
Reducing Combinatorics in Testing Product Lines

Chang Hwan Peter Kim
University of Texas-Austin

Austin, TX 78712 USA
chpkim@cs.utexas.edu

Don Batory
University of Texas-Austin

Austin, TX 78712 USA
batory@cs.utexas.edu

Sarfraz Khurshid
University of Texas-Austin

Austin, TX 78712 USA
khurshid@ece.utexas.edu

ABSTRACT
A Software Product Line (SPL) is a family of programs
where each program is defined by a unique combination of
features. Testing or checking properties of an SPL is hard as
it may require the examination of all programs in the SPL,
whose cardinality is exponential in the number of features.
In reality, however, features are often behavior-irrelevant for
a given test (i.e., they augment, but do not change, existing
behavior), making many combinations redundant as far as
testing is concerned. In this paper we show how to reduce
the amount of effort in testing an SPL. We transform an
SPL into a form where conventional static program analysis
techniques can be directly used to find behavior-irrelevant
features for a test. We use this information to reduce the
combinatorial number of programs to examine.

1. INTRODUCTION
A Software Product Line (SPL) is a family of programs

where each program is defined by a unique combination of
features. By developing a set of programs with common-
alities and variabilities in a systematic way, SPLs can sig-
nificantly reduce both the time and cost of software devel-
opment. In recognition of these benefits, research has fo-
cused on requirements [4][6][8] and development/synthesis
[5][17][21]. In contrast, there is a comparative scarcity of
work in testing SPLs [29][37], the phase to which a majority
of software development is dedicated.

There are many challenges in testing or checking the prop-
erties of programs in an SPL. The most obvious is the sheer
number: an SPL with 20 optional features has over a million
(220) distinct programs. The need to assume the worst-case
and test all programs is evident in the following scenario:
Suppose that every program of an SPL outputs a String
that each feature might modify. To test if the output String
always conforms to a particular pattern, we need to test
every possible feature combination.

Current practice often focusses on feature combinations
that are believed to have a higher chance of falsifying cer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tain properties [11][29]. In light of no other information, this
approach is reasonable but incomplete. Another solution is
to apply traditional verification techniques directly – model
checking [16][38] or bounded exhaustive testing [9][41] – on
every product of the SPL. While complete, feature combina-
torics render brute force impractical. Yet another complicat-
ing factor is that features often have no formal specifications.
Even contracts are usually unavailable.

Given this dismal situation, it is still possible to improve
the state-of-the-art by leveraging the semantics of features
— increments in functionality. In our experience, we noticed
that features add, but do not remove, code [3]. We hypothe-
size that this extends to run-time, namely, that features are
behavior-irrelevant for a given test, i.e., they augment, but
do not invalidate, existing behavior. To illustrate potential
benefits, suppose we determine that 18 of the 20 features in
the above example do not modify the output String and thus
are behavior-irrelevant. We can confidently run the String
output test on only 22 = 4 programs to analyze the entire
product line, as opposed to over a million programs.

In this paper, we explore the concept of behavior-irrelevant
features to reduce SPL testing. For a given test, we find fea-
tures that do not alter the result of the test (these features
are behavior-irrelevant). We accomplish this by transform-
ing an SPL into a form where conventional program analy-
sis techniques can be directly applied, determine the features
that are behavior-irrelevant for the given test, and prune the
space of such features to significantly reduce the number of
SPL programs to examine for that test.

We make the following contributions:

• A technique that enables off-the-shelf tools to analyze
all programs in an SPL.

• A technique to reduce the configurations to be exam-
ined for a given test.

2. MOTIVATING EXAMPLE
A micro-blogging site, such as Twitter and Facebook, al-

lows users to post text status updates (e.g., how they are
feeling and what they are doing now) for others to see [40].
Suppose that we have an SPL of micro-blogging sites, with
the feature model given by the following grammar [4]:

MicroBlog :: [Backup] [Censor] [Style] Base;

The grammar requires Base to be present in every program
of the SPL, while all other features (Backup, Censor, Style)
are optional, yielding a total of 8 distinct programs.

1

The feature modules of this SPL are shown in Figures 1-4
and two tests are given in Figure 5. These modules are writ-
ten in the Jak language (although slightly different syntax
would express these modules in Jx [31], Classbox/J [7], and
FeatureC++ [2] languages). The distinguishing characteris-
tic of these languages is that a feature module can add new
classes to a program, add new members to existing classes,
and can wrap existing methods. Wrapping in Jak is iden-
tical to method overrides in subclassing and is indicated by
Super keyword (e.g., line 4 of Figure 2).1

The Base feature (Figure 1) defines the Status class, which
represents the status (simply a wrapper for some text) of a
single user, and the Checker class, which provides an in-
terface for other features to implement in order to examine
and update a given Status object. Base allows other fea-
tures to refine or extend method display() and call apply-
Checker(Checker) with their own Checker, whose call-back
method (line 22) examines the current status and may up-
date the valid variable (line 17). The annotation @Modi-

fiable on the field declaration of valid (line 4) will be ex-
plained later, in Section 5. Note that Screen class holds an
internal variable content that represents the displayed con-
tent, which is modified by print(..) and read by isEmpty().

1 class Status {
2 String text;
3

4 @Modifiable
5 boolean valid = true;
6

7 void setText(String t){
8 text = t;
9 valid = true;

10 }
11

12 void display() {
13 Screen.print(text + ": " + valid);
14 }
15

16 void applyChecker(Checker c) {
17 valid = valid && c.check(this);
18 }
19 }
20

21 class Checker {
22 boolean check(Status s) { return true; }
23 }
24

25 class Screen {
26 Object content;
27

28 static void print(String t) { // writes t into content}
29 static boolean isEmpty() { // reads from content }
30 }

Figure 1: Base Feature

The Censor feature refines display() (lines 2-5 of Fig-
ure 2) by replacing an inappropriate word with a sequence
of asterisks (line 10). The check always passes. Note that
refines differs from extends in that the former transforms
the original class, while the latter defines a new subclass
that extends the original class.

The Style feature refines display() (lines 2-7 of Figure 3)
and its check(..) method returns true if each word in the
status text begins with an alphanumeric character (line 12,
assume such a method exists). Note that the original code

1AOP offers a much broader set of extensions [19], but is
concommitantly harder to analyze.

1 refines class Status {
2 void display() {
3 applyChecker(new CensorChecker());
4 Super.display();
5 }
6 }
7

8 class CensorChecker extends Checker {
9 boolean check(Status s) {

10 s.text = s.text.replace("darn", "****");
11 return true;
12 }
13 }

Figure 2: Censor Feature

1 refines class Status {
2 void display() {
3 applyChecker(new StyleChecker());
4 if(valid) {
5 Super.display();
6 }
7 }
8 }
9

10 class StyleChecker extends Checker {
11 boolean check(Status s) {
12 return !s.text.startsAlphanumerically();
13 }
14 }

Figure 3: Style Feature

is executed only if the style check and previous checks pass
(lines 4-5).

Lastly, the Backup feature adds its own field prev (line 2
of Figure 4), extending setText(String) to remember the
previous value (line 5), and adds its own method restore()

that restores the previous value (line 9).
Figure 5 shows two tests. We adopt a broad definition:

an SPL test , or test for short, is a program with a main

method that executes the methods and references classes
and class members introduced by one or more SPL features.
(As we will be using static analysis, the inputs to this test
are irrelevant). Although the tests in Figure 5 exercise the
functionalities of Base and Style features, we can in fact
write a test fairly arbitrarily, such as bundling these two
tests into one.

An SPL test evaluates one or more properties of a product
line. A feature can alter properties of a product line. If
the feature does not alter the properties that the SPL test
evaluates, that feature can safely be ignored when running
the test. Determining whether a feature is relevant to a given
test is the central problem.

Given an SPL test, all features whose code that the test

1 refines class Status {
2 String prev;
3

4 void setText(String t) {
5 prev = text;
6 Super.setText(t);
7 }
8

9 void restore() { text = prev; }
10 }

Figure 4: Backup Feature

2

Figure 6: Overview of Our Technique

1 @FeaturesToTest({"Base"})
2 class BaseTest {
3 static void main(String args){
4 Status s = new Status();
5 s.setText("darn");
6 s.display();
7 }
8 }
9

10 @FeaturesToTest({"Style"})
11 class StyleTest {
12 static void main(String args) {
13 StyleChecker sc = new StyleChecker();
14 Screen.print(sc.check("potato*") == true);
15 Screen.print(sc.check("!hello!") == false);
16 }
17 }

Figure 5: Test Classes

transitively references (transitively) needs to be present as
the test program will otherwise not compile. In addition,
an SPL test can be intended for a particular set of features
(e.g., @FeaturesToTest annotation in line 10 indicates that
StyleTest is intended for Style feature). Both the refer-
enced features and the intended features are called required
features. Besides required features, there are optional fea-
tures whose inclusions into a program can yield different test
outcomes. For example, for BaseTest, without understand-
ing in detail how each feature works and how each feature
interacts with others, we would have to run it on all eight
combinations of Censor, Style, and Backup (Base is manda-
tory). In the worst case, an SPL with t tests and n optional
features, we would have to execute t · 2n test programs! We
can do better than this.

Figure 6 displays a roadmap for the next sections. Rect-
angles are inputs/outputs and ovals are functions. Given a
product line, Transformer maps it into a SysGen Pro-
gram (Section 3) which enables us to use off-the-shelf pro-
gram analysis techniques, rather than having to develop
techniques specific to product lines. To reduce the fea-
ture combinations or SPL programs on which to run a test,
we first run the 2-Step Static Analyzer on the SysGen
program with respect to that test, which yields a set of
Behavior-Irrelevant Features that are inconsequential to
the test (Section 4 and Section 5). Given a feature model
of the SPL (which defines all legal combinations of features)
and our knowledge of behavior-irrelevant features, we can
identify the set of Configurations (SPL programs) that

must be examined (Section 6).

3. THE SYSGEN PROGRAM OF AN SPL
Checking the behavior of an SPL is not just computation-

ally difficult, but is also technically difficult because we are
dealing with unconventional modules, i.e. partial programs
or feature modules. Although it may be possible to develop
analysis techniques specific to feature modules, we instead
transform an SPL into an ordinary program automatically
so that we can use standard program analysis tools. The
idea of representing a product line as an ordinary program
is not new: programmers have been creating product lines
using system generation (SysGen) techniques with #ifdef

FEATURE preprocessor directives for decades [18]. We do
the same, but in a different way and for a different purpose.

Given a product line with a Jak-defined set of features, we
(our tool) wrap each method refinement with if(FEATURE),
to turn the feature’s code on or off dynamically, rather than
statically with #ifdef. We also annotate each declaration
with the name of the feature that introduced it. We then
merge the code of all features into a single program, re-
placing (or inlining) each Super call with the body of the
actual method being refined. If multiple features refine the
same method (e.g. Censor in Figure 2 and Style in Fig-
ure 3 both refine Status.display()), we rely on standard
feature model semantics in Jak-built programs that the or-
der in which features are composed is defined by the feature
model [3]. We refer to the single program produced as the
SysGen program of the SPL.

Figure 7 is the SysGen program of our MicroBlog product
line. Lines 15-16 show how the Backup method refinement
is represented, lines 25-26 show Censor method refinement,
and lines 27-33 show Style method refinement. Lines 10,
20, and 48 show declarations that are annotated with their
features.

With an SPL in SysGen form, testing all the feature com-
binations of the SPL reduces to running the test with dif-
ferent combinations of values of feature configuration vari-
ables. For example, BaseTest is run eight times, on every
combination of values of Config.BASE, Config.CENSOR, Con-
fig.STYLE, and Config.BACKUP, with Config.BASE=true. The
screen is empty, for instance, when all features are present.
Of course, this enumeration can be accomplished by a sim-
ple script that is inserted into the test’s main method. But
the problem is, as we noted earlier, that many tests will
be redundant. A static analysis, which we develop in the

3

1 @Feature("Base")
2 class Status {
3 @Feature("Base")
4 String text;
5

6 @Modifiable
7 @Feature("Base")
8 boolean valid = true;
9

10 @Feature("Backup")
11 String prev;
12

13 @Feature("Base")
14 void setText(String t){
15 if(Config.BACKUP)
16 prev = text;
17 text = t;
18 }
19

20 @Feature("Backup")
21 void restore() { text = prev; }
22

23 @Feature("Base")
24 void display() {
25 if(Config.CENSOR)
26 applyChecker(new CensorChecker());
27 if(Config.STYLE) {
28 applyChecker(new StyleChecker());
29 if(valid)
30 Screen.print(text + ":" + valid);
31 }
32 else
33 Screen.print(text + ":" + valid);
34 }
35

36 @Feature("Base")
37 void applyChecker(Checker c) {
38 valid = valid && c.check(this);
39 }
40 }
41

42 @Feature("Base")
43 class Checker {
44 @Feature("Base")
45 boolean check(Status status) { return true; }
46 }
47

48 @Feature("Censor")
49 class CensorChecker extends Checker {
50 @Feature("Censor")
51 boolean check(Status s) {
52 s.text = s.text.replace("darn", "****");
53 return true;
54 }
55 }
56

57 @Feature("Style")
58 class StyleChecker extends Checker {
59 @Feature("Style")
60 public boolean check(Status s) {
61 return !s.text.startsAlphanumerically();
62 }
63 }
64

65 @Feature("Base")
66 class Screen {...}

Figure 7: SysGen Program for the MicroBlog SPL

next sections, exploits the SysGen form and identifies such
redundancies.

A SysGen program may have limits; not in the case studies
that we examine later, but in general. For example, pushing
multiple alternative features into a single program may re-
sult in duplicate declarations. This can occur if two features
introduce different implementations of the same method.
The method and code that are common to the alternative
features could be factored into a separate feature, which the
alternative features refine. (In fact, we do exactly this in
one of the case studies in Section 7). For now, we assume
that product lines can be represented with this approach,
albeit with some refactoring effort.

4. CONDITIONS FOR BEHAVIOR-IRRELEVANCE
Given a test, we need to run it only on combinations of fea-

tures that can change the outcome of the test. The only way
a feature can change the test’s outcome is to alter the test’s
data-flow or control-flow.2 We use Def-Use (DU) pairs, a
variation of DU-chains [1] traditionally used for compiler
optimizations, to define behavior-irrelevance.

A DU-pair is simply a variable assignment and a use of the
variable that is reachable from that assignment without an
intervening assignment to that variable. For example, Fig-
ure 8(a) shows the control-flow graph (CFG) and DU-pairs
of BaseTest (Figure 5) with just the Base feature present.3

DU-pairs 2 and 3 show that the two variables being printed
are defined in Status.setText(String). DU-pair 1 shows
that the text originates from an argument to the set method
invocation. DU-pairs connect to form a dataflow graph
called a DU-graph.

There are two ways of changing a DU-graph: 1) by over-
riding or killing the definition of a DU-pair in the graph by
inserting an intervening assignment and 2) by changing the
condition under which a DU-pair in the graph exists, which
we call a presence condition. A behavior-irrelevant feature
neither kills existing DU-pairs nor alters existing presence
conditions. Consider the following examples.

• Censor is not behavior-irrelevant because it kills def-
initions of DU-pairs in Base. Figure 8(b) shows Cen-

sor composed with Base w.r.t. BaseTest (changes to
Base are shown in red). Censor refines the Status.-

display() method and runs its own checker, which
writes to text and valid, killing the definitions in the
DU-pairs 2 and 3 and replacing the pairs with DU-
pairs 4 and 5 respectively.

• Style is also not behavior-irrelevant . It changes pres-
ence conditions of DU-pairs in Base. Figure 8(c) shows
Style composed with Base w.r.t. BaseTest. Style

runs its check and calls the original instruction, which
prints text and valid, only if valid is true. Like Cen-
sor, this feature kills DU-pair 3, but also conditional-
izes DU-pair 2, causing it to exist only when valid=-

true.

2In this paper, we assume that a feature does not alter
control-flow by throwing exceptions.
3Some DU-pairs, such as that involving the Status object
creation and the dereference in the next statement that in-
vokes Status.setText(..), are not shown as they are not
relevant to the example.

4

(a) Base (b) Censor (c) Style (d) Backup

Figure 8: DU-Graph of BaseTest with Different Feature Combinations

• Backup is behavior-irrelevant as it neither kills defini-
tions of DU-pairs nor changes presence conditions of
DU-pairs. Figure 8(d) shows Backup composed with
Base w.r.t. BaseTest. The new code writes text to
prev, which cannot affect any existing DU-pair be-
cause prev did not exist before Backup was added.

A feature can both introduce new members (classes, fields,
and method) to a program and refine existing methods.
Adding a new member can alter program behavior if it a)
overrides existing members [26, 36] (e.g. replacing an ex-
isting method with an empty method) or b) it is referenced
through reflection (e.g. adding a new field to a class changes
the outcome of iterating over members of the class) [15].
There is a simple, conservative static analysis that we have
written previously to address problem a) [26]. b) can be
addressed through a static analysis that checks for reflec-
tion. For the purpose of this paper, we assume that these
two problems do not occur or that they have already been
reported.

With these assumptions, features that only add new mem-
bers are behavior-irrelevant. Such features are common in
layered-designs, where features increment behavior by using
or referencing code added by previously defined features. For
example, the base feature may define data, the subsequent
feature may define operations on the data, and the follow-
ing feature may instantiate data and invoke their operations.
We encounter layered-design features in Section 7.

5. TWO-STEP STATIC ANALYSIS
To check if a feature is behavior-irrelevant we must check

if it a) alters presence conditions or b) kills the definition of
a DU-pair in the DU-graph of a test. As detecting changes
to a DU-graph for large OO-programs is expensive, we con-
servatively approximate that a feature is behavior-irrelevant
by statically checking that it 1) only adds new code to ex-
isting basic blocks of the CFG, which guarantees a) doesn’t
occur, and 2) only writes to variables that it created and
could not have existed before the feature was added, which

guarantees b) doesn’t occur. Section 5.1 explains 1) and
Section 5.2 explains 2). This two-step analysis is based on
the analysis in [10], but the two are considerably different, as
will be explained in Section 8. We implemented the analysis
using the Soot framework [35].

5.1 Control-Effect Analysis
Before we create a SysGen program, we look at each method

refinement in each feature module and see if the following
two conditions hold: 1) the original method, i.e. Super-

.methodName(..), is called precisely once and in every path
between the first and the last statement of the method refine-
ment inclusively and 2) the original parameters are passed
to the original method and the original return value is re-
turned. Satisfying these two conditions guarantees that a
feature preserves control-flow through the original method
while adding new instructions to the original method. The
feature’s change is analogous to adding instructions to basic
blocks of a CFG. Here are three examples:

• Censor’s method refinement (Figure 2, lines 2-5) satis-
fies Condition 1 as Super.display() is called precisely
once and in every path of the method refinement. Con-
dition 2 is not relevant as there are no parameters.

• Style’s method refinement (Figure 3, lines 2-7) fails
to satisfy Condition 1 as Super.display() is called
conditionally.

• Backup’s method refinement (Figure 4, lines 4-7) sat-
isfies Condition 1 as Super.setText(t) is called pre-
cisely once. Condition 2 is also satisfied because the
original parameter, t, is passed to the Super call.

Note: we insist on the original parameter to be passed
unchanged to the Super call to simplify analyis. If t

were assigned to a local variable and that local vari-
able were passed to the Super call, our analysis would
conservatively report that Condition 2 failed.

5

Let F be the feature that introduces method m. Let R be
a feature that refines m. If the control-effect conditions 1)
and 2) do not hold for R, then R is behavior-relevant. Only
Style, which conditionalizes a Base method, is behavior-
relevant in this sense. If R is in the control-flow of another
method-refining feature S, S is considered to be behavior-
relevant as well to allow R to be reached. This is elaborated
in a technical report [20].

5.2 Heap-Effect Analysis
In addition to checking that a feature preserves control

flow, we check that a feature preserves variable values that
existed previously. We say a feature F preserves existing
values if F ’s method refinements write A) to a field that F
introduced or B) to a field introduced by another feature, G,
but whose base object (e.g., base object for the expression
s.text is s) was allocated by F . The reason for Condition A
is the following: a field introduced by F cannot have existed
before F was added. As a result, writing to the field cannot
possibly overwrite existing values. As for Condition B, F
should be able to modify objects that it itself created. It
should not matter who declared the field if the field belongs
to an object created by the feature. We run the heap-effect
analysis on the SysGen program, rather than Jak modules,
because there is an existing off-the-shelf analysis for it.

Here are three examples:

• Example satisfying A): given BaseTest (Figure 5) and
the SysGen program (Figure 7), we see that Backup

satisfies the heap-effect conditions because the feature’s
only method refinement, lines 15-16 in Figure 7, up-
dates field prev, which the feature itself introduced.

• Example satisfying B): instead of Backup writing to
prev field, suppose it did the following:

Status s = new Status();

s.setText("hello");

Even though Backup updates field text through set-

Text, with text having been introduced by another
feature (Base), this is acceptable because the modi-
fication only affects the object s which did not exist
prior to the addition of Backup.

• Example not satisfying A) and B): Censor modifies
s.text and s was created by BaseTest, not Censor.

The heap-effect analysis checks both conditions. It finds
writes to fields that each method refinement makes, i.e., it
finds writes occuring in the control-flow of each if(FEATURE)

statement. For each write, the feature of the field (denoted
by @Feature Java 5 annotation) is compared against the
feature of the method refinement. If the two features are
the same, the heap-effect analysis passes (condition A). If
the two are different, then for each possible allocation site
of the base object of the field being written, the feature
of the allocation site must be the same as the feature of
the method refinement for the heap-effect analysis to pass
(condition B). A feature S can fail the heap-effect analysis
due to another feature R, which in the control-flow of S’s
method refinement, writing to a field or object not owned
by S. This is elaborated in a technical report [20].

We modified an off-the-shelf inter-procedural side-effect
analysis [22] that uses a context-insensitive and flow-insensitive

points-to analysis, called Spark [24]. We chose this particu-
lar analysis because it was easy to modify and we are dealing
with large programs, for which context-sensitive points-to
analyses are very expensive [33].

But a context-insensitive analysis is considerably less pre-
cise than a context-sensitive one as the former merges call
sites instead of following call paths. For example, in Fig-
ure 7, the two calls to applyChecker(..) (line 26 and and
line 28) are merged, and in line 38, the actual subclass
of c cannot be determined, and the analysis falsely con-
cludes that c.check(this) can dispatch to either Censor-

Checker.check(..) or StyleChecker.check(..). This in
turn causes the analysis to conservatively conclude that Style,
with the method refinement in line 28, can modify s.text

through line 52 (which is what Censor, not Style, actually
does).

To circumvent the inability to distinguish calls sites, when-
ever we see that a feature calls a method of another feature
in the control-flow of a method refinement, we inline the
call. Thus, the method applyChecker(..) (of Base fea-
ture) is inlined in Figure 7, lines 26 (of Censor feature) and
28 (of Style feature). Combining inlining with context-
insensitivity analysis is a middle-ground between a context-
insensitive analysis like Spark and a context-sensitive anal-
ysis like Paddle [23]. This middle-ground is shown to be
effective in Section 7, although we leave detailed compar-
isons between the three possibilities for future work.

In some cases, by design, features are expected to modify
fields introduced by other features. We make these fields
explicit with @Modifiable annotations. For example, Base,
which declares valid as a modifiable field (Figure 7, line 6),
expects refining features to contribute to the value of the
field by calling applyChecker(..). We allow writes to the
field to be ignored.

Writes to library-owned data, such as input/output ef-
fects, are considered behavior-irrelevant. To consider such a
write to be behavior-relevant, one must make the data, e.g.
Screen in Figure 1, a part of a feature, e.g. Base.

6. FINDING CONFIGURATIONS TO TEST
We now address the key problem of systematically iden-

tifying feature configurations to run for a given test. Fig-
ure 9 lists our algorithm. We start by producing the Sys-
Gen program sg of an SPL. Then, given sg and program
test, we determine the set of behavior-irrelevant features,
irrelevantFeatures, using the two step analysis described
in Section 5.

Next, we convert the feature model, with both domain and
implementation constraints (e.g. if feature A requires fea-
ture B for compilation, then A⇒B), into a propositional for-
mula [4], which defines all legal feature configurations. The
feature model is conjuncted with those features for which
the test is intended (lines 8-10). Configurations that satisfy
these constraints are candidates (line 12).

Ideally, all candidates will have their irrelevantFeatures
set to false. Unfortunately, it is not that simple, since
constraints may insist that irrelevantFeatures are re-
quired by other features. To reduce the set, lines 14 to 26
choose candidates with as many of the irrelevantFeatures
features set to false as possible. If the resulting candi-
date hasn’t been encountered before, it is added to solu-

tions, which represents the set of configurations that must

6

1 void runProductLineTest
2 (ProductLine productLine, Test test) {
3 Program sg = transformIntoSysGen(productLine);
4

5 Set<Feature> irrelevantFeatures =
6 twoStepStaticAnalysis(sg, test.getMainMethod());
7

8 PropositionalFormula constraints =
9 test.getFeaturesToTest().and

10 (productLine.getFeatureModel());
11

12 Set<Configuration> candidates = solve(constraints);
13

14 Set<Configuration> solutions = new SetImpl<Configuration>();
15

16 for(Configuration c: candidates) {
17 for(Feature irrFeature: irrelevantFeatures) {
18 if(c.valueOf(irrFeature)) {
19 c.setValueOf(irrFeature, false);
20 if(!c.satisfies(constraints))
21 c.setValueOf(irrFeature, true);
22 }
23 }
24 if(solutions.add(c))
25 run(test, sg, c);
26 }
27 }

Figure 9: Algorithm for Running an SPL Test

Table 1: Configurations for BaseTest
In Solution Base Censor Style Backup

Yes 1 0 0 0
No 1 0 0 1
Yes 1 0 1 0
No 1 0 1 1
Yes 1 1 0 0
No 1 1 0 1
Yes 1 1 1 0
No 1 1 1 1

be tested.4

As an example, consider BaseTest. Each row displayed
in Table 1 corresponds to a configuration in candidates.
Each row whose In Solution is Yes is a configuration in
solutions. Only Backup is irrelevant to BaseTest, meaning
all combinations of Censor and Style must be tested. In
this example, we reduced 8 tests to 4 tests.

Table 2 shows the configurations for StyleTest. Both
Base and Style are required (as the test is for Style and
the test references Screen class of Base). Censor and Backup

are behavior-irrelevant as they do not refine methods (i.e.
StyleChecker.check(..) and String.startsAlphanumerical-

ly(..)) that are called in the control-flow of StyleTest.
Only one configuration, containing Style and Base, needs
to be tested out of the four.

7. CASE STUDIES
We implemented our technique as an Eclipse plugin called

SPLTester, which relies on Soot [35]. We evaluated our
plugin on three product lines: Graph Product Line (GPL),
which is a set of programs that implement different graph al-
gorithms [27] and jampack and mmatrix , which are feature-

4We recognize an inherent inefficiency of enumerating can-
didates (which may be exponential in the number of op-
tional features) and subsequently reducing them to the set
solutions, which we expect to be much smaller. Comput-
ing solutions directly, a constraint satisfaction problem [6],
is a subject for future work.

Table 2: Configurations for StyleTest
In Solution Base Censor Style Backup

Yes 1 0 1 0
No 1 0 1 1
No 1 1 1 0
No 1 1 1 1

Table 3: GPL Results
Static Analysis

Lines of code 1713
of method refining 10/12

behavior-irrelevant features
/ # of method refining features
of behavior-irrelevant features 15/17

/ # of features
@Modifiable annotations Vertex.visited, Graph.last,

Graph.current,Graph.accum,
Graph.isDirected

Duration 1212578 ms (20.21 minutes)
Refining Feature Behavior-Irrelevant

Shortest Yes
MSTPrim Yes
Undirected Yes

Search Yes
Weighted Yes

MSTKruskal Yes
BFS (Breadth-First Search) No (heap-effect violation)
DFS (Depth-First Search) No (heap-effect violation)

Cycle Yes
StronglyConnected Yes

Connected Yes
Number Yes

Configuration Reduction
of configurations 56

without static analysis
of configurations 8
with static analysis

configurable tools that are part of the AHEAD Tool Suite
[3]. For each product line, we took the main method as the
sole test. All the features required to compile main formed
the base program. Our analysis determined features whose
combinations could change the control-flow or data-flow of
the base program. As we did not model library code en-
abling input/output as part of the base program, features
could have I/O effect and still be irrelevant to the base pro-
gram. We ran our tool on a Windows XP machine with
Intel Core2 Duo CPU with 2.4 GHz and 2 GB of RAM.
We describe each benchmark in three dimensions: SysGen
program, static analysis, and configuration reduction.

7.1 Graph Product Line (GPL)
In creating the SysGen program for GPL, we encountered

two features, Directed and Undirected, each of which in-
troduced the same method, but with different bodies. To
prevent one feature from overriding code of the other fea-
ture, we refactored the feature modules such that they would
refine an empty method defined in the Base feature. Other
than this refactoring, the transformation to produce Sys-
Gen program from the Jak modules was automatic. Table 3
shows the results of running the two-step static analysis and
configuration reduction.

Despite being a small product line in terms of code size,
statically analyzing GPL led us to address important is-
sues. First, we discovered that using an entirely context-
insensitive points-to analysis yielded too many false posi-
tives because of the merging of call sites across features. To
address this, we used the inlining strategy of Section 5.2.

7

We also had to inline some code manually, as Soot was not
able to inline constructor calls.

Second, we initially found that many features modified
variables introduced by another feature. For example, whether
or not a vertex has been visited is stored in Vertex.visited,
which different algorithms modify. Ideally, with a much
more powerful static analysis, we would be able to check
that the visited flag is modified by a graph algorithm (e.g.
vertex numbering, cycle checking, etc.) during its execution,
and the modification would not interfere with the execution
of other graph algorithms. Lacking this however, we allowed
five fields that are expected to be modified by other features
to be marked with @Modifiable annotations.

The numbers indicate that our analysis was useful. As
shown in the row “# of method refining behavior-irrelevant
features / # of method refining features”, out of 12 features
that refine methods in the control-flow of the test, 10 are
shown to be behavior-irrelevant. BFS and DFS are behavior-
relevant because optional graph algorithms like Number calls
methods in these features, which in turn call-back the al-
gorithms’ preVisit and postVisit methods to modify the
algorithms’ own data.

12 method refining features out of 17 features means that
there are 17-12=5 features that only add declarations. Be-
cause these 5 features do not override methods and are
not referenced through reflection (we checked these while
performing the manual refactoring described at the begin-
ning of this section), they are behavior-irrelevant layered-
designs, as discussed in Section 4. Adding these 5 to the
10 method refining features that are behavior-irrelevant, we
get 15 behavior-irrelevant features in total.

Although our analysis takes some time to run (20.21 min-
utes), it is because after each inlining operation, our non-
optimized implementation has to re-run Soot, which has a
considerable startup overhead regardless of the program an-
alyzed.

In summary, without the static analysis, we would have
to test 56 configurations, whereas with it, we would have to
test only 8. (Note: Although there are 2 behavior-relevant
features, the number of configurations need not be 22; there
could be more or fewer, depending on the constraints im-
posed by the feature model.)

7.2 jampack
jampack (see Table 4) is a product line whose largest pro-

gram (i.e., one containing all optional features) is over 39K
lines of code. Despite its size and reasonable number of fea-
tures (19), unlike GPL, there are only four features that re-
fine methods. Most jampack features introduce classes into
an existing hierarchy, which is common in layered designs.

Our analysis revealed that 18 features were behavior-irrelevant
(since they just introduce methods and classes). Only one
feature refines methods and it alteres the control-flow of an-
other feature. With this information, we can safely ignore
18 out of 19 features, which, as we discuss shortly, reduces
testing by a significant amount. Interestingly, although jam-

pack is 20 times larger than GPL, analyzing jampack took
much less time (3.64 min) to analyze than GPL because of
there is only one feature refining methods in the control-flow
of main method.

Without static analysis, jampack would have to be tested
on 276 configurations. With static analysis, only 4 configu-
rations have to be tested.

Table 4: jampack Results
Static Analysis

Lines of code 39259
of method refining 0/1

behavior-irrelevant features
/ # of method refining features
of behavior-irrelevant features 18/19

/ # of features
@Modifiable annotations None

Duration 218140 ms (3.64 minutes)
Refining Feature Behavior-Irrelevant

Java No (cflow-effect violation)
Configuration Reduction

of configurations 276
without static analysis

of configurations 4
with static analysis

Table 5: mmatrix Results
Static Analysis

Lines of code 22492
of method refining 0/1

behavior-irrelevant features
/ # of method refining features
of behavior-irrelevant features 10/11

/ # of features
@Modifiable annotations None

Duration 968781 ms (16.15 minutes)
Refining Feature Behavior-Irrelevant

Java No (cflow-effect violation)
Configuration Reduction

of configurations 65
without static analysis

of configurations 1
with static analysis

7.3 mmatrix
mmatrix (see Table 5) is a product line whose largest pro-

gram (i.e., one containing all optional features) is 35K lines
of code. Similar to jampack, mmatrix exhibits a layered de-
sign with only one feature that refines methods.

Our analysis revealed that 10 features were behavior-irrelevant
(they just introduce methods and classes). The method
refining feature alters the control-flow of another feature.
With this information, we can safely ignore 10 out of 11
features. The analysis takes 16.2 minutes.

Without static analysis, main method of mmatrix would
have to be run on 65 configurations to see how they change,
if at all, the method’s execution with the required features.
With static analysis, only one has to be run.

8. RELATED WORK

8.1 Product Line Testing
It is well-known that the large number of configurations

in a product line poses a serious challenge for testing [30].
There is prior research on sampling the configuration space
on coverage criteria, not based on program analysis results,
but rather, based on interactions that domain experts be-
lieve to exist. For example, an SPL tester may choose a set of
features for which all combinations must be examined, while
for other features, only pair-wise testing is done [11][29]. In
contrast to these process-oriented approaches, our work em-
ploys program analysis to systematically walk through and
prune feature combinations. However, it only does so in the
context of a given test. The process-oriented approaches
may be complementary to our approach in that they can

8

be used to construct the given tests for which our technique
determines the feature combinations to test.

There has been prior work on testing in the context of
feature-oriented product lines. In [37], instead of generating
tests from a complete specification of a program, tests are
generated incrementally from specifications of features. We
address a different problem.

8.2 Feature Interactions
There is a large body of work on detecting feature in-

teractions using static analysis [32][36][13][10][25], of which
harmless advice [13] and Modular Aspects with Ownership
(MAO) [10] are most relevant to our work. They too try
to determine if features, or code modules like aspects, are
behavior-irrelevant. Our two-step static analysis was inpired
by the analysis proposed in the MAO paper. However, our
analysis differs in that ours performs a whole-program, inter-
procedural analysis, while theirs relies on module specifica-
tions to perform intra-procedural analysis. Although ours
also allows a form of module specifications, i.e. @Modifi-

able annotations, unlike MAO, the specifications are not
central to the technique. Our analysis is similar to the anal-
ysis employed in harmless advice in that both are whole-
program, inter-procedural analyses. However, unlike our
analysis, theirs uses a type system that prevents harmful in-
formation flow but allows control-flow to be changed. Also,
their approach requires every feature to be harmless (i.e., ir-
relevant), but this is inappropriate for SPLs in general. Our
analysis, which provides a program analysis but leverages
domain knowledge, can be seen as a middle-ground between
a specification-based analysis like MAO and a specification-
independent analysis like harmless advice.

More importantly, the two related works, as well as other
works, assume a setting, such as an aspect-oriented program,
where all modules are required for the program to work,
which is sharply different from SPLs. Indeed, prior works
performed analysis more for modular reasoning, rather than
for reducing combinatorial testing.

Also, our technique’s aim is to find combinations of op-
tional features that can change a given test’s outcome, not
to reveal all possible interactions involving the optional fea-
tures. For example, given a test, by turning off a feature
irrelevant to that test, we may prevent execution of what
our tool reports to be relevant features in the irrelevant fea-
ture’s control-flow. Although this seems odd, it is expected
because the “relevant” features are relevant not to the test,
but to the irrelevant feature (if they were relevant to the
test, the irrelevant feature would have also been reported to
be relevant to the test). This “oddity” arises because our
tool does not consider relevance as feature relations or fea-
ture interactions. In our approach, there must be another
test for the irrelevant feature in order to reach the “relevant”
features. This point is elaborated in a technical report under
preparation [20].

8.3 Compositional Analysis and Verification
Although we are able to reuse an off-the-shelf static anal-

ysis by transforming a product line into an ordinary whole
program, we lose the benefit of compositionality this way.
Compositional analysis performs analysis per feature and
merge the result with those of analyzing other features and
is especially effective if the product line evolves frequently.
A possible future direction is to develop effective composi-

tional static analysis techniques for product lines, perhaps
based on existing techniques like [12]. Feature specifications
are not necessary for our technique, but if we support them
for another purpose in the future, we may also benefit from
considering compositional verification techniques [25, 14].

8.4 Reducing Testing Effort
There is also related work on reducing testing, typically

using output from some analysis, although such work is not
in the context of product lines. For example, a regression
testing technique like [34] identifies a subset of existing tests
to run given a program change or a feature. We address
the opposite problem, i.e., we identify a subset of existing
features to run given a test. The two techniques are com-
plementary as both settings can occur. From a high level,
both regression testing and our technique can be seen [28]
as a form of slicing [39].

9. CONCLUSIONS
Software Product Lines (SPLs) represent a fundamental

approach to the economical creation of a family of related
programs. Testing SPLs is no less important, but has been
largely an ad hoc and informal process. This was the starting
point of our work.

Features are a basic, but unconventional, form of modu-
larity. Combinations of features yield different programs in
an SPL and each program is identified by a unique combi-
nation of features. Features impose a considerable amount
of structure on programs (that is why features are compos-
able in exponential numbers of ways), and exploiting this
structure has been the focus of our paper.

Our key insight is that every SPL test is designed to eval-
uate one or more properties of a program. A feature might
alter any number of properties. In SPL testing, a particular
feature may be relevant to a property (test) or it may not.
Determining whether a feature is relevant for a given test is
the critical problem.

We presented a structured way to analyze an SPL for
a given test. We showed how conventional static analysis
could eliminate feature configurations for a test by identi-
fying features that are behavior-irrelevant — features that
do not affect the properties that are being evaluated. We
presented several case studies that showed sizable reductions
in the number of tests to consider, and more importantly,
lends credence to the folk-tail belief that many features of a
product line are behavior-irrelevant.

We believe that testing SPLs is a topic of research that
is long overdue. We have taken a step toward making SPL
testing a more structured and formal process.

Acknowledgements. Kim and Batory are supported by
NSF’s Science of Design Project #CCF-0724979.

10. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
Featurec++: On the symbiosis of feature-oriented and
aspect-oriented programming. In GPCE’05.

[3] D. Batory. Ahead tool suite. http:
//www.cs.utexas.edu/users/schwartz/ATS.html.

9

[4] D. Batory. Feature models, grammars, and
propositional formulas. Technical Report TR-05-14,
University of Texas at Austin, Texas, Mar. 2005.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In ICSE’03.

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated reasoning on feature models. In CAiSE’05.

[7] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/j:
controlling the scope of change in java. In OOPSLA
’05. ACM.

[8] Y. Bontemps, P. Heymans, P.-Y. Schobbens, and J.-C.
Trigaux. Semantics of FODA feature diagrams. pages
48–58. Technical Report 6 – HUT-SoberIT-C6, Aug.
2004. Available from
http://www.soberit.hut.fi/SPLC-DWS/.

[9] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In
ISSTA’02, July 2002.

[10] C. Clifton, G. T. Leavens, and J. Noble. MAO:
Ownership and effects for more effective reasoning
about aspects. In ECOOP’07.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and
adequacy in software product line testing. In
ROSATEA ’06: Proceedings of the ISSTA 2006
workshop on Role of software architecture for testing
and analysis. ACM, 2006.

[12] P. Cousot and R. Cousot. Modular static program
analysis. In Proceedings of Compiler Construction,
pages 159–178. Springer-Verlag, 2002.

[13] D. S. Dantas and D. Walker. Harmless advice.
SIGPLAN Not., 41(1):383–396, 2006.

[14] D. Giannakopoulou, C. S. Pasareanu, and
H. Barringer. Assumption generation for software
component verification. In ASE’02.

[15] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for java software. In
OOPSLA’01.

[16] G. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5), May
1997.

[17] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Nov.
1990.

[18] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE’08.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In ECOOP’01.

[20] C. H. P. Kim, D. Batory, and S. Khurshid. Reducing
combinatorics in testing product lines (technical
report under preparation).

[21] C. Krueger. Variation management for software
production lines. In SPLC’02, volume 2379 of LNCS.

[22] A. Le, O. Lhoták, and L. Hendren. Using
inter-procedural side-effect information in jit
optimizations. In Compiler Construction, volume 3443
of LNCS, 2005.

[23] O. Lhoták. Program Analysis using Binary Decision
Diagrams. PhD thesis, McGill University, Jan. 2006.

[24] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In G. Hedin, editor, Compiler
Construction, 12th International Conference, volume
2622 of LNCS, pages 153–169, Warsaw, Poland, April
2003. Springer.

[25] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
cross-cutting features as open systems. SIGSOFT
Softw. Eng. Notes, 27(6):89–98, 2002.

[26] J. Liu and D. Batory. Automatic remodularization
and optimized synthesis of product-families. In GPCE,
2004.

[27] R. E. Lopez-herrejon and D. Batory. A standard
problem for evaluating product-line methodologies. In
Proc. 2001 Conf. Generative and Component-Based
Software Eng, pages 10–24. Springer, 2001.

[28] R. Mazumdar. Private correspondence, 2009.

[29] J. McGregor. Testing a Software Product Line.
Technical Report CMU/SEI-2001-TR-022, CMU/SEI,
Mar. 2001. Available from http://www.sei.cmu.edu/

pub/documents/01.reports/pdf/01tr022.pdf.

[30] C. Nebut, Y. L. Traon, and J.-M. Jézéquel. System
testing of product lines: From requirements to test
cases. In Software Product Lines, pages 447–478.
Springer-Verlag, 2006.

[31] N. Nystrom, S. Chong, and A. C. Myers. Scalable
extensibility via nested inheritance. SIGPLAN Not.,
39(10):99–115, 2004.

[32] C. Prehofer. Semantic reasoning about feature
composition via multiple aspect-weavings. In
GPCE’06.

[33] T. Reps. Undecidability of context-sensitive
data-independence analysis. ACM Trans. Program.
Lang. Syst., 22(1):162–186, 2000.

[34] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22, 1996.

[35] Sable Group. Soot: a Java optimization framework.
http://www.sable.mcgill.ca/soot/.

[36] G. Snelting and F. Tip. Semantics-based composition
of class hierarchies. In B. Magnusson, editor, ECOOP,
volume 2374 of Lecture Notes in Computer Science,
pages 562–584. Springer, 2002.

[37] E. Uzuncaova, D. Garcia, S. Khurshid, and D. S.
Batory. Testing software product lines using
incremental test generation. In ISSRE’08.

[38] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. of the 15th Conference on
Automated Software Engineering (ASE), Grenoble,
France, 2000.

[39] M. Weiser. Program slicing. In ICSE ’81: Proceedings
of the 5th international conference on Software
engineering, pages 439–449, Piscataway, NJ, USA,
1981. IEEE Press.

[40] Wikipedia. Micro-blogging.
http://en.wikipedia.org/wiki/Micro-blogging.

[41] T. Xie, D. Marinov, and D. Notkin. Rostra: A
framework for detecting redundant object-oriented
unit tests. In ASE’04.

10

