
High-Performance Up-and-Downdating

via Householder-like Transformations

Robert A. van de Geijn
Field G. Van Zee

Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
rvdg,field@cs.utexas.edu

Draft
January 30, 2010

Abstract

We present high-performance algorithms for up-and-downdating a Cholesky factor or QR factor-
ization. The method uses Householder-like transformations, sometimes called hyperbolic Householder
transformations, that are accumulated so that most computation can be cast in terms of high-performance
matrix-matrix operations. The resulting algorithms can then be used as building blocks for an algorithm-
by-blocks that allows computation to be conveniently scheduled to multithreaded architectures like mul-
ticore processors. Performance is shown to be similar to that achieved by a blocked QR factorization via
Householder transformations.

1 Introduction

Consider the Linear Least-Squares problem that, given a matrix A ∈ Cm×n with linearly independent
columns and y ∈ Cm, computes x ∈ Cn that minimizes ‖Ax− y‖2. This problem is typically solved via one
of two methods:

Method of Normal Equations: Solve AHAx = AHy by computing the Cholesky factor of AHA, upper
triangular matrix R, followed by forward and backward substitution to solve RHRx = AHy.

QR factorization (via Householder transformations): Compute the QR factorization A = QR where
Q is an orthogonal m× n matix and R is an upper triangular n× n matrix. Solve Rx = QHy.

In this paper, we concern ourselves with the following prototypical scenario: Let rows of the appended
system

(
A y

)
represent observations that have been taken, for example, over time. These observations

can be partitioned into three groups:
(
A y

)
=

 B b

C c

D d

 where the Cholesky factor corresponding to

(
B

D

)
has already been computed: BHB+DHD = RHR. Now, the rows of D represent old data that we

would like to remove while the rows of C represent new data that we would like to add to the Linear Least-

Squares problem. Thus, we would like to compute the Cholesky factor corresponding to

(
B

C

)
leveraging

the already computed R. The right-hand side has to be updated correspondingly, which is discussed in
Section 6.

1

In [14] hyperbolic Householder transformations are reviewed for this problem and analyzed both from
an algorithmic and numerical stability point of view. In that paper, references to the literature can also
be found. The present paper builds on the insights in that paper and combines it with insights from other
papers [1, 13, 7, 16, 8, 17, 15] that focus on aggregrating multiple Householder-like transformations into a
block transformation. The contribution of the present paper is a practical high-performance algorithm for
up- and/or downdating that can be implemented as a library routine using the level-3 BLAS [5].

The remainder of the paper is structured as follows. In Section 2 we discuss a family of Householder-like
transformations and how to accumulate them into a block transformation. Updating and downdating are
discussed separately in Sections 3 and 4, respectively, and then combined in Section 5 in which a blocked
algorithm is also given. How to use an up- and/or downdated system to solve the new Linear Least-Squares
problem is discussed in Section 6. A brief overview of the algorithm-by-blocks concept is given in Section 7.
Performance is reported in Section 8 and concluding remarks can be found in the final section.

2 A Family of Householder Transformations

In the following discussion, we will let Σ ∈ Rn×n with Σ = diag(1,±1, · · · ,±1) so that ΣΣ = I. Such a
matrix is referred to as a signature matrix. We make the choice that the first diagonal element equals to
one so as to simplify our discussion. Then, by design, Σe0 = e0, where e0 is the first column of the identity
matrix.
Theorem 1 Let w ∈ Cn and τ = wHΣw/2 6= 0. Then (I − 1

τΣwwH)Σ(I − 1
τΣwwH)H = Σ.

Proof: Let w ∈ Cn and τ = wHΣw/2 6= 0. Then

(I − 1
τ

ΣwwH)Σ(I − 1
τ

ΣwwH)H = Σ− 2
1
τ

ΣwwHΣ +
2
τ

ΣwwHΣ = Σ.

endofproof
When Σ = I the (I − 1

τΣwwH) in the above theorem is the traditional Householder transformation or

reflector. If Σ =

(
I 0
0 −I

)
it is referred to as a hyperbolic Householder Transformation.

Theorem 2 Let x ∈ Cn, χ0 = eT0 x be its first element, |λ|2 =
√
xHΣx chosen so that λ̄χ0(= χ̄0λ) is real,

w = x+ λe0, and τ = wHΣw
2 6= 0. Then (I − 1

τΣwwH)Hx = −λe0.
Proof: Under the assumptions of the theorem

2wHΣx
wHΣw

=
2(x+ λe0)HΣx

(x+ λe0)HΣ(x+ λe0)
=

2(xHΣx+ λ̄χ0)
xHΣx+ 2λ̄χ0 + |λ|2

= 1

and

(I − 1
τ

ΣwwH)Hx = x− 1
τ
wwHΣx = x− 2wHΣx

wHΣw
(x+ λe0) = −λe0.

endofproof
Corollary 3 Under the assumptions of Thm. 2, if χ0 is real, then λ = ±

√
xHΣx.

The Cholesky factor R that is being updated and/or downdated often has real diagonal elements, and
vector w can be normalized by dividing by a nonzero scalar, in which case the following steps provide a
robust way of computing w and λ so that w has a unit first element:

• λ := sign(χ0)
√
xHΣx. w := x+ λe0. (Note: the choice of the sign means that λ and χ0 have the same

sign, thus avoiding catastrophic cancellation that can lead to unnecessary numerical inaccuracy).

• If ω0 equals zero, then w = e0 else w := w/ω0. (Here ω0 = eT0 w equals the first element of w. This
step normalizes w so that it has a unit first element.)

2

Definition 4 Let x ∈ Cn be such that xHΣx 6= 0. We define the function

[χ̃0, w1, τ] := GeneralHouse (Σ, χ0, x1)

so that
(
I − 1

τΣwwH
)H

x = χ̃0e0, where x =
(
χ0

x1

)
, w =

(
1
w1

)
, and τ = wHΣw

2 .

Theorem 5 Let the matrix Wk−1 ∈ Cn×k have linearly independent columns. Partition Wk−1 by columns
as

Wk−1 =
(
w0 w1 · · · wk−1

)
and let τi 6= 0, 0 ≤ i < k. Then for 0 ≤ j < k there exists a j × j nonsingular upper triangular matrix Tj
such that(

I − 1
τ0

Σw0w
H
0

)(
I − 1

τ1
Σw1w

H
1

)
· · ·
(
I − 1

τj−1
Σwj−1w

H
j−1

)
=
(
I − ΣWj−1T

−1
j−1W

H
j−1

)
The matrices Tj is given by the recurrence T0 = τ0 and Tj =

(
Tj−1 WH

j−1Σwj
0 τj

)
for 1 ≤ j < k.

Proof: Proof by induction on j.
Base case. j = 0: Trivially true.
Inductive step. Induction Hypothesis (I.H.): Assume that(

I − 1
τ0

Σw0w
H
0

)
· · ·
(
I − 1

τ1
Σw1w

H
1

)(
I − 1

τj−1
Σwj−1w

H
j−1

)
=
(
I − ΣWj−1T

−1
j−1W

H
j−1

)
We need to show that

(
I − 1

τ0
Σw0w

H
0

)
· · ·
(
I − 1

τj−1
Σwj−1w

H
j−1

)(
I − 1

τj
ΣwjwHj

)
=
(
I − ΣWjT

−1
j WH

j

)
:(

I − 1
τ0

Σw0w
H
0

)
· · ·
(
I − 1

τj
ΣwjwHj

)
=
(
I − ΣWj−1T

−1
j−1W

H
j−1

)(
I −

ΣwjwHj
τj

)

= I − Σ
(
Wj−1 wj

)(T−1
j−1 −T−1

j−1W
H
j−1Σwj/τj

0 1/τj

)(
Wj−1 wj

)H
= I − Σ

(
Wj−1 wj

)(Tj−1 WH
j−1Σwj

0 τj

)−1 (
Wj−1 wj

)H = I − ΣWjT
−1
j WH

j .

By the Principle of Mathematical Induction the desired result holds. endofproof
Theorem 6 Let W ∈ Cn×k be a matrix with linearly independent columns such that WHΣW has nonzero di-
agonal elements. Then there exists a unique nonsingular upper triangular matrix with real diagonal elements
T ∈ Ck×k such that (I−ΣWT−1WH)Σ(I−ΣWT−1WH)H = Σ. This matrix T satisfies T +TH = WHΣW
so that T = striu(WHΣW) + 1

2diag(WHΣW).
Proof: Theorem 5 provides a proof of existence. (The wi and τi’s in that theorem equal the columns of W
and diagonal elements of WTΣW , respectively.) Now,

Σ = (I−ΣWT−1WH)Σ(I−ΣWT−1WH)H = Σ−ΣWT−1WHΣ−ΣWT−HWHΣ+ΣWT−1WHΣWT−HWHΣ

so that
0 = Σ(WT−1WH +WT−HWH −WT−1WHΣWT−HWH)Σ.

Thus,
0 = WHΣ0ΣW = WHΣΣ(WT−1WH +WT−HWH −WT−1WHΣWT−HWH)ΣΣW

or, equivalently, (since WHΣΣW = WHW is nonsingular)

0 = T−1 + T−H − T−1WHΣWT−H

from which we conclude that TH + T = WHΣW .
Now, if T is upper triangular and has real valued diagonal elements, then T = striu(WHΣW) +

1
2diag(WHΣW). endofproof

3

3 Updating

Let us consider A =

(
B

C

)
with AHA = BHB + CHC = R̃HR̃, where R̃ is the Cholesky factor of AHA.

Here we will assume that both A and B have linearly independent columns. The question is whether, if we
know that the Cholesky factor of BHB is R, we can cheaply compute the Cholesky factor of AHA. This is
known as the updating problem. We know that R̃HR̃ = AHA = BHB + CHC = RHR + CHC. We also

know that if B = QR is a QR factorization of B and

(
R

C

)
= Q̂R̂, then

A =

(
B

C

)
=

(
QR

C

)
=

(
Q 0
0 I

)(
R

C

)
=

(
Q 0
0 I

)
Q̂R̂ = Q̌R̂

so that A = Q̌R̂ is a QR factorization of A. Because of the uniqueness of the QR factorization (modulo
signs), R̂ = R̃. This then provides us with the desired Cholesky factor. We conclude that to compute R̃ it

suffices to compute the QR factorization of

(
R

C

)
.

A stable way for computing the QR factorization of

(
R

C

)
relies on Householder transformations: given

matrix

(
R

C

)
where R is an n × n upper triangular matrix and C ∈ CmC×n, we would like to compute

{H0, · · · , Hn−1} so that

HH
n−1 · · ·HH

0

(
R

D

)
=

(
R̃

0

)
and HH

j = Hj = I − 1
τj
uju

H
j with τj = uHj uj/2.

We recognize this as the special case of the Generalized Householder Transformation where Σ = I, in other
words, the classical Householder Transformation.

Definition 7 Let x =
(
χ0

x1

)
∈ Cn with χ0 ∈ R be such that ‖x‖2 6= 0. We define the function

[χ̃0, u1, τ] := House (χ0, x1)

so that

((
1 0
0 I

)
− 1

τ

(
1
u1

)(
1
u1

)H)(
χ0

x1

)
=
(
χ̂0

0

)
, where τ = 1+uH

1 u1
2 .

An algorithm that, given the Cholesky factor R of AHA, computes the Cholesky factor of AHA+ CHC
is now given in Figure 1. Here is the basic idea: Assume that the computation has progressed so that the
matrices contain (

R

C

)
=

R00 r01 R02

0 ρ rT12

0 0 R22

0 c1 C2

 .

In the current step a Householder transformation is computed and applied so that

I 0 0 0
0 1 0 0
0 0 I 0
0 0 0 I

− 1
τ

0
1
0
u1

0
1
0
u1

H

R00 r01 R02

0 ρ rT12

0 0 R22

0 c1 C2

 =

R00 r01 R02

0 ρ̃ r̃T12

0 0 R22

0 0 C̃2

 .

4

The vector u1 overwrites the vector c1 that it annihilates. The function that updates rT12 and C2 given τ
and u1 is given by (

r̃T12, C̃2

)
:= ApplyHouse

(
τ1, u1, r

T
12, C2

)
.

4 Downdating

Now, let us consider the alternative problem where A =

(
B

D

)
with AHA = BHB+DHD = RHR, where

D ∈ CmD×n and R ∈ Cn×n is the Cholesky factor of AHA. The new question becomes how to compute the
Cholesky factor of BHB from R and D. This is known as the downdating problem. Let us call the desired
Cholesky factor R̃. We know that

R̃HR̃ = BHB = RHR−DHD =

(
R

D

)H (
In 0
0 −ImD

)(
R

D

)
In the remainder of this section, we will define

Σn,m =

(
In 0
0 −Im

)
.

The goal is going to be to compute a sequence of transformations, {S0, S1, · · · ,Sn−1} such that

SjΣn,mD
SHj = Σn,mD

and

BHB =

(
R

D

)H (
In 0
0 −ImD

)(
R

D

)
=

(
R

D

)H
S0 · · ·Sn−1Σn,mD

SHn−1 · · ·SH0

(
R

D

)

=

(
R̃

0

)H
Σn,mD

(
R̃

0

)
= R̃HR̃

In other words, given matrix

(
R

D

)
where R is an n×n upper triangular matrix, we would like to compute

{S0, · · · , Sn−1} so that SHn−1 · · ·SH0

(
R

D

)
=

(
R̃

0

)
and SjΣn,mD

Sj = ΣHn,mD
.

Definition 8 Let x =
(
χ0

x1

)
∈ Cn with χ0 ∈ R be such that xHΣ1,n−1x = |χ0|2 − xH1 x1 6= 0. We define

the function
[χ̃0, v1, τ] := HHouse (χ0, x1)

so that

((
1 0
0 I

)
− 1

τ

(
1 0
0 −I

)(
1
v1

)(
1
v1

)H)(
χ0

x1

)
=
(
χ̂0

0

)
, where τ = 1−vH

1 v1
2 .

We recognize this as the special case of the Generalized Householder Transformation where Σ = Σ1,n−1.
This special case is referred to as a hyperbolic Householder Transformation in the literature.

Given the function HHouse an algorithm that, given the Cholesky factor R of AHA, computes the
Cholesky factor of AHA−DHD is now given in Figure 2. Here is the basic idea: Assume that the computation
has progressed so that the matrices contain

(
R

D

)
=

R00 r01 R02

0 ρ rT12

0 0 R22

0 d1 D2

 .

5

Algorithm: [R,C, t] := UpDate unb(R,C, t)

Partition R→
(
RTL RTR

0 RBR

)
, C →

(
CL CR

)
, t→

(
tT
tB

)
where RTL is 0× 0, CL has 0 columns, tT has 0 elements

while m(RTL) < m(R) do
Repartition(

RTL RTR
0 RBR

)
→

R00 r01 R02

0 ρ11 rT12

0 0 R22

,
(
CL CR

)
→
(
C0 c1 C2

)
,
(
tT
tB

)
→

 t0
τ1
t2

where ρ11 and τ1 are scalars, and c1 has 1 column

[ρ11, c1, τ1] := House(ρ11, c1)(
rT12

C2

)
:= ApplyHouse

(
τ1, c1, r

T
12, C2

)
Continue with(

RTL RTR
0 RBR

)
←

R00 r01 R02

0 ρ11 rT12

0 0 R22

,
(
CL CR

)
←
(
C0 c1 C2

)
,
(
tT
tB

)
←

 t0
τ1
t2

endwhile

Figure 1: Unblocked algorithm for updating.

Algorithm: [R,D, t] := DownDate unb(R,D, t)

Partition R→
(
RTL RTR

0 RBR

)
, D →

(
DL DR

)
, t→

(
tT
tB

)
where RTL is 0× 0, DL has 0 columns, tT has 0 elements

while m(RTL) < m(R) do
Repartition(

RTL RTR
0 RBR

)
→

R00 r01 R02

0 ρ11 rT12

0 0 R22

,
(
DL DR

)
→
(
D0 d1 D2

)
,
(
tT
tB

)
→

 t0
τ1
t2

where ρ11 and τ1 are scalars, and d1 has 1 column

[ρ11, d1, τ1] := HHouse(ρ11, d1)(
rT12

D2

)
:= ApplyHHouse

(
τ, d1, r

T
12, D2

)
Continue with(

RTL RTR
0 RBR

)
←

R00 r01 R02

0 ρ11 rT12

0 0 R22

,
(
DL DR

)
←
(
D0 d1 D2

)
,
(
tT
tB

)
←

 t0
τ1
t2

endwhile

Figure 2: Unblocked algorithm for downdating.

6

In the current step a hyperbolic Householder Transformation is computed and applied so that

I 0 0 0
0 1 0 0
0 0 I 0
0 0 0 I

− 1
τ

I 0 0 0
0 1 0 0
0 0 I 0
0 0 0 −I

0
1
0
v1

0
1
0
v1

H

H
R00 r01 R02

0 ρ rT12

0 0 R22

0 d1 D2

=

R00 r01 R02

0 ρ̃ r̃T12

0 0 R22

0 0 D̃2

 .

The vector v1 overwrites the vector d1 that it annihilates.

5 Up-and-Downdating

Finally, let us consider the general problem where A =

 B

C

D

 with AHA = BHB + CHC +DHD, where

C ∈ CmC×n, D ∈ CmD×n. Let R ∈ Cn×n be the Cholesky factor of BHB + DHD. The final question
becomes how to compute the Cholesky factor of BHB + CHC, R̃, from R, C, and D. Clearly, one can do
so by first updating and then downdating, or vise versa. We will develop an algorithm that does so in one
step rather than two. We will call this the up-and-downdating problem.

We know that

R̃HR̃ = BHB + CHC = RHR+ CHC −DHD =

 R

C

D

H In 0 0

0 ImC
0

0 0 −ImD

 R

C

D

 .

In the remainder of this section, we will define

Σn,m,k =

 In 0 0
0 Im 0
0 0 −Ik

 .

The goal is going to be to compute a sequence of transformations, {G0, G1, · · · , Gn−1} such that

GjΣn,mC ,mD
GHj = Σn,mC ,mD

and

BHB + CHC =

 R

C

D

H In 0 0

0 ImC
0

0 0 −ImD

 R

C

D

=

 R

C

D

H

G0 · · ·Gn−1

 In 0 0
0 ImC

0
0 0 −ImD

GHn−1 · · ·GH0

 R

C

D

=

(
R̃

0

)H In 0 0
0 ImC

0
0 0 −ImD

(R̃

0

)
= R̃HR̃

7

In other words, given matrix

 R

C

D

 where R is an n×n upper triangular matrix, we would like to compute

{G0, · · · , Gn−1} so that

GHn−1 · · ·GH0

 R

C

D

 =

 R̃

0
0

 and GHj

 In 0 0
0 ImC

0
0 0 −ImD

Gj =

 In 0 0
0 ImC

0
0 0 −ImD

 .

Definition 9 Let x =

 χ0

x1

y1

 with χ0 ∈ R, x1 ∈ CmC and y1 ∈ CmD be such that xHΣ1,mC ,mD
x = |χ0|2 + xH1 x1 − yH1 y1 6= 0.

We define the function
[χ̃0, u1, v1, τ] := UDHouse (χ0, x1, y1)

so that

 1 0 0

0 ImC
0

0 0 ImD

− 1
τ

 1 0 0
0 ImC

0
0 0 −ImD

 1
u1

v1

 1
u1

v1

H

 χ0

x1

y1

 =

 χ̂0

0
0

, where

τ = 1+uH
1 u1−vH

1 v1
2 .

We recognize this as the special case of the Generalized Householder Transformation where Σ = Σn,mC ,mD
.

Given the function UDHouse an algorithm that, given the Cholesky factor R of BHB+DHD, computes
the Cholesky factor of BHB + CHC is now given in Figure 3. Here is the basic idea: Assume that the
computation has progressed so that the matrices contain

(
R

D

)
=

R00 r01 R02

0 ρ11 rT12

0 0 R22

0 c1 C2

0 d1 D2

 .

In the current step an up-and-downdating Householder Transformation is computed and applied so that

I 0 0 0 0
0 1 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

− 1
τ

I 0 0 0 0
0 1 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 −I

0
1
0
u1

v1

0
1
0
u1

v1

H

R00 r01 R02

0 ρ11 rT12

0 0 R22

0 c1 C2

0 d1 D2

=

R00 r01 R02

0 ρ̃11 r̃T12

0 0 R22

0 0 C̃2

0 0 D̃2

 .

The vectors u1 and v1 overwrite the vectors c1 and d1, respectively.
A blocked algorithm for up-and-downdating is now given in Figure 4. The statement

[R12, C2, D2] := ApplyBlkUDHouse (T1, C1, D1, R12, C2, D2)

performs the update R̃12

C̃2

D̃2

 :=

 I 0 0

0 I 0
0 0 I

−
 I 0 0

0 I 0
0 0 −I

 I

C1

D1

T−T1

 I

C1

D1

H

 R12

C2

D2

8

Algorithm: [R,C,D, T] := UpAndDownDate unb(R,C,D, T)

Partition R→
(
RTL RTR

0 RBR

)
, C →

(
CL CR

)
, D →

(
DL DR

)
, T →

(
TTL TTR

0 TBR

)
where RTL and TTL are 0× 0, CL and DL have 0 columns

while m(RTL) < m(R) do
Repartition(

RTL RTR
0 RBR

)
→

R00 r01 R02

0 ρ11 rT12

0 0 R22

,
(
TTL TTR

0 TBR

)
→

 T00 t01 T02

0 τ11 tT12

0 0 T22

 ,(
CL CR

)
→
(
C0 c1 C2

)
,
(
DL DR

)
→
(
D0 d1 D2

)
where ρ11 and τ11 are scalars, c1 and d1 are columns

[ρ11, c1, d1, τ11] := UDHouse(ρ11, c1, d1)[
rT12, C2, D2

]
:= ApplyUDHouse

(
τ11, c1, d1, r

T
12, C2, D2

)
Continue with(

RTL RTR
0 RBR

)
←

R00 r01 R02

0 ρ11 rT12

0 0 R22

,
(
TTL TTR

0 TBR

)
←

 T00 t01 T02

0 τ11 tT12

0 0 T22

 ,(
CL CR

)
←
(
C0 c1 C2

)
,
(
DL DR

)
←
(
D0 d1 D2

)
endwhile

Figure 3: Unblocked algorithm for up-and-downdating.

Algorithm: [R,C,D, T] := UpAndDownDate blk(R,C,D, T)

Partition R→
(
RTL RTR

0 RBR

)
, C →

(
CL CR

)
, D →

(
DL DR

)
, T →

(
TL TR

)
where RTL and TL are 0× 0, CL and DL have 0 columns

while m(RTL) < m(R) do
Determine block size b
Repartition(

RTL RTR
0 RBR

)
→

R00 R01 R02

0 R11 R12

0 0 R22

,
(
TL TR

)
→
(
T0 T1 T2

)
,(

CL CR
)
→
(
C0 C1 C2

)
,
(
DL DR

)
→
(
D0 D1 D2

)
where R11 and T1 are b× b , C1 and D1 have b columns

[R11, C1, D1, T1] := UpAndDownDate unb(R11, C1, D1, T1)
[R12, C2, D2] := ApplyBlkUDHouse (T1, C1, D1, R12, C2, D2)

Continue with(
RTL RTR

0 RBR

)
←

R00 R01 R02

0 R11 R12

0 0 R22

,
(
TL TR

)
←
(
T0 T1 T2

)
,(

CL CR
)
←
(
C0 C1 C2

)
,
(
DL DR

)
←
(
D0 D1 D2

)
endwhile

Figure 4: Blocked algorithm for up-and-downdating.

9

where T1 = striu(I + CH1 C1 −DH
1 D1) + 1

2diag(I + CH1 C1 −DH
1 D1). The submatrix T1 may be computed

via the following steps1:

T1 := triu(I + CH1 C1 −DH
1 D1)

T1 := ScaleDiagonal
(

1
2
, T1

)
where the ScaleDiagonal operation scales the diagonal of the second argument by the first argument.
With T1 computed, we may perform the update as follows:

W := T−H1 (R12 + CH1 C2 +DH
1 D2) R̃12

C̃2

D̃2

 :=

 R12

C2

D2

−
 I

C1

−D1

W

This blocked algorithm contains within it blocked algorithms for updating and downdating, since D or C
can be taken to be “empty”.

6 Solving a System

Consider the matrices B ∈ mB×n, C ∈ rmC ×n, and D ∈ mD×n. The up-and-downdating problem starts
with a matrix R such that BHB + CHC = RHR. Where does this come from? Typically, it comes from
solving the linear least-squares problem

min
x

∥∥∥∥(B
D

)
x−

(
bB
bD

)∥∥∥∥ .
There are two standard ways of solving this problem: normal equations and QR factorization (via House-
holder transformations). Since we are using Generalized Householder transformations to updowndate, we
restrict ourselves to the case where the original R came from (the equivalent of) a QR factorization.

So, we assume that we have computed (the equivalent of) the QR factorization(
B
D

)
= QR

and then solved

Rx = QH
(
bB
bD

)
= bBD.

Now, after the updowndate step, what one is interested in is solving

min
x

∥∥∥∥(B
C

)
x̃−

(
bB
bC

)∥∥∥∥
which could be solved via the QR factorization(

B
C

)
= Q̃R̃

and then solved

R̃x̃ = Q̃H
(
bB
bC

)
= bBC .

1In practice, we find it most convenient to compute T1 at then end of the unblocked algorithm for up-and-downdating,
UpAndDownDate Unb. Note that we omit this step from the algorithm shown in Figure 3 and instead only show the storing
of the τ values along the diagonal of T1.

10

Now, we have computed up-and-downdating Householder transformations Gj so that R̃

0
0

 = GHn−1 · · ·GH0

 R

C

D

Note that bBC

b̃C

b̃D

 = GHn−1 · · ·GH0

 bBD

bC

bD

 .

Thus, applying the block up-and-downdating Householder transformations from the left will up-and-downdate
bBD into bBC . This computation may be performed via the same ApplyBlkUDHouse operation described
in the previous section and used in Figure 4:[

R̃, C̃, D̃, T̃
]

:= UpAndDownDate Blk (R,C,D, T)[
bBC , b̃C , b̃D

]
:= ApplyBlkUDHouse

(
T̃ , C̃, D̃, bBD, bC , bD

)
At this point, R and bBD have been up-and-downdated to R̃ and bBC , respectively, and so a new solution
to the system may be computed by solving

R̃x = bBC .

7 An Algorithm-by-Blocks

As part of the FLAME project, we have developed and reported on algorithm-by-blocks for various lin-
ear algebra operations and how to schedule them to distributed memory as well as multithreaded parallel
architectures. An algorithm-by-blocks views a matrix as a collection of submatrices (blocks), possibly hier-
archically. Each block becomes a unit of data and computation with blocks become units of computation.

• In [9, 6] we give algorithms-by-tiles for out-of-core LU and QR factorization. A tile is a block that
corresponds to a unit for I/O. By modifying the pivoting strategy for LU factorization and the com-
putation of Householder transformations for QR factorization, the computation can be case in terms
of operations with blocks while only increasing the operation count by a lower order term.

• In [3] a runtime system, SuperMatrix, for scheduling algorithm-by-blocks to multiple threads is intro-
duced. Implementations of algorithms-by-blocks utilizing this runtime system are discussed in a large
number of conference papers and summarized in a journal paper [12]. The idea is that the algorithm-
by-blocks generates a Directed Acyclic Graph (DAG) of operations and dependencies which are then
scheduled for execution by threads at runtime.

The effort focuses on solving the programmability problem: algorithms are coded in a style that closely
resembles the algorithms in the figures in this paper. The algorithm-by-blocks is coded in a very similar
style. By separating the generation of the DAG by the algorithm from the scheduling of that DAG, the
library routine needs not change when the scheduling policy is modified.

Details of the algorithm-by-blocks for up-and-downdating are essentially identical to those of the updating
algorithm-by-tiles in [6] and the QR factorization algorithm-by-blocks scheduled with SuperMatrix in [11] or
PLASMA in [2], except that minor modifications are made when computing with parts of the matrix that is
removed as part of the downdating. Thus, we don’t give further details here and merely report performance,
in the next section.

11

8 Performance

In this section, we provide performance results for various implementations of the up-and-downdating algo-
rithm, including a high-performance algorithm-by-blocks.

All experiments were performed using double-precision floating-point arithmetic on a Dell PowerEdge
R900 server consisting of four Intel “Dunnington” six-core processors, providing a total of 24 cores with a
combined peak performance of 255 GFLOPs (255×109 floating-point operations per second) with 96 GBytes
of shared main memory. Performance experiments were gathered under the GNU/Linux 2.6.18 operating
system. Source code was compiled by the Intel C/C++ Compiler, version 11.1.

In addition to reporting performance for implementations of the up-and-downdating operation, for com-
parison we also provide performance data for QR factorization via the UT transform, as the two operations
are closely related. We report performance for the following implementations in Figures 5 and 6:

• uddut. A sequential implementation of the blocked algorithm for the up-and-downdating operation
shown in Figure 4.

• qrut. A sequential implementation of a blocked algorithm for a QR factorization via the UT trans-
form [7].

• uddutabb. A multithreaded implementation of an algorithm-by-blocks for the up-and-downdating
operation.

• qrutabb. A multithreaded implementation of an algorithm-by-blocks for a QR factorization via the
UT transform [10].

• sequential dgeqrf. A sequential implementation of the LAPACK QR factorization routine.

• multithreaded dgeqrf. A multithreaded implementation of the LAPACK QR factorization routine.

These implementations were timed in two ways: linked to a sequential build of GotoBLAS2 1.10 and linked
to sequential build of Intel’s MKL 10.2.2. The dgeqrf implementations, likewise, were obtained from both
GotoBLAS2 1.10 and MKL 10.2.2. Also, parallelism was obtained from the uddutabb and qrutabb via
the SuperMatrix runtime system [3, 4].

Performance results are computed using an operation count of 2n2(mC +mD) for the up-and-downdate
operation and 2n2(m− n

3) for a QR factorization. This counts useful operations, ignoring extra operations
that are performed so that the blocked algorithms can cast computation in terms of matrix-matrix multi-
plication. The y-axes of the graphs are scaled to indicate the peak performance for the number of cores
utilized.

In Figure 5 (top) we report the performance of the blocked algorithms using a single core, choosing the
block size equal to 64. The rates of computation achieved by the up-and-downdating algorithms is better
than those achieved by the QR factorization because more computation is cast in terms of matrix-matrix
multiplication. Timings for the same blocked algorithms using 24 cores and an algorithmic block size of
256 are given in the bottom graph. We note that while MKL’s dgeqrf achieves very good performance,
our implementation of the QR factorization and the up-and-downdating algorithm does not when linked
to MKL’s multithreaded BLAS. This is likely due to how the matrix-matrix multiplication (dgemm) is
parallelized. When linked to the GotoBLAS2, the performance is much improved, although still well below
peak.

In Figure 6 we report the performance of the algorithms-by-blocks. The ability to store matrices by
blocks combined with a run-time system that schedules operations to threads greatly improves performance.
When the storage block size (bstore) and algorithmic blocksize (balg) are relatively large, ramp-up is slow
while the asymptotic performance is better.

12

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

10

problem size

G
F

LO
P

S

Up−and−downdate performance (blocked algorithm with sequential BLAS), b_alg = 64

UDDUT (linked to sequential GotoBLAS2 1.10)
UDDUT (linked to sequential MKL 10.2.2
QRUT (linked to sequential GotoBLAS2 1.10)
QRUT (linked to sequential MKL 10.2.2)
dgeqrf (sequential GotoBLAS2 1.10)
dgeqrf (sequential MKL 10.2.2)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

problem size

G
F

LO
P

S

Up−and−downdate performance (blocked algorithm with multithreaded BLAS), b_alg = 256

UDDUT (linked to multithreaded GotoBLAS2 1.10)
UDDUT (linked to multithreaded MKL 10.2.2
QRUT (linked to multithreaded GotoBLAS2 1.10)
QRUT (linked to multithreaded MKL 10.2.2)
dgeqrf (multithreaded GotoBLAS2 1.10)
dgeqrf (multithreaded MKL 10.2.2)

Figure 5: Performance of sequential and multithreaded implementations of the up-and-downdating opera-
tion. Top: Sequential up-and-downdating implementations compared to various sequential QR factoriza-
tions, using an algorithmic block size of 64. Bottom: Blocked algorithm for up-and-downdating linked to
multithreaded BLAS compared to various multithreaded QR factorizations, with an algorithm block size of
256.

13

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

problem size

G
F

LO
P

S

Up−and−downdate performance (algorithm−by−blocks), b_alg = 64, b_store = 256

UDDUTABB (linked to sequential GotoBLAS2 1.10)
UDDUTABB (linked to sequential MKL 10.2.2
QRUTABB (linked to sequential GotoBLAS2 1.10)
QRUTABB (linked to sequential MKL 10.2.2)
dgeqrf (multithreaded GotoBLAS2 1.10)
dgeqrf (multithreaded MKL 10.2.2)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

problem size

G
F

LO
P

S

Up−and−downdate performance (algorithm−by−blocks), b_alg = 32, b_store = 128

UDDUTABB (linked to sequential GotoBLAS2 1.10)
UDDUTABB (linked to sequential MKL 10.2.2
QRUTABB (linked to sequential GotoBLAS2 1.10)
QRUTABB (linked to sequential MKL 10.2.2)
dgeqrf (multithreaded GotoBLAS2 1.10)
dgeqrf (multithreaded MKL 10.2.2)

Figure 6: Multithreaded algorithm-by-blocks for up-and-downdating compared to various multithreaded QR
factorizations, including the multithreaded QR factorization in MKL. Algorithmic and storage blocksizes are
chosen to equal 64 and 256, respectively, in the top graph and 32 and 128 in the bottom graph.

14

9 Conclusion

In this paper, we have presented unblocked and blocked algorithms for the up- and/or downdating problem.
It has been shown that blocked algorithms can be easily formulated and that high performance can be
achieved.

Acknowledgments

This research was partially sponsored by NSF grant CCF-0917167 and a grant from Microsoft.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

References

[1] Christian Bischof and Charles Van Loan. The WY representation for products of Householder matrices.
SIAM J. Sci. Stat. Comput., 8(1):s2–s13, Jan. 1987.

[2] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled qr factorization for
multicore architectures. Concurr. Comput. : Pract. Exper., 20(13):1573–1590, 2008.

[3] Ernie Chan, Enrique Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and Robert van de Geijn. SuperMa-
trix out-of-order scheduling of matrix operations for SMP and multi-core architectures. In SPAA ’07:
Proceedings of the Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures, pages
116–126, 2007.

[4] Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı,
and Robert van de Geijn. Supermatrix: A multithreaded runtime scheduling system for algorithms-
by-blocks. FLAME Working Note #25 TR-07-41, The University of Texas at Austin, Department of
Computer Sciences, August 2007.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[6] Brian C. Gunter and Robert A. van de Geijn. Parallel out-of-core computation and updating the QR
factorization. ACM Transactions on Mathematical Software, 31(1):60–78, March 2005.

[7] Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ort́ı, Robert van de Geijn, and Field G. Van Zee.
Accumulating householder transformations, revisited. ACM Trans. Math. Softw., 32(2):169–179, 2006.

[8] C. Puglisi. Modification of the Householder method based on the compact wy representation. SIAM J.
Sci. Stat. Comput., 13:723–726, 1992.

[9] Enrique S. Quintana-Ort́ı and Robert A. van de Geijn. Updating an LU factorization with pivoting.
ACM Trans. Math. Softw., 35(2):1–16, 2008.

[10] Gregorio Quintana-Ort́ı, Enrique Quintana-Ort́ı, Ernie Chan, Field G. Van Zee, and Robert van de
Geijn. Scheduling of QR factorization algorithms on SMP and multi-core architectures. FLAME Work-
ing Note #24 TR-07-37, The University of Texas at Austin, Department of Computer Sciences, July
2007.

[11] Gregorio Quintana-Orti, Enrique S. Quintana-Orti, Ernie Chan, Robert A. van de Geijn, and Field
G. Van Zee. Scheduling of QR factorization algorithms on SMP and multi-core architectures. In
PDP ’08: Proceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), pages 301–310, Washington, DC, USA, 2008. IEEE Computer Society.

15

[12] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field G. Van Zee, and
Ernie Chan. Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions
on Mathematical Software, 36(3):14:1–14:26, July 2009.

[13] Robert Schreiber and Charles Van Loan. A storage-efficient WY representation for products of House-
holder transformations. SIAM J. Sci. Stat. Comput., 10(1):53–57, Jan. 1989.

[14] Michael Stewart and G. W. Stewart. On hyperbolic triangularization: Stability and pivoting. SIAM
Journal on Matrix Analysis and Applications, 19(4):847–860, 1998.

[15] Xiaobai Sun. Aggregations of elementary transformations. Technical Report Technical report DUKE–
TR–1996–03, Duke University, 1996.

[16] H. F. Walker. Implementation of the GMRES method using Householder transformations. SIAM J.
Sci. Stat. Comput., 9(1):152–163, 1988.

[17] Wen-Ming Yan and Kuo-Liang Chung. A block representation for products of hyperbolic householder
transform. Applied Mathematics Letters, 10(1):109–112, January 1997.

16

