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ABSTRACT space, for integerd > 2. Network nodes are identified by

Geographic routing is attractive because the routing statetheir locations specified by coordinates. The graph of nodes
needed per node is independent of network size. We presenfid Physical links, assumed to be connected, will be rederre
a novel geographic routing protocol with several major ad- [ s theconnectivity graph _

vances over previous geographic protocols. First, ouoprot ~ Pelaunay triangulation (DT) [11] has a long history and
col achieves an average routing stretch close to 1. SecondMany applications in different fields of science and engi-
our protocol can be used for nodes located-dimensional ~ N€€ring. For nodes (points) in a 2D plane, Bose and Morin
Euclidean spacesi(> 2). Third, node locations are spec- provgd that greedy routing in a DT always finds a given des-
ified by coordinates which may be accurate, inaccurate, or ination node [4]. Lee and Lam [17, 18] extended this re-
arbitrary. Conceptually, our routing structure consistao  Sult @nd proved that given a destination locatiom a d-

Delaunay triangulation (DT) overlay on arbitrary con- dimensional spacej > 2, greedy routing in a DT always
nectivity graph We refer to the structure ashaulti-hop DT. finds a node that is closest fo The above results hold for
Greedy routing in a correct multi-hop DT provides guaran- node I_ocations specified by accurate, inaccurate, or arpitr
teed delivery. coordinates.

We present join, leave, failure, maintenance, and initial- = DT nas not been successfully applied to wireless routing
ization protocols, nameMDT protocols for constructing N the past due to the following problem: Two neighbors in
and maintaining a multi-hop DT usirgpft states The join a DT may not be able to communicate directly with each

protocol is proved to be correct for serial joins. When a other for various reasons, e.g., there is an obstacle betwee
system is under churn, nodes may join, leave, and fail Con_them, the distance between them exceeds the radio transmis-

currently. Our experiments show that MDT's routing suc- SION range, etc. Thatis, for most wireless networks, the DT
cess rate is close to 100% for systems under churn and nod@"@Ph is not a subgraph of the connectivity graph, as illus-
states converge to a correct multi-hop DT after churn. MDT trated in Figures 1(a)-(b) where dashed lines are DT edges
is scalable to large networks. We present performance com-Petween nodes that are not connected by physical links. To
parisons of MDT versus several geographic (and one non-Solve this problem, we have designed and evaluated a pro-

geographic) routing protocols for nodes in 2D and 3D. tocol suite, named MDT, for a dynamic set of nodes to con-
struct and maintain a correct multi-hop DT overlay on an
1. INTRODUCTION arbitrary connectivity graph. In a multi-hop DT, two nodes

) ) ) may be multi-hop neighbors which communicate via a vir-
Geographic routing (also known as location-based or ge-y 5 |ink, i.e., a path provided bgoft-stateforwarding ta-

pmetric routing) is a promising app_roach _to scalable rautin 1o in nodes along the path

in large n_etworks. Most g(_eographlc routlng protocols have Even though the design of MDT was initially motivated
been designed for nodes in a 2D plane with accurate loca-p, \yireless networks, we note that MDT can be used for ge-
tion information. In reality, many network applicationswu  oqraphic routing in wireline networks also. This is because

on nodes !ocgted in 3,D spaces [1{ 3, 8: 9. Furtherm.ore, MDT routing has been designed to run correctly in any con-
node location information may be highly inaccurate or sim- | .ted graph of nodes and physical links i-dimensional
ply unavailable. In the latter cas#-tuple virtual coordinates space, fod > 2.

(d > 2) can be used to specify node locations for geographic " \ye have proved that for a given destination location

routing ind-dimensional virtual spaces [23, 27]. MDT routing in a correct multi-hop DT provideguaran-
In this paper, we present a novel geographic routing pro-

tocol for a network of nodes in d-dimensional Euclidean 1Hereafter, whenever we sag-timensional space”, we refer to a

*Research sponsored by National Science Foundation gragt CN d-dimensional Euclidean space.
0830939. 2Inspired by Ethernet switch tables but implemented difféye
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(a) Connectivity graph (b) DT graph (c) MDT graph

Figure 1: An illustration of connectivity, DT, and MDT graph s of a set of nodes in 2D

teed deliveryto a node that is closest fto MDT routing can munication costs of constructing a correct multi-hop MDT
achieve a veryow routing stretchbecause its routing struc-  versus two other graph construction algorithms [15, 20]. We
ture is “rich” in links. MDT routing uses all of the physical conclude in Section 7.

links with additional virtual links connecting multi-hopTD

neighbors (dashed lines in Figure 1(c)). In comparisoreoth > RELATED WORK

protocols use only physical links and, in recovery mode, a . . o
subset of physical links [5, 14, 15]. Routing research has a vast literature. We limit this re-

The MDT suite consists of protocols for routing, join, VieW mostly to related work on the geographic approach.
leave, failure, maintenance, and system initializatiome T AImost all geographic routing protocols have been designed
MDT join protocol has been proved correct for a single join. 0" nodes located in a 2D plane using greedy routing. For a
(Thus it constructs a correct multi-hop DT when nodes join general conne_ct|V|ty graph,_ greedy rom_.lt!ng may be “stuck
serially.) The maintenance protocol enables concurrém jo ata _node thatis a IO(_:aI minimum, .., itis closer to t_he des-
at system initialization. The join and maintenance proleco tination than any of its neighbors. When a packet is stuck
are sufficient for a system under churn to provide a routing &t @ node, two of the earliest protocols, GFG [5] and GPSR

success rate close to 100% and for node states to convergbl4l: Use the idea of face routing to move the packet out of
to a correct multi-hop DT after churn. The leave and failure the local minimum. These protocols provide guaranteed de-

protocols are used to improve accuracy and reduce commu-ivery for a planar graph. If the connectivity graph is not

nication cost. planar, a planarization algorithm (such as GG [12] or RNG

MDT protocols ar&ommunication efficieftecause MDT [26]) is used to disallow some links such that the nodes and
does not use flooding to discover DT neighbors. MDT's '€maining links form a planar subgraph. For GG and RNG

search technique is also not limited by a maximum hop count algorithms to successfully construct a connected plarar su

(needed in scoped flooding used by many wireless routmggraph, itis required that the original connectivity graptis

protocols) and is guaranteed to succeed when the existingf'es the unit disk graph model and node location information

multi-hop DT is correct. be accurate.

The balance of this paper is organized as follows. In Sec- 1he DT of a set of nodes in a 2D plane is a graph that
tion 2, we provide an overview of related work. In Section has been shown to be a good spanner with a constant stretch

3, we present concepts, definitions, and our model assump-f&,1Ct0r [7]. Furthermore, greedy routing in a DT graph pro-
tions. In Section 4, we present the MDT routing protocol vides guaranteed delivery for nodes in a 2D plane [4]. How-

and a theorem stating that it provides guaranteed delivery i €Ve"» Some edges in the DT graph may be arbitrarily long
a correct multi-hop DT. In Section 5, we present join, main- and exceed the radio transmission range. The restricted DT

tenance, initialization, leave, and failure protocols arile- ~ 9r@ph proposed in [13] and tielocalized DT graph pro-

orem that the join protocol is correct for a single join. We POsed in[21]are approximations of the true DT graph. They

present experimental results to demonstrate MDT's speed to'V€re Shown to be good spanners with constant stretch fac-

construct a correct multi-hop DT for a large number of nodes {0rS: However, being DT approximations, they do not pro-
in 3D at system initialization. We evaluate the performance Vide guaranteed delivery. In another approach [28], thelnee

of MDT routing from experiments for nodes in 3D with in- {0 SOIve the problem of long DT edges is obviated by con-
accurate coordinates and randomly placed obstacles,wtitho Straining node locations such that the DT graph of the nodes

churn and with churn. In Section 6, we present experimen- is a subgraph of the conne(;tivity Qraph- i
tal results to compare the routing performance of MDT with !N €ach of the geographic routing protocols cited above,
geographic protocols designed for 2D and 3D and a non- the unit disk graph model is assumed. If node locations

geographic protocol, VRR [6]. Lastly, we compare the com- &€ specified by inaccurate coordinates (e.g., due to local-
ization errors), the subgraphs constructed by GG and RNG



have cross links and are no longer planar. As a result, facetion that every DT node can directly communicate with ev-
routing may not move packets out of local minima, result- ery other DT node. For arbitrary connectivity graphs, direc
ing in routing failures. Some fixes to reduce the number of communication between every pair of neighbors in a DT is
routing failures are presented in [24]. impossible.

For a practical wireless network with obstacles between
nodes and using real radios, the assumption of a unit disk3. CONCEPTS AND DEFINITIONS

graph model canngt be just_ified. A quasi unit dis}< graph Consider a se$ of nodes in a-dimensional spacel(>
model is proposed_ n _[16]' Kim et al. [15] took a major step 2). Each node irSis identified by its location specified by
away from the unit disk graph model. They proposed the coordinates. There is at most one node at each location. The

CLDP proto<_:o| Which, given a_connected graph, produ<_:es Delaunay triangulation o8, denoted byDT (S), is a graph
a subgraph in which face routing would not cause routing whose vertices are nodes®&? When we say noda knows

failures. When stuck at a locall min.imum, GPSR routing uses nodev, nodeu knows noda’s coordinates. Coordinates may
the subgraph produced by CLDP instead of by GG or RNG. be accurate, inaccurate, or arbitrary.

Leong et al. proposed the GDSTR protocol [20] which
can also be used for any connectivity graph. A packetis 3.1 Distributed DT

routEd greﬁdily untildit_ s S:;J.Ck.st aC:ocaI mi.nimum. Thle_ Definition 1. A distributed DT of a se® of nodes is spec-
packet is then routed in a distributed spanning tree until it ;¢ | by {< u,Ny > |u € S}, whereN, represents the set of

reaches a pointwhere greedy routing can again make progress, neighbor nodes, which is locally determineduby
For a network of nodes without location information, No- Definition 2. A d’istributed DT iscorrect if and only if

Geo [23] was proposed to use node locations specified byfor every nodai € S, Ny is the same as the neighbor setiof
virtual coordinates which are constructed to reflect the un- in DT(S)

derlying connectivity. A packet is forwarded by greedy rout Using protocolsin [18, 19], each nodes S, finds a se€,

ing based on virtual coordinates. When a packet is stuck at a5 nodes Cu includes). Thenu computeDT (Cy) locally

local minimum, expanding ring search is used to find a way to determine its seltl, of neighbor nodes. Note tha, is

ou;;” f th hi Is ref d ab local information ofu while Sis global knowledge. For the
"o the geographic protocols reterenced above Were oy treme case @, = S uis guaranteed to know its neighbors

designed for routing in 2D. For routing in 3D, there is no ;, DT(S). However, the communication cost for each node

a;}nalor? of face rlout||ng |n_2D. Duroclhehr et al. .([18] showed to acquire knowledge dd would be very high. Anecessary
that there Is no local routing protocol that provides guaran and sufficient conditiofior a distributed DT to beorrect

teed delivery, even with the assumptions of a unit ball graph is that for allu € S, C, includes all neighbor nodes ofin

model and accurate location information. For geographic DT(S). This theorem was presented in [18] with a proof
routing in 3D, GRG [9] uses greedy routing with random- published later in [19]

ized recovery to lead packets out of local minima. A routing
approach usingl-tuple virtual coordinates, fod > 5, was 3.2 Model assumptions
proposed in [27].

We mention just a few references in the non-geographic
routing literature. VRR [6] uses random unsigned integers
to identify nodes and organize them in a virtual ring. Each
node maintains a virtual neighbor set and physical neigh-
bor set. VRR sets up and maintains a routing path between
each pair of virtual neighbors. VRR routing table entries
are maintained as hard states. Note that MDT is similar to
VRR in maintaining virtual links to DT neighbors, but MDT
forwarding table entries are maintained as soft states. 3.3 Multi-hop DT

Another recent protocol, S4 [22] which, using ideas from A multi-hop DT is specified by{< u,Nu,Fy > [u € S}
. . - s Uy U ’
BVR [10] and compact routing [25], provides a worst-case whereF, is a soft-state forwarding table, ah is u's neigh-
routing stretch of 3 and an average stretch close to 1. S4 '€ or set which is derived from information F. The multi-
quires a routing stgte per node@fy'N) Wh'C.h IS Very good hop DT model generalizes the distributed DT model by re-
for non-geographic routing protocols, but it is not indepen laxing the requirement that every nodeSibe able to com-

de_?:]ofN .I|ke geﬁgraprtnc FI)rOtoi?IS'th. is by L d municate directly with each of its DT neighbors. In a multi-
€ prior work most relevant to this paper IS by Lee an hop DT, two nodes that are multi-hop neighbors communi-

L"%‘”_‘ [17,18, 19]. 'I_'he_|r protocols for cons_truct_lng an_d main- cate viaa path provided by forwarding tables in nodes along
taining a correct distributed DT of nodes imalimensional the path

space @ > 2) provide a basis for our work in this paper.

Their protocols, however, were designed with the assump- 3See [11]. Familiarity with th®T () definition and algorithms for
computing theDT (S) graph is not needed for reading this paper.

Two nodes connected by a physical link are said to be
physical neighborsEach link isbidirectional The connec-
tivity graph may be arbitrary as long as it is a connected
graph. To simplify protocol descriptions, we assume that
each link provides reliable message delivery. (In a prac-
tical implementation, additional mechanisms such as ARQ
should be used to ensure reliable message delivery.) We as-
sume a fail-stop model. When a node fails, it becomes silent.




For a nodeu, each entry in its forwarding table, is a neighborof u or, simply, aone-hop neighbot
4-tuple< source pred, succdest>, which is a sequence of
nodes withsourceanddestbeing the source and destination Tuples inF, are maintained asoft states Each tuple is
nodes of a path, angred and succbeing nodeu’s prede- refreshedwhenever there is packet traffic (e.g., application
cessor and successor nodes in the path. In a teplace data or keep-alive message) between its endpoints. A tuple
andpred may be the same node; alsnccanddestmay be that is not refreshed will be deleted when its timeout occurs
the same node. A tuple is used bjor message forwarding Definition 3. Amulti-hop DT of S, { < u,Ny,Fy > [u€ S},
from sourceto destor from destto source For a specific is correct if and only if the following conditions hold: i) the
tuplet, we uset.sourcet.pred, t.sucg andt.destto denote distributed DT of S{< u,N, > |u € S}, is correct; and ii)
the corresponding nodestin for every neighbor pairy;v), there exists a uniquie-hop

For ease of exposition, we assume that a tuple and its “re-path betweemw andv in the forwarding tables of nodes 8
verse” are inserted in and deleted frdfp as a pair. For  wherekis finite.
example,< a,b,c,d > is in R, if and only if < d,c,b,a > The systems we consider are sometimes under churn when
is in Fy. (In practice, only one tuple is stored with each nodes join, leave, and fail concurrently. To define a met-
of its two endpoints being both source and destination.) A ric for quantifying the accuracy of a multi-hop DT, we con-
tuple in Ry, with u itself as the source is represented<as  sider a node to b#-systernfrom when it has finished join-
—,—,succdest>, which does not have a reversefn ing until when it starts leaving or has failed. L&DT (S)

For an example of a forwarding path, consider the multi- denote a multi-hop DT of a s& of in-system nodes. Let
hop DT in Figure 2(c). The DT edge between nodemd N:(MDT (S)) be the total number of correct neighbor entries
i is a virtual link; messages are routed along the paghs, andN,(MDT (S)) be the total number of wrong neighbor en-

e—h—iandi—h-e—g, using the following tuples:< tries in the forwarding tables of all nodes. A neighbar Ny
—,—,&i >Iinnodeg, < g,g,h,i > in nodee, < g,e i,i > in is correct wheru andv are neighbors ifDT (S) and wrong
nodeh, and< —,—,h,g > in nodei. whenu andv are not neighborsiBT (S). LetNeqged DT(S))
For a noday, its physical neighbors can be in one of three be the number of edges BIT (S). Let Nnp(MDT (S)) be the
stages of the join process: number of edges iBT (S) that do not have forwarding paths

in the multi-hop DT ofS. The accuracy oMDT(S) is de-
1) For a physical neighbarthat has booted up but has not fined to be:

yet joined the DT, the tuples —,—,v,— >, is stored in

Fu. (These tuples are stored in and deleted fignby Ne(MDT (S)) — Nw(MDT (S)) — 2 x Nnp(MDT (S))

a link management protocol which will not be explicitly 2 % Nedged DT (5)) 1)
specified.) ecge

Itis straightforward to prove that the accuracyMBD T (S)

2) A physical neighbowr that has sent a join request and is 1 (or 100%) if and only if the multi-hop DT @&is correct.

received a join reply from a DT nofavill notify all of

its physical neighbors to change their tuple fofrom 4. MDT ROUTING PROTOCOL

< —,—,V,— > to < —,—,v,v > which indicates that

has found a closest node guaranteed to/daeighbor

in the global DT. We usd, to denote the sefv | <

—,—,%Vv > FR}. Each node irR, is referred to as a

physical neighbor of u attached DT. Note that when a

node first becomes a physical neighbor attached to DT,

it is not a DT node. It becomes a DT node later after it

has finished its join protocol execution. A multi-hop DT

is correct only if all nodes have become DT nodes. If a

node inP, receives a message to forward before its join

is finished, the message is queued to be forwarded after

the node becomes a DT node.

The MDT routing protocol pseudocode is shown in Fig-
ure 3. Consider a nodethat has received a data message
mto route. Nodau first compares its own location with the
message’s destination location. If they ag equal, it calls
Routingm) which callsGet Next m.dest m.relay).

When GetNextruns, it first checks these two cases: (i)
a node inP, exists at the destination location; (ii) there is
a relay node to forward the message to. If neither (i) nor
(ii) applies, then it performgreedy routingo determine the
next-hop node. Conceptually, when a packet is stuck at a
local minimum, MDT routing moves the packet along a vir-
tual link to a multi-hop DT neighbor that is closest to the

3) A physical neighbor in a correct multi-nop DT is a DT destination location. There are three possible outcomes:

node but may not be a DT neighbor, e.g. nodesxdh
in Figure 2(c) are physical but not DT neighbors. On the
other hand, a DT neighbor may not be a physical neigh-
bor, e.g., nodea andj in Figure 2(c). A nodev that is

in both P, andN, of nodeu is said to be ane-hop DT 5We use “neighbor” to refer to a DT neighbor. A node knows only
neighbors in its locally computed DT. If the multi-hop DT isre
4A DT nodeis one that has finished its join protocol execution. rect, then local DT neighbors are the same as neighbdg {9).

a) Nodev, a physical neighbor iR, is closer to the destina-
tion location than any node iR, U {u} (line 9). Nodeu
then transmitsn directly tov.




(a) Connectivity graph of ten nodes (b) DT graph of ten nodes

(c) MDT graph of ten nodes

Figure 2: Graphs for the join protocol example

Data message format

Node u stores message m with the format:

m = <m.dest, m.source, m.relay, m.data> in a local data
structure, where m.dest is the destination location,
m.source is the source node, m.relay is the relay node, and
m.data is the payload of the message.

Routing(m): Node u receives message m to route
//u # m.dest
1. v« Get Next(m.dest, m.relay)
// m.relay may be changed when Get_Next returns

if v # null then

Transmit m to v
else

exit //u is closest to m.dest
end if

ARl

Get_Next(dest, relay): Node u finds the next-hop node
if there exists v| v € P, and v = dest then

return v //a physical neighbor attached to DT exists at dest
end if

L=

4.

if relay # null and relay # u then
// forward message to the relay
t < tuple in F, such that t.dest = relay
return z.succ
end if
// perform greedy routing in multi-hop DT
v« node in P,U {u} closest to dest
if v € P,then //visaphysical neighbor attached to DT
relay — null
return y
else  //uis closer to dest than any node in P,
v« node in N, U {u} closest to dest
if v € N, then /v is a multi-hop DT neighbor
t < tuple in F, such that t.dest = v
relay «— v
return z.succ
else // u is the node closest to dest
return null
end if
end if

Figure 3: MDT routing protocol at node u for a multi-hop DT

b) Nodev, a multi-hop DT neighbor, is closer to the destina- 1) Construction of forwarding pathsin addition to con-

tion location than any node i, U {u} (line 14). Nodeu
writesv into the relay field of the message (line 16), and

looks up its forwarding table to get the successor node in

the path tov (line 17). (A correct multi-hop DT guaran-
tees that a path fromto v exists in the forwarding tables
of uand nodes along the pathvg

¢) Nodeuis closer to the destination location than any neigh-

bor in PyUNy (line 18).

We have proved Theorem 1 which states that MDT rout-

structing and maintaining a distributed DT, join and main-
tenance protocols in MDT insert tuples into forwarding
tables and update some existing tuples to correctly con-
struct paths between multi-hop neighbors. Leave, fail-
ure and maintenance protocols in MDT construct a new
path between two multi-hop neighbors whenever the pre-
vious path between them has been broken due to a leave
or failure. Protocol design to perform these tasks poses
significant challenges.

ing in a correct multi-hop DT provides guaranteed delivery. 2) Soft state versus hard stat&or protocols in [18, 19],

A proof of the theorem is presented in the Appendix.

THEOREM 1. Consider a correct multi-hop DT of a finite
set S of nodes in a d-dimensional Euclidean space. Given
location? in the space, the MDT routing protocol succeeds
to find a node in S closest fan a finite number of hops.

5. MDT PROTOCOL SUITE
In addition to the routing protocol, MDT includes join,

a

leave, failure, and maintenance protocols, which make use

of basic protocol steps in [18, 19] for a distributed DT. Téner
are, however, major innovations in MDT protocol design:

each node, say, stores nodes it knows in its candidate
setC,. Nodes inC, are maintained as hard states. The
neighbor setNy, is derived from computin®T (Cy) lo-
cally. For MDT, each node, say, stores tuples in its
forwarding tableR,. Tuples inF, are maintained as soft
states. The neighbor sBY, is derived from computing
DT(C}) whereC;; = {u}u{v|v=t.dest t € F,}. Note

that when a tuple’s timeout occurs because it has not been
refreshed by its endpoints, the tuple’s destination is re-
moved fromC.

3) Leave and failure notification$-or protocols in [18, 19],



when a node, say, leaves or is detected to have failed,
each node ifNy is notified of its leave/failure by a unicast

and forwards it to a one-hop neighbor (sgy the tuple<
w,V, e e > is stored inF.

message. The leave/failure notification is also propagated When nodez receives the join request @f from a one-

to nodes that are not 4, by a greedy reverse path broad-

hop neighbor (sayl), it stores the tuple< —,—,d,w > in

cast (GRPB) protocol. Since MDT uses soft states, nodesits forwarding table for the reverse path. The join reply is

not inN, do not have to be naotified ofs departure.

4) System initialization protocalsMDT includes two ini-
tialization protocols for constructing a correct multigho
DT for a large number of nodes, one for serial joins and
the other for concurrent joins.

In our protocol descriptions to follow, we keep the can-
didate set notationC,, for nodeu to store newly learned
nodes. Th&, notation is kept for two reasons. First, having

forwarded along the reverse path frao w using tuples
stored when the join request traveled frano z earlier. Ad-
ditionally, each such tuple is updated witlas an endpoint.
For example, suppose nodeeceives a join reply fronz
to w from its one-hop neighboe. Nodex changes the tu-
ple < e e *x,w> in K to < z e x,w >, wherex denotes any
node already in the tuple.

After nodew has received the join reply, it notifies each
of its physical neighbors that is now attached to DT and
they should change their tuple farfrom < —, — w,— > to

Cu makes it easier to understand MDT protocols and relate < — — w w >.

them to protocols in [18, 19]. Second, nadeeeds a place

Physical-link shortcuts. The join reply message, at any

to temporarily store newly learned nodes and storing them node along the path fromto w (including nodez), can be

in Cy is as good as any alternative. In MDT protocols, how-
ever, nodes iIC, aresoft states A node inC, is deleted if

(i) it does not become the destination of a tuplé&jrwithin

a timeout period, or (ii) it is.destfor a tuplet that has not
been refreshed and is deleted frém

5.1 Join protocol

We begin by describing the basic steps of the join proto-

col in [17, 18] Consider a new node, say. It boots up

transmitted directly tav if node w is a physical neighbor
(i.e., for messagm, there is a tupléin the forwarding table
such thatt.succ= m.des). If such a physical-link short-
cut is taken, the path previously set up betweemdw is
changed. Tuples with andw as endpoints stored by nodes
in the abandoned portion of the previous path will be deleted
because they will not be refreshed by the endpoints.

A physical-link shortcut can also be taken when other mes-
sages in MDT join, maintenance, leave, and failure protocol

and discovers its physical neighbors. If one of the physical (to be presented) are forwarded, but they require the strong

neighbors is a DT node (say thenw sends a join request
to v. The join request is forwarded by greedy routing to a
DT node (sayz) closest tow. Nodez sends a join reply to
w which then sends a neighbor-set request for mutual
neighbors ofv andzin DT(C;).

Whenw receives the neighbor-set reply franw adds the
mutual neighbors (if any) to its candidate $&f, and com-
putes its neighbor sely. If w finds new neighbors i,

condition,t.succ=t.dest= m.dest that is, the shortcut can
be taken only ifm.destis a physical neighbor attached to
DT.

Path construction to multi-hop DT neighbors. For a
multi-hop DT, the join protocol needs to construct a for-
warding path between the joining noseand each of its
multi-hop neighbors. After noder has attached itself to
DT, it sends neighbor-set requests and receives neiglgbor-s

w sends neighbor-set requests to them for mutual neighborsreplies. Whenw learns a new nodg from the join reply

The joining nodev repeats the above process recursively un-

til it cannot find any more new neighbor M. At this time
w has successfully joined and become a DT node.

Path construction to closest nodeFor a multi-hop DT,
a nodew can join when it has a physical neighbothat
is a DT node€’. Nodew joins by sending a join request to
nodev. MDT routing is used to forward the join request
to nodez that is closest tav. A forwarding path between
w andz is constructed as follows. Whem sends the join
request to, it stores the tuple: —, —,v,v > in its forwarding
table. Subsequently, suppose an intermediate nodeujsay
receives the join request from a one-hop neighbor (9ay

5We do not follow the ACE join protocol [19] because its cotrec
ness proof requires the general position assumption [1d]the
assumption that the joining node is located within the crrival

of the existing DT.

7If nodew has only physical neighbors, it will not start the join pro-
tocol until it hears from a physical neighbor who is attacteBT,
e.g., it receives a token from such a node at system iniitidin.

or a neighbor-set reply sent by some node,xsayw does
w route a neighbor-set request yathat is more than one
hop away? Our solution is to includeralay field in the
neighbor-set request message. Nadgends a neighbor-set
request tx, with x as the relay angas the destination. Note
that a forwarding path has already been established between
w andx. Also, sincex andy are DT neighbors, a forwarding
path exists betweenandy (assuming thatvis joining a cor-
rect multi-hop DT). As the neighbor-setrequest is forwdrde
and relayed fromv to y, tuples withw andy as endpoints are
stored in forwarding tables of nodes along the path from
toy. The forwarding path that has been set up between
andy is then used by to return a neighbor-set reply w@

A pseudocode specification of the MDT join protocol is
presented in the Appendix. Theorem 2 states that the MDT
join protocol is correct for a single join. A proof of the the-
orem is presented in the Appendix.

THEOREM 2. Let S be a set of nodes and w be a join-



ing node that is a physical neighbor of at least one node it becomes a DT node.
in S. Suppose the existing multi-hop DT of S is correct, w .
joins using the MDT join protocol, and no other node joins, 5.2 Maintenance protocol

leaves, or fails. Then the MDT join protocol finishes and the g4, 5 system under churn, when nodes join, leave, and fail

updated multi-hop DT of S {w} is correct. concurrently, node states may be incorrect. For a diseibut
DT to be correct, each node must know all of its neighbors
in the global DT. To satisfy this condition, each node (say
u) queries some of its neighbors to see if they know mutual
neighbors thati does not know. The MDT maintenance pro-
tocol uses basic steps from the ACE join and maintenance
protocols [19]. More specifically, nodeselects a subsit

of neighbors such that every simplexT (C,) includingu
also includes one node Wi. Nodeu then sends a neighbor-
set request to each nodedn When nodeu finds new neigh-
bors in the neighbor-set replies, nagdleends a neighbor-set
request to each new neighbothat satisfies the following
condition:

C1. xis a vertex of a simplex ilDT (C,) that includesu
and does not include any node that has been sent a neighbor-
set request.

Nodeu keeps sending neighbor-set requests until it cannot
find any more new neighbor iN, that satisfies C1. Node
then sends neighbor-set notifications to neighbois,ithat
have not been sent neighbor-set requests (these notifisatio
do not require neighbor-set replies). The protocol code for
¢ constructing forwarding paths between nodend each new

neighbor is the same as in the MDT join protocol.

If after sending a neighbor-setrequest to a nodeysayd
ta neighbor-set reply is not received framwithin a timeout
period, the node is deemed to have failed. Nodeends
a failure notification about to inform each node in’'s up-
dated neighbor set. These notifications are unnecessagy sin
MDT uses soft states; they are performed to speed up con-
vergence of node states.

Each node runs the maintenance protocol independently,
controlled by a timeout valu&y,. After a node has finished
running the maintenance protocol, it waits for tiffyg be-
fore starting the maintenance protocol again. The value of
T should be set adaptively. When a system has a low churn
rate, a large value should be used Tgrto reduce commu-
fnication cost.

If every node runs the maintenance protocol repeatedly,
thenode states converge to a correct multi-hop BScause
neighbors in a DT are connected by neighbor relations. A
node can find all of its neighbors by following the neighbor
relations [17].

Join protocol example. We present an illustration of the
join protocol using Figure 2. Initially, let nodebe a new
node. The other 9 nodes are maintaining a correct multi-
hop DT. When node boots up, it discovers two physical
neighbors, namely, noddésand h, both of which are DT
nodes. Node transmits a join request to notteand stores
the tuple< —, —,b,b > in F;. Nodeb runs MDT routing and
transmits the join request to nodgit also stores the tuple
< a,a,c,c> in F. MDT routing guaranteego find a DT
node closest to nodebecause the existing multi-hop DT is
correct. The closest node happens tachbe this example.
Nodec stores the tuplec —, —,b,a > in F; and sends a join
reply toa by transmitting it tob. Nodeb gets the join reply
and transmits it t& (nodeb does not have to update its tuple
< a,a,c,c > in this particular example). Whea gets the
join reply, it updated=; by replacing< —, —,b,b > with <
—,—,b,c>. Nodeais now attached to DT and it notifies its
physical neighbordy andh.

Nodec being closest to nodeis guaranteed to be a neigh-
bor ofain the DT of all ten nodes. Nodethen tries to find
all of its neighbors in the DT by first sending a neighbor-se
requestta. Its tuple< —, —,b,c > indicates that the request
should be sent tb which then transmits it te. Whenc gets
the request, it computes its local DT to determine nodes tha
are mutual neigbors af anda, which are nodesl andb.
(See Figure 2(b).) Noda then sends neighbor-set requests
to b andd. Noded replies that is a mutual neighbor. Node
b replies thatc and j are mutual neighbors. Nodethen
sends a neighbor-set request to npde

To establish a forwarding path betwesand j, note that
nodea learns of nodg from nodeb. A forwarding path
is already established betwearandb. Also, because the
existing multi-hop DT is correct, a unique forwarding path
exists between node and nodej, which isb—e—h—j.
Therefore, noda sends a neighbor-set requesi oy spec-
ifying b as the relay node in the message. The request s firs
sent tob which then forwards it te on theb—e— h— j path.

At every node along the way, a tuple with endpomend j
is stored in the node’s forwarding table.

Note thatthe patta—b—e—h—j, is very long. When the
neighbor-set reply fronj travels back vid, nodeh searches
Fn, and finds that noda is a physical neighbor (see Fig- e e
ure 2(c)). Nodeh then transmitg’s reply directly to node 5.3 Initialization protocols
a. (This is an example of physical-link shortcu} Subse- We design two system initialization protocols to construct
guently, nodes and j will select and refresh only the path a correct multi-hop DT for a large set of nodes. As before,
a—h— j between them. Tuples previously stored in nodes we assume that there is a link management protocol that en-
b, e, andh for endpointsa and j will be deleted upon time-  ables each node to discover its physical neighbors. Also the
out. Lastly, fromj’s reply,alearns thab is the only mutual graph of nodes and physical links is connected.
neighbor of itself ang. Sincea does not have any more new Serial joins by token passing.Starting with a one-node
neighbor to query, its join protocol execution terminated a DT, other nodes join serially using the join protocol. The



ordering of joins is controlled by the passing of a single to- used to modetandomly placed obstacldbat block trans-
ken from one node to another. The token passing protocolmissions between pairs of nodes. The use of a limRed
ensures that the token visits every node in the set. value challenges MDT protocols to correctly construct for-
Concurrent joins by token broadcast. Starting from a warding paths between DT neighbors that are far apart. In
one-node DT, other nodes join concurrently using the join designing our experiments, tfevalue was varied to gener-
and maintenance protocols. The ordering of joins is con- ate connectivity graphs with average node degrees compara-
trolled by a token broadcast protocol. Initially, a token is ble to those used in prior work [15, 20].
installed in a selected node, which configures its state as a Note that this model generalizes the Bernoulli random
one-node DT. When a node has a token, it runs the join pro-graphs model in [15]. (IR is specified to be larger than
tocol once (except the selected node) and then the maintethe maximum distance between any pair of nodes, we get
nance protocol, controlled by the timeout vallje It also the model in [15].) These models are general in the sense
sends a token to each physical neighbor that is not known tothat for a given set of nodes aftivalue, any possible con-
have joined the multi-hop DT (i.e., itis not a physical neigh nectivity graph may be generated with nonzero probability.
bor from which a token has been received andtraestfor
some tuplé in its forwarding table). Each token is sent af- 5.4.1 Constructing a correct multi-hop DT at system
ter a random delay uniformly distributed over time interval initialization
[1,7], wheret is in seconds. If a node receives more than one
token, any duplicate token is discarded. The token broadcas
protocol provides at least one token to every node to start it

In Figure 4, we show simulation results from two sets of
experiments for concurrent joins using token broadcast. In
each experiment, 300 nodes are randomly distributed in a

join process. 800x 800x 800 3D space with transmission rarige- 325.
Connectivity graphs are generated from the Random Graph
5.4 Performance of MDT protocols model withe =1 andp = 0.5 (i.e., both inaccurate coor-

Evaluation methodology. Our performance criteria are ~ dinates and randomly placed obstacles); the average node
routing success rate, routing stretch, resilience to grasn ~ d€9ree (number of physical neighbors per node) is 15.5. The
well as storage and communication costs associated withfirst Set of experiments is for low-speed networks in which
routing. Since MDT can be used for a variety of networks, ©N€-N0p message delays are sampled from 100 ms to 200
it is beyond the scope of this paper to evaluate metrics, (e.g. ™S (average = 150 ms), with a maintenance protocol time-

throughput and end-to-end latency) that depend on link-char out d_uration of 1 minute. _The §econd set of experiments is
acteristics and congestion. Hence, we evaluate MDT proto- 10" high-speed networks in which one-hop message delays

cols using a packet-level discrete-event simulator in tvhic @r€ sampled from 10 ms to 20 ms (average = 15 ms), with a
every protocol message created is routed and processed hoffi@intenance protocol timeout duration of 10 seconds.
by hop from its source to destination. Queueing delays ata " the legend of Figure 4,“token delay” is maximum token
node, link errors, and transmission interference are motsi  d€layT. In every experiment, note that accuracy of the multi-
ulated. Instead, message delivery times from one node to the™°P DT is low initially when many nodes are joining at the
next are sampled from a uniform distribution over a specified S3Me time. However, accuracy improves and converges to
time interval. To evaluate scalability of MDT, we performed 100% accuracy quickly. Inall experiments, after each rode
experiments for up to 1,300 nodes in 3D. To evaluate re- |n|t|aI.10|n, the nc_)de ran the maintenance proFocoI onlyenc
silience to churn, we performed experiments for churn rates ©F tWice by the time 100% accuracy was achieved.
up to 100 nodes/minute for 300-node networks in 3D. For the same parameter values and connectivity graphs as
Inaccurate coordinates.For each simulation experiment, t0Se in Figure 4, we ran simulations in which nodes joined
we first locate nodes randomly in a 2D or 3D space. We then Sefially controlled by token passing. The multi-hop DT at

generate coordinates for these nodes, such that they have lo€ €nd of every joinwas correct (as stated by Theorem 2). In
cation errors specified by aror ratio , e, which is defined each experiment, the time taken to construct a correct- multi

to be the ratio of the average location error to the average©P DT for all 300 nodes was between 10 and 20 times the

distance between physical neighbors. convergence time in Figure 4. The tradeoff is that the num-
Random Graph model. Given a set of nodes, connec- ber of protocol messages used by serial joins was a small

tivity graphs in our experiments are generated using a Ran-fraction of the number of protocol messages used by con-

dom Graph model specified by two parameterspanec- current joins. A comparison of the communication costs of

tion probability pand atransmission range RTwo nodes serial joins and concurrent joins to construct correct MDT

that are more thaR distance apart are not connected by a graphs as well as those of two other graph contruction algo-

physical link. Two nodes that are less than or equaRto rithms for wireless routing is shown in Figure 13 and dis-

distance apart are connected by a physical link with proba- €Ussed in Section 6.3.

bility p. With probability (1 — p), a physical link is miss- )

ing between two nodes that are within transmission range of 5.4.2 MDT routing performance

each other. For a wireless network, the probability f is We evaluated the performance of MDT routing by sim-
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ulation experiments for nodes in 3D for the following four
cases:

e unitdisk model é=0, p=1),
e inaccurate coordinates onlg£ 1, p=1),
e randomly placed obstacles onlg£ 0, p = 0.5),

e both inaccurate coordinates and randomly placed ob-
stacles¢=1, p=0.5).

The routing stretch value of a pair of nodesindd, in a
multi-hop DT ofSis defined to be the ratio of the number of
hops in the MDT route to the number of hops in the short-
est route (in hops) betweerandd. Therouting stretch of
the multi-hop DT is defined to be the average of the routing
stretch values of all source-destination pairsSinThe dis-
tance stretclof the multi-hop DT is defined similarly with
distance replacing number of hops as metric.

In Figure 5, we present results from simulation experi-
ments for a varying numbeN{ of nodes with transmission
rangeR = 250 forp =1, andR = 325 forp = 0.5. The 3D
space size increases withsuch that the average node de-
gree (number of physical neighbors per node) is maintained
at approximately 15.5. A correct multi-hop DT was first con-
structed at the beginning of each experiment. Routing suc-
cess rate was observed to be 100% in every experiment.

Number of nodes

(b) Routing stretch vaN

900 1100 1300 100 300 500 700 900 1100 1300
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(c) Distance stretch vé\

MDT routing performance for nodes in 3D

in the nodé® From the figure we observe that the storage
cost (per node) increases slowly, with the rate of increase
trending to zero abl becomes large. The introduction of in-
accurate coordinates £ 1) and randomly placed obstacles
(p = 0.5) requires more storage per node.

In Figures 5(b)-(c), both routing stretch and distanceditre
are close to 1 for the unit disk model. Inaccurate coordi-
nates and randomly placed obstacles increase both the rout-
ing stretch and distance stretch of MDT routing. However,
we observed that inaccurate coordinates and randomlyglace
obstacles do not affect the guaranteed delivery property of
MDT routing (Theorem 1).

Simulation methodology. In Figure 5, each data point
plotted is the average value of 50 simulation runs for 50 con-
nectivity graphs generated from the Random Graph model.
For each simulation run, the 90th percentile and 10th per-
centile values are also plotted as bars above and below the
average value. Almost all of the intervals between 90th and
10th percentile values are very small. Such small intervals
between 90th and 10th percentile values are typical of all
simulation results to be presented in the balance of this pa-
per. For the sake of clarity, we will omit 90th and 10th per-
centile values in other figures. Note that each data poirtt plo
ted will still be the average value of 50 simulation runs fwit
the exception of transient behaviors from churn experiment

8In MDT, each node is identified globally by its coordinates.

In Figure 5(a), the storage cost of a node is the averagewithin a node, locally defined identifiers are used to represe
number of other nodes whose coordinates have to be storedhodes in the forwarding table to reduce storage cost.



shown in Section 5.6).

5.5 Leave and failure protocols

For some rare cases, the leave protocol may not be able to
repair all node states after a leave for two reasons. Hirst, t
leaving nodau may be an articulation point of the connec-

Join and maintenance protocols are sufficient for a systemtivity graph. Second, even if is not an articulation point,

of nodes to recover from churn and their multi-hop DT to
converge to 100% accuracy. It is however desirable for MDT
to include leave and failure protocols designed for a single
leave and failure, respectively, for the following reasons

1) A departed node has almost all recovery information in
its state to inform its neighbors how to repair their states.
Such recovery information is not available to the main-
tenance protocol and would be lost if not provided by a
leave or failure protocol when the node leaves or fails.
Thus having leave and failure protocols in MDT allows
the maintenance protocol, which has a higher communi-
cation cost, to run less frequently than otherwise.

2) Concurrent join, leave and failure occurrences in differ

it is possible that and some neighbarare disconnected in

G because the forwarding paths of all routes between them
in the DT (N,) graph use node to forward messages. In
this case, nodeg exits the leave protocol and immediately
runs the maintenance protocol to repair node states. (A pseu
docode specification of the MDT leave protocol is presented
in the Appendix.)

Failure protocol. The failure protocol is similar to the
leave protocol and almost as efficient. The key idea is that
every nodel prepares recovery information for its neighbors
in caseu fails. The recovery information includes, for each
neighbow, its neighbor sell!! in DT (N,) afteru’s departure
as well as the grapB in the leave protocol. Node selects
one of its neighbors (say) as its monitor node and sends

ent parts of a large network are often independent of eachto mthe recovery information for every nodets neighbor

other. After a leave or failure, node states can be quickly
and effectively repaired by leave and failure protocols
without waiting for the maintenance timeout to occur.

Leave protocol.Consider a node that leaves gracefully.
When nodas’'s neighbors update their states, it is not suffi-
cient for a neighbow to deleteu from C, andN,. This is
becauses may have a new neighbarthat was not a neigh-
bor ofv beforeu's departure and does not knowz afteru’s
departure. However, such a nodlés always a neighbor of
u prior tou’'s departure (Lemma 10 in [17]). Therefore node
u can notify neighbow thatu is leaving and provide with
the following information:

1. v's neighbor seNY in DT (Ny),® and

2. agraplG=<V,E >, where the set of verticdg= N,
and the set of edgeEk, = {(v,z) | v, zare neighbors in
DT (Ny) andF, does not contain a tuple withandz as
endpoints.

We usevertexto refer to a node in grapB androuteto refer
to a path in grapl connecting two vertices. Note that all
vertices inG are DT nodes. Edges {& connect neighborsin
the multi-hop DT ofS. By the definition ofG, none of these
edges uses as a node in its forwarding path.

After receiving a leave notification; computes a route
in G to every nodez in its updated neighbor seSuppose
such a route exists i betweernv andz. Nodev sends to

set. (The recovery information is updated byvhenever
there is a change iNy.) The monitor noden periodically
probesu to check thatu is alive. Whenm detects failure
of u, m sends to each af’'s former neighbors its recovery
information prepared by.

5.6 MDT performance for systems under churn

We performed a large number of experiments to evalu-
ate the performance of MDT protocols for systems of nodes
under churn. For each experiment, there are 300 nodes ini-
tially maintaining a correct multi-hop DT. Thehurn rate
is defined to be the rate at which new nodes join the sys-
tem, which is equal to the rate at which existing nodes leave
or fail from the system. In each experiment, each depart-
ing node is randomly selected (with probability 0.5) to be a
graceful leave or a failure. Nodes are randomly distributed
in a 800x 800x 800 3D space. In each experiment, churn
begins at time 0 and ends at time 60 seconds.

Both Figures 6 and 7 are from experiments for low-speed
networks where one-hop message delays are sampled from
[100 ms, 200 ms].

Figures 6(a)-(c) are for the four cases of accurate or in-
accurate coordinatee & 0 or 1) with or without randomly
placed obstaclep(= 0.5 or 1). The transmission range is
R=250forp=1, andR=325forp=0.5; the average node
degree is 15.5. The maintenance timeout value is 60 seconds
for all three figures. The churn rate is 100 nodes/minute in

z a path-recover message along the rom_Jte as follows: TheFigures 6(a)-(b) and varies in Figure 6(c). Figure 6(a) show
path-recover message is relayed by vertices along the.routey,o accuracy of the multi-hop DT versus time. The accuracy

Two adjacent vertices in the route, being neighbors in the
multi-hop DT of S, are connected by a physical link or a
forwarding path. At every hop along the route franto z,

a tuple withv andz as endpoints is stored, thus establishing
a forwarding path betweemandz The leave protocol is
highly efficient for repairing node states after a leave.

9Note thatu is not inNy.

10

returns to 100% quickly after churn. Figure 6(b) shows the
routing success rate versus time. The success rate is olose t
100% during churn and returns to 100% quickly after churn.
Figure 6(c) shows the communication cost (per node per sec-
ond) versus churn rate.

When nodes have inaccurate coordinates () or there
are randomly placed obstaclgs-€ 0.5), note that the accu-



[
[

o
©
@©

4

©

@
PP

N Do kN O

rOoPrOo
- T T T
nnni
OO Rk
(SRS

Accuracy of multi-hop DT
o o
© ©
» (=2}
o
[(=}
B

NI
PrPOoPOo
TT T o
nonni
[SE=NNY
(SRS

rPOPFROo
nnnn
[SE=N-N
(LR

bh1o

k1o

o o o o

o
©
N

0.92

0 50 100 150 200 250 0 50 100 150 200 250 20 40 60 80 100
Time (sec) Time (sec) Churn rate (nodes/min)

(a) Churn rate = 100 nodes/min. (b) Churn rate = 100 nodes/min.  (c) Communication cost vs. churn rate

Routing success rate
o
[{=}
(=2}
No. of msgs sent per node per sec

Figure 6: MDT performance for systems in 3D under churn (ave.message delay- 150ms, timeout= 60sec.)

(s}

o)
= 1P g 16 -e-t?meout =90 sec
[a] o aQ —>—timeout = 60 sec
§' 0.98 g § 14 =¥ timeout = 30 sec
L a E 1.2M——)ﬁ
= g 2
E 0.96 S 0.96 =21
5 o 308
s g B e
€ 0.94 - 3094 - 206
5 -©-timeout = 90 sec <] -©-timeout = 90 sec %) o o
3 ——timeout = 60 sec = —%-timeout = 60 sec E 040
< 0.92 —¥—timeout = 30 sec 0.92 —¥-timeout = 30 sec g 0.2

0 50 100 150 200 250 0 50 100 150 200 250 Z 2 40 60 80 100

Time (sec) Time (sec) Churn rate (nodes/min)
(a) Churn rate = 50 nodes/min. (b) Churn rate =50 nodes/min.  (c) Communication cost vs. churn rate

Figure 7: MDT performance for systems in 3D under churn (ave.message delay 150ms,e=1, p=0.5)

racy in Figure 6(a) and the success rate in Figure 6(b) areFigures 9(a)-(c). The maintenance timeout value is 60 sec-

slightly lower, and the communication cost in Figure 6(c) is onds in Figures 8(a)-(c). The accuracy of multi-hop DT

slightly higher. However, the convergencetimes to 100% ac- and routing success rate in these experiments are better tha

curacy in Figure 6(a) and to 100% success rate in Figure 6(b)those in Figures 6(a)-(b) and Figures 7(a)-(b) for low-spee

are almost the same for the four cases. networks, even though higher churn rates are used (up to 120
Figures 7(a)-(c) are for three maintenance timeout valuesnodes/minute). The communication costs (per node per sec-

(30, 60, and 90 seconds) for systems with both inaccurateond) are about the same.

coordinates and randomly placed obstactes (, p = 0.5).

The churn rate is 50 nodes/minute in Figures 7(a)-(b) andg. PERFORMANCE COMPARISON

varies in Figure 7(c). Figure 7(a) shows the accuracy of the

multi-hop DT versus time. The accuracy returns to 100% 6.1 MDT compared with GDSTR and GPSR
quickly after churn. Figure 7(b) shows the routing success on GG, RNG, and CLDP in 2D space
rate versus time. The success rate is close to 100% during ' '

churn and returns to 100% quickly after churn. Figure 7(c) _ The geographic routing protocols, GPSR running on GG,
shows the communication cost (per node per second) versu$tNG, and CLDP graphs [14, 15], and GDSTR [20] were
churn rate. designed for routing in 2D. We implemented these protocols
Observe from Figure 7(c) that a decrease in the timeout N Our simulator® We compare the performance of MDT
value to 30 seconds causes a large increase in communicalouting with these protocols for 300 nodes in a 1600000
tion cost. On the other hand, increasing the churn rate has2D space. o
only minor impact on communication cost. For a timeout The results in Figure 10 are for nodes with inaccurate co-
value of 60 seconds or more, the communication cost is quite©rdinates only (O< e < 2, p = 1) and transmission range
low (less than 0.7 message sent per node per second). R=120. The results in Figure 11 are for nodes with ran-
By Little’s Law, for 300 nodes and a churn rate of 100 domly placed obstacles only (0< p < 1,e=0) and trans-
nodes/minute, the average lifetime of a node is 300/100 = 3 Mission rang& = 150.

minutes, which represents a very high churn rate for most !0 Figure 10(a), the routing success rates of MDT and
practical systems. GDSTR are both 100% for adivalues (it was 100% in every

The above experiments were repeated for high-speed netIOUSing, as our references, [15] for CLDP, GDSTR code from

works where one-hop message delays are sampled from [1Quww.comp.nus.edu.sg/"bleong/geographic/, and GPSR, 436,
ms, 20 ms]. The results are shown in Figures 8(a)-(c) and RNG code from www.cs.ucl.ac.uk/staff/B.Karp/gpst/.
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experiment). As the location error ratie) {ncreases from0,  stored at a nod&: For GPSR protocols (GG, RNG, and
the routing success rates of GPSR running on GG, RNG, andCLDP), a node stores the coordinates of its physical neigh-
CLDP drop off very gradually from 100%. Fer> 1, their bors only. For GDSTR, a node stores the coordinates of its
routing success rates drop significantly. physical neighbors and nodes in its convex hull and in the
In Figure 11(a), the routing success rates of MDT and convex hulls of its children (if any) in the spanning treer Fo
GDSTR are both 100% for ap) values (it was 100% in ev-  MDT, a node stores the coordinates of its physical neigh-
ery experiment.) As the connection probabilgylecreases  bors, multi-hop DT neighbors, and nodes that are endpoints
from 1, the routing success rate of CLDP decreases minutelyof tuples in its forwarding table.
from 100% . It is 99.8% ap=0.4. The routing success rates The storage costs (per node) of the protocols are shown

of GG and RNG drop off very gradually from 100% asle- in Figure 10(c) and 11(c). The storage cost of GPSR rout-
creases from 1. Fqu < 0.7, their routing success rates drop ing is the same as the average node degree. In Figure 10(c),
significantly. the storage cost of GPSR is 12.4 nodes. As the connection

In Figure 10(b), MDT has the lowest routing stretch for probability (p) decreases from 1 to 0.4 in Figure 11(c), it de-
all e values, with GDSTR a close second, followed by GG, creases from 18 to 7. Note that both MDT and GDSTR re-
CLDP, and RNG. For & e < 0.4, the differences are small. quire more storage costs than GPSR. The extra costs, which
But aseincreases above 0.8, the GG, CLDP, and RNG curvesare not large, are incurred to achieve a routing success rate
increase rapidly. The MDT and GDSTR curves increase of 100%.
slowly aseincreases from 0 to 2. . .

In Figure 11(b), MDT routing has the lowest routing stretch 6-2  MDT compared with VRR and GRG in
for all p values, with GDSTR a very close second, followed 3D space
by GG, RNG, and CLDP. For.8 < p < 1, the differences In 3D, we compare the routing performance of MDT with
are small. Asp decreases below 0.8, the GG, CLDP, and GRG [9], a geographic protocol designed for 3D, and the
RNG curves increase rapidly. The MDT and GDSTR curves non-geographic protocol, VRR [6].
increase slowly ap decreases from 1 to 0.4. We implemented GRG in our simulator from its descrip-

To compare storage costs of the routing protocols, we tion in [9]. We implemented VRR for static networks (with-
count the number of nodes whose coordinates have to be; - _ . _ _

Coordinates are the most important information for gedgi@ap

protocols. We have ignored other storage costs that ardesraatl
dependent on implementation details.

12



[

-©-MDT
-GPSR
-5 GDSTR (one tree)

I o:00)

0 04 08 12 16 2 0 04 038 12 16 2 04 08 12 16 2
Location error ratio (e) Location Error ratio () Location error ratio (e)

(a) Routing success rate \es. (b) Routing stretch vse (c) Storage cost ve

IS
o

BB O OO0 S-VDT
% —>-GPSR on GG
—%¥—GPSR on RNG
-GPSR on CLDP
-E-GDSTR (one tree)

w
a

o
©

=]

4
©
a

Routing stretch

o
3

-©-MDT/GDSTR
-%-GPSR on GG

—%-GPSR on RNG
-A-GPSR on CLDP

o

Routing success rate
o
D

BoR NN W
=]

o

o
15
N
5

Ave. no. of nodes stored per node

o

Figure 10: MDT compared with GDSTR and GPSR on GG, RNG, and CLLP in 2D for varying e

8 -©-MDT
—GPSR on GG
—¥—GPSR on RNG

4 -A-GPSR on CLDP

- GDSTR (one tree)

-
N
o

-©-MDT
-GPSR
-5 GDSTR (one tree)

o

©

5]
w
a

=]

o

-©-MDT/GDSTR
-GPSR on GG
—¥ GPSR on RNG
-A-GPSR on CLDP

5

Routing success rate
S o
o ©
Routing Stretch

B NN W
=]

=)

0.8

&)

Ave. no. of nodes stored per node

04 05 06 07 08 09 1 04 05 06 07 08 09 1

04 05 06 07 08 09 1
Connection probability (p) Connection probability (p) Connection probability (p)
(a) Routing success rate vs. (b) Routing stretch vsp (c) Storage cost vy

Figure 11: MDT compared with GDSTR and GPSR on GG, RNG, and CLIP in 2D for varying p

out joins and failures}? Each node has 4 virtual neighbors VRRV2 as shown in Figure 12(c).
as in [6]. Between each pair of nodes that are virtual neigh-  In Figure 12(a), the routing success rate of MDT is 100%.
bors, we used the shortest path (in hops) between them as thén Figure 12(b), the routing stretch of MDT is the lowest
forwarding path (for these nodes, the routing stretch vislue  of the three protocols with the exception of one data point
1). Thus, the routing stretch curves shown in Figure 12(b) (N = 100) at which VRRv1 is slightly lower. In Figure 12(c),
for VRR are slightly optimistic. MDT has a larger storage cost than GRG. MDT stores about
In these experiments, the numhérof nodes is varied  the same number of nodes as VRRv2 and a lot fewer nodes
from 100 to 1300. AN increases, the 3D space size is in- than VRRv1. However, an accurate comparison of the stor-
creased to keep the average node degree at approximatelgge costs of MDT and VRR should consider also the sizes
15.5. Connectivity graphs are generated for two cases: (i) of (global) node identifiers in these protocols.

e=1andp = 1 (inaccurate coordinates only) wikh= 250, 63 C icati t . f h
and (ii)e= 0 andp = 0.5 (randomly placed obstacles only) ommunication costcomparison tor grap
with R= 325. construction

In Figure 12(a), the routing success rate of GRG is well  In these experiments, the numberof nodes is varied
below 100%. In Figure 12(b), which is in logarithmic scale, from 100 to 1300. The transmission rangeRis= 200. As
the routing stretch of GRG is very high and increases with N increases, the 2D space size is increased to keep the aver-
network sizeN. In Figure 12(c), the storage cost of GRG, age node degree at approximately 14. Connectivity graphs
equal to the average number of physical neighbors, is theare generated for nodes with inaccurate coordinaesX)
lowest of the three protocols. and there are randomly placed obstacles between npdes (
The routing performance of VRR is affected neither by 0.5).
inaccurate coordinates nor by randomly placed obstacles. In Figure 13, we compare MDT’s message cost to con-
From Figure 12(a), its routing success rate is equal to 100%struct a correct multi-hop DT with message costs of CLDP
(like MDT). We implemented two versions of VRR: (v1) graph construction using serial probes [15] and GDSTR span-
each node additionally stores 2-hop neighbors as in [6], andning tree construction [20]. The vertical axis is in loghasit
(v2) nodes do not store 2-hop neighbors. In Figure 12(b), mic scale. The message cost of a protocol is the average
VRRv1 has a much lower routing stretch than VRRv2. How- number of messagesentper node (we did not account for
ever, each node in VRRv1 stores many more nodes thanmessage size differences among the protocols). Note that
each GDSTR message is a broadcast message sent by a node
2wiith reference from www.cs.berkeley.edu/"mccaesardutec. to all of its physical neighbors and is counted as one mes-
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deliveryto a node closest th This theorem holds for nodes
located ind-dimensional Euclidean spacesX 2) with ac-

W curate, inaccurate, or arbitrary coordinates. Experialent
MDY tantiime i) results show that inaccurate coordinates or missing palysic

=¥~ CLDP (serial probes)

=
S

=
S,

=
S

Ave. no. of messages sent per node

5 GDSTR (one tree) links between close neighbors (e.g., due to randomly placed
w0’ NI obstacles) impact the routing performance of MDT routing
10]‘?"/:,%__9/—9——8———@ but they do not affect its guaranteed delivery property (The

orem 1).
100300 W mber ofnodes. 10 B MDT is scalableto a large network sizBl. Experimental
results show that for a fixed node density, the average num-
Figure 13: Initialization message cost vsN (e=1, p= ber of messages sent per node to construct a correct multi-
0.5) hop MDT is constant (or decreases slightly)Nagcreases.

The average storage cost per node increases slowly, with the

.___rate of increase trending to zerold$ecomes large. Lastly,
?naegsesasggg Messages sent by CLDP and MDT are unicasty computation cost at each node is independeht bé-

Figure 13 shows that with the average number of mes-
sagessentper node as metric, GDSTR has the best message
cost performance, followed by MDT (serial joins), MDT
(concurrent joins), and CLDP. Note the trend of each curve
asN increases. The CLDP curve increases gradually with
N. The GDSTR curve increases very slightlyNincreases.
The MDT curves are flat (they actually decrease very slightly
asN increases. (Recall that each point plotted is the average
value of 50 simulation runs for 50 connectivity graphs gen-
erated from the Random Graph model.)

cause each node only needs to compute its local DT.

We have designed and implemented join, leave, failure,
maintenance, and initialization protocols for constnugtnd
maintaining a correct multi-hop DT. The protocols \sst
states The join protocol is proved to be correct for serial
joins. Experimental results show that a correct multi-hop
DT can be constructed very quickly at system initialization
using concurrent joins. Experimental results show that MDT
is highlyresilient to churn The routing success rate of MDT
is close to 100% for systems under churn. After churn, node
states converge quickly to a correct multi-hop DT.

Given the above considerations, MDT routing is an attrac-
7. CONCLUSIONS tive solution to wireless routing id-dimensional Euclidean

We have presented MDT, a novel geographic routing pro- spacesd > 2). Furthermore, MDT can be used for geo-
tocol with several major advances over previous geographicgraphic routing in wireline networks as well. We believe
protocols. In this paper, the graph of nodes and physical that MDT routing can be an attractive routing solution for
links is assumed to be connected but otherwise may be ar-community/metropolitan networks [2] or infrastructureéne
bitrary. Conceptually, the MDT routing structure is a De- works that support WiFi, WiMax, or cellular systems.
launay triangulation (DT) overlay on arbitrary connec-
tivity graph We refer to the structure as a multi-hop DT. 8. APPENDIX
MDT routing achieves thiowest routing stretclof all rout-
ing protocols for 2D and 3D compared in this paper. This
is because a multi-hop DT is rich in links (and DT is a good
spanner [7]). MDT routing uses all of the physical links with
additional virtual links connecting multi-hop DT neighisor

We have proved that for a given destination location
MDT routing in a correct multi-hop DT providegiaranteed PrROOF We make use of the proof of Theorem 1 in [17]

Theorem 1. Consider a correct multi-hop DT of a finite
set S of nodes in a d-dimensional Euclidean space @].
Given a locatior¥ in the space, the MDT routing protocol
succeeds to find a node in S closest to a finite number of
hops.
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for a distributed DT:

1) By definition, a correct multi-hop DT of is a correct
distributed DT ofS. The DT maintained by nodes Bis
the same aBT(9).

2) Given a correct multi-hop DT, each DT neighbor of a
nodeu in Sis either a one-hop neighbor or connected
to u by a forwarding path of finite length (in hops) that
exists in{RK, | ve S}.

3) When a message arrives at a node, athat is not at

the destination location, if the message is neither des-

tined nor to be forwarded to a one-hop DT neighbor (lines
1-7)12 nodeu performs greedy routing (lines 8-21). If
greedy routing succeeds to findy a physical neighbor
v that is closer to/ than nodeu, the message is trans-
mitted directly tov (lines 9-11); else, greedy routing is
performed over the set of DT neighbors (lines 13-17).
From 1), the proof of Theorem 1 in [17] for a distributed
DT guarantees that either nodas closest toZ or there
exists inNy a nodev that is closer td thanu. Therefore,

if nodeu is not a closest node # executing the greedy
routing code (lines 9-17) finds a nod¢hat is closer t@
than nodeu. From 2), sending the message fraro v is
achieved in a finite number of hopsifs a multi-hop DT
neighbor.

4) Any node inS (v in particular) that is closer té than
u will not use greedy routing (lines 9-17) to send the
message back to node Thus nodeu will not execute
the greedy routing code (lines 8-21) again for this mes-
saget® Since every node iBexecutes the greedy routing
code (lines 8-21) at most once a8dhas a finite number
of nodes, together with 2) and 3), MDT routing finds a
closest node iI5to ¢ in a finite number of hops.

O

Theorem 2. Let S be a set of nodes and w be a join-
ing node that is a physical neighbor of at least one node
in S. Suppose the existing multi-hop DT of S is correct, w
joins using the MDT join protocol, and no other node joins,
leaves, or fails. Then the MDT join protocol finishes and the
updated multi-hop DT of S{w} is correct.

PrROOF By Theorem 1, the join request @f succeeds
to find a DT node (say) closest tow, which sends back a
joint reply. By Lemma 5 in [17], node is guaranteed to
be a neighbor ofv in DT (SU {w}). A forwarding path is
constructed betweew and z (guaranteed by Theorem 1).
Subsequently, because the multi-hop DTSa$ correct, for-
warding paths are constructed betweeand each neighbor

it sends a neighbor-set request. After receiving a request

13Line numbers refer to lines iBet Nextin Figure 3

14t this point only multi-hop neighbors need to be considered
151t is however possible that this message will visit nadagain
with u acting as a forwarding node executing lines 4-6.

15

from w, each neighbor ofv updates its own neighbor set to
includew. They also send back replieswo By Lemma 9 in
[17], the join process finishes amMd), consists of all neigh-
bor nodes ofvin DT (SU {w}). Since a path has been con-
structed fronw to every node ilN,,, w and each of its neigh-
bors inDT (SU {w}) can communicate with each othér.

By construction, two DT neighbors select only one path to
use between them by refreshing only tuples stored in nodes
along the selected path. Therefore, the path between each
pair of neighbors ilDT(SU {w}) is unique after the join.
Each path also has a finite number of hops because (i) the
path from the joining node to its closest DT node (gglyas
a finite number of hops becausé found by MDT routing
in a correct multi-hop DT (by Theorem 1), and (ii) the path
from the joining node to each of its other DT neighbor is
either a one-hop path or the concatenation of two paths, each
of which has a finite number of hops. By Definition 3, the
updated multi-hop DT is correct.]

Protocol pseudocode. A MDT protocol messagen can
be sent/forwarded by a node in three ways, which are de-
fined in Figure 14 wheren.dest and m.sourcedenote the
destination and source nodesnim respectively, andn.ty pe
denotes its message type. Pseudocode specifications of the
MDT join and leave protocols are presented in Figures 15
and 16, respectively.
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input parameter.
u’s forwarding table.

physical neighbor v.

2 Transmit m to m.dest

3 else

4, t «— <-, -, successor, m.dest>
5 F,—F,U{t}

6 Transmit m to successor

7 end if

For a node u and a message m, node u can send m out in three ways:
1. Send(m, successor): m is a message created by node u and it is to be
sent to a destination node one or more hops away; successor is an

2.  Forward(m): node u forwards the message m for another node using

3. Transmit m to v: node u transmits the message m directly to a

Send(m, successor): node u sends its message m
1. if there exists ¢t in F, | t.succ = m.dest and
(m.type = JOIN_REPLY or t.succ = t.dest) then

/I use a shortcut

Forward(m): node u forwards a message m
1. if there exists  in F,, | t.succ = m.dest and
(m.type = JOIN_REPLY or t.succ = t.dest) then

2 Transmit m to m.dest  // use a shortcut

3. else

4. t < tuple in F, such that t.source = m.source and t.dest = m.dest
5 Transmit m to t.succ

6. endif

Figure 14: Three ways to send a message
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Notation and Definitions:

When a node receives a message, it stores the message in the local
data structure m. We define five message formats for the MDT join
protocol:

1. if mtype = JOIN_REQ, m = <m.type, m.source, m.relay>
2. ifm.type = JOIN_REPLY, m = <m.dest, m.type, m.source>
3. ifm.type = NB_SET_REQ,

m = <m.dest, m.type, m.source, m.relay>
4. if m.type = NB_SET_REPLY,

m = <m.dest, m.type, m.source, m.set>
where m.dest is the destination node, m.source the source node,
m.relay is the relay node, and m.set is a set of nodes.

Join(v) of node u

// u is the joining node. If there is a DT node that is a physical neighbor of u,

// v «<— the node ID; otherwise, v «<—null

1. if v # null then
2 Cu — {M}, Nu — 9
3. m« <JOIN_REQ, u, null>
4. Transmitmtov
5. else
6 CM «— {u}’ NM — @
7. end if
On u’s receiving m = <JOIN_REQ, w, r> from v
1 e «— Get_Next(w, r)
// m.relay=r may be changed when Get_Next returns
2. if e=null then // wis the DT node closest to w
3. Send(<w, JOIN_REPLY, u>,v) //successor =v
4. else
5. Transmit m to e
6. F,—F,U{<w, v e e>}
7.  endif

On u’s receiving m = <f, JOIN_REPLY, w> from v
1. if u = fthen C, — {u, w}
2. Send(<w, NB_SET REQ, u, null>,v)) //successor=v
// inform all physical neighbors that w has joined
// each physical neighbor will replace its tuple <-, -, u, -> with <-, -, u, u>

3. else
4. Replace the tuple <v, v, * f>in F, with <w, v, * f>
// * denotes any node stored
5. Forward(m)
6. end if

On u’s receiving m = <f, NB_SET_REQ, w, r> from v

1. if u=fthen // Case I: uis the destination node
2. if we C, then
3. C,—C,U{w}
4, N, < neighbor nodes of u in DT(C,)
5. end if
6. N, < {el e, uand w are in the same simplex in DT(C,)}
7. Send(<w, NB_SET REPLY, u, N>, v) //successor =v
8. else if r = null then

// Case 2: u is between the relay and destination
9. t < tuple in F, such that t.dest = f
10. F, — F,U {<w, v, t.succ, f>}
11. Forward(m)
12.  elseif u = rthen //Case 3: u is the relay node
13. t < tuple in F, such that t.dest = f
14. F, — F,U {<w, v, t.succ, f>}
15. Forward(<f, NB_SET REQ, w, null>)
16. else if r # null then

//Case 4: u is between the source and relay
17. t < tuple in F, such that t.dest = r
18. F, — F,U{<w,v, t.succ, f>}
19. Forward(m)
20. endif

On u’s receiving m = <w, NB_SET REPLY, f, wa> from v
1. if u = w then -

2. C,«<C,UN/

3. Update Neighbors(C,, N, , v, f) // successor=v, relay =f
4. else

5. Forward(m)

6. end if

Update_Neighbors(C,, N,, successor, relay) of node u

1. N<N,

2. N, < neighbor nodes of u in DT(C,,)

3. N/ «—N,-N" yifN= 2 and there is no NB_SET_REQ
// waiting for a reply, terminate join protocol

4.  forallv e N, do

S. Send(<v, NB_SET REQ, u, relay>, successor)

6.  end for

Figure 15: MDT join protocol
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Notation and Definitions:
We define two message formats for the MDT leave protocol:

1. if m.type = LEAVE, m = <m.dest, m.type, m.source,
m.set, m.graph>

2. if m.type = PATH_RECOVER,
m = <m.dest, m.type, m.source, m.relay, m.route>

where m.dest is the destination node, m.source is the sourc
node, m.relay is the relay node, m.set is a neighbor set,
m.graph is a graph, and m.route is a sequence of nodes.

The function Generate Graph(D7(,,)) is used to generate the
undirected graph G = <V, E>, where the set of vertices V' =
N,, and the set of edges £ = {(v,w) | v, w are neighbors in
DT(A,) and F, does not contain a tuple with v and w as
endpoints}. We use vertex to refer to a node in graph G and
route to refer to a path in graph G connecting two vertices.

Leave() of node u
// node u is the leaving node
1. G « Generate_Graph(DT(N,))  //note that u ¢ N,
2. forallv € N,do
3. N« {w]|wisaneighbor of v in DT(N,)}
4 Forward(<v, LEAVE, u, N,”, G>)
5. end for

On u's receiving m = <f, LEAVE, w, N/*, G> from v

1. if u=fthen

2. C,— (GU Nuw) —{w}

3. N, < neighbor nodes of u in DT(C,)

4. for allz € N, do

5. ifz¢ P, and (u, z) is not in G then

6. if there is no route from u to z in G then

7. exit  // call maintenance protocol

8. else

9. R <« shortest route in G from u to z

10. next « the vertex following u on R to z

11. successor «<— the physical neighbor of « along R to z
12. Send(<z, PATH_RECOVER, u, next, R >, successor)
13. F, — F,U {<-, -, successor, z>}

14. end if

15. end if

16. end for

17. else

18. Forward(m)

19. endif

On u's receiving <z, PATH RECOVER, w, r, R > from y
1. ifu=_zthen

2 F,«— F,U{<- - v,w>}

3 else if u = r then //uis a vertex on the route R to z

4 next < the vertex following u on R to z

5. t < tuple in F, such that z.dest =next

6. F,—F,U{<w,v, t.succ, z>}
7
8
9

Transmit <z, PATH RECOVER, w, next, R > to t.succ
else //u#r; u is on physical path between two vertices on R
t < tuple in F, such that t.dest =r
10. F,—F,U{<w, v, t.succ, z>}
11. Transmit <z, PATH RECOVER, w, r, R > to t.succ
12.  endif

Figure 16: MDT leave protocol
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