordingly. We call this manager

“omniscient”, as it knows when to switch a priori. The omniscient manager is not

technically optimal — it chooses the policy that performs best on each configuration,

but it cannot adapt to changes in traffic conditions that result from the stochastic

nature of the traffic generation.
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8.5.3 Switch Frequency

While the configuration changes took place at regular intervals, a robust switching

manager should not rely on such assumptions. By allowing switching more fre-

quently, the intersection manager gains agility, but may pay a price in terms of

stability. However, as we showed in Chapter 8.4.1, stability is not as important as

one might think — the cost for making a policy switch is negligible. Agility turns

out to be much more important: not only can the intersection manager react quickly

to changing conditions, but it can also switch back quickly if it chooses the wrong

policy. We created five versions of the intersection manager, varying the switching

period from 20 minutes to 30 seconds. Note that whenever the manager selects

the policy it is already using, no switch takes place. Table 8.3 shows the results of

running each of these five versions, as well as All-Lanes, Single-Lane, and the

omniscient intersection manager.

Policy Delay(s) CI(95%)

All-Lanes 57.70 ±0.43

Single-Lane 48.30 ±0.40

20m 43.28 ±0.51
10m 41.77 ±0.46

Switching 5m 41.53 ±0.33
1m 41.45 ±0.66
30s 41.05 ±0.42

Omniscient 37.50 ±0.45

Table 8.3: Average delay during a 72-hour simulated period. As the intersection
manager switches policies more often, it can react to changing conditions more
quickly, leading to lower average delay.

Every switching manager performed significantly better than either All-

Lanes or Single-Lane alone. The switching manager with the shortest period (30

seconds) delayed the average vehicle only a few seconds more than the omniscient

switcher. However, with the exception of the 20-minute version, the difference in

performance between the learned switchers was not statistically significant. Per-
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haps most importantly, re-evaluating the policy choice as frequently as every 30

seconds does not negatively affect performance — the classifier rarely recommends

switches at successive 30-second decision points. These results do not indicate that

Single-Lane is better than All-Lanes — it is trivial to adjust the traffic settings

(specifically the proportion of human drivers) so that either policy performs better

than the other. However, intelligent policy switching should always perform about

as well or better than the best of the two static policies.

8.5.4 Outperforming The Omniscient Policy

The results in Table 8.3 show that the switching intersection manager can handle

varying proportions of human drivers, even though it never directly senses or com-

municates with them — all information used by the classifier is readily available

from the reservation requests of the autonomous vehicles. When we used the same

72 sets of simulator settings, but without any humans, the switching intersection

manager behaved exactly as we expected: quickly switching to Single-Lane and

never going back. If the intersection manager were aware that the simulator was not

spawning any human drivers, this would not be remarkable. However, the intersec-

tion manager gleans all its information about the current state of traffic from the

reservation requests made by the autonomous vehicles. In some sense, the classifier-

based switcher can outperform even the omniscient intersection manager at times,

because the settings on the simulator do not precisely determine the actual traffic

conditions — there is a lot of stochasticity.

Figure 8.8 shows the performance of the various policies on one representa-

tive section of the test scenario, with delay reported in 10-minute sliding windows.

In 8.8(a), the classifier-based switcher, re-evaluating every 10 minutes, makes the

switch from Single-Lane to All-Lanes as soon as it senses the change in traffic

conditions. When conditions become more favorable to Single-Lane, it makes a

second switch back. However, the second switch is in the middle of the hour — it
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does not correspond to a change in the simulator settings, but rather the actual traf-

fic conditions. In contrast, Figure 8.8(b) shows the performance of the omniscient

intersection manager on the same scenario. Notice that it makes the first switch

preemptively, before the classifier-based manager would have any chance to sense

a change. The traffic parameter change at 22 hours does not change the optimal

policy, so the omniscient agent stays with All-Lanes. Because it is hard-coded to

switch based on the actual simulator settings, it cannot sense the opportunity to

switch later in that hour. Overall, however, the perfect prediction of the omniscient

policy is more important than its inflexibility; the classifier does not always make

the correct choice and this proves more significant (see Table 8.3).
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(b) The omniscient manager knows which pol-
icy is best overall for each configuration.

Figure 8.8: In 8.8(a), the classifier-based switcher first switches to All-Lanes once
it senses traffic conditions have changed, then switches back to Single-Lane when
conditions change the second time. In 8.8(b), the omniscient switcher knows in ad-
vance that conditions will change and preemptively switches to All-Lanes. How-
ever, because it is not adapting online, it does not switch back to Single-Lane

until the traffic settings change at the end of the hour.

8.6 Summary

Traffic control is an inherently dynamic problem. Vehicles are moving, destinations

are changing, and even the very makeup of the traffic varies, from hour to hour, day
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to day, and year to year. In this chapter, I presented several mechanisms for dealing

with this dynamicity on many different levels. The FCFS-Signal policy can take

us from a world in which all vehicles are driven by humans, all the way to one

in which all vehicles are autonomous. The two signal models that FCFS-Signal

employs (as well as those models that have not yet been developed) can ensure that

as more autonomous vehicles hit the roads, more of their capabilities are utilized to

improve traffic conditions for all. The automated policy switching method allows

intersection managers to respond to fluctuating conditions even on a localized level.

While many of the most impressive benefits of autonomous intersection management

manifest only when the vast majority of the vehicle population is autonomous, this

chapter shows that even in the meantime, we can still use autonomous intersection

management to effect significant improvements in our traffic control.
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Chapter 9

Failure Mode Analysis

Fully autonomous vehicles promise enormous gains in safety, efficiency, and econ-

omy for transportation. However, before such gains can be realized, a plethora of

safety and reliability concerns must be addressed. In the previous sections, we have

assumed that all vehicles perform without gross malfunctions. In this chapter, we

relax that assumption and demonstrate how our reservation-based mechanism re-

acts to scenarios in which such malfunctions occur. Additionally, we intentionally

disable some elements of the system in order to investigate both their necessity and

efficacy.

9.1 Causes of Accidents

A collision in purely autonomous traffic can have any number of causes, including

software errors in the driver agent, a physical malfunction in the vehicle, or even

meteorological phenomena. In modern-day traffic, such factors are largely ignored

for two reasons. First, the exclusively human-populated system, with its generous

margins for error, is not as sensitive to small or moderate aberrations. Second,

none of these factors are significant with respect to driver error as causes of ac-

cidents [Wierwille et al., 2002]. However, in the future of infallible autonomous

driver agents, it is exactly these issues which will be the prevalent causes of au-
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tomobile collisions. The safety allowances explained in Section 4.1.1 and 4.1.2 are

adjustable—given some maximum allowable error in vehicle positioning, the buffers

can be extended to handle that error—but no reasonable adjustment can account for

gross mechanical malfunction like a blowout or failed brakes. Because these types

of issues are infrequent, we believe the safety of the intersection control mechanism

will be acceptable even if individual occurrences are slightly worse than accidents

today.

9.2 Adding a Safety Net

One can easily imagine how badly an accident in such an efficient system could be

without any reactive safety measures in place. Here, we explain how the system deals

with these rare, but dangerous events. As we will show in Section 9.3, disabling the

safety measures leaves the system prone to spectacular failure modes, sometimes

involving dozens of vehicles. Intact, the measures make such events much more

manageable.

9.2.1 Assumptions

In Section 9.3, we will show how our reactive safety measures can reduce the average

number of vehicles involved in a crash from dozens to one or two. However, in order

to employ these safety measures fully, we must make a few additional assumptions.

Detecting The Problem

First, we assume that the intersection manager is able to detect when something

has gone wrong. While this is certainly a non-trivial assumption, without it, no

substantial mitigation is possible. Simply put, the intersection manager cannot react

to something it cannot detect. There are two basic ways by which the intersection

manager could detect that a vehicle has encountered some sort of problem: the

vehicle can inform the intersection manager, or the intersection manager can detect
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the vehicle directly. For instance, in the event of a collision, a device similar to that

which triggers an airbag can send a signal to the intersection manager. Devices like

this already exist in aircraft to emit distress signals and locator beacons in the event

of a crash. The intersection manager itself might notice a less severe problem, such

as a vehicle that is not where it is supposed to be, using cameras or sensors at the

intersection. However, this method of detection is likely to be much slower to react

to a problem. Each has advantages and disadvantages, and a combination of the

two would most likely be the safest. The specifics of the implementation are beyond

the scope of this analysis. What is important is that whenever a vehicle violates

its reservation in any way, the intersection manager should become aware as soon

as possible. Because our simulations only deal with collisions, we assume that the

colliding vehicle sends a signal and the intersection manager becomes aware of the

situation immediately.

As described in Chapter 3, our protocol includes a Done message that vehi-

cles transmit when they complete their reservations. One way to reliably sense when

a vehicle is in distress would be to notice a missing Done message. This approach

has two drawbacks. First, the Done message is optional, mainly because there is

no incentive for the driver agent to transmit it. Second, the intersection manager

may not be able to notice the missing message until some time after the incident

has occurred. I describe the effects of this latency later in this chapter.

Informing Other Vehicles

We also assume that there exists a way for the intersection manager to broadcast

the fact that something is wrong to the vehicles. Since the intersection manager

can already communicate with the vehicles, this is not a big assumption, and in fact

the Emergency-Stop message as described in Chapter 3 does exactly this. For

safety purposes, the mode of communication is slightly different from that employed

in the rest of the communication protocol. Under normal operating conditions,
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individual messages each containing multiple pieces of information are transmitted

between agents. Because we cannot verify the receipt of these messages without a

response, the semantics of the protocol ensure that whenever a message is sent, the

sending agent makes the most conservative assumption—in the case of a Request

message, that it was not received; in the case of a Confirm message, that it was.

In the event of a collision, however, the intersection manager needs to communicate

one bit of information to as many vehicles as possible: that something is wrong.

Because it is very important that all vehicles receive this message, it is transmitted

repeatedly, to all vehicles, to make it as likely as possible that each vehicle receives

the message. While we would like to assume that all vehicles receive this message,

we will show in Section 9.3 that even when a significant number of vehicles do not,

the safety measures in place still protect many vehicles that would otherwise wind

up crashing.

9.2.2 Incident Mitigation

When a vehicle deviates significantly from its planned course through the intersec-

tion resulting in physical harm to the vehicle or its presumed occupants, we refer

to the situation as an incident. Once an incident has occurred, the first priority

is to ensure the safety of all persons and vehicles nearby. Because we expect such

incidents to be very infrequent occurrences, re-establishing normal operation of the

intersection is a lower priority and the optimization of that process is left to future

work.

Intersection Manager Response

As soon as the intersection manager detects or is notified of an incident, it imme-

diately stops granting reservations. All subsequent received requests are rejected

without consideration. Due to the nature of the protocol, the intersection manager

cannot revoke reservations, as driver agents would have no incentive to acknowledge
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their receipt. However, the intersection manager can send a message to the vehicles

that an incident has occurred. This message is the special Emergency-Stop mes-

sage, which the intersection manager may only send in an emergency situation, and

which (as with the rest of the protocol) it must assume has not been received.

The Emergency-Stop message lets vehicles know that an event has taken

place in the intersection such that:

• no further reservations will be accepted

• vehicles able to come to a stop before entering the intersection should do so

• vehicles in the intersection should no longer assume that “near misses” will

not result in collisions

For human-compatible policies, such as FCFS-Signal, the intersection man-

ager also turns all signals red. In a real-world implementation, a more conspicuous

visual cue could be provided, but semantically it is only important that the inter-

section informs the human drivers that they may not enter.

Vehicle Response

For the Emergency-Stop message to be useful in any way, driver agents must react

to it. Here we explain the specific actions our implementation of the driver agent

takes when it receives this message. Normally, when approaching the intersection,

our driver agent ignores any vehicles sensed in the intersection. This is because

what might otherwise appear to be an imminent collision on the open road is almost

certainly a precisely coordinated “near-miss” in the intersection. However, once the

driver agent receives the Emergency-Stop message from the intersection manager,

it disables this behavior. If the vehicle is in the intersection, the driver agent will

not blindly drive into another vehicle if it can help it. If the vehicle is not in the

intersection and can stop in time, it will not enter, even if it has a reservation.

136



While our first inclination was to make the driver agent immediately de-

celerate to a stop, we quickly realized that this is not the safest behavior. If all

vehicles that receive the message come to a stop, vehicles that would otherwise

have cleared the intersection without colliding may find themselves stuck in the

intersection—another object for other vehicles to run into. Such an overreaction

might be particularly bad if the vehicle that caused the incident is on the edge of

the intersection where it is unlikely to be hit. Trying to stop all the other vehicles

in the intersection just makes this situation worse.

If a driver agent does detect an impending collision, it should take evasive

actions or apply the brakes. Since our protocol governs a true multiagent system

with self-interested agents, we cannot prevent driver agents from doing so, even if

it is detrimental to vehicles overall. Thus, our driver agent brakes if it believes a

collision is imminent.

9.3 Experiments

In order to evaluate the effects of our reactive safety measures, we performed several

experiments in which various components were intentionally disabled. The various

configurations can be separated into three classes. An oblivious intersection man-

ager takes no action at all upon detecting an incident. An intersection manager

utilizing passive safety measures stops accepting reservations, but does not send

any Emergency-Stop messages to nearby driver agents. Finally, the active con-

figuration of the intersection manager—which corresponds to the full version of the

protocol as specified in Chapter 3—has all safety features in place. In addition to

considering these three incarnations of the intersection manager, we also study the

effects of unreliable communication in the active case. Note that when no vehicles

receive the Emergency-Stop message, the active and passive configurations are

identical.
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9.3.1 Experimental Setup

With the great efficiency of the reservation-based system comes an extreme sensitiv-

ity to error. While buffering might protect against minute discrepancies, it cannot

hope to cover gross mechanical malfunctions. To determine just how much of an

effect such a malfunction would have, we created a simulation in which individual

vehicles could be “crashed” (given the CRASH disability from Chapter 6.3.4), caus-

ing them to immediately stop and remain stopped. Whenever a vehicle that is not

crashed comes into contact with one that is, it becomes crashed as well. While this

does not model the specifics of individual impacts, it does allow us to estimate how

a malfunction might lead to collisions.

In order to ensure that we included malfunctions in all different parts of

the intersection, we triggered each incident by choosing a random (x, y) coordinate

pair inside the intersection, and crashing the first vehicle to cross either the x or

y coordinate. This is akin to creating two infinitesimally thin walls, one horizontal

and the other vertical, that intersect at (x, y). Figure 9.1 provides a visual depiction

of this process.

Figure 9.1: Triggering an incident in the intersection simulator. The dark vehicle
turning left is crashed because it has crossed the randomly chosen x coordinate. If a
different vehicle had crossed that x coordinate or the randomly chosen y coordinate
earlier, it would be crashed instead.
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After initiating an incident, we ran the simulator for an additional 60 seconds,

observing any subsequent collisions and recording when they occurred. Using this

information, we constructed a crash log, which is essentially a histogram of crashed

vehicles. For each step of the remaining simulation, the crash log indicates how

many vehicles were crashed by that step. By averaging over many such crash logs

for each configuration, we were able to construct an “average” crash log, which gives

a picture of what a typical incident would produce.

Because our system is compatible with humans, we included experiments

with a human-compatible intersection control policy. As demonstrated in Chap-

ter 8.3, when a significant number of human drivers are present, the FCFS-Signal

cannot offer much of a performance benefit over traditional traffic signal systems.

As such, we limited our experimentation to scenarios in which 5% of the vehicles

are controlled by simulated human drivers, and used a Single-Lane signal model

(see Chapter 8.1.1). With only 5% human drivers, an FCFS-Signal policy can still

create a lot of the precarious situations that are the focus of this investigation.

For these experiments, we ran our simulator with scenarios of 3, 4, 5, and 6

lanes in each of the four cardinal directions, although we will discuss results only for

the 3- and 6-lane cases (other results were similar) for the sake of brevity. As with

earlier experiments, vehicles are spawned equally likely in all directions, and are

generated via a Poisson process which is controlled by the probability that a vehicle

will be generated at each step. Vehicles are generated with a set destination—15%

of vehicles turn left, 15% turn right, and the remaining 70% go straight. As before,

the leftmost lane is always a left turn lane, while the right lane is always a right

turn lane. Turning vehicles are always spawned in the correct lane, and non-turning

vehicles are not spawned in the turn lanes. In scenarios involving only autonomous

vehicles, we set the traffic level at an average of 1.667 vehicles per second per lane in

each direction. This equates to 5 total vehicles per second for 3 lanes, and 10 total
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vehicles per second for 6 lanes. Scenarios with human-driven vehicles had one third

the traffic of the fully autonomous scenarios—the intersection cannot be nearly as

efficient with human drivers present. We chose these amounts of traffic as they are

toward the high end of the spectrum of manageable traffic for the respective variants

of the intersection manager. While we wanted traffic to be flowing smoothly, we also

wanted the intersection to be full of vehicles to test situations that likely lead to the

most destructive possible collisions.

9.3.2 How Bad Is It?

As we suspected, the average crash log of the oblivious intersection manager is quite

grisly. As explained in Section 9.2.2, driver agents must ignore their sensors while

in the intersection, because many of the “close calls” would appear to be impending

collisions. Without any way to react the situation going awry, vehicles careen into

the intersection, piling up until the entire intersection is filled and crashed vehicles

protrude into the incoming lanes. Figure 9.2 shows that for both 6-lane cases—fully

autonomous and 5% human drivers—the rate of collisions does not abate until over

70 vehicles have crashed. Even a full 60 seconds after the incident begins, vehicles

are still colliding. In the 3-lane case, the intersection is much smaller and thus fills

much more rapidly; by 50 seconds, the number of collided vehicles levels off.

In both of the scenarios with human drivers, shown in Figure 9.2(b), the

number of vehicles involved in the average incident is noticeably smaller. This out-

come is likely the result of two factors. First and foremost, the FCFS-Signal policy

must make broad allowances to accommodate the human drivers, and thus overall is

inherently less dangerous. The characteristic “close calls” from the standard FCFS

policy are less common. Second, the simulated human driver agents do not drive

“blindly” into the intersection—trusting to the intersection manager—the way the

autonomous vehicles do. Also of note in Figure 9.2(b) is the visible periodicity of the

signal model portion of the policy. As paths open up for autonomous vehicles due
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Figure 9.2: Average crash logs (with 95% confidence interval) for 3- and 6-lane
oblivious intersections. In 9.2(a), the intersection manages only autonomous vehi-
cles, while 9.2(b) includes 5% human drivers.

to changes in the signals, they drive unwittingly into the growing mass of crashed

cars.

9.3.3 Reducing the Number of Collisions

There are two main components to the safety mechanism introduced in this chapter.

First, the intersection manager stops accepting reservations. Second, the intersection

manager sends messages informing the driver agents that an incident has taken place.

There is a possibility that this second part might not always work perfectly; some

vehicles might not receive the message. To investigate the effects of these potential

communication failures, we intentionally disabled some of the vehicles’ ability to

receive the Emergency-Stop message. A parameter in our simulator controls the

fraction of vehicles created with this property, and by varying this parameter, we

could observe its subsequent effect on the average number of vehicles involved in

incidents.

As compared to the oblivious intersection manager, the number of vehicles

involved in the average incident for an active intersection manager decreases dramat-

ically. Table 9.1 shows the numerical results for both the 3- and 6-lane intersections,
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along with a 95% confidence interval. The average crash logs for these runs are not

shown in Figure 9.2, as they would be indistinguishable from one another at that

scale. Instead, we present them in Figure 9.3.

Fully Autonomous 5% Human
3 Lanes 6 Lanes 3 Lanes 6 Lanes

Oblivious 27.9± 1.3 90.9± 4.9 19.3± 1.1 49.3± 2.7

Passive 2.63± .13 3.23± .16 2.23± .10 2.35± .13

Active

20% receiving 2.44± .13 3.15± .17 2.07± .10 2.29± .13

40% receiving 2.28± .12 2.90± .16 1.91± .10 2.07± .12

60% receiving 1.89± .10 2.69± .15 1.72± .09 1.98± .11

80% receiving 1.71± .08 2.30± .13 1.46± .07 1.65± .09

100% receiving 1.36± .06 1.77± .10 1.22± .05 1.50± .09

Table 9.1: Average number of simulated vehicles involved in incidents for 3- and
6-lane intersections. Even with only the passive safety measures, the number of
crashed vehicles is dramatically decreased from the oblivious intersection manager.
In the active configuration, as more vehicles receive the emergency signal, the num-
ber of crashed vehicles decreases further.

Figure 9.3 shows the effects of the reactive safety measures in intersections

with 6 lanes, with the proportion of receiving vehicles varying from 0% (passive) to

100% in increments of 20%. Even in the passive configuration, the overall number

of vehicles involved in the average incident decreases by a factor of almost 30 in the

fully autonomous scenario, and a factor of over 20 in the scenario with 5% human

drivers, as compared to the oblivious intersection manager. As expected in the

active configuration, when more vehicles receive the emergency signal, fewer wind

up crashing. The graphs in Figure 9.3 only show the first 15 seconds of the incident,

because in no case did a collision occur more than 15 seconds after the incident

started.
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Figure 9.3: The first 15 seconds of average crash logs for 6-lane passive and active
intersections. As more vehicles react to the signal, safety improves.

9.3.4 Reducing the Severity of Collisions

While it is reassuring to know that the number of vehicles involved in the average

incident can be kept fairly low, these data do not give the entire picture. For

example, compare an incident in which 30 vehicles each lose a hubcap to one in

which two vehicles are completely destroyed and all occupants killed. While we

do not currently have any plans to model the intricate physics of each individual

collision with high fidelity, our simulations do allow us to observe the velocity at

which the collisions occur. In the previous example, we might notice that the 30

vehicles all bumped into one another at low velocities, while the two vehicles were

traveling at full speed. To quantify this information, we record not only when a

collision happens, but the velocity at which it happens. In a collision, the amount

of damage done is approximately proportional to the amount of kinetic energy that

is lost. Because kinetic energy is proportional to the square of velocity, we can use

a running total of the squares of these crash velocities to create a rough estimate of

the amount of damage caused by the incident. Figure 9.4 shows an average “damage

log” of a 6-lane intersection of autonomous vehicles. Qualitatively similar results

were found for the other intersection types.
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Figure 9.4: Average total squared velocity of crashed vehicles for a 6-lane intersec-
tion with only autonomous vehicles. Sending the emergency message to vehicles
not only causes fewer collisions, but also makes the collisions that do happen less
dangerous.

As Figure 9.4(a) shows, the effect of our safety measures under this metric is

quite dramatic as well. In the passive case the total accumulated squared velocity

decreases by a factor of over 25. In the active case, with all vehicles receiving the

signal, it decreases by another factor of 2. Of particular note is the zoomed-in graph

in Figure 9.4(b). In the passive configuration, the total squared velocity accumulates

as if the intersection manager were oblivious, until the first vehicles stop short of

the intersection at around 3 seconds; without a reservation, they may not enter. In

the active scenario, when all the vehicles receive the message, the improvement is

almost immediate.

9.3.5 Delayed Incident Detection

Implicit in these results is the assumption that intersection managers become aware

of incidents instantaneously. While this could be the case in many collisions—

vehicles should communicate when they have collided—if a vehicle’s communications

are faulty, or if the vehicle does not realize it has collided, the intersection may not

discover the problem for a few seconds, when another vehicle or sensor will detect the

problem. To assess the effects of delayed incident detection, we artificially delayed
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the intersection manager’s response in some of our simulations. Figure 9.5 shows

the results from these experiments.
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Figure 9.5: Crash logs showing the effects of delayed incident detection.

In Figure 9.5(a), the intersection manager’s reaction was delayed 0, 1, 3,

and 5 seconds. Note that the total number of crashed vehicles with a delay of

5 seconds is on par with the number in the experiment in which the intersection

manager reacts immediately, but none of the vehicles receive the message, shown

in Figure 9.3(a). Figure 9.5(b) shows what happens with both delayed detection

and faulty communication. This graph, along with the earlier results, suggests

that for small values, each second of delay is approximately equivalent to 20% of

vehicles not receiving the Emergency-Stop message, and that when combined,

delayed detection and faulty communication have an additive effect. For larger

delays, the number of vehicles involved can be approximated using the data shown

in Figure 9.2(a), because in these cases, the number of vehicles that crash after the

intersection is much smaller than the number that crash before it reacts.

9.4 Safety Discussion

The results in this section suggest that it may be possible to improve efficiency

while also improving safety. But of course before deployment in the real world,
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extensive testing with real vehicles would be needed in order to verify both the

suggested efficiency benefits, as well as the safety properties of the system. People

are often hesitant to put their well-being (physical or otherwise) in the hands of

a computer unless they can be convinced that they will receive a significant safety

benefit in exchange for surrendering precious control. Humans often suffer from the

overconfidence effect, erroneously believing they are more skillful than others. In a

1981 survey of Swedish drivers, respondents were asked to rate their driving ability

in relation to others. A full 80% of those asked placed themselves in the top 30%

of drivers [Svenson, 1981]. It is this effect that creates the high standard to which

computerized systems are held. It is insufficient for such systems to be marginally

safer, or safer for the average user; they must be the very paragon of safety.

In our experiments, we showed that the number of vehicles involved in in-

dividual incidents can be drastically reduced by utilizing a fairly straightforward

reactive safety mechanism. In fact, in the active configuration with 3 lanes, 75% of

the incidents involved only one vehicle: the one we intentionally crashed (60% for 6

lanes). If this was a vehicle with a mechanical failure, no other vehicles would have

crashed into it! Even in the passive case with 6 lanes of traffic, an average of only

3.23 vehicles were involved. But how does this compare with current systems? If

we make the overly conservative assumption that accidents in traffic today involve

only one vehicle, this represents a 223% increase in vehicles-per-incident. However,

autonomous vehicles should prevent a lot of accidents because they will all but

eliminate driver error. So, even with an increased number of vehicles involved in

each incident, if the total number of incidents can be reduced by just 70%, these

experiments suggest that an autonomous intersection management system will be

safer overall. A 2002 report for the U.S. Federal Highway Administration blamed

over 95% of all accidents on driver error [Wierwille et al., 2002]. The remaining

accidents were divided equally between vehicle failures and problems with roads.
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It is important to note that these numbers are for all driving, not just intersection

driving. Accidents in intersections are even more likely to be caused by driver error,

sometimes even by drivers willfully disobeying the law: running red lights and stop

signs or making illegal “U”-turns.

Even if we make overly conservative assumptions—that all driving is as dan-

gerous as intersection driving, and that driver error is no more accountable for inter-

section crashes than it is in other types of driving—our data suggest that automobile

traffic with autonomous driver agents and an intersection control mechanism like

ours will reduce collisions in intersections by over 80%. We believe that in reality,

the improvement will be much greater.

The safety measures presented in this section constitute just one approach

for mitigating the system’s failure modes. More sophisticated methods involving

explicit cooperation amongst vehicles may create an even safer system. We have

not shown (or attempted to show) that this particular solution is the best possible.

Rather we have demonstrated that even with a simple and straightforward response

to accidents, the overall safety of the system can be maintained, without sacrificing

the benefits of vastly improved efficiency.
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Chapter 10

Multiple Intersections

In this section, we propose a novel augmentation that allows the reservation-based

intersection control mechanism to work for more than just a single intersection.

10.1 Challenges

In a single-intersection scenario, once a vehicle has completely cleared the intersec-

tion, the intersection manager no longer bears any responsibility for the vehicle.

However, when two or more intersections are linked together, the problem with this

notion becomes more apparent. By granting a reservation, an intersection manager

is guaranteeing that the vehicle will be safe it if follows the parameters of the reserva-

tion, which may include specific directives for acceleration throughout the traversal.

When a vehicle has completed the traversal, it may be traveling at significant speed.

If vehicles are stopped or slowed just outside the intersection, it may not be able to

decelerate rapidly enough to prevent a collision.

10.2 The Admission Control Zone

To prevent such a situation, we introduce the concept of an admission control zone

(ACZ). The ACZ, although it includes the word “admission” in its name, is actually

positioned after the intersection. It is called an admission control zone because
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admission to the zone is controlled. The ACZ acts like a “leaky bucket” (an admis-

sion control protocol) from computer communication networks [Turner, 1986]. Each

ACZ has a fixed capacity, measured in meters, as well as a distance. The capacity

must be no larger than the distance, and in practice, should be significantly smaller,

perhaps half the size of the distance. When a vehicle obtains a reservation that

departs the intersection in a particular lane, it also has a space reserved for it in

that lane’s ACZ. As part of the confirmation, the intersection manager reveals the

ACZ distance (but not capacity) to the vehicle. When a vehicle travels beyond the

ACZ distance, it sends a message back to the intersection manager that releases

the space reserved for it in the ACZ. If the ACZ of a vehicle’s requested departure

lane does not have sufficient remaining capacity for the vehicle (including stopping

distance), the vehicle’s request will be rejected, even if the necessary space-time in

the intersection was available. Figure 10.1 illustrates one potential scenario.

5m 3m 10m 4m3m

45m

Figure 10.1: The light gray area depicts the ACZ for one lane. The 5m, 3m, and
10m vehicles are in the ACZ, while the 4m vehicle has left the ACZ. The ACZ
distance is 45m. Let the ACZ capacity be 25m. The total length of vehicles in the
ACZ is currently 18m. The 3m vehicle approaching the intersection cannot obtain a
reservation departing in its current lane unless it can stop within 4m after entering,
or the 10m vehicle departs the ACZ.
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10.2.1 Lane Changing Within The ACZ

Because the intersection must monitor the total length of all vehicles in each ACZ,

lane changing within the ACZ distance must be carefully controlled or forbidden

altogether. If a vehicle changed into a lane that otherwise would have had enough

room for a requesting vehicle, that vehicle’s reservation may be confirmed, even

though there may now not be enough room for the vehicle to exit the intersection

safely. Forbidding lane changing altogether may not be feasible, as some vehicles

may need to change lanes in order to exit the roadway, or to prepare for an upcom-

ing turn. Instead, we control lane changing inside the ACZ using special messages:

ACZRequest, ACZConfirm, ACZReject, ACZCancel, ACZDone, ACZEn-

tered, and ACZExit. These messages—presented along with the rest of the com-

plete protocol in Chapter 3, and marked with a † symbol—allow a vehicle within

the ACZ distance to request permission from the intersection to change lanes or

enter the roadway in a particular lane. They also enable a vehicle to inform the

intersection that it has completed changing lanes or left the roadway before clearing

the ACZ.

10.2.2 Data Structure

To enable the ACZ to function robustly and efficiently, we developed a custom data

structure. This data structure has at its heart a heavily modified queue, which

represents the vehicles currently located physically inside the ACZ. The queue is

implemented as a doubly-linked list with a tail but no head; while nodes are put

onto the end of the list, they are never removed directly from the front. Each node

in the list represents a vehicle and contains the vehicle’s VIN and length. The nodes

in the queue come in two variants: those that were enqueued, and those that were

inserted. If a node is enqueued, all nodes in front of it represent vehicles that are

physically in front of the vehicle it represents. A node is enqueued if and only if the
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vehicle it represents enters the ACZ from the intersection—not by a lane change.

In addition to the nodes in the queue, the data structure has pending nodes.

Pending nodes represent vehicles with space reserved in the ACZ, but not physically

located in the ACZ. This space may be reserved either as part of the reservation

process or as part of a lane-change request inside the ACZ. When those vehicles

enter the ACZ, the nodes are enqueued or inserted depending on how the vehicle

entered the ACZ. The vehicle lengths in all nodes contribute to the total length of

all vehicles in the ACZ, which may never exceed the ACZ’s capacity. When a node

is created, the total length is increased by the length in the new node. When a node

is destroyed, the total length is correspondingly decreased.

Supporting the queue and the pending nodes are two maps. The first maps

VINs to nodes, allowing constant-time access to any node. The second assists with

enqueueing vehicles that will enter the ACZ in accordance with a reservation. When

a reservation is requested, the intersection manager checks if the ACZ has enough

space. If so, a pending node is created, and an entry is made in the second map,

indicating the time at which the vehicle will enter the ACZ. Periodically—ideally

very frequently, at a minimum just before any nodes are added to the queue—the

second map is searched for all keys before the current time, which are then enqueued.

As with adding nodes, there are two ways to remove nodes. Nodes can be ex-

pired or extracted. A node is expired when the corresponding vehicle leaves the ACZ

by reaching the ACZ’s distance from the intersection, sending an Away message.

When a node is expired, if that node was enqueued, it is removed from the queue

along with every node in front of it—the corresponding vehicles are physically in

front of the vehicle represented by the node we expired, and thus must also have left

the ACZ. If the node to be expired was inserted, we cannot make this guarantee, and

the node is simply removed from the queue. When a node is extracted, on the other

hand, it is simply removed from the queue regardless of how it was added. Nodes
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are extracted when the vehicle to which they correspond exits the ACZ by changing

lanes or exiting the roadway, sending a ACZEntered or ACZExit, respectively.

Pending nodes can also be removed, if the corresponding vehicles leave the ACZ in

any way before those nodes have been added to the queue, or if the reservations or

lane-change requests for which the nodes were created are canceled, via a Cancel

or ACZCancel message, respectively.

Figure 10.2 illustrates the state of the ACZ data structure over the course

of several operations—bold nodes are those that were added sequentially, dashed

nodes are pending nodes, and the tail of the queue is indicated by the � symbol.

Figure 10.2(a) shows the initial state, with five nodes in the queue, and three pending

nodes, each of which will be enqueued sequentially at or after the times indicated.

In 10.2(b), vehicle 44, which was inserted, is expired. By Figure 10.2(c), time 2 has

passed, triggering the sequential enqueueing of the pending node for vehicle 29. In

Figure 10.2(d), vehicle 5, which was enqueued, is expired, triggering the removal of

its node and all nodes in front of it. Figure 10.2(e) shows that vehicle 9 has requested

and been approved for a lane change into the ACZ, creating a new pending node.

Finally, in Figure 10.2(f) vehicle 9 has completed its lane change and its node has

been inserted. Its node was not enqueued, as it may be in front of one of the other

vehicles. Additionally, vehicle 68 has requested and obtained a reservation and will

enter the ACZ at time 8. For clarity, the maps that allow these operations to take

place in amortized constant time are not shown in the figure.

With the addition of the ACZ, we have identified and solved the main tech-

nical barrier between a system capable of only single intersections, and one that

works at networks of many intersections.

10.2.3 Light-Based and Human-Usable Policies

In signal-based policies, as well as any that accommodate vehicles without the ca-

pability to communicate, the utility of the ACZ is significantly diminished. In
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Figure 10.2: The internal state of the ACZ data structure over the course of several
operations.
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these cases, vehicles cannot be carefully tracked, and thus the ACZ cannot make

the guarantees present in a fully-autonomous case. In these cases, it must be the

responsibility of each individual driver agent to assess the outflow of the lane in

which it plans to depart the intersection to ensure there is sufficient capacity. These

otherwise non-coordinating vehicles might be augmented to allow rudimentary co-

ordination, even with a human driver. If the vehicle can sense when it is entering an

ACZ, when it is exiting an ACZ, and when the vehicle wants to change lanes within

the ACZ (perhaps by examining the state of the turn signal), ACZ might retain its

utility in mixed-population scenarios. However, all vehicles would need to have this

baseline capability.

10.3 Experimental Results

To test our protocols, we used our custom traffic simulator, with traffic level 0 <

λ ≤ 0.2 in the V2I scenarios, and 0 < λ ≤ 0.08 in the V2V scenarios, which are

for lighter-traffic intersections. Recall that λ is the rate parameter of the Poisson

process that generates the traffic, so there will be an average of λ vehicles per second

in each lane. Once vehicles are spawned, they are assigned a destination. In some

experiments, the destination is assigned randomly. In others, the destination is

assigned so as to prevent vehicles from needing to turn. Each lane has a speed

limit of 25m/s. A video of the aim3 simulator running the FCFS policy at multiple

intersections can be seen on the videos section of the project page at http://www.

cs.utexas.edu/~kdresner/aim/.

10.3.1 Delay

As with previous experiments, the metric we consider is delay—the total increase

in travel time due to the presence of the intersection. However, in this case, instead

of simply reporting total average delay, we report delay per intersection—each vehi-

cle’s total delay is divided by the number of intersections traversed by that vehicle.
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This normalization is to account for the fact that some vehicles may traverse fewer

intersections than others.

10.3.2 V2I Results

We considered two different topologies for multiple intersections: grids and chains.

The results are shown in Figure 10.3. In 10.3(a), we see that for the most part, delay

per intersection actually decreases as the size of the grid increases. The exception

for 0.12 ≤ λ ≤ 0.18 may be an artifact of the ACZ system. If an intersection gets

significantly backed up (as may happen at higher traffic levels), the ACZ for an

“upstream” intersection may get clogged, causing vehicles to wait even though the

intersection would otherwise be clear. This situation does not arise when there is

only one intersection. The plots level out toward the right end of the graph as the

simulator simply has no more room to spawn vehicles.

But why should the delay per intersection decrease as the number of inter-

sections increases? As traffic passes through the managed intersections, parts of

the mechanism designed to keep vehicles from coming too close to one another have

the effect of spreading out the traffic amongst the lanes. The intersection manager

won’t let a vehicle exit a lane too soon after another vehicle has done so. Once

the traffic is spread out by one intersection, it is less likely to need to do so for

later intersections, which results in much lower delays at the later intersection. As

the grid size increases, more intersections have more roads entering them with such

traffic.

Figure 10.3(b) shows results from chains of size 1–6, in which we see the

opposite pattern. Delay per intersection increases as the chain grows. The effect

mentioned above is much weaker in a chain, as adding another intersection to the

chain adds more “noisy” traffic and very little “shaped” traffic. Additionally, the

chain topology has the pronounced effect of concentrating more and more traffic on

the intersections toward the middle of the chain due to the random assignment of
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destinations. In one experiment a single intersection was crossed 21,600 times. With

the same settings and duration, each middle intersection in a 6-chain had almost

50,000 crossings. This effect is absent in grids because the ratio of lanes (which

spawn traffic) to intersections is constant.
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Figure 10.3: Average delay per intersection for V2I grids and chains. The y-axis is
a log scale.

To test these hypotheses, we ran experiments in which vehicles did not turn.

The results are shown in Figure 10.4. As 10.4(a) and 10.4(b) show, delays are

much lower when turning is disabled. Turning vehicles must slow down to make the

turns, use significantly more space-time in the intersection, and can interfere with

many more vehicles’ trajectories. But the absolute numbers are not the interesting

part—the fact that the delays decrease as the size of the chain grows helps confirm

our hypotheses. Without turning, traffic is no longer concentrated on the middle

intersections, and the “shaping” effect on the long lane decreases delay.

10.3.3 V2V Results

Figure 10.5 shows results from our V2V experiments on grid topologies. Just as

with the V2I system, increasing the number of intersections decreases the delay

per intersection. The V2V protocol has a similar tendency to spread vehicles out

and to perform better when vehicles are already spread out. Recall vehicles with
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Figure 10.4: Average delay per intersection for V2I grids and chains without turning
enabled. The y-axis is a log scale.

intersecting trajectories—such as those exiting in the same lane—cannot be in the

intersection at the same time. Also note that in 10.5(a), the anomaly from the V2I

case is absent, because the V2V system does not have an ACZ. We also explored the

chain topology for the V2V system. The results were qualitatively similar to those

from the V2I system: enlarging the chain increased delay per intersection, but the

effect vanished with turning disabled.
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Figure 10.5: Average delay per intersection for V2V grids. The y-axis is a log scale
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10.3.4 Mixing V2I and V2V

While all the experimental results presented in this section are for homogeneous

systems of intersection managers, there is no requirement that such homogeneity

exist. As explained in Chapter 5.2.1, when a vehicle approaches an intersection,

it first determines what type the intersection is (V2I or V2V), so that it knows

which protocol to use. This means that any configuration of intersections can work,

although the V2V intersections cannot receive as much traffic as a comparable V2I

intersection can.

10.4 Summary

This chapter proposed a sophisticated extension to the basic intersection control

mechanism capable of supporting more than a single intersection. In it, I described

some of the important challenges that result from having multiple intersections.

By introducing the ACZ, I enabled the intersection manager to grant reservations

while still ensuring that vehicles would not be placed in danger by traversing the

intersection according to those reservations. Furthermore, this chapter provided

experimental results showing that the mechanism is effective. While there is still

ample space to explore regarding the effects of multiple intersections, this chapter

takes one more step toward making autonomous intersection management a reality.
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Chapter 11

Related Work

Traffic control is a vast area of research for computer scientists and engineers alike.

The field of Intelligent Transportation Systems (ITS) is concerned with applying

information, computing, and sensor technologies to solve problems in traffic and

road management [Bishop, 2005]. ITS includes intelligent vehicles (IV) as well

as infrastructure, such as intersections. Unfortunately, while both aspects of ITS

are heavily studied, relatively little current research considers how intelligent or

autonomous vehicles and infrastructure can work together to improve the efficiency

and safety of the overall traffic system. The Berkeley PATH project has produced a

lot of interesting work, including work on a fully-automated highway [Alvarez and

Horowitz, 1997].

In this section, we describe some work related to our own, both directly and

tangentially. Some of this work is specifically concerned with intersection control,

some takes a multiagent approach to other aspects of traffic management, and some

represents work on the technologies necessary to bring fully autonomous vehicles

into the mainstream.
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11.1 Requisite Technology

Before autonomous vehicles can take over the roads, they will need to be able to

interact with all the aspects of roadways, including pedestrians, other vehicles, and

lanes. As early as 1991, a driver agent system named “Ulysses” had been devel-

oped in simulation [Reece and Shafer, 1991]. While most systems currently under

development for implementation on real vehicles are geared toward assisting human

drivers, many of the technologies created through these efforts are applicable to the

creation of a completely autonomous driver agent. Such a successful driver agent

needs to do three main things: detect other entities on the road, keep its vehicle in

the lane, and maintain safe distances from other vehicles. Fortunately, each of these

three subtasks currently attracts an extensive amount of research.

11.1.1 Object Detection and Tracking

A fully autonomous vehicle must be able to reliably detect, classify, and track vari-

ous objects that may be in the roadway. From pedestrians and bicycles to cars and

trucks, autonomous vehicles will require robust sensors that can monitor the world

around them in all manner of lighting conditions and weather. Without such abili-

ties, any amount of higher reasoning a driver agent can do is irrelevant. Fortunately,

researchers are attacking this problem with many techniques.

In 2004, Honda introduced an intelligent night vision system to the Japanese

market capable of detecting pedestrians [Liu and Fujimura, 2003]. The system

uses two far-IR (FIR) cameras on the front of the vehicle to detect heat-emitting

objects beyond the range illuminated by the vehicle’s headlights. The two cameras

allow the system to obtain distance information about the detected pedestrians and

can then warn the driver. DaimlerChrysler is developing a similar system that

also extrapolates the trajectories of classified objects in order to predict possible

outcomes sooner [Gavrila et al., 2004]. Mählisch et al. [2005] have developed a
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sensor fusion technique that can glean information about pedestrians reliably even

from low-resolution images.

The Ford Motor Company has been investigating how to track vehicles using

both color and shape information [She et al., 2004]. Gepperth et al. [2005] have

demonstrated that with only gray-valued videos (no color), a two-stage (initial de-

tection and confirmation) mechanism using a simple neural network for confirmation

can reliably and quickly classify other vehicles.

Vehicle and pedestrian classification and tracking is a well-studied area of

IV research that is progressing quickly. A glance at any IV-related conference or

symposium will reveal a plethora of articles aimed at using lidar, FIR, normal video,

and any combination of these sensors with algorithms like Kalman filters, particle

filters, and neural networks to track and classify other objects on the road.

11.1.2 Lane Following

As with pedestrian and vehicle detection and tracking, lane following is a heavily

studied area of IV research. Varying from passive lane- and road-departure warning

systems (LDWS/RDWS) to active lane keeping assistance (LKA), many systems

are already showing up in production vehicles.

As far as RDWS go, Kohl et al. [2006] have used neuroevolution to create

a warning system that can warn drivers of both road departure and impending

crashes with other vehicles. The system was tested both in simulation and with a

robotic vehicle. This work is sponsored by Toyota, who have also currently have

an LDWS on the market in Japan. This system is unique in that it uses a rear-

facing camera to predict and warn of impending lane departures. While LDWS and

RDWS promise extensive benefits to drivers, they only warn of imminent road and

lane departures, and do not provide information on what specific action should be

taken. Autonomous vehicles will need to ensure they do not reach a point where a

lane or road departure is imminent.
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Lane keeping, on the other hand, provides and executes actions. For exam-

ple, the “No Hands Across America” project in 1995 drove a vehicle 2,849 miles

from Pittsburgh to Los Angeles. For 98.2% of the journey, the vehicle steered it-

self [Pomerleau, 1993]. More recent projects have concentrated on making such

systems robust to varying speed, inclement weather and poor lighting conditions

such as beneath overpasses and in tunnels. Wu et al. [2005] have proposed and

tested a vision-based lane-keeping system that can operate at varying speed while

providing smooth human-like steering. Watanabe and Nishida [2005], working for

Toyota, have developed a lane detection algorithm specifically designed for steering

assistance systems that is extremely robust to varying road conditions and lighting.

While several LKA systems are on the market in Japan, these systems are

not intended to allow autonomous driving. Rather, they attempt to reduce driver

fatigue and make turning more stable [Bishop, 2005]. Production systems that allow

autonomous steering are almost invariably based on specially painted lines and are

limited to special vehicles on closed courses.

Even without the benefit of explicitly designated lanes, autonomous ve-

hicles can keep themselves on the roadway. In the 2005 DARPA Grand Chal-

lenge [DARPA, 2007a], the winning vehicle, “Stanley”, used a technique fusing

short-range laser range finders with long-range video cameras to follow a rough dirt

path. First, the vehicle found smooth areas in front of it using the laser range

finders. Then it mapped this information onto video images from forward-facing

cameras. By determining the color of the area in the image corresponding to the

smooth areas found by the laser range finder, Stanley was able to extrapolate using

a flood-fill-type algorithm to find which areas of the video image were on the dirt

path [NOVA, 2006]. Ramström and Christensen [2005] achieved a similar goal by

using a strategy based on a probabilistic generative model.
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11.1.3 Adaptive Cruise Control

If lane-keeping systems represent the main lateral component of an autonomous

vehicle’s driver agent, then adaptive cruise control (ACC) is the main longitudinal

component. ACC allows a vehicle to maintain a safe following distance and can react

quicker than a human driver in the case of sudden deceleration by the vehicle in front.

ACC systems are already available on the market—DaimlerChrysler’s Mercedes-

Benz S-class, for example, comes with a system that will automatically apply the

brake if it detects that the driver is not slowing sufficiently fast. Jaguar, Honda,

and BMW offer similar systems. Nissan and Toyota have recently begun offering

“low-speed following” systems, which can follow other vehicles in slower, denser,

urban traffic scenarios [Bishop, 2005]. ACC relies on robust sensing and uses radar,

lidar, and traditional machine vision algorithms. By combining various “flavors”

of ACC — low speed, high speed, etc.—an agent could control the longitudinal

motion of a vehicle in all situations. Recently, the notion of cooperative adaptive

cruise control (CACC) has emerged [Laumônier et al., 2006]. This concept goes

much further toward realizing the goal of fully autonomous vehicles. By allowing

vehicles to collaborate and take advantage of the precision of autonomous driver

agents, vehicles can use the existing road space much more efficiently.

11.2 Intersection Collision Avoidance

To date, much of the ITS work relating to intersections has focused on Intersection

Collision Avoidance (ICA). This work seeks to warn the driver when the vehicle may

be entering an intersection unsafely. With the aid of high-precision digital maps

and GPS equipment, the vehicle detects and classifies the state of the traditional

signaling systems placed at the intersection [Lindner et al., 2004]. ICA systems

typically do not take any action on behalf of the driver, but simply provide a visual

or auditory warning.
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Rasche and Naumann [1997; 1997; 1998] have worked extensively on de-

centralized solutions to intersection collision avoidance problems, including those

involving autonomous vehicles. This work is very similar to ours in that it uses

“potential points of collision” to restrict access to the intersection. Only one vehicle

may occupy any potential point of collision at a time. Vehicles attempt to obtain

a token (similar to a token-ring in computer networking) for each point needed to

cross the intersection. Once a vehicle has all the necessary tokens, it may cross.

Rasche and Naumann’s system also includes a priority model that allows emergency

vehicles to cross more quickly and prevents deadlocks amongst normal vehicles.

However, the system fails to satisfy several of our desiderata. It does not make any

guarantees, nor do the authors provide any results regarding the efficiency of the

system as compared to a traditional system. Furthermore, the distributed algorithm

is not shown to be resilient to unreliable communication. The authors also do not

provide any insight into how the system could be adapted to work with a mixed

human/autonomous vehicle population. The most striking difference, however, is

that the mechanism does not seem to have any notion of planning ahead. Tokens for

the potential points of collision are either taken or not taken—a vehicle can not seek

to obtain a token for some point in the future, thus allowing it to proceed toward

the intersection without slowing down while other vehicles have the tokens.

In the context of video games and animation, Reynolds [1999] has developed

autonomous steering algorithms that attempt to avoid collisions in intersections that

do not have any signaling mechanisms. Such a system would have the enormous

advantage of not requiring any special infrastructure or agent at the intersection—

vehicles equipped with such algorithms could operate at any intersection. Unfor-

tunately, the two main drawbacks of the system make it unsuitable for use with

real-life traffic. First, the algorithm does not let the agent choose which path it will

take out of the intersection; a vehicle may even find itself exiting the intersection the
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same way it came in, due to efforts to avoid colliding with other vehicles. Second,

the algorithm only attempts to avoid collisions—it does not make any guarantees

about safety.

Cooperative intersection collision avoidance is a form of cooperative vehicle-

highway system (CVHS) in which the intersection is allowed to participate in the

ICA problem. ICA systems contained entirely in individual vehicles cannot account

for gaps in sensor views or other sources of incomplete information. Thus, a CVHS

approach is required. As with many other ITS technologies, production systems

still assume a human driver and attempt to warn them when a violation is about

to occur, or in some cases, punish them after the fact, as with cameras that detect

when a vehicle has run a red signal and automatically issues the driver a citation.

The U.S. Department of Transportation is sponsoring several ICA projects including

both infrastructure-only and cooperative approaches [USDOT, 2003]. The intention

is to first deploy the infrastructure-only systems, and then as the market penetration

of ICA-equipped vehicles increases, to roll out the cooperative systems. Significant

work on ICA is also underway in Japan [Bishop, 2005].

While these systems are a large step toward enabling autonomous vehicles to

take to the roads, none are designed to work specifically with autonomous vehicles.

With the exception of the algorithm designed for games, each assumes both a human

driver and traditional signaling systems—a clumsy, inefficient interface that will find

itself all but obsolete due to autonomous vehicle technology.

11.3 Optimizing Traffic Signal Timing

The vast majority of deployed technology for intersection control involves calibrating

the timing of traditional traffic signals in order to create a “wave of green” such

that once vehicles reach one green signal, they continue through all subsequent

intersections without having to stop. Unfortunately, in practice, such waves tend to
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be sporadic and short-lived due to rapidly changing traffic patterns. However, they

do offer substantial benefits compared to systems without this coordination.

TRANSYT, the Traffic Network Study Tool, is an off-line system that, given

average traffic flows, can determine optimum fixed-time coordinated traffic signal

timings [Robertson, 1969]. TRANSYT requires extensive data gathering and anal-

ysis, but is used very heavily all over the world. Unfortunately, this system is very

brittle because it does not have the ability to react to unusual changes in traffic

flow. For example, at the end of a major sporting event, thousands of vehicles may

all be attempting to cross an intersection in a direction which under normal circum-

stances is rarely used. Because the signal timings are set up to reflect these normal

circumstances, the length of time for which the departing vehicles get a green signal

may be significantly less than the cross traffic, of which there may be little.

SCOOT, the Split, Cycle, and Offset Optimisation Technique, represents an

advancement over TRANSYT [Hunt et al., 1981]. SCOOT is an on-line adaptive

traffic control system that can react to changes in traffic levels, give priority to

vehicles such as buses, and even estimate vehicle emissions. While SCOOT has been

shown to reduce traffic delays by an average of 20% over systems like TRANSYT,

it still relies on traditional signaling systems and vehicles. Furthermore, SCOOT

requires reliable traffic data in order to adapt, and thus may be slow to react to

changes in traffic flow.

The more recent RHODES system, developed at the University of Arizona,

actually predicts future traffic conditions based on detectors such as induction loops

and video cameras, and outputs optimized signal timings for the predicted traffic

conditions [Mirchandani and Wang, 2005]. RHODES takes advantage of modern

communication and processing infrastructure to act quickly on new data about

changing traffic conditions.
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11.4 MAS and Traffic

Automobile traffic is a great example of a multiagent system, and it is not surprising

that there is a lot of research into modelling and studying traffic using multiagent

techniques. Many of these approaches consider systems consisting only of traffic-

signal-controlling agents or driver agents, as opposed to a heterogeneous multiagent

system with many kinds of agents. Nevertheless, many of the ideas involved could

potentially be adapted to work within the framework of the reservation system.

11.4.1 Cooperative Traffic Signals

Much of MAS traffic research focuses on improving current technology (systems

of traffic signals). For example, Roozemond [1999] allows intersections to act au-

tonomously while sharing the data they gather. The intersections then use this

information to make both short- and long-term predictions about the traffic and

adjust accordingly. This strategy attempts to overcome one of the weaknesses of

SCOOT: the need for large amounts of reliable traffic data. If multiple intersections

can share data, each intersection will get a more accurate picture of the current

traffic situation.

Bazzan [2005] has used a decentralized approach combining MAS and evo-

lutionary game theory. The approach models each intersection as an individually-

motivated agent which must focus not only on local goals (getting vehicles through

the intersection), but also on global goals (reducing travel times for all vehicles).

Both Bazzan and Roozemond’s techniques still assume traditional signaling mecha-

nisms and human drivers.

11.4.2 Platoons

In addition to multi-intersection systems, multi-vehicle systems are the focus of a lot

of research. Much of this research centers on creating platoons of vehicles in order to
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minimize the effects of stop-and-go driving. Consider a line of cars stopped at a red

signal. When the signal turns green, the first car begins to move. Eventually, the

car behind it notices that it has enough space to accelerate as well. Some time later,

the vehicle at the back of the line will begin to move, but this may be too late to

actually get through the intersection during the current green phase of the signal. If,

on the other hand, all the vehicles were to simultaneously and uniformly accelerate,

more vehicles could make it through each green phase, because the vehicles would

more efficiently use the space-time available to them to cross the intersection.

Clement [2002] has proposed a model called “Simple Platoon Advancement”

(SPA), which addresses this exact problem. SPA boasts the ability to get nearly

twice as many vehicles through a green signal (increasing the signal’s throughput)

as compared to normal human drivers, in addition to any safety and delay benefits

associated with automated control. One the vehicles are through the intersection

and dispersed to safe following distances, control is returned to the human driver.

Hallé and Chaib-draa [2005] have used the platoon approach to facilitate col-

laborative driving in general. They allow vehicles, which are controlled by separate

agents, to form such platoons, with varying degrees of autonomy. Vehicles merge

and split with platoons using carefully crafted maneuvers, during which each vehicle

in the platoon has a specific responsibility. They present both centralized version,

in which a master vehicle gives orders to the rest of the platoon, and a decentralized

version, in which social laws dictate each agent’s role, while the platoon’s leader acts

only as a representative to other platoons.

Both platooning systems assume automated control of vehicles, but use or-

dinary traffic signals for intersection control. By using platoons, these methods

attempt to solve a problem inherent in the traffic signals themselves—they are de-

signed for humans to use, and are not well suited to automated vehicle control.

The work presented in this article attempts to free autonomous vehicles from the
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control of traffic signals and instead design a new system that specifically utilizes

the capabilities of fully autonomous vehicles.

11.4.3 History-Based Traffic Control

Taking a different approach to intersection control, Balan and Luke [2006] use a

history-based method to maximize fairness (all vehicles experience similar delays)

as opposed to efficiency (the average vehicle experiences short delays). Under this

paradigm, vehicles which have historically (previously in their journey) experienced

long delays should be more likely to experience shorter delays at subsequent in-

tersections. In addition to being a multi-intersection approach, this method uses

a marketplace model involving a system of credits that can be given and taken in

exchange for shorter and longer delays, respectively. Coordination at individual in-

tersections is still done with traditional traffic signals, the timings of which are part

of the mechanism. Interestingly, the fairness approach actually yields results that

are also reasonably efficient.

11.5 Machine Learning and Traffic

Abdulhai et al. [2003] have used Q-learning, a simple, yet powerful form of reinforce-

ment learning, to do on-line adaptive signal control. In the work, the authors explore

both an isolated intersection as well as a linear chain of intersections. They demon-

strate that Q-learning can significantly reduce delays for vehicles and quickly adapt

to changing traffic patterns. Bull et al. [2004] have shown how Learning Classifier

Systems (LCS) can also make traditional traffic signals more efficient. Wiering [2000]

has demonstrated that multiagent, model-based reinforcement learning can also be

used to optimize signal timings in more complex networks of intersections.

Kuyer et al. allow individual signals to be controlled by distinct, but net-

worked agents. The agents coordinate using the max-plus multiagent reinforcement

learning algorithm, which computes optimal joint actions via messages sent between
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adjacent agents in the network. With probability 1 − ǫ, this action is taken, while

with probability ǫ, an exploratory random joint action is taken.

While not focusing on intersections, Moriarty and Langley [1998] have shown

that reinforcement learning—specifically neuro-evolution—can train efficient driver

agents for lane, speed, and route selection during freeway driving, all of which

are critical components for a fully autonomous vehicle. Additionally, many of the

object tracking and detection examples mentioned previously use neural networks

to classify objects.

11.6 Physical Robots

On real autonomous vehicles, Kolodko and Vlacic [2003] have created a small-scale

system for intersection control which is very similar to the granularity-1 FCFS policy.

The authors developed the mechanism for small Cooperative Autonomous Mobile

Robots (CAMRs), which are about 30 cm in diameter and have a top speed of

10 cm/s. The CAMRs were programmed to follow Australian traffic laws, and

communicate with several different types of messages. Once demonstrated on the

CAMRs, the mechanism was scaled up to use Imara vehicles, which are much larger

(capable of carrying two human passengers) and faster (top speed of 30 km/h). The

system is completely distributed and does not require extensive infrastructure at the

intersection. However, it does assume that all vehicles cooperate with one another.

The DARPA Urban Challenge, the next evolution of the Grand Challenge

discussed previously, pits real autonomous vehicles against one another in an array

of driving tasks in an urban setting [DARPA, 2007a]. Much like an autonomous

vehicle “driver’s test,” it requires competing vehicles to navigate streets amidst

other vehicles, parallel park, make a three-point (or more!) turn, all while following

the appropriate traffic laws. Vehicles must yield the right of way appropriately at

four-way stop signs, avoid various obstacles, and maintain a safe following distance.
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The key difference between the Urban Challenge and the work in this thesis is that

the Urban Challenge forces autonomous vehicles to work within current traffic laws

and without any sort of explicit communication amongst vehicles or infrastructure.

For the first few autonomous vehicles, this makes sense—most will have to deal with

human drivers incapable of sending or receiving wireless transmissions. However,

for a large population of autonomous vehicles, such etiquette and convention–based

protocols waste a large portion of the vehicles’ potential.

11.7 Safety Analysis

To the best of my knowledge, the failure mode analysis presented in this dissertation

is the first study of the impact of this or any other such autonomous intersection

protocol on driver safety. However, there is an enormous body of work regarding

safety properties of traditional intersections. This includes the general—correlating

traffic level and accident frequency [Sayed and Zein, 1999] and analyses of particular

types of intersections [Bonneson and McCoy, 1993; Harwood et al., 2003; Persaud

et al., 2001]—as well as plenty of more esoteric work, such as characterizing the

role of Alzheimer’s Disease in intersection collisions [Rizzo et al., 2001]. However,

because it concerns only human-operated vehicles, none of this work is particularly

applicable to the setting with which this work is concerned.

In terms of managing and modelling the effects of incidents that have already

happened, there is a large body of research. For instance, Boyles and Waller demon-

strate that the severity of an incident can be measured in many ways, including the

length of time to clear the incident, delays for other drivers, or even personal injury

and property damage, and that accurate estimates of severity are crucial for max-

imizing the efficacy of limited resources for responding to the incident [Boyles and

Waller, 2007]. Kamijo et al. have proposed an algorithm, called “spatio-temporal

Markov random field” that tracks vehicles at intersections to determine when an
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incident has occurred [Kamijo et al., 2000]. Both of these, especially the latter,

would be very relevant in a world of autonomous vehicles.
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Chapter 12

Conclusion

This thesis presents a new mechanism for controlling automobile traffic at intersec-

tions. It also argues for a different approach to thinking about traffic problems—a

multiagent approach in which vehicle is an independent and rational agent attempt-

ing to reach its destination as quickly as possible. While this approach may not

be appropriate with traffic composed entirely of human-driven vehicles, for fully

autonomous vehicles it offers many benefits over current methods. In the thesis, I

have provided extensive empirical evidence to support this argument. This chapter

first summarizes some of the more specific conclusions that can be drawn from this

evidence. Second, this chapter briefly covers some of the limitations of the methods

used to generate this evidence, namely experiments in simulation, as well as some

suggestions of ways in which these limitations can be mitigated. Third, this chapter

suggests some broader implications of this thesis’s results in the realm of intelligent

transportation systems. Last, I offer some promising future directions for this line

of research.

12.1 Primary Conclusions

Intersections pose a critical challenge for autonomous vehicles, both in terms of

safety and efficiency. Because vehicles at intersections are often traveling at such
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high relative velocities (even on the freeway, most vehicles are not moving much with

respect to one another), they are the most dangerous places for vehicles of any type,

and the place where mistakes can have the gravest consequences. As such, I believe

they are the best place to demonstrate the ways in which autonomous vehicles can

make transportation both more efficient and safe.

This thesis has provided a protocol and some agent algorithms that demon-

strate such a possibility in simulation. Most that have viewed videos of the aim3 sim-

ulator have been amazed at what it accomplishes, while others have been more skep-

tical and demand to see real vehicles before they can accept the system. Nonetheless,

this thesis takes a large, ambitious step toward such a system that can gain the ac-

ceptance of all but the most technophobic amongst us. Starting with the simplest

of intersections and vehicles and scaling up to multiple complex intersections with a

spectrum of vehicle types, this thesis demonstrates that autonomous vehicles have

the capacity to greatly reduce the amount of time we waste in traffic, all the while

making us more likely to arrive at our destinations in one piece.

12.2 Methodological Limitations

While this thesis addresses a wide gamut of issues, there are several limitations

of the methodology used, mostly due to the fact that all the work was done in

simulation. First, a real physical vehicle is much more complex than the model

used in the simulator. It has three dimensions, the tires don’t have perfect traction,

and maximum acceleration is not constant over all velocities. While our simulated

vehicles have the capability to experience sensor errors of many kinds, we have not

yet explored the effects of those errors on safety or efficiency. These limitations are

all valid concerns, but they are also an accepted part of a tradeoff we consciously

made while pursuing this line of research. In exchange for losing some fidelity, we

gain ease of implementation and agility of development. By not having to concern
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ourselves with the exact acceleration profile of a real vehicle, we are free to try even

more scenarios or agent algorithms. In terms of establishing a convincing case that

multiagent technology has the capacity to improve automobile transportation and

that it can be done safely, this thesis has accomplished its goals—the ability to

adjust the safety buffers to account for deficiencies in the vehicle model allows me

to make that claim.

There are several additional limitations that do not fall conveniently under

the protection of our safety buffers, however. The first is that we have not exten-

sively compared the performance of autonomous vehicles against realistic human

drivers and control mechanisms. The system as designed is not exactly capable of

such. A concern in its own right and a partial explanation for the previous concern,

the simulator does not simulate all the complexities of real street layouts. Frequent

driveways for businesses that cause vehicles to constantly enter and leave the road-

way, dedicated turn lanes that appear only very near the intersection, and pedestrian

traffic, are amongst the features of real-life driving that are not supported in our

simulated environment. I must simply say that while these may have significant

quantitative effects on the results, I don’t believe they would alter the results’ qual-

ity of supporting this mechanism’s usefulness. It is left to future work to determine

whether a more robust simulation environment or a test system with real vehicles

is the best next step, although it will probably be some combination of the two.

One intersection configuration not discussed in this thesis is the roundabout.

Popular in Europe, roundabouts do not require vehicles to stop, but rather to first

merge onto the roundabout, and then exit onto an outbound lane. In some sit-

uations, roundabouts are highly efficient and very practical. However, in urban

settings, roundabouts may not be an option, as they require a much larger area of

land, which may not be available. Furthermore, vehicles must slow down for the

roundabout, even in the total absence of other traffic, as merging onto the round-
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about and turning around it cannot be done at as high speed as straight-line travel.

12.3 Future Directions

While this thesis comprises a lot of work on several important areas of autonomous

intersection management, we have barely begun to understand the challenges as-

sociated with enormous populations of heterogeneous driverless vehicles. In this

section, I briefly mention just a few of the possible next steps for this line of inquiry,

including changing the nature of the agents, their algorithms, and even their setting.

12.3.1 Real Robots

The biggest step toward realizing autonomous intersection management will be get-

ting it working on real vehicles. However, the cost of such an implementation is

currently prohibitive for a small research group, especially considering the price of

failures. As with similarly constrained technologies such as experimental aircraft,

more simulation will certainly be prudent before attempting an all-physical imple-

mentation. But simulation and physical vehicles are not mutually exclusive! In a

mixed simulation, real vehicles can be represented in the simulator via a proxy vehi-

cle. That proxy vehicle can transmit simulated sensor readings (of other vehicles),

while real actions taken by the physical vehicle are mapped back into the proxy

vehicle (for instance, position or orientation updates). Most importantly, this works

for even a single vehicle, in which case, we can be certain that no physical collisions

will occur! Furthermore, a single-vehicle mixed simulation would still allow us to

determine whether our algorithms for controlling the physical vehicle are correct

and precise enough to move on to more physical vehicles. Such work has already be-

gun, including a full-fledged mixed simulation with an autonomous vehicle that can

traverse a real intersection while avoiding the other (simulated) vehicles [Nimma-

gadda, 2009]. Work using Denso Corporation’s Wireless Safety Unit (WSU) [Denso
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Corporation, 2006] has also started, in order to verify the feasibility of the protocol

from Chapter 3 in a real-life situation [Beeson et al., 2008].

12.3.2 Exploring Asynchronicity

The FCFS policy and its relatives presented in this thesis live up to the designa-

tion: “First Come, First Served.” However, this property need not apply for every

policy. Because the intersection control policy can process requests asynchronously,

a policy could wait until a few requests have been received before making a deci-

sion as to which to accept and which to reject. This capability brings with it the

question of how to choose which requests of a given set to approve and which to

deny. Approaches from the simple—changing the order in which the requests are

processed based on vehicle priority—to the complex—allowing vehicles to partici-

pate in a market- or auction-based system—represent a large unexplored space of

possibilities.

12.3.3 Beyond Intersections

The view of autonomous traffic as a multiagent system is not new. In many other ve-

hicle settings, such as freeway driving, research exists that tries to take advantage of

autonomous vehicles. However, this thesis advocates eschewing modern traffic laws

altogether in favor of protocols designed to maximize the utilization of autonomous

vehicles’ capabilities instead of merely adapting them to work with existing mecha-

nisms. There are many situations in which artifacts of our human-centric systems

might not be necessary or useful in systems comprising only autonomous vehicles.

For example, our modern roads are divided into lanes meant to accommodate

all but the widest vehicles. Even when occupied by a very small vehicle, the entire

lane is occupied. In a freeway situation, where the road may be five or six lanes

wide, these extra allowances, aggregated over all the lanes, could be a source of

waste. How often do six tractor-trailers pass one another simultaneously?
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Parking lots are another such example. Parking lots are designed to store

human-driven vehicles. As a result, every space must have direct access to an

aisle, because the vehicles cannot move themselves out of the way when they are

obstructing another vehicle’s egress. This limitation is on top of the limitation that

also dictates that all parking spaces must be of a minimum width (with the exception

of the “compact” spaces that all-too-often contain a large sport-utility vehicle). It

is not an infrequent occurrence for a motorist to begin pulling into a parking space

only to discover that the entire space is taken up by a single motorcycle.

At a higher level, we may require fewer parking lots because autonomous

vehicles make carpooling much easier. Taken to an extreme, a group of people could

even share ownership of a vehicle, which could transport itself between uses by

different people. There are many interesting questions regarding how to best share

a fleet of vehicles amongst a population of drivers so as to minimize the travel time

over all owners.

12.3.4 Beyond Automobiles

The algorithms and techniques in this thesis were directly inspired by the problem

of controlling intersections of autonomous automobiles. In this problem, a scare

resource (space-time in the intersection) must be allocated in such a way as to be

useful to the consumers (vehicles). If a vehicle requires a certain region of space-

time to cross the intersection, but can only reserve half of it, the utility of that

space-time is not half of the total utility, but rather zero. The vehicle cannot cross.

Furthermore, determining exactly what space-time is required by each vehicle may

not be feasible without explicitly simulating the motion of the vehicle.

One problem that fits these characteristics is air traffic control. In air traffic

control, the problem gets another dimension. Furthermore, an airplane cannot come

to a stop to wait for airspace to free up. However, the limited resource (airspace-

time) has the same nature, mostly due to the fact that one of its dimensions is time.
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Airplanes move much more quickly than automobiles and can interact in much more

complicated ways, such as causing localized disturbances in the surrounding air that

can have drastic effects on other airplanes. However, given a large enough buffer

around each airplane, the systems can be viewed as almost identical. Instead of

intersection managers, airspace managers could be responsible for controlling access

to various regions of airspace. Current air traffic control systems do not afford

much, if any, autonomy to airplane pilots, but they are also not entirely under

centralized control. Instead, each section of airspace is controlled by an individual

human controller, who issues commands that pilots must then execute.

12.3.5 Policy Issues

In addition to the work that engineers, computer scientists, and mathematicians

can do, many larger policy questions remain. Should such autonomous technology

be mandated on new vehicles? Should human driving be allowed? How do we

determine who is at fault when an incident, although unlikely, does occur? How

does this technology affect automobile insurance premiums and policies? These

questions must be left to those that can answer them: legislators and other policy

makers, lawyers and courts, the insurance industry, and the automobile industry.

12.4 Broader Conclusions And Final Remarks

Autonomous vehicles are coming. Whether they are 10, 20, or 30 years away, the

technology to create one exists and it is only a matter of time before the myriad

benefits of computerized driver agents relegate the human-driven vehicle to novelty

status. All other things being equal, the automation of the driving task will bring

with it better fuel economy, more flexibility and freedom to passengers, and—most

importantly—dramatically increased safety. But if this thesis argues anything, it is

that all other things should not be left equal. Autonomous vehicles have capabilities

that will be completely underutilized if they are forced to interact with one another
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as current human drivers do. Mechanisms for controlling these vehicles must be

rethought and reengineered with autonomous vehicles in mind.

This thesis presents such a rethinking of automobile traffic at intersections.

In it, I have demonstrated that a multiagent mechanism for autonomous vehicle

management can substantially decrease delays and accidents, thereby increasing the

quality of life for travelers. One day soon, the simultaneously life-threatening and

mundane task of driving automobiles will be in the capable hands of perpetually

vigilant and disciplined software instead of absent-minded human drivers, who will

in turn be free to talk on the phone, text message, or even sleep—without risk to

themselves or others.
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Appendix A

Glossary

This appendix contains a list of technical terms used throughout this thesis, along

with definitions for each term.

active An active intersection manager is one that sends the Emergency-Stop

message when it detects a collision has occurred.

aim point The aim point is the point toward which the pilot turns the wheels to

keep the vehicle in the current lane.

ACZ The ACZ, or Admission Control Zone, is an area beyond the intersection to

which the intersection manager can control access.

capacity (ACZ) The capacity of an ACZ is the maximum total length of vehicles

allowed in the ACZ at any time.

compatible Two trajectories through an intersection are compatible if they do not

intersect.

conflict Two Claim messages are said to conflict if all of the following are true:

• The intersection id fields of the two messages are identical.

• The paths determined by the arrival lane and departure lane fields

are not compatible (compatible paths do not intersect).
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• The time intervals are not disjoint.

coordinator The coordinator is the subagent of the driver agent which handles all

of the vehicle’s communication and interaction with other agents

crash log A crash log is a histogram of crashed vehicles. For a given amount of

time after an incident, it contains the number of vehicles that have crashed

since the time of the incident.

delay Delay is the amount of additional travel time incurred by a vehicle as the

result of passing through the intersection. This may be directly due to the

intersection or due to the indirect influence of the intersection through other

vehicles

distance (ACZ) The ACZ distance is the length of the roadway leading away from

the intersection over which the ACZ has control.

dominance Given two claims c1 and c2, we say that c1 dominates c2 if c1 and c2

conflict and c1 has priority over c2.

dominance graph The dominance graph G of a set of claims C = {c1, c2, . . . , cn}

is a digraph with vertices V (G) = {v1, v2, . . . , vn}, and directed edges E(G) =

{(vi, vj)|ci dominates cj}.

driver agent A driver agent is any agent that drives a vehicle. Usually, it means

a computer program operating an autonomous vehicle.

edge tile An edge tile is a tile in an FCFS policy that resides in a part of the

intersection where vehicles enter or leave.

following distance The following distance is the distance a vehicle keeps between

itself and the vehicle in front of it.
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frozen policy A frozen policy is a policy that is scheduled to be deactivated after

a specified time. Reservations that would result in a vehicle being in the

intersection after that time may not be accepted by a frozen policy.

granularity In an FCFS policy, the granularity is the length measurement of a side

of a square reservation tile.

granularity ratio In an FCFS policy, the granularity ratio is defined to be
√
A
g

,

where A is the area of the intersection, and g is the granularity of the policy.

For a square intersection broken into an n× n grid, the granularity ratio is n.

hybrid buffer A hybrid buffer is a buffer with both time and space components.

incident An incident is anything that prevents a vehicle from crossing an intersec-

tion according to its planned trajectory.

internal tile An internal tile is a reservation tile that is not an edge tile. Internal

tiles are surrounded on all sides by reservation tiles.

intersection control policy An intersection control policy is a mechanism by

which an intersection manager chooses to accept or reject reservation requests

from approaching vehicles.

intersection manager The intersection manager is the agent controlling access to

an intersection.

lead distance The lead distance is the distance from the projection of the vehicle’s

current position onto the vehicle’s current lane to the vehicle’s aim point.

lurk distance The distance from the intersection outside of which a coordinator

will listen for other vehicles’ V2V transmissions without sending anything.

lurking The behavior during which a vehicle listens for V2V transmissions without

sending any of its own.
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managed intersection A managed intersection is an intersection with an intersec-

tion manager—one in which an agent associated with that intersection governs

access to the intersection.

mixed simulation A mixed simulation is a simulation in which certain proxy ve-

hicles represent vehicles that are operating in the real world. Simulated sensor

input from the simulator is provided to the real vehicle, and physical proper-

ties of the real vehicle are relayed back to the simulator to update the position

of the proxy vehicle.

navigator The navigator is the component of the driver agent responsible for route

planning and selection.

nonpermissible A nonpermissible Claim is one that is not guaranteed to be safe

to follow in a V2V scenario.

oblivious An oblivious intersection manager is one that does not react when an

incident has occurred.

off-limits tile An off-limits tile is a reservation tile that may not be reserved by

autonomous vehicles.

omniscient An omniscient intersection manager is an intersection manager that

knows at all times which intersection control policy best suits the needs of the

current traffic.

optimistic An optimistic coordinator operates under the assumption that its ve-

hicle will be able to accelerate without hindrance from other vehicles until it

reaches the intersection.

passive A passive intersection manager is one that stops granting reservations after

an incident has occurred, but does not send an Emergency-Stop message

to vehicles.
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permissible A permissible Claim is one that is guaranteed to be safe to follow in

a V2V scenario.

pessimistic A pessimistic coordinator operates under the assumption that it will

not be able to accelerate beyond its current velocity before reaching the inter-

section.

pilot The pilot is the subagent of the driver agent responsible for physical manip-

ulation of the vehicle.

priority Priority is a total, antisymmetric relation on Claim messages that allows

driver agents to determine which vehicles may continue as planned and which

should yield.

signal model A signal model is a predictive model of a real or simulated signal

pattern for controlling vehicles at intersections.

traversal proposal A traversal proposal is a set of arrival and departure parame-

ters that correspond to a proposed trajectory through an intersection.

reservation distance The reservation distance is a heuristic value designed to

estimate the distance from the intersection of an approaching vehicle based on

its reservation parameters.

reservation tile A reservation tile is a square corresponding to a physical square

of intersection with an associated interval map from time intervals to vehicle

identification numbers.

space buffer A space buffer is a buffer around a vehicle whose physical size is

constant, always taking up the same amount of space.

time buffer A time buffer is a buffer around a vehicle that grows with the speed

of the vehicle. It can be thought of as a buffer in the time dimension instead

185



of the space dimensions.

unmanaged intersection An unmanaged intersection is an intersection without

an intersection manager.

V2I A vehicle-to-infrastructure (or -intersection) scenario is one in which vehicles

communicate with an intersection manager stationed at the intersection.

V2V A vehicle-to-vehicle or V2V scenario is one in which vehicles communicate

solely with other vehicles.
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