
Geographic Routing with Low Stretch in d-dimensional Spaces∗

Simon S. Lam and Chen Qian
Department of Computer Science
The University of Texas at Austin

Austin, Texas 78712

TR-10-03 January 19, 2010
Revised, April 21, 2010

ABSTRACT
Geographic routing is attractive because the routing state
needed per node is independent of network size. We present
a novel geographic routing protocol with several major ad-
vances over previous geographic protocols. First, our proto-
col achieves an average routing stretch close to 1. Second,
our protocol can be used for nodes located ind-dimensional
Euclidean spaces (d ≥ 2). Third, node locations are spec-
ified by coordinates which may be accurate, inaccurate, or
arbitrary. Conceptually, our routing structure consists of a
Delaunay triangulation (DT) overlay on anarbitrary con-
nectivity graph. We refer to the structure as amulti-hop DT.
Greedy routing in a correct multi-hop DT provides guaran-
teed delivery.

We present join, leave, failure, maintenance, and initial-
ization protocols, namedMDT protocols, for constructing
and maintaining a multi-hop DT usingsoft states. The join
protocol is proved to be correct for serial joins. When a
system is under churn, nodes may join, leave, and fail con-
currently. Our experiments show that MDT’s routing suc-
cess rate is close to 100% for systems under churn and node
states converge to a correct multi-hop DT after churn. MDT
is scalable to large networks. We present performance com-
parisons of MDT versus several geographic (and one non-
geographic) routing protocols for nodes in 2D and 3D.

1. INTRODUCTION
Geographic routing (also known as location-based or ge-

ometric routing) is a promising approach to scalable routing
in large networks. Most geographic routing protocols have
been designed for nodes in a 2D plane with accurate loca-
tion information. In reality, many network applications run
on nodes located in 3D spaces [1, 3, 8, 9]. Furthermore,
node location information may be highly inaccurate or sim-
ply unavailable. In the latter case,d-tuple virtual coordinates
(d ≥ 2) can be used to specify node locations for geographic
routing ind-dimensional virtual spaces [23, 27].

In this paper, we present a novel geographic routing pro-
tocol for a network of nodes in ad-dimensional Euclidean
∗Research sponsored by National Science Foundation grant CNS-
0830939.

space,1 for integerd ≥ 2. Network nodes are identified by
their locations specified by coordinates. The graph of nodes
and physical links, assumed to be connected, will be referred
to as theconnectivity graph.

Delaunay triangulation (DT) [11] has a long history and
many applications in different fields of science and engi-
neering. For nodes (points) in a 2D plane, Bose and Morin
proved that greedy routing in a DT always finds a given des-
tination node [4]. Lee and Lam [17, 18] extended this re-
sult and proved that given a destination locationℓ in a d-
dimensional space,d ≥ 2, greedy routing in a DT always
finds a node that is closest toℓ. The above results hold for
node locations specified by accurate, inaccurate, or arbitrary
coordinates.

DT has not been successfully applied to wireless routing
in the past due to the following problem: Two neighbors in
a DT may not be able to communicate directly with each
other for various reasons, e.g., there is an obstacle between
them, the distance between them exceeds the radio transmis-
sion range, etc. That is, for most wireless networks, the DT
graph is not a subgraph of the connectivity graph, as illus-
trated in Figures 1(a)-(b) where dashed lines are DT edges
between nodes that are not connected by physical links. To
solve this problem, we have designed and evaluated a pro-
tocol suite, named MDT, for a dynamic set of nodes to con-
struct and maintain a correct multi-hop DT overlay on an
arbitrary connectivity graph. In a multi-hop DT, two nodes
may be multi-hop neighbors which communicate via a vir-
tual link, i.e., a path provided bysoft-stateforwarding ta-
bles2 in nodes along the path

Even though the design of MDT was initially motivated
by wireless networks, we note that MDT can be used for ge-
ographic routing in wireline networks also. This is because
MDT routing has been designed to run correctly in any con-
nected graph of nodes and physical links in ad-dimensional
space, ford ≥ 2.

We have proved that for a given destination locationℓ,
MDT routing in a correct multi-hop DT providesguaran-

1Hereafter, whenever we say “d-dimensional space”, we refer to a
d-dimensional Euclidean space.
2Inspired by Ethernet switch tables but implemented differently.

1

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

(a) Connectivity graph

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

(b) DT graph

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

(c) MDT graph

Figure 1: An illustration of connectivity, DT, and MDT graph s of a set of nodes in 2D

teed deliveryto a node that is closest toℓ. MDT routing can
achieve a verylow routing stretchbecause its routing struc-
ture is “rich” in links. MDT routing uses all of the physical
links with additional virtual links connecting multi-hop DT
neighbors (dashed lines in Figure 1(c)). In comparison, other
protocols use only physical links and, in recovery mode, a
subset of physical links [5, 14, 15].

The MDT suite consists of protocols for routing, join,
leave, failure, maintenance, and system initialization. The
MDT join protocol has been proved correct for a single join.
(Thus it constructs a correct multi-hop DT when nodes join
serially.) The maintenance protocol enables concurrent joins
at system initialization. The join and maintenance protocols
are sufficient for a system under churn to provide a routing
success rate close to 100% and for node states to converge
to a correct multi-hop DT after churn. The leave and failure
protocols are used to improve accuracy and reduce commu-
nication cost.

MDT protocols arecommunication efficientbecause MDT
does not use flooding to discover DT neighbors. MDT’s
search technique is also not limited by a maximum hop count
(needed in scoped flooding used by many wireless routing
protocols) and is guaranteed to succeed when the existing
multi-hop DT is correct.

The balance of this paper is organized as follows. In Sec-
tion 2, we provide an overview of related work. In Section
3, we present concepts, definitions, and our model assump-
tions. In Section 4, we present the MDT routing protocol
and a theorem stating that it provides guaranteed delivery in
a correct multi-hop DT. In Section 5, we present join, main-
tenance, initialization, leave, and failure protocols anda the-
orem that the join protocol is correct for a single join. We
present experimental results to demonstrate MDT’s speed to
construct a correct multi-hop DT for a large number of nodes
in 3D at system initialization. We evaluate the performance
of MDT routing from experiments for nodes in 3D with in-
accurate coordinates and randomly placed obstacles, without
churn and with churn. In Section 6, we present experimen-
tal results to compare the routing performance of MDT with
geographic protocols designed for 2D and 3D and a non-
geographic protocol, VRR [6]. Lastly, we compare the com-

munication costs of constructing a correct multi-hop MDT
versus two other graph construction algorithms [15, 20]. We
conclude in Section 7.

2. RELATED WORK
Routing research has a vast literature. We limit this re-

view mostly to related work on the geographic approach.
Almost all geographic routing protocols have been designed
for nodes located in a 2D plane using greedy routing. For a
general connectivity graph, greedy routing may be “stuck”
at a node that is a local minimum, i.e., it is closer to the des-
tination than any of its neighbors. When a packet is stuck
at a node, two of the earliest protocols, GFG [5] and GPSR
[14], use the idea of face routing to move the packet out of
the local minimum. These protocols provide guaranteed de-
livery for a planar graph. If the connectivity graph is not
planar, a planarization algorithm (such as GG [12] or RNG
[26]) is used to disallow some links such that the nodes and
remaining links form a planar subgraph. For GG and RNG
algorithms to successfully construct a connected planar sub-
graph, it is required that the original connectivity graph satis-
fies the unit disk graph model and node location information
be accurate.

The DT of a set of nodes in a 2D plane is a graph that
has been shown to be a good spanner with a constant stretch
factor [7]. Furthermore, greedy routing in a DT graph pro-
vides guaranteed delivery for nodes in a 2D plane [4]. How-
ever, some edges in the DT graph may be arbitrarily long
and exceed the radio transmission range. The restricted DT
graph proposed in [13] and thek-localized DT graph pro-
posed in [21] are approximations of the true DT graph. They
were shown to be good spanners with constant stretch fac-
tors. However, being DT approximations, they do not pro-
vide guaranteed delivery. In another approach [28], the need
to solve the problem of long DT edges is obviated by con-
straining node locations such that the DT graph of the nodes
is a subgraph of the connectivity graph.

In each of the geographic routing protocols cited above,
the unit disk graph model is assumed. If node locations
are specified by inaccurate coordinates (e.g., due to local-
ization errors), the subgraphs constructed by GG and RNG

2

have cross links and are no longer planar. As a result, face
routing may not move packets out of local minima, result-
ing in routing failures. Some fixes to reduce the number of
routing failures are presented in [24].

For a practical wireless network with obstacles between
nodes and using real radios, the assumption of a unit disk
graph model cannot be justified. A quasi unit disk graph
model is proposed in [16]. Kim et al. [15] took a major step
away from the unit disk graph model. They proposed the
CLDP protocol which, given a connected graph, produces
a subgraph in which face routing would not cause routing
failures. When stuck at a local minimum, GPSR routing uses
the subgraph produced by CLDP instead of by GG or RNG.

Leong et al. proposed the GDSTR protocol [20] which
can also be used for any connectivity graph. A packet is
routed greedily until it is stuck at a local minimum. The
packet is then routed in a distributed spanning tree until it
reaches a point where greedy routing can again make progress.

For a network of nodes without location information, No-
Geo [23] was proposed to use node locations specified by
virtual coordinates which are constructed to reflect the un-
derlying connectivity. A packet is forwarded by greedy rout-
ing based on virtual coordinates. When a packet is stuck at a
local minimum, expanding ring search is used to find a way
out.

All of the geographic protocols referenced above were
designed for routing in 2D. For routing in 3D, there is no
analog of face routing in 2D. Durocher et al. [8] showed
that there is no local routing protocol that provides guaran-
teed delivery, even with the assumptions of a unit ball graph
model and accurate location information. For geographic
routing in 3D, GRG [9] uses greedy routing with random-
ized recovery to lead packets out of local minima. A routing
approach usingd-tuple virtual coordinates, ford ≥ 5, was
proposed in [27].

We mention just a few references in the non-geographic
routing literature. VRR [6] uses random unsigned integers
to identify nodes and organize them in a virtual ring. Each
node maintains a virtual neighbor set and physical neigh-
bor set. VRR sets up and maintains a routing path between
each pair of virtual neighbors. VRR routing table entries
are maintained as hard states. Note that MDT is similar to
VRR in maintaining virtual links to DT neighbors, but MDT
forwarding table entries are maintained as soft states.

Another recent protocol, S4 [22] which, using ideas from
BVR [10] and compact routing [25], provides a worst-case
routing stretch of 3 and an average stretch close to 1. S4 re-
quires a routing state per node ofO(

√
N) which is very good

for non-geographic routing protocols, but it is not indepen-
dent ofN like geographic protocols.

The prior work most relevant to this paper is by Lee and
Lam [17, 18, 19]. Their protocols for constructing and main-
taining a correct distributed DT of nodes in ad-dimensional
space (d ≥ 2) provide a basis for our work in this paper.
Their protocols, however, were designed with the assump-

tion that every DT node can directly communicate with ev-
ery other DT node. For arbitrary connectivity graphs, direct
communication between every pair of neighbors in a DT is
impossible.

3. CONCEPTS AND DEFINITIONS
Consider a setS of nodes in ad-dimensional space (d ≥

2). Each node inS is identified by its location specified by
coordinates. There is at most one node at each location. The
Delaunay triangulation ofS, denoted byDT(S), is a graph
whose vertices are nodes inS.3 When we say nodeu knows
nodev, nodeu knows nodev’s coordinates. Coordinates may
be accurate, inaccurate, or arbitrary.

3.1 Distributed DT
Definition 1. A distributed DT of a setSof nodes is spec-

ified by {< u,Nu > |u ∈ S}, whereNu represents the set of
u’s neighbor nodes, which is locally determined byu.

Definition 2. A distributed DT iscorrect if and only if
for every nodeu∈ S, Nu is the same as the neighbor set ofu
in DT(S).

Using protocols in [18, 19], each node,u∈S, finds a setCu

of nodes (Cu includesu). Thenu computesDT(Cu) locally
to determine its setNu of neighbor nodes. Note thatCu is
local information ofu while S is global knowledge. For the
extreme case ofCu = S, u is guaranteed to know its neighbors
in DT(S). However, the communication cost for each node
to acquire knowledge ofSwould be very high. Anecessary
and sufficient conditionfor a distributed DT to becorrect
is that for allu ∈ S, Cu includes all neighbor nodes ofu in
DT(S). This theorem was presented in [18] with a proof
published later in [19].

3.2 Model assumptions
Two nodes connected by a physical link are said to be

physical neighbors. Each link isbidirectional. The connec-
tivity graph may be arbitrary as long as it is a connected
graph. To simplify protocol descriptions, we assume that
each link provides reliable message delivery. (In a prac-
tical implementation, additional mechanisms such as ARQ
should be used to ensure reliable message delivery.) We as-
sume a fail-stop model. When a node fails, it becomes silent.

3.3 Multi-hop DT
A multi-hop DT is specified by{< u,Nu,Fu > |u ∈ S},

whereFu is a soft-state forwarding table, andNu is u’s neigh-
bor set which is derived from information inFu. The multi-
hop DT model generalizes the distributed DT model by re-
laxing the requirement that every node inSbe able to com-
municate directly with each of its DT neighbors. In a multi-
hop DT, two nodes that are multi-hop neighbors communi-
cate via a path provided by forwarding tables in nodes along
the path.
3See [11]. Familiarity with theDT(S) definition and algorithms for
computing theDT(S) graph is not needed for reading this paper.

3

For a nodeu, each entry in its forwarding tableFu is a
4-tuple< source, pred,succ,dest>, which is a sequence of
nodes withsourceanddestbeing the source and destination
nodes of a path, andpred andsuccbeing nodeu’s prede-
cessor and successor nodes in the path. In a tuple,source
andpredmay be the same node; also,succanddestmay be
the same node. A tuple is used byu for message forwarding
from sourceto destor from dest to source. For a specific
tuple t, we uset.source, t.pred, t.succ, andt.destto denote
the corresponding nodes int.

For ease of exposition, we assume that a tuple and its “re-
verse” are inserted in and deleted fromFu as a pair. For
example,< a,b,c,d > is in Fu if and only if < d,c,b,a >

is in Fu. (In practice, only one tuple is stored with each
of its two endpoints being both source and destination.) A
tuple in Fu with u itself as the source is represented as<

−,−,succ,dest>, which does not have a reverse inFu.
For an example of a forwarding path, consider the multi-

hop DT in Figure 2(c). The DT edge between nodesg and
i is a virtual link; messages are routed along the paths,g−
e− h− i and i − h− e− g, using the following tuples:<
−,−,e, i > in nodeg, < g,g,h, i > in nodee, < g,e, i, i > in
nodeh, and< −,−,h,g > in nodei.

For a nodeu, its physical neighbors can be in one of three
stages of the join process:

1) For a physical neighborv that has booted up but has not
yet joined the DT, the tuple,< −,−,v,− >, is stored in
Fu. (These tuples are stored in and deleted fromFu by
a link management protocol which will not be explicitly
specified.)

2) A physical neighborv that has sent a join request and
received a join reply from a DT node4 will notify all of
its physical neighbors to change their tuple forv from
< −,−,v,− > to < −,−,v,v > which indicates thatv
has found a closest node guaranteed to bev’s neighbor
in the global DT. We usePu to denote the set{v | <

−,−,v,v >∈ Fu}. Each node inPu is referred to as a
physical neighbor of u attachedto DT. Note that when a
node first becomes a physical neighbor attached to DT,
it is not a DT node. It becomes a DT node later after it
has finished its join protocol execution. A multi-hop DT
is correct only if all nodes have become DT nodes. If a
node inPu receives a message to forward before its join
is finished, the message is queued to be forwarded after
the node becomes a DT node.

3) A physical neighbor in a correct multi-hop DT is a DT
node but may not be a DT neighbor, e.g. nodesa andh
in Figure 2(c) are physical but not DT neighbors. On the
other hand, a DT neighbor may not be a physical neigh-
bor, e.g., nodesa and j in Figure 2(c). A nodev that is
in bothPu andNu of nodeu is said to be aone-hop DT

4A DT nodeis one that has finished its join protocol execution.

neighborof u or, simply, aone-hop neighbor.5

Tuples inFu are maintained assoft states. Each tuple is
refreshedwhenever there is packet traffic (e.g., application
data or keep-alive message) between its endpoints. A tuple
that is not refreshed will be deleted when its timeout occurs.

Definition 3. A multi-hop DT ofS, {< u,Nu,Fu > |u∈S},
is correct if and only if the following conditions hold: i) the
distributed DT of S,{< u,Nu > |u ∈ S}, is correct; and ii)
for every neighbor pair (u,v), there exists a uniquek-hop
path betweenu andv in the forwarding tables of nodes inS,
wherek is finite.

The systems we consider are sometimes under churn when
nodes join, leave, and fail concurrently. To define a met-
ric for quantifying the accuracy of a multi-hop DT, we con-
sider a node to bein-systemfrom when it has finished join-
ing until when it starts leaving or has failed. LetMDT(S)
denote a multi-hop DT of a setS of in-system nodes. Let
Nc(MDT(S)) be the total number of correct neighbor entries
andNw(MDT(S)) be the total number of wrong neighbor en-
tries in the forwarding tables of all nodes. A neighborv in Nu

is correct whenu andv are neighbors inDT(S) and wrong
whenu andvare not neighbors inDT(S). LetNedges(DT(S))
be the number of edges inDT(S). Let Nnp(MDT(S)) be the
number of edges inDT(S) that do not have forwarding paths
in the multi-hop DT ofS. The accuracy ofMDT(S) is de-
fined to be:

Nc(MDT(S))−Nw(MDT(S))−2×Nnp(MDT(S))

2×Nedges(DT(S))
(1)

It is straightforward to prove that the accuracy ofMDT(S)
is 1 (or 100%) if and only if the multi-hop DT ofSis correct.

4. MDT ROUTING PROTOCOL
The MDT routing protocol pseudocode is shown in Fig-

ure 3. Consider a nodeu that has received a data message
m to route. Nodeu first compares its own location with the
message’s destination location. If they arenot equal, it calls
Routing(m) which callsGet Next(m.dest,m.relay).

WhenGet Next runs, it first checks these two cases: (i)
a node inPu exists at the destination location; (ii) there is
a relay node to forward the message to. If neither (i) nor
(ii) applies, then it performsgreedy routingto determine the
next-hop node. Conceptually, when a packet is stuck at a
local minimum, MDT routing moves the packet along a vir-
tual link to a multi-hop DT neighbor that is closest to the
destination location. There are three possible outcomes:

a) Nodev, a physical neighbor inPu is closer to the destina-
tion location than any node inPu∪{u} (line 9). Nodeu
then transmitsmdirectly tov.

5We use “neighbor” to refer to a DT neighbor. A node knows only
neighbors in its locally computed DT. If the multi-hop DT is cor-
rect, then local DT neighbors are the same as neighbors inDT(S).

4

a

b

c

d

e

f

g

h

i
j

(a) Connectivity graph of ten nodes

a

b

c

d
e

f

g

h

ij

(b) DT graph of ten nodes

a

b
c

d

e

f

g

h

i
j

(c) MDT graph of ten nodes

Figure 2: Graphs for the join protocol example

Data message format

Node u stores message m with the format:

m = <m.dest, m.source, m.relay, m.data> in a local data

structure, where m.dest is the destination location,

m.source is the source node, m.relay is the relay node, and

m.data is the payload of the message.

Routing(m): Node u receives message m to route
 // u m.dest

1. v Get_Next(m.dest, m.relay)
 // m.relay may be changed when Get_Next returns

2. if v null then

3. Transmit m to v

4. else

5. exit // u is closest to m.dest

6. end if

Get_Next(dest, relay): Node u finds the next-hop node

1. if there exists v | v Pu and v = dest then

2. return v // a physical neighbor attached to DT exists at dest

3. end if

4. if relay null and relay u then
 // forward message to the relay

5. t tuple in Fu such that t.dest = relay

6. return t.succ

7. end if
 // perform greedy routing in multi-hop DT

8. v node in Pu {u} closest to dest

9. if v Pu then // v is a physical neighbor attached to DT

10. relay null

11. return v

12. else // u is closer to dest than any node in Pu

13. v node in Nu {u} closest to dest

14. if v Nu then // v is a multi-hop DT neighbor

15. t tuple in Fu such that t.dest = v

16. relay v

17. return t.succ

18. else // u is the node closest to dest

19. return null

20. end if

21. end if

Figure 3: MDT routing protocol at node u for a multi-hop DT

b) Nodev, a multi-hop DT neighbor, is closer to the destina-
tion location than any node inNu∪{u} (line 14). Nodeu
writesv into the relay field of the message (line 16), and
looks up its forwarding table to get the successor node in
the path tov (line 17). (A correct multi-hop DT guaran-
tees that a path fromu to v exists in the forwarding tables
of u and nodes along the path tov.)

c) Nodeu is closer to the destination location than any neigh-
bor in Pu∪Nu (line 18).

We have proved Theorem 1 which states that MDT rout-
ing in a correct multi-hop DT provides guaranteed delivery.
A proof of the theorem is presented in the Appendix.

THEOREM 1. Consider a correct multi-hop DT of a finite
set S of nodes in a d-dimensional Euclidean space. Given a
locationℓ in the space, the MDT routing protocol succeeds
to find a node in S closest toℓ in a finite number of hops.

5. MDT PROTOCOL SUITE
In addition to the routing protocol, MDT includes join,

leave, failure, and maintenance protocols, which make use
of basic protocol steps in [18, 19] for a distributed DT. There
are, however, major innovations in MDT protocol design:

1) Construction of forwarding paths: In addition to con-
structing and maintaining a distributed DT, join and main-
tenance protocols in MDT insert tuples into forwarding
tables and update some existing tuples to correctly con-
struct paths between multi-hop neighbors. Leave, fail-
ure and maintenance protocols in MDT construct a new
path between two multi-hop neighbors whenever the pre-
vious path between them has been broken due to a leave
or failure. Protocol design to perform these tasks poses
significant challenges.

2) Soft state versus hard state: For protocols in [18, 19],
each node, sayu, stores nodes it knows in its candidate
setCu. Nodes inCu are maintained as hard states. The
neighbor set,Nu, is derived from computingDT(Cu) lo-
cally. For MDT, each node, sayu, stores tuples in its
forwarding tableFu. Tuples inFu are maintained as soft
states. The neighbor setNu is derived from computing
DT(C∗

u) whereC∗
u = {u}∪{v | v = t.dest, t ∈ Fu}. Note

that when a tuple’s timeout occurs because it has not been
refreshed by its endpoints, the tuple’s destination is re-
moved fromC∗

u.

3) Leave and failure notifications: For protocols in [18, 19],

5

when a node, sayv, leaves or is detected to have failed,
each node inNv is notified of its leave/failure by a unicast
message. The leave/failure notification is also propagated
to nodes that are not inNv by a greedy reverse path broad-
cast (GRPB) protocol. Since MDT uses soft states, nodes
not inNv do not have to be notified ofv’s departure.

4) System initialization protocols: MDT includes two ini-
tialization protocols for constructing a correct multi-hop
DT for a large number of nodes, one for serial joins and
the other for concurrent joins.

In our protocol descriptions to follow, we keep the can-
didate set notation,Cu, for nodeu to store newly learned
nodes. TheCu notation is kept for two reasons. First, having
Cu makes it easier to understand MDT protocols and relate
them to protocols in [18, 19]. Second, nodeu needs a place
to temporarily store newly learned nodes and storing them
in Cu is as good as any alternative. In MDT protocols, how-
ever, nodes inCu aresoft states. A node inCu is deleted if
(i) it does not become the destination of a tuple inFu within
a timeout period, or (ii) it ist.destfor a tuplet that has not
been refreshed and is deleted fromFu.

5.1 Join protocol
We begin by describing the basic steps of the join proto-

col in [17, 18].6 Consider a new node, sayw. It boots up
and discovers its physical neighbors. If one of the physical
neighbors is a DT node (sayv) thenw sends a join request
to v. The join request is forwarded by greedy routing to a
DT node (sayz) closest tow. Nodez sends a join reply to
w which then sends a neighbor-set request toz for mutual
neighbors ofw andz in DT(Cz).

Whenw receives the neighbor-set reply fromz, w adds the
mutual neighbors (if any) to its candidate set,Cw, and com-
putes its neighbor set,Nw. If w finds new neighbors inNw,
w sends neighbor-set requests to them for mutual neighbors.
The joining nodew repeats the above process recursively un-
til it cannot find any more new neighbor inNw. At this time
w has successfully joined and become a DT node.

Path construction to closest node.For a multi-hop DT,
a nodew can join when it has a physical neighborv that
is a DT node.7 Nodew joins by sending a join request to
nodev. MDT routing is used to forward the join request
to nodez that is closest tow. A forwarding path between
w andz is constructed as follows. Whenw sends the join
request tov, it stores the tuple<−,−,v,v> in its forwarding
table. Subsequently, suppose an intermediate node (sayu)
receives the join request from a one-hop neighbor (sayv)

6We do not follow the ACE join protocol [19] because its correct-
ness proof requires the general position assumption [11] and the
assumption that the joining node is located within the convex hull
of the existing DT.
7If nodew has only physical neighbors, it will not start the join pro-
tocol until it hears from a physical neighbor who is attachedto DT,
e.g., it receives a token from such a node at system initialization.

and forwards it to a one-hop neighbor (saye), the tuple<

w,v,e,e> is stored inFu.
When nodez receives the join request ofw from a one-

hop neighbor (sayd), it stores the tuple< −,−,d,w > in
its forwarding table for the reverse path. The join reply is
forwarded along the reverse path fromz to w using tuples
stored when the join request traveled fromw to zearlier. Ad-
ditionally, each such tuple is updated withz as an endpoint.
For example, suppose nodex receives a join reply fromz
to w from its one-hop neighbore. Nodex changes the tu-
ple< e,e,∗,w > in Fx to < z,e,∗,w >, where∗ denotes any
node already in the tuple.

After nodew has received the join reply, it notifies each
of its physical neighbors thatw is now attached to DT and
they should change their tuple forw from < −,−,w,− > to
< −,−,w,w >.

Physical-link shortcuts. The join reply message, at any
node along the path fromz to w (including nodez), can be
transmitted directly tow if node w is a physical neighbor
(i.e., for messagem, there is a tuplet in the forwarding table
such thatt.succ= m.dest). If such a physical-link short-
cut is taken, the path previously set up betweenz andw is
changed. Tuples withz andw as endpoints stored by nodes
in the abandoned portion of the previous path will be deleted
because they will not be refreshed by the endpoints.

A physical-link shortcut can also be taken when other mes-
sages in MDT join, maintenance, leave, and failure protocols
(to be presented) are forwarded, but they require the stronger
condition,t.succ= t.dest= m.dest, that is, the shortcut can
be taken only ifm.dest is a physical neighbor attached to
DT.

Path construction to multi-hop DT neighbors. For a
multi-hop DT, the join protocol needs to construct a for-
warding path between the joining nodew and each of its
multi-hop neighbors. After nodew has attached itself to
DT, it sends neighbor-set requests and receives neighbor-set
replies. Whenw learns a new nodey from the join reply
or a neighbor-set reply sent by some node, sayx, how does
w route a neighbor-set request toy that is more than one
hop away? Our solution is to include arelay field in the
neighbor-set request message. Nodew sends a neighbor-set
request tox, with x as the relay andy as the destination. Note
that a forwarding path has already been established between
w andx. Also, sincex andy are DT neighbors, a forwarding
path exists betweenx andy (assuming thatw is joining a cor-
rect multi-hop DT). As the neighbor-set request is forwarded
and relayed fromw to y, tuples withw andy as endpoints are
stored in forwarding tables of nodes along the path fromw
to y. The forwarding path that has been set up betweenw
andy is then used byy to return a neighbor-set reply tow.

A pseudocode specification of the MDT join protocol is
presented in the Appendix. Theorem 2 states that the MDT
join protocol is correct for a single join. A proof of the the-
orem is presented in the Appendix.

THEOREM 2. Let S be a set of nodes and w be a join-

6

ing node that is a physical neighbor of at least one node
in S. Suppose the existing multi-hop DT of S is correct, w
joins using the MDT join protocol, and no other node joins,
leaves, or fails. Then the MDT join protocol finishes and the
updated multi-hop DT of S∪{w} is correct.

Join protocol example.We present an illustration of the
join protocol using Figure 2. Initially, let nodea be a new
node. The other 9 nodes are maintaining a correct multi-
hop DT. When nodea boots up, it discovers two physical
neighbors, namely, nodesb and h, both of which are DT
nodes. Nodea transmits a join request to nodeb and stores
the tuple<−,−,b,b> in Fa. Nodeb runs MDT routing and
transmits the join request to nodec; it also stores the tuple
< a,a,c,c > in Fb. MDT routing guaranteesto find a DT
node closest to nodea because the existing multi-hop DT is
correct. The closest node happens to bec in this example.
Nodec stores the tuple< −,−,b,a > in Fc and sends a join
reply toa by transmitting it tob. Nodeb gets the join reply
and transmits it toa (nodeb does not have to update its tuple
< a,a,c,c > in this particular example). Whena gets the
join reply, it updatesFa by replacing< −,−,b,b > with <

−,−,b,c>. Nodea is now attached to DT and it notifies its
physical neighbors,b andh.

Nodec being closest to nodea is guaranteed to be a neigh-
bor of a in the DT of all ten nodes. Nodea then tries to find
all of its neighbors in the DT by first sending a neighbor-set
request toc. Its tuple<−,−,b,c> indicates that the request
should be sent tob which then transmits it toc. Whenc gets
the request, it computes its local DT to determine nodes that
are mutual neigbors ofc anda, which are nodesd andb.
(See Figure 2(b).) Nodea then sends neighbor-set requests
to b andd. Noded replies thatc is a mutual neighbor. Node
b replies thatc and j are mutual neighbors. Nodea then
sends a neighbor-set request to nodej.

To establish a forwarding path betweena and j, note that
nodea learns of nodej from nodeb. A forwarding path
is already established betweena andb. Also, because the
existing multi-hop DT is correct, a unique forwarding path
exists between nodeb and nodej, which is b− e− h− j.
Therefore, nodea sends a neighbor-set request toj by spec-
ifying b as the relay node in the message. The request is first
sent tob which then forwards it toeon theb−e−h− j path.
At every node along the way, a tuple with endpointsa and j
is stored in the node’s forwarding table.

Note that the path,a−b−e−h− j, is very long. When the
neighbor-set reply fromj travels back viah, nodeh searches
Fh and finds that nodea is a physical neighbor (see Fig-
ure 2(c)). Nodeh then transmitsj ’s reply directly to node
a. (This is an example of aphysical-link shortcut.) Subse-
quently, nodesa and j will select and refresh only the path
a−h− j between them. Tuples previously stored in nodes
b, e, andh for endpointsa and j will be deleted upon time-
out. Lastly, fromj ’s reply,a learns thatb is the only mutual
neighbor of itself andj. Sincea does not have any more new
neighbor to query, its join protocol execution terminates and

it becomes a DT node.

5.2 Maintenance protocol
For a system under churn, when nodes join, leave, and fail

concurrently, node states may be incorrect. For a distributed
DT to be correct, each node must know all of its neighbors
in the global DT. To satisfy this condition, each node (say
u) queries some of its neighbors to see if they know mutual
neighbors thatu does not know. The MDT maintenance pro-
tocol uses basic steps from the ACE join and maintenance
protocols [19]. More specifically, nodeu selects a subsetV
of neighbors such that every simplex inDT(Cu) includingu
also includes one node inV. Nodeu then sends a neighbor-
set request to each node inV. When nodeu finds new neigh-
bors in the neighbor-set replies, nodeu sends a neighbor-set
request to each new neighborx that satisfies the following
condition:

C1. x is a vertex of a simplex inDT(Cu) that includesu
and does not include any node that has been sent a neighbor-
set request.

Nodeu keeps sending neighbor-set requests until it cannot
find any more new neighbor inNu that satisfies C1. Nodeu
then sends neighbor-set notifications to neighbors inNu that
have not been sent neighbor-set requests (these notifications
do not require neighbor-set replies). The protocol code for
constructing forwarding paths between nodeu and each new
neighbor is the same as in the MDT join protocol.

If after sending a neighbor-set request to a node, sayv, and
a neighbor-set reply is not received fromv within a timeout
period, the node is deemed to have failed. Nodeu sends
a failure notification aboutv to inform each node inu’s up-
dated neighbor set. These notifications are unnecessary since
MDT uses soft states; they are performed to speed up con-
vergence of node states.

Each node runs the maintenance protocol independently,
controlled by a timeout valueTm. After a node has finished
running the maintenance protocol, it waits for timeTm be-
fore starting the maintenance protocol again. The value of
Tm should be set adaptively. When a system has a low churn
rate, a large value should be used forTm to reduce commu-
nication cost.

If every node runs the maintenance protocol repeatedly,
thenode states converge to a correct multi-hop DTbecause
neighbors in a DT are connected by neighbor relations. A
node can find all of its neighbors by following the neighbor
relations [17].

5.3 Initialization protocols
We design two system initialization protocols to construct

a correct multi-hop DT for a large set of nodes. As before,
we assume that there is a link management protocol that en-
ables each node to discover its physical neighbors. Also the
graph of nodes and physical links is connected.

Serial joins by token passing.Starting with a one-node
DT, other nodes join serially using the join protocol. The

7

ordering of joins is controlled by the passing of a single to-
ken from one node to another. The token passing protocol
ensures that the token visits every node in the set.

Concurrent joins by token broadcast. Starting from a
one-node DT, other nodes join concurrently using the join
and maintenance protocols. The ordering of joins is con-
trolled by a token broadcast protocol. Initially, a token is
installed in a selected node, which configures its state as a
one-node DT. When a node has a token, it runs the join pro-
tocol once (except the selected node) and then the mainte-
nance protocol, controlled by the timeout valueTm. It also
sends a token to each physical neighbor that is not known to
have joined the multi-hop DT (i.e., it is not a physical neigh-
bor from which a token has been received and nott.destfor
some tuplet in its forwarding table). Each token is sent af-
ter a random delay uniformly distributed over time interval
[1,τ], whereτ is in seconds. If a node receives more than one
token, any duplicate token is discarded. The token broadcast
protocol provides at least one token to every node to start its
join process.

5.4 Performance of MDT protocols
Evaluation methodology. Our performance criteria are

routing success rate, routing stretch, resilience to churn, as
well as storage and communication costs associated with
routing. Since MDT can be used for a variety of networks,
it is beyond the scope of this paper to evaluate metrics (e.g.,
throughput and end-to-end latency) that depend on link char-
acteristics and congestion. Hence, we evaluate MDT proto-
cols using a packet-level discrete-event simulator in which
every protocol message created is routed and processed hop
by hop from its source to destination. Queueing delays at a
node, link errors, and transmission interference are not sim-
ulated. Instead, message delivery times from one node to the
next are sampled from a uniform distribution over a specified
time interval. To evaluate scalability of MDT, we performed
experiments for up to 1,300 nodes in 3D. To evaluate re-
silience to churn, we performed experiments for churn rates
up to 100 nodes/minute for 300-node networks in 3D.

Inaccurate coordinates.For each simulation experiment,
we first locate nodes randomly in a 2D or 3D space. We then
generate coordinates for these nodes, such that they have lo-
cation errors specified by anerror ratio , e, which is defined
to be the ratio of the average location error to the average
distance between physical neighbors.

Random Graph model. Given a set of nodes, connec-
tivity graphs in our experiments are generated using a Ran-
dom Graph model specified by two parameters, aconnec-
tion probability pand atransmission range R. Two nodes
that are more thanR distance apart are not connected by a
physical link. Two nodes that are less than or equal toR
distance apart are connected by a physical link with proba-
bility p. With probability(1− p), a physical link is miss-
ing between two nodes that are within transmission range of
each other. For a wireless network, the probability 1− p is

used to modelrandomly placed obstaclesthat block trans-
missions between pairs of nodes. The use of a limitedR
value challenges MDT protocols to correctly construct for-
warding paths between DT neighbors that are far apart. In
designing our experiments, theR value was varied to gener-
ate connectivity graphs with average node degrees compara-
ble to those used in prior work [15, 20].

Note that this model generalizes the Bernoulli random
graphs model in [15]. (IfR is specified to be larger than
the maximum distance between any pair of nodes, we get
the model in [15].) These models are general in the sense
that for a given set of nodes andR value, any possible con-
nectivity graph may be generated with nonzero probability.

5.4.1 Constructing a correct multi-hop DT at system
initialization

In Figure 4, we show simulation results from two sets of
experiments for concurrent joins using token broadcast. In
each experiment, 300 nodes are randomly distributed in a
800×800×800 3D space with transmission rangeR= 325.
Connectivity graphs are generated from the Random Graph
model with e = 1 and p = 0.5 (i.e., both inaccurate coor-
dinates and randomly placed obstacles); the average node
degree (number of physical neighbors per node) is 15.5. The
first set of experiments is for low-speed networks in which
one-hop message delays are sampled from 100 ms to 200
ms (average = 150 ms), with a maintenance protocol time-
out duration of 1 minute. The second set of experiments is
for high-speed networks in which one-hop message delays
are sampled from 10 ms to 20 ms (average = 15 ms), with a
maintenance protocol timeout duration of 10 seconds.

In the legend of Figure 4,“token delay” is maximum token
delayτ. In every experiment, note that accuracy of the multi-
hop DT is low initially when many nodes are joining at the
same time. However, accuracy improves and converges to
100% accuracy quickly. In all experiments, after each node’s
initial join, the node ran the maintenance protocol only once
or twice by the time 100% accuracy was achieved.

For the same parameter values and connectivity graphs as
those in Figure 4, we ran simulations in which nodes joined
serially controlled by token passing. The multi-hop DT at
the end of every join was correct (as stated by Theorem 2). In
each experiment, the time taken to construct a correct multi-
hop DT for all 300 nodes was between 10 and 20 times the
convergence time in Figure 4. The tradeoff is that the num-
ber of protocol messages used by serial joins was a small
fraction of the number of protocol messages used by con-
current joins. A comparison of the communication costs of
serial joins and concurrent joins to construct correct MDT
graphs as well as those of two other graph contruction algo-
rithms for wireless routing is shown in Figure 13 and dis-
cussed in Section 6.3.

5.4.2 MDT routing performance

We evaluated the performance of MDT routing by sim-

8

10 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)
A

cc
ur

ac
y

of
 m

ul
ti−

ho
p

D
T

token delay = 8s
token delay = 10s
token delay = 12s

(a) Ave. message delay = 150 ms

1 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

A
cc

ur
ac

y
of

 m
ul

ti−
ho

p
D

T

token delay = 0.5s
token delay = 1s
token delay = 1.5s

(b) Ave. message delay = 15 ms

Figure 4: Accuracy vs. time for concurrent joins in 3D (location error ratio e= 1, connection probability p = 0.5)

100 300 500 700 900 1100 1300

10

20

30

40

50

60

70

80

Number of nodes

A
ve

. n
o.

 o
f n

od
es

 s
to

re
d

pe
r

no
de MDT (e=0, p=1)

MDT (e=1, p=1)
MDT (e=0, p=0.5)
MDT (e=1, p=0.5)
No. of physical neighbors

(a) Storage cost vs.N

100 300 500 700 900 1100 1300

1

1.2

1.4

1.6

1.8

2

2.2

Number of nodes

R
ou

tin
g

S
tr

et
ch

MDT (e=0, p=1)
MDT (e=1, p=1)
MDT (e=0, p=0.5)
MDT (e=1, p=0.5)

(b) Routing stretch vs.N

100 300 500 700 900 1100 1300

1

1.2

1.4

1.6

1.8

2

Number of nodes

D
is

ta
nc

e
S

tr
et

ch

MDT (e=0, p=1)
MDT (e=1, p=1)
MDT (e=0, p=0.5)
MDT (e=1, p=0.5)

(c) Distance stretch vs.N

Figure 5: MDT routing performance for nodes in 3D

ulation experiments for nodes in 3D for the following four
cases:

• unit disk model (e= 0, p = 1),

• inaccurate coordinates only (e= 1, p = 1),

• randomly placed obstacles only (e= 0, p = 0.5),

• both inaccurate coordinates and randomly placed ob-
stacles (e= 1, p = 0.5).

The routing stretch value of a pair of nodes,s andd, in a
multi-hop DT ofS is defined to be the ratio of the number of
hops in the MDT route to the number of hops in the short-
est route (in hops) betweens andd. Therouting stretch of
the multi-hop DT is defined to be the average of the routing
stretch values of all source-destination pairs inS. Thedis-
tance stretchof the multi-hop DT is defined similarly with
distance replacing number of hops as metric.

In Figure 5, we present results from simulation experi-
ments for a varying number (N) of nodes with transmission
rangeR= 250 for p = 1, andR= 325 for p = 0.5. The 3D
space size increases withN such that the average node de-
gree (number of physical neighbors per node) is maintained
at approximately 15.5. A correct multi-hop DT was first con-
structed at the beginning of each experiment. Routing suc-
cess rate was observed to be 100% in every experiment.

In Figure 5(a), the storage cost of a node is the average
number of other nodes whose coordinates have to be stored

in the node.8 From the figure we observe that the storage
cost (per node) increases slowly, with the rate of increase
trending to zero asN becomes large. The introduction of in-
accurate coordinates (e= 1) and randomly placed obstacles
(p = 0.5) requires more storage per node.

In Figures 5(b)-(c), both routing stretch and distance stretch
are close to 1 for the unit disk model. Inaccurate coordi-
nates and randomly placed obstacles increase both the rout-
ing stretch and distance stretch of MDT routing. However,
we observed that inaccurate coordinates and randomly placed
obstacles do not affect the guaranteed delivery property of
MDT routing (Theorem 1).

Simulation methodology. In Figure 5, each data point
plotted is the average value of 50 simulation runs for 50 con-
nectivity graphs generated from the Random Graph model.
For each simulation run, the 90th percentile and 10th per-
centile values are also plotted as bars above and below the
average value. Almost all of the intervals between 90th and
10th percentile values are very small. Such small intervals
between 90th and 10th percentile values are typical of all
simulation results to be presented in the balance of this pa-
per. For the sake of clarity, we will omit 90th and 10th per-
centile values in other figures. Note that each data point plot-
ted will still be the average value of 50 simulation runs (with
the exception of transient behaviors from churn experiments

8In MDT, each node is identified globally by its coordinates.
Within a node, locally defined identifiers are used to represent
nodes in the forwarding table to reduce storage cost.

9

shown in Section 5.6).

5.5 Leave and failure protocols
Join and maintenance protocols are sufficient for a system

of nodes to recover from churn and their multi-hop DT to
converge to 100% accuracy. It is however desirable for MDT
to include leave and failure protocols designed for a single
leave and failure, respectively, for the following reasons:

1) A departed node has almost all recovery information in
its state to inform its neighbors how to repair their states.
Such recovery information is not available to the main-
tenance protocol and would be lost if not provided by a
leave or failure protocol when the node leaves or fails.
Thus having leave and failure protocols in MDT allows
the maintenance protocol, which has a higher communi-
cation cost, to run less frequently than otherwise.

2) Concurrent join, leave and failure occurrences in differ-
ent parts of a large network are often independent of each
other. After a leave or failure, node states can be quickly
and effectively repaired by leave and failure protocols
without waiting for the maintenance timeout to occur.

Leave protocol.Consider a nodeu that leaves gracefully.
When nodeu’s neighbors update their states, it is not suffi-
cient for a neighborv to deleteu from Cv andNv. This is
becausev may have a new neighborz that was not a neigh-
bor ofv beforeu’s departure andv does not knowz afteru’s
departure. However, such a nodez is always a neighbor of
u prior tou’s departure (Lemma 10 in [17]). Therefore node
u can notify neighborv thatu is leaving and providev with
the following information:

1. v’s neighbor setNu
v in DT(Nu),9 and

2. a graphG=<V,E >, where the set of verticesV = Nu,
and the set of edges,E = {(v,z) | v, z are neighbors in
DT(Nu) andFu does not contain a tuple withv andzas
endpoints}.

We usevertexto refer to a node in graphG androuteto refer
to a path in graphG connecting two vertices. Note that all
vertices inG are DT nodes. Edges inG connect neighbors in
the multi-hop DT ofS. By the definition ofG, none of these
edges usesu as a node in its forwarding path.

After receiving a leave notification,v computes a route
in G to every nodez in its updated neighbor set.Suppose
such a route exists inG betweenv andz. Nodev sends to
z a path-recover message along the route as follows: The
path-recover message is relayed by vertices along the route.
Two adjacent vertices in the route, being neighbors in the
multi-hop DT of S, are connected by a physical link or a
forwarding path. At every hop along the route fromv to z,
a tuple withv andz as endpoints is stored, thus establishing
a forwarding path betweenv andz. The leave protocol is
highly efficient for repairing node states after a leave.
9Note thatu is not inNu.

For some rare cases, the leave protocol may not be able to
repair all node states after a leave for two reasons. First, the
leaving nodeu may be an articulation point of the connec-
tivity graph. Second, even ifu is not an articulation point,
it is possible thatv and some neighborzare disconnected in
G because the forwarding paths of all routes between them
in the DT(Nu) graph use nodeu to forward messages. In
this case, nodev exits the leave protocol and immediately
runs the maintenance protocol to repair node states. (A pseu-
docode specification of the MDT leave protocol is presented
in the Appendix.)

Failure protocol. The failure protocol is similar to the
leave protocol and almost as efficient. The key idea is that
every nodeu prepares recovery information for its neighbors
in caseu fails. The recovery information includes, for each
neighborv, its neighbor setNu

v in DT(Nu) afteru’s departure
as well as the graphG in the leave protocol. Nodeu selects
one of its neighbors (saym) as its monitor node and sends
to m the recovery information for every node inu’s neighbor
set. (The recovery information is updated byu whenever
there is a change inNu.) The monitor nodem periodically
probesu to check thatu is alive. Whenm detects failure
of u, m sends to each ofu’s former neighbors its recovery
information prepared byu.

5.6 MDT performance for systems under churn
We performed a large number of experiments to evalu-

ate the performance of MDT protocols for systems of nodes
under churn. For each experiment, there are 300 nodes ini-
tially maintaining a correct multi-hop DT. Thechurn rate
is defined to be the rate at which new nodes join the sys-
tem, which is equal to the rate at which existing nodes leave
or fail from the system. In each experiment, each depart-
ing node is randomly selected (with probability 0.5) to be a
graceful leave or a failure. Nodes are randomly distributed
in a 800×800×800 3D space. In each experiment, churn
begins at time 0 and ends at time 60 seconds.

Both Figures 6 and 7 are from experiments for low-speed
networks where one-hop message delays are sampled from
[100 ms, 200 ms].

Figures 6(a)-(c) are for the four cases of accurate or in-
accurate coordinates (e= 0 or 1) with or without randomly
placed obstacles (p = 0.5 or 1). The transmission range is
R= 250 forp= 1, andR= 325 forp= 0.5; the average node
degree is 15.5. The maintenance timeout value is 60 seconds
for all three figures. The churn rate is 100 nodes/minute in
Figures 6(a)-(b) and varies in Figure 6(c). Figure 6(a) shows
the accuracy of the multi-hop DT versus time. The accuracy
returns to 100% quickly after churn. Figure 6(b) shows the
routing success rate versus time. The success rate is close to
100% during churn and returns to 100% quickly after churn.
Figure 6(c) shows the communication cost (per node per sec-
ond) versus churn rate.

When nodes have inaccurate coordinates (e= 1) or there
are randomly placed obstacles (p = 0.5), note that the accu-

10

0 50 100 150 200 250

0.92

0.94

0.96

0.98

1

Time (sec)

A
cc

ur
ac

y
of

 m
ul

ti−
ho

p
D

T

e=0, p=1
e=1, p=1
e=0, p=0.5
e=1, p=0.5

(a) Churn rate = 100 nodes/min.

0 50 100 150 200 250

0.92

0.94

0.96

0.98

1

Time (sec)

R
ou

tin
g

su
cc

es
s

ra
te

e=0, p=1
e=1, p=1
e=0, p=0.5
e=1, p=0.5

(b) Churn rate = 100 nodes/min.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Churn rate (nodes/min)

N
o.

 o
f m

sg
s

se
nt

 p
er

 n
od

e
pe

r
se

c

e=0, p=1
e=1, p=1
e=0, p=0.5
e=1, p=0.5

(c) Communication cost vs. churn rate

Figure 6: MDT performance for systems in 3D under churn (ave.message delay= 150ms, timeout= 60sec.)

0 50 100 150 200 250

0.92

0.94

0.96

0.98

1

Time (sec)

A
cc

ur
ac

y
of

 m
ul

ti−
ho

p
D

T

timeout = 90 sec
timeout = 60 sec
timeout = 30 sec

(a) Churn rate = 50 nodes/min.

0 50 100 150 200 250

0.92

0.94

0.96

0.98

1

Time (sec)

R
ou

tin
g

su
cc

es
s

ra
te

timeout = 90 sec
timeout = 60 sec
timeout = 30 sec

(b) Churn rate = 50 nodes/min.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Churn rate (nodes/min)

N
o.

 o
f m

sg
s

se
nt

 p
er

 n
od

e
pe

r
se

c

timeout = 90 sec
timeout = 60 sec
timeout = 30 sec

(c) Communication cost vs. churn rate

Figure 7: MDT performance for systems in 3D under churn (ave.message delay= 150ms,e= 1, p = 0.5)

racy in Figure 6(a) and the success rate in Figure 6(b) are
slightly lower, and the communication cost in Figure 6(c) is
slightly higher. However, the convergence times to 100% ac-
curacy in Figure 6(a) and to 100% success rate in Figure 6(b)
are almost the same for the four cases.

Figures 7(a)-(c) are for three maintenance timeout values
(30, 60, and 90 seconds) for systems with both inaccurate
coordinates and randomly placed obstacles (e= 1, p = 0.5).
The churn rate is 50 nodes/minute in Figures 7(a)-(b) and
varies in Figure 7(c). Figure 7(a) shows the accuracy of the
multi-hop DT versus time. The accuracy returns to 100%
quickly after churn. Figure 7(b) shows the routing success
rate versus time. The success rate is close to 100% during
churn and returns to 100% quickly after churn. Figure 7(c)
shows the communication cost (per node per second) versus
churn rate.

Observe from Figure 7(c) that a decrease in the timeout
value to 30 seconds causes a large increase in communica-
tion cost. On the other hand, increasing the churn rate has
only minor impact on communication cost. For a timeout
value of 60 seconds or more, the communication cost is quite
low (less than 0.7 message sent per node per second).

By Little’s Law, for 300 nodes and a churn rate of 100
nodes/minute, the average lifetime of a node is 300/100 = 3
minutes, which represents a very high churn rate for most
practical systems.

The above experiments were repeated for high-speed net-
works where one-hop message delays are sampled from [10
ms, 20 ms]. The results are shown in Figures 8(a)-(c) and

Figures 9(a)-(c). The maintenance timeout value is 60 sec-
onds in Figures 8(a)-(c). The accuracy of multi-hop DT
and routing success rate in these experiments are better than
those in Figures 6(a)-(b) and Figures 7(a)-(b) for low-speed
networks, even though higher churn rates are used (up to 120
nodes/minute). The communication costs (per node per sec-
ond) are about the same.

6. PERFORMANCE COMPARISON

6.1 MDT compared with GDSTR and GPSR
on GG, RNG, and CLDP in 2D space

The geographic routing protocols, GPSR running on GG,
RNG, and CLDP graphs [14, 15], and GDSTR [20] were
designed for routing in 2D. We implemented these protocols
in our simulator.10 We compare the performance of MDT
routing with these protocols for 300 nodes in a 1000×1000
2D space.

The results in Figure 10 are for nodes with inaccurate co-
ordinates only (0≤ e≤ 2, p = 1) and transmission range
R = 120. The results in Figure 11 are for nodes with ran-
domly placed obstacles only (0.4≤ p≤ 1, e= 0) and trans-
mission rangeR= 150.

In Figure 10(a), the routing success rates of MDT and
GDSTR are both 100% for allevalues (it was 100% in every

10Using, as our references, [15] for CLDP, GDSTR code from
www.comp.nus.edu.sg/˜bleong/geographic/, and GPSR, GG,and
RNG code from www.cs.ucl.ac.uk/staff/B.Karp/gpsr/.

11

0 50 100 150 200

0.92

0.94

0.96

0.98

1

Time (sec)

A
cc

ur
ac

y
of

 m
ul

ti−
ho

p
D

T

e=0, p=1
e=1, p=1
e=0, p=0.5
e=1, p=0.5

(a) Churn rate = 120 nodes/min.

0 50 100 150 200

0.92

0.94

0.96

0.98

1

Time (sec)

R
ou

tin
g

su
cc

es
s

ra
te

e=0, p=1
e=1, p=1
e=0, p=0.5
e=1, p=0.5

(b) Churn rate = 120 nodes/min.

24 48 72 96 120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Churn rate (nodes/min)

N
o.

 o
f m

sg
s

se
nt

 p
er

 n
od

e
pe

r
se

c

e=0, p=1
e=1, p=1
e=0, p=0.5
e=1, p=0.5

(c) Communication cost vs. churn rate

Figure 8: MDT performance for systems under churn (ave. message delay= 15ms, timeout= 60sec.)

0 50 100 150 200

0.92

0.94

0.96

0.98

1

Time (sec)

A
cc

ur
ac

y
of

 m
ul

ti−
ho

p
D

T

timeout = 90 sec
timeout = 60 sec
timeout = 30 sec

(a) Churn rate = 60 nodes/min.

0 50 100 150 200

0.92

0.94

0.96

0.98

1

Time (sec)

R
ou

tin
g

su
cc

es
s

ra
te

timeout = 90 sec
timeout = 60 sec
timeout = 30 sec

(b) Churn rate = 60 nodes/min.

24 48 72 96 120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Churn rate (nodes/min)

N
o.

 o
f m

sg
s

se
nt

 p
er

 n
od

e
pe

r
se

c

timeout = 90 sec
timeout = 60 sec
timeout = 30 sec

(c) Communication cost vs. churn rate

Figure 9: MDT performance for systems under churn (average message delay= 15ms,e= 1, p = 0.5)

experiment). As the location error ratio (e) increases from 0,
the routing success rates of GPSR running on GG, RNG, and
CLDP drop off very gradually from 100%. Fore> 1, their
routing success rates drop significantly.

In Figure 11(a), the routing success rates of MDT and
GDSTR are both 100% for allp values (it was 100% in ev-
ery experiment.) As the connection probabilityp decreases
from 1, the routing success rate of CLDP decreases minutely
from 100% . It is 99.8% atp=0.4. The routing success rates
of GG and RNG drop off very gradually from 100% asp de-
creases from 1. Forp < 0.7, their routing success rates drop
significantly.

In Figure 10(b), MDT has the lowest routing stretch for
all e values, with GDSTR a close second, followed by GG,
CLDP, and RNG. For 0≤ e≤ 0.4, the differences are small.
But ase increases above 0.8, the GG, CLDP, and RNG curves
increase rapidly. The MDT and GDSTR curves increase
slowly ase increases from 0 to 2.

In Figure 11(b), MDT routing has the lowest routing stretch
for all p values, with GDSTR a very close second, followed
by GG, RNG, and CLDP. For 0.8 ≤ p ≤ 1, the differences
are small. Asp decreases below 0.8, the GG, CLDP, and
RNG curves increase rapidly. The MDT and GDSTR curves
increase slowly asp decreases from 1 to 0.4.

To compare storage costs of the routing protocols, we
count the number of nodes whose coordinates have to be

stored at a node.11 For GPSR protocols (GG, RNG, and
CLDP), a node stores the coordinates of its physical neigh-
bors only. For GDSTR, a node stores the coordinates of its
physical neighbors and nodes in its convex hull and in the
convex hulls of its children (if any) in the spanning tree. For
MDT, a node stores the coordinates of its physical neigh-
bors, multi-hop DT neighbors, and nodes that are endpoints
of tuples in its forwarding table.

The storage costs (per node) of the protocols are shown
in Figure 10(c) and 11(c). The storage cost of GPSR rout-
ing is the same as the average node degree. In Figure 10(c),
the storage cost of GPSR is 12.4 nodes. As the connection
probability (p) decreases from 1 to 0.4 in Figure 11(c), it de-
creases from 18 to 7. Note that both MDT and GDSTR re-
quire more storage costs than GPSR. The extra costs, which
are not large, are incurred to achieve a routing success rate
of 100%.

6.2 MDT compared with VRR and GRG in
3D space

In 3D, we compare the routing performance of MDT with
GRG [9], a geographic protocol designed for 3D, and the
non-geographic protocol, VRR [6].

We implemented GRG in our simulator from its descrip-
tion in [9]. We implemented VRR for static networks (with-

11Coordinates are the most important information for geographic
protocols. We have ignored other storage costs that are smaller and
dependent on implementation details.

12

0 0.4 0.8 1.2 1.6 2
0.5

0.6

0.7

0.8

0.9

1

Location error ratio (e)

R
ou

tin
g

su
cc

es
s

ra
te

MDT/GDSTR
GPSR on GG
GPSR on RNG
GPSR on CLDP

(a) Routing success rate vs.e

0 0.4 0.8 1.2 1.6 2
1

2

4

8

16

Location Error ratio (e)

R
ou

tin
g

st
re

tc
h

MDT
GPSR on GG
GPSR on RNG
GPSR on CLDP
GDSTR (one tree)

(b) Routing stretch vs.e

0 0.4 0.8 1.2 1.6 2

5

10

15

20

25

30

35

40

Location error ratio (e)

A
ve

. n
o.

 o
f n

od
es

 s
to

re
d

pe
r

no
de

MDT
GPSR
GDSTR (one tree)

(c) Storage cost vs.e

Figure 10: MDT compared with GDSTR and GPSR on GG, RNG, and CLDP in 2D for varying e

0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

1

Connection probability (p)

R
ou

tin
g

su
cc

es
s

ra
te

MDT/GDSTR
GPSR on GG
GPSR on RNG
GPSR on CLDP

(a) Routing success rate vs.p

0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

4

8

Connection probability (p)

R
ou

tin
g

S
tr

et
ch

MDT
GPSR on GG
GPSR on RNG
GPSR on CLDP
GDSTR (one tree)

(b) Routing stretch vs.p

0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

25

30

35

40

Connection probability (p)

A
ve

. n
o.

 o
f n

od
es

 s
to

re
d

pe
r

no
de

MDT
GPSR
GDSTR (one tree)

(c) Storage cost vs.p

Figure 11: MDT compared with GDSTR and GPSR on GG, RNG, and CLDP in 2D for varying p

out joins and failures).12 Each node has 4 virtual neighbors
as in [6]. Between each pair of nodes that are virtual neigh-
bors, we used the shortest path (in hops) between them as the
forwarding path (for these nodes, the routing stretch valueis
1). Thus, the routing stretch curves shown in Figure 12(b)
for VRR are slightly optimistic.

In these experiments, the numberN of nodes is varied
from 100 to 1300. AsN increases, the 3D space size is in-
creased to keep the average node degree at approximately
15.5. Connectivity graphs are generated for two cases: (i)
e= 1 andp = 1 (inaccurate coordinates only) withR= 250,
and (ii) e= 0 andp = 0.5 (randomly placed obstacles only)
with R= 325.

In Figure 12(a), the routing success rate of GRG is well
below 100%. In Figure 12(b), which is in logarithmic scale,
the routing stretch of GRG is very high and increases with
network sizeN. In Figure 12(c), the storage cost of GRG,
equal to the average number of physical neighbors, is the
lowest of the three protocols.

The routing performance of VRR is affected neither by
inaccurate coordinates nor by randomly placed obstacles.
From Figure 12(a), its routing success rate is equal to 100%
(like MDT). We implemented two versions of VRR: (v1)
each node additionally stores 2-hop neighbors as in [6], and
(v2) nodes do not store 2-hop neighbors. In Figure 12(b),
VRRv1 has a much lower routing stretch than VRRv2. How-
ever, each node in VRRv1 stores many more nodes than

12With reference from www.cs.berkeley.edu/˜mccaesar/vrrcode .

VRRv2 as shown in Figure 12(c).
In Figure 12(a), the routing success rate of MDT is 100%.

In Figure 12(b), the routing stretch of MDT is the lowest
of the three protocols with the exception of one data point
(N = 100) at which VRRv1 is slightly lower. In Figure 12(c),
MDT has a larger storage cost than GRG. MDT stores about
the same number of nodes as VRRv2 and a lot fewer nodes
than VRRv1. However, an accurate comparison of the stor-
age costs of MDT and VRR should consider also the sizes
of (global) node identifiers in these protocols.

6.3 Communication cost comparison for graph
construction

In these experiments, the numberN of nodes is varied
from 100 to 1300. The transmission range isR= 200. As
N increases, the 2D space size is increased to keep the aver-
age node degree at approximately 14. Connectivity graphs
are generated for nodes with inaccurate coordinates (e= 1)
and there are randomly placed obstacles between nodes (p=
0.5).

In Figure 13, we compare MDT’s message cost to con-
struct a correct multi-hop DT with message costs of CLDP
graph construction using serial probes [15] and GDSTR span-
ning tree construction [20]. The vertical axis is in logarith-
mic scale. The message cost of a protocol is the average
number of messagessentper node (we did not account for
message size differences among the protocols). Note that
each GDSTR message is a broadcast message sent by a node
to all of its physical neighbors and is counted as one mes-

13

100 300 500 700 900 1100 1300
0.8

0.85

0.9

0.95

1

Number of nodes

R
ou

tin
g

su
cc

es
s

ra
te

MDT/VRR
GRG (e=1, p=1)
GRG (e=0, p=0.5)

(a) Routing success rate vs.N

100 300 500 700 900 1100 1300
1

2

4

8

16

32

64

Number of nodes

R
ou

tin
g

st
re

tc
h

MDT (e=1, p=1)
MDT (e=0, p=0.5)
VRR v1
VRR v2
GRG (e=1, p=1)
GRG (e=0, p=0.5)

(b) Routing stretch vs.N

100 300 500 700 900 1100 1300

10

20

30

40

50

60

70

80

90

100

Number of nodes

A
ve

. n
o.

 o
f n

od
es

 s
to

re
d

pe
r

no
de

MDT (e=1, p=1)
MDT (e=0, p=0.5)
VRR v1
VRR v2
GRG

(c) Storage cost vs.N

Figure 12: MDT compared with VRR and GRG in 3D

100 300 500 700 900 1100 1300

10
1

10
2

10
3

10
4

10
5

Number of nodes

A
ve

. n
o.

 o
f m

es
sa

ge
s

se
nt

 p
er

 n
od

e

MDT (serial joins)
MDT (concurrent joins)
CLDP (serial probes)
GDSTR (one tree)

Figure 13: Initialization message cost vs.N (e= 1, p =
0.5)

sage sent. Messages sent by CLDP and MDT are unicast
messages.

Figure 13 shows that with the average number of mes-
sagessentper node as metric, GDSTR has the best message
cost performance, followed by MDT (serial joins), MDT
(concurrent joins), and CLDP. Note the trend of each curve
asN increases. The CLDP curve increases gradually with
N. The GDSTR curve increases very slightly asN increases.
The MDT curves are flat (they actually decrease very slightly)
asN increases. (Recall that each point plotted is the average
value of 50 simulation runs for 50 connectivity graphs gen-
erated from the Random Graph model.)

7. CONCLUSIONS
We have presented MDT, a novel geographic routing pro-

tocol with several major advances over previous geographic
protocols. In this paper, the graph of nodes and physical
links is assumed to be connected but otherwise may be ar-
bitrary. Conceptually, the MDT routing structure is a De-
launay triangulation (DT) overlay on anarbitrary connec-
tivity graph. We refer to the structure as a multi-hop DT.
MDT routing achieves thelowest routing stretchof all rout-
ing protocols for 2D and 3D compared in this paper. This
is because a multi-hop DT is rich in links (and DT is a good
spanner [7]). MDT routing uses all of the physical links with
additional virtual links connecting multi-hop DT neighbors.

We have proved that for a given destination locationℓ,
MDT routing in a correct multi-hop DT providesguaranteed

deliveryto a node closest toℓ. This theorem holds for nodes
located ind-dimensional Euclidean spaces (d ≥ 2) with ac-
curate, inaccurate, or arbitrary coordinates. Experimental
results show that inaccurate coordinates or missing physical
links between close neighbors (e.g., due to randomly placed
obstacles) impact the routing performance of MDT routing
but they do not affect its guaranteed delivery property (The-
orem 1).

MDT is scalableto a large network sizeN. Experimental
results show that for a fixed node density, the average num-
ber of messages sent per node to construct a correct multi-
hop MDT is constant (or decreases slightly) asN increases.
The average storage cost per node increases slowly, with the
rate of increase trending to zero asN becomes large. Lastly,
the computation cost at each node is independent ofN be-
cause each node only needs to compute its local DT.

We have designed and implemented join, leave, failure,
maintenance, and initialization protocols for constructing and
maintaining a correct multi-hop DT. The protocols usesoft
states. The join protocol is proved to be correct for serial
joins. Experimental results show that a correct multi-hop
DT can be constructed very quickly at system initialization
using concurrent joins. Experimental results show that MDT
is highlyresilient to churn. The routing success rate of MDT
is close to 100% for systems under churn. After churn, node
states converge quickly to a correct multi-hop DT.

Given the above considerations, MDT routing is an attrac-
tive solution to wireless routing ind-dimensional Euclidean
spaces (d ≥ 2). Furthermore, MDT can be used for geo-
graphic routing in wireline networks as well. We believe
that MDT routing can be an attractive routing solution for
community/metropolitan networks [2] or infrastructure net-
works that support WiFi, WiMax, or cellular systems.

8. APPENDIX
Theorem 1. Consider a correct multi-hop DT of a finite

set S of nodes in a d-dimensional Euclidean space (d≥ 2).
Given a locationℓ in the space, the MDT routing protocol
succeeds to find a node in S closest toℓ in a finite number of
hops.

PROOF. We make use of the proof of Theorem 1 in [17]

14

for a distributed DT:

1) By definition, a correct multi-hop DT ofS is a correct
distributed DT ofS. The DT maintained by nodes inS is
the same asDT(S).

2) Given a correct multi-hop DT, each DT neighbor of a
nodeu in S is either a one-hop neighbor or connected
to u by a forwarding path of finite length (in hops) that
exists in{Fv | v∈ S}.

3) When a message arrives at a node, sayu, that is not at
the destination location, if the message is neither des-
tined nor to be forwarded to a one-hop DT neighbor (lines
1-7),13 nodeu performs greedy routing (lines 8-21). If
greedy routing succeeds to find inPu a physical neighbor
v that is closer toℓ than nodeu, the message is trans-
mitted directly tov (lines 9-11); else, greedy routing is
performed over the set of DT neighbors (lines 13-17).14

From 1), the proof of Theorem 1 in [17] for a distributed
DT guarantees that either nodeu is closest toℓ or there
exists inNu a nodev that is closer toℓ thanu. Therefore,
if nodeu is not a closest node toℓ, executing the greedy
routing code (lines 9-17) finds a nodev that is closer toℓ
than nodeu. From 2), sending the message fromu to v is
achieved in a finite number of hops ifv is a multi-hop DT
neighbor.

4) Any node inS (v in particular) that is closer toℓ than
u will not use greedy routing (lines 9-17) to send the
message back to nodeu. Thus nodeu will not execute
the greedy routing code (lines 8-21) again for this mes-
sage.15 Since every node inSexecutes the greedy routing
code (lines 8-21) at most once andShas a finite number
of nodes, together with 2) and 3), MDT routing finds a
closest node inS to ℓ in a finite number of hops.

Theorem 2. Let S be a set of nodes and w be a join-
ing node that is a physical neighbor of at least one node
in S. Suppose the existing multi-hop DT of S is correct, w
joins using the MDT join protocol, and no other node joins,
leaves, or fails. Then the MDT join protocol finishes and the
updated multi-hop DT of S∪{w} is correct.

PROOF. By Theorem 1, the join request ofw succeeds
to find a DT node (sayz) closest tow, which sends back a
joint reply. By Lemma 5 in [17], nodez is guaranteed to
be a neighbor ofw in DT(S∪{w}). A forwarding path is
constructed betweenw and z (guaranteed by Theorem 1).
Subsequently, because the multi-hop DT ofS is correct, for-
warding paths are constructed betweenw and each neighbor
it sends a neighbor-set request. After receiving a request

13Line numbers refer to lines inGet Next in Figure 3
14At this point only multi-hop neighbors need to be considered.
15It is however possible that this message will visit nodeu again
with u acting as a forwarding node executing lines 4-6.

from w, each neighbor ofw updates its own neighbor set to
includew. They also send back replies tow. By Lemma 9 in
[17], the join process finishes andNw consists of all neigh-
bor nodes ofw in DT(S∪{w}). Since a path has been con-
structed fromw to every node inNw, w and each of its neigh-
bors inDT(S∪{w}) can communicate with each other.16

By construction, two DT neighbors select only one path to
use between them by refreshing only tuples stored in nodes
along the selected path. Therefore, the path between each
pair of neighbors inDT(S∪ {w}) is unique after the join.
Each path also has a finite number of hops because (i) the
path from the joining node to its closest DT node (sayz) has
a finite number of hops becausez is found by MDT routing
in a correct multi-hop DT (by Theorem 1), and (ii) the path
from the joining node to each of its other DT neighbor is
either a one-hop path or the concatenation of two paths, each
of which has a finite number of hops. By Definition 3, the
updated multi-hop DT is correct.

Protocol pseudocode.A MDT protocol messagem can
be sent/forwarded by a node in three ways, which are de-
fined in Figure 14 wherem.dest and m.sourcedenote the
destination and source nodes inm, respectively, andm.type
denotes its message type. Pseudocode specifications of the
MDT join and leave protocols are presented in Figures 15
and 16, respectively.

9. REFERENCES
[1] I. F. Akyildiz, D. Pompili, and T. Melodia. Underwater Acoustic

Sensor Networks: Research Challenges.Ad Hoc Networks, 2005.
[2] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a

survey.Computer Networks, 2005.
[3] S. M. N. Alam and Z. J. Haas. Coverage and Connectivity in

Three-Dimensional Networks. InProc. of ACM Mobicom, 2006.
[4] P. Bose and P. Morin. Online routing in triangulations.SIAM journal

on computing, 33(4):937–951, 2004.
[5] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with

Guaranteed Delivery in Ad Hoc Wireless Networks. InProc. of the
International Workshop on Discrete Algorithms and Methodsfor
Mobile Computing and Communications (DIALM), 1999.

[6] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and
A. Rowstron. Virtual Ring Routing: Networking Routing Inspired by
DHTs. InProceedings of ACM Sigcomm, 2006.

[7] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay Graphs
are Almost As Good As Complete Graphs.Discrete &
Computational Geometry, 5, 1990.

[8] S. Durocher, D. Kirkpatrick, and L. Narayanan. On Routing with
Guaranteed Delivery in Three-Dimensional Ad Hoc Wireless
Networks. InProceedings of ICDCN, 2008.

[9] R. Flury and R. Wattenhofer. Randomized 3D Geographic Routing.
In Proceedings of IEEE Infocom, 2008.

[10] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S.Shenker,
and I. Stoica. Beacon-Vector Routing: Scalable Point-to-Point
Routing in Wireless Sensor Networks. InProc. of NSDI, 2005.

[11] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E.
Goodman and J. O’Rourke, editors,Handbook of Discrete and
Computational Geometry. CRC Press, second edition, 2004.

[12] K. R. Gabriel and R. R. Sokal. A New Statistical Approachto
Geographic Variation Analysis.Systematic Zoology, 1969.

16Note that neighbors ofw are the same in MDT as in [17, 18] even
though MDT uses soft states because neighbors ofw are endpoints
of tuples inFw. As long as a node remains a neighbor ofw, its tuple
will not be deleted fromFw.

15

For a node u and a message m, node u can send m out in three ways:

1. Send(m, successor): m is a message created by node u and it is to be

sent to a destination node one or more hops away; successor is an

input parameter.

2. Forward(m): node u forwards the message m for another node using

u’s forwarding table.

3. Transmit m to v: node u transmits the message m directly to a

physical neighbor v.

Send(m, successor): node u sends its message m
1. if there exists t in Fu | t.succ = m.dest and

 (m.type = JOIN_ REPLY or t.succ = t.dest) then

2. Transmit m to m.dest // use a shortcut

3. else
4. t <-, -, successor, m.dest>

5. Fu Fu {t}

6. Transmit m to successor

7. end if

Forward(m): node u forwards a message m

1. if there exists t in Fu | t.succ = m.dest and

 (m.type = JOIN_REPLY or t.succ = t.dest) then

2. Transmit m to m.dest // use a shortcut

3. else

4. t tuple in Fu such that t.source = m.source and t.dest = m.dest

5. Transmit m to t.succ

6. end if

Figure 14: Three ways to send a message

[13] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Geometric
spanner for routing in mobile networks. InProc. MobiHoc, 2001.

[14] B. Karp and H. Kung. Greedy Perimeter Stateless Routingfor
Wireless Networks. InProceedings of ACM Mobicom, 2000.

[15] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic
Routing Made Practical. InProceedings of USENIX NSDI, 2005.

[16] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-Hoc Networks
Beyond Unit Disk Graphs . InProc. of ACM DIALM-POMC, 2003.

[17] D.-Y. Lee and S. S. Lam. Protocol design for dynamic Delaunay
triangulation. Technical Report TR-06-48, The Univ. of Texas at
Austin, Dept. of Computer Sciences, October 2006.

[18] D.-Y. Lee and S. S. Lam. Protocol Design for Dynamic Delaunay
Triangulation. InProceedings of IEEE ICDCS, 2007.

[19] D.-Y. Lee and S. S. Lam. Efficient and Accurate Protocolsfor
Distributed Delaunay Triangulation under Churn. InProceedings of
IEEE ICNP, November 2008.

[20] B. Leong, B. Liskov, and R. Morris. Geographic Routing without
Planarization. InProceedings of USENIX NSDI, 2006.

[21] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang. Localized Delaunay
Triangulation Application in Ad Hoc Wireless Networks.IEEE Tran.
on Paral. Distr. Syst., 2003.

[22] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith. S4: Small State
and Small Stretch Routing Protocol for Large Wireless Sensor
Networks. InProceedings of USENIX NSDI, 2007.

[23] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, andI. Stoica.
Geographic Routing without Location Information. InProceedings of
ACM Mobicom, 2003.

[24] K. Seada, A. Helmy, and R. Govindan. On the Effect of Localization
Errors on Geographic Face Routing in Sensor Networks. In
Proceedings of IPSN, 2004.

[25] M. Thorup and U. Zwick. Compact Routing Schemes. In
Proceedings of ACM SPAA, 2001.

[26] G. Toussaint. The Relative Neighborhood Graph of a Finite Planar
Set.Pattern Recognition, 1980.

[27] M.-J. Tsai, H.-Y. Yang, and W.-Q. Huang. Axis-Based Virtual
Coordinate Assignment Protocol and Delivery-Guaranteed Routing
Protocol in Wireless Sensor Networks. InProc. of INFOCOM, 2007.

[28] G. Xing, C. Lu, R. Pless, and Q. Huang. On Greedy Geographic
Routing Algorithms in Sensing-covered Networks. InProceedings of
ACM Mobihoc, 2004.

16

Notation and Definitions:

When a node receives a message, it stores the message in the local

data structure m. We define five message formats for the MDT join

protocol:

1. if m.type = JOIN_REQ, m = <m.type, m.source, m.relay>

2. if m.type = JOIN_REPLY, m = <m.dest, m.type, m.source>

3. if m.type = NB_SET_REQ,

 m = <m.dest, m.type, m.source, m.relay>

4. if m.type = NB_SET_REPLY,

 m = <m.dest, m.type, m.source, m.set>

where m.dest is the destination node, m.source the source node,

m.relay is the relay node, and m.set is a set of nodes.

Join(v) of node u
 // u is the joining node. If there is a DT node that is a physical neighbor of u,

 // v the node ID; otherwise, v null

1. if v null then

2. Cu {u}, Nu

3. m <JOIN_REQ, u, null>

4. Transmit m to v

5. else

6. Cu {u}, Nu

7. end if

On u’s receiving m = <JOIN_REQ, w, r> from v
1. e Get_Next(w, r)
 // m.relay=r may be changed when Get_Next returns

2. if e = null then // u is the DT node closest to w

3. Send(<w, JOIN_REPLY, u>, v) // successor = v

4. else

5. Transmit m to e

6. Fu Fu {<w, v, e, e>}

7. end if

On u’s receiving m = <f, JOIN_REPLY, w> from v
1. if u = f then Cu {u, w}

2. Send(<w, NB_SET_REQ, u, null>, v)) // successor = v

 // inform all physical neighbors that w has joined

 // each physical neighbor will replace its tuple <-, -, u, -> with <-, -, u, u>

3. else

4. Replace the tuple <v, v, *, f> in Fu with <w, v, *, f>
 // * denotes any node stored

5. Forward(m)

6. end if

On u’s receiving m = <f, NB_SET_REQ, w, r> from v
1. if u = f then // Case 1: u is the destination node

2. if w Cu then

3. Cu Cu {w}

4. Nu neighbor nodes of u in DT(Cu)

5. end if

6. Nw
u {e | e, u and w are in the same simplex in DT(Cu)}

7. Send(<w, NB_SET_REPLY, u, Nw
u>, v) // successor = v

8. else if r = null then
 // Case 2: u is between the relay and destination

9. t tuple in Fu such that t.dest = f

10. Fu Fu {<w, v, t.succ, f>}

11. Forward(m)

12. else if u = r then // Case 3: u is the relay node

13. t tuple in Fu such that t.dest = f

14. Fu Fu {<w, v, t.succ, f>}

15. Forward(<f, NB_SET_REQ, w, null>)

16. else if r null then
//Case 4: u is between the source and relay

17. t tuple in Fu such that t.dest = r

18. Fu Fu {<w, v, t.succ, f>}

19. Forward(m)

20. end if

On u’s receiving m = <w, NB_SET_REPLY, f, Nw
f> from v

1. if u = w then

2. Cu Cu Nw
f

3. Update_Neighbors(Cu , Nu , v, f) // successor = v, relay = f

4. else

5. Forward(m)

6. end if

Update_Neighbors(Cu , Nu, successor, relay) of node u

1. Nu
old

Nu

2. Nu neighbor nodes of u in DT(Cu)

3. Nu
new

Nu - Nu
old

 // if Nu
new= and there is no NB_SET_REQ

 // waiting for a reply, terminate join protocol

4. for all v Nu
new do

5. Send(<v, NB_SET_REQ, u, relay>, successor)

6. end for

Figure 15: MDT join protocol

17

Notation and Definitions:

We define two message formats for the MDT leave protocol:

1. if m.type = LEAVE, m = <m.dest, m.type, m.source,

m.set, m.graph>

2. if m.type = PATH_RECOVER,

 m = <m.dest, m.type, m.source, m.relay, m.route>

where m.dest is the destination node, m.source is the sourc

node, m.relay is the relay node, m.set is a neighbor set,

m.graph is a graph, and m.route is a sequence of nodes.

The function Generate_Graph(DT(Nu)) is used to generate the

undirected graph G = <V, E>, where the set of vertices V =

Nu, and the set of edges E = {(v,w) | v, w are neighbors in

DT(Nu) and Fu does not contain a tuple with v and w as

endpoints}. We use vertex to refer to a node in graph G and

route to refer to a path in graph G connecting two vertices.

Leave() of node u
 // node u is the leaving node

1. G Generate_Graph(DT(Nu)) // note that u Nu

2. for all v Nu do

3. Nv
u {w | w is a neighbor of v in DT(Nu)}

4. Forward(<v, LEAVE, u, Nv
u, G>)

5. end for

On u's receiving m = <f, LEAVE, w, Nf
w, G> from v

1. if u = f then

2. Cu (Cu Nu
w) – {w}

3. Nu neighbor nodes of u in DT(Cu)

4. for all z Nu do

5. if z Pu and (u, z) is not in G then

6. if there is no route from u to z in G then

7. exit // call maintenance protocol

8. else

9. R shortest route in G from u to z

10. next the vertex following u on R to z

11. successor the physical neighbor of u along R to z

12. Send(<z, PATH_RECOVER, u, next, R >, successor)

13. Fu Fu {<-, -, successor, z>}

14. end if

15. end if

16. end for

17. else

18. Forward(m)

19. end if

On u's receiving <z, PATH_RECOVER, w, r, R > from v
1. if u = z then

2. Fu Fu {<-, -, v, w>}

3. else if u = r then // u is a vertex on the route R to z

4. next the vertex following u on R to z

5. t tuple in Fu such that t.dest =next

6. Fu Fu {<w, v, t.succ, z>}

7. Transmit <z, PATH_RECOVER, w, next, R > to t.succ

8. else // u r, u is on physical path between two vertices on R

9. t tuple in Fu such that t.dest =r

10. Fu Fu {<w, v, t.succ, z>}

11. Transmit <z, PATH_RECOVER, w, r, R > to t.succ

12. end if

Figure 16: MDT leave protocol

18

