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Abstract
Cooperation, a necessity for any peer-to-peer (P2P) cooperative service, is often achieved

by rewarding good behavior now with the promise of future benefits. However, in most cases,
interactions with a particular peer or the service itself eventually end, resulting in some last
exchange in which departing participants have no incentive to contribute. Without cooperation
in the last round, cooperation in any prior round may be unachievable.

In this paper, we propose leveraging altruistic participants that simply follow the protocol
as given. We show that altruism is a simple, necessary, and sufficient way to incentivize co-
operation in a realistic model of a cooperative service’s last exchange, in which participants
may be Byzantine, altruistic, or rational and network loss is explicitly considered. By focusing
on network-level incentives in the last exchange, we believe our approach can be used as the
cornerstone for incentivizing cooperation in any cooperative service.



1 Introduction

Decentralized services in which peers belonging to multiple administrative domains (MAD) provide
content for one another instead of relying on designated servers are, in principle, more scalable,
robust, and flexible than traditional client-server approaches. Experience with deployed MAD
services, however, shows that establishing and maintaining cooperation between peers is hard [15,
18]: because participants may be selfish and withhold resources unless contributing is in their best
interest, cooperative services must provide sufficient incentives for participants to contribute. These
incentive structures must of course be resilient against buggy or malicious peers; however, they must
also be robust against a more subtle threat: an overabundance of goodwill from the correct and
unselfish peers who simply follow protocol run by the service. It is, after all, the unselfishness
of correct peers—as codified in the protocol they obediently follow—that allows selfish peers to
continue receiving service without contributing their fair share. Yet, the efforts of well-meaning
peers alone may be insufficient to sustain the service. Further, asking these peers to increase their
contribution to make up for free-riders may backfire: even well-meaning peers, if blatantly taken
advantage of, may give in to the temptation of joining the ranks of the selfish, leading in turn to
more defections and to the service’s collapse.

The impact of correct and unselfish peers on the incentive structure of MAD services is not well
understood. The BAR model [3] does explicitly account for these peers—they are the altruistic
peers, who, together with the selfish rational peers and the potentially disruptive Byzantine peers,
give the model its acronym—but existing BAR-tolerant systems have essentially sidestepped the
challenge of altruism by designing protocols that neither depend on nor leverage the presence of
altruistic peers.1 While this design decision ensures the cooperation of rational peers, it does so at
the cost of making altruistic peers simply act like their selfish counterparts. It is hard not to feel the
sense of a lost opportunity: real MAD systems do include a sizable fraction of altruistic peers [2]
who are willing to continue to follow their assigned protocol despite the presence of selfish peers.
Can we leverage their good will and still give rational participants the incentive to cooperate?

In this paper we show that not only is altruism not antithetical to rational cooperation, but
that, in a fundamental way, rational cooperation can only be achieved in the presence of altruism.
To do so, we distill the issue to a rational peer’s last opportunity to cooperate with a service.

The last exchange. Rational peers are induced to cooperate with another peer (or, more generally,
with a service) by the expectation that, if they cooperate, they will receive future benefit. However,
in most cases, interaction with a particular peer or with the service itself eventually comes to an
end. In this last exchange, rational peers do not have incentive to contribute, as doing so incurs
cost without any future benefit. Unfortunately, rational cooperation throughout the protocol often
hinges on this critical last exchange, and the lack of incentive to cooperate at the end may, in a
sort of reverse domino effect, demotivate rational peers from cooperating in any prior exchange.

Most current systems address this problem in one of three ways (or some combination of them).
Some systems [3, 14] assume that rational peers interact with the service forever, and thus future
incentives always exist; others [11, 12, 13] strengthen the condition under which rational peers
depart from their assigned protocol, so that, instead of deviating as soon as it is in their interest to
do so, they deviate only if their increase in utility is above a certain threshold; others [14], finally,
try to force rational peers into cooperation by threatening them with the possibility of losing utility

1Gossip-based BAR-tolerant streaming protocols [13, 14] do rely on an altruistic source for seeding the stream but
otherwise model the gossiping peers as either rational or Byzantine.
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if they deviate. For instance, in BAR Gossip [14], peers that do not receive the data they expect
proceed to pester the guilty peer by repeatedly requesting the missing contribution.

Unfortunately, each of these approaches relies on somewhat unrealistic assumptions. Few rela-
tionships in life are infinite in length; worse, as we will show later in this paper, in many real-world
environments, in which the network is lossy and peers may be arbitrarily faulty (Byzantine), in-
centivizing cooperation may be impossible even in an infinite-length protocol. Assuming, on the
other hand, that rational players only deviate if their increase in utility is significant leaves open
the real possibility of “penny pinching” rational players shirking their responsibilities, thus causing
both cooperation and the service that relies on it to collapse. Finally, threats such as pestering are
effective only when they are credible, i.e., to feel threatened, a peer must believe that it will be
rational for the other party to pester. Unfortunately, since pestering incurs cost for both receiver
and initiator, it is hard to motivate rational peers to pester in the first place. In BAR Gossip,
pestering is a credible threat only under the somewhat implausible assumption that rational peers
always blame another peer’s lack of contribution on the unreliability of the underlying network
and, lacking a response, are willing to pester forever.

Our contributions. In this paper, we show that leveraging the presence of altruistic peers in
MAD systems offers a simple and realistic way to elicit cooperation from rational peers in the last
exchange without relying on any of the aforementioned unrealistic assumptions.

The approach that we propose models the last exchange as a finite-round game between two
players that communicate through an unreliable channel: the first player chooses to contribute or
do nothing; the second replies by either pestering or doing nothing. Because the channel is lossy,
players do not necessarily share the same view of the ongoing game; for instance, the first player
may have contributed, but the second player may not have received it. Although our approach,
like BAR Gossip, is based on pestering, we do not require implausible network assumptions or the
specter of never-ending pestering to motivate rational peers to contribute in the last exchange.
Instead, we show that the presence of altruistic nodes is both necessary and sufficient to cause
cooperation. In particular, we prove that there exists no equilibrium strategy where rational peers
contribute if all peers are either rational or Byzantine—even if we allow for an infinite number
of pestering rounds. Further, we show that the presence of altruistic participants is sufficient to
transform pestering in a credible threat. Intuitively, if rational participants believe with sufficiently
high beliefs that they may be interacting with an altruistic peer, they are motivated to pester,
making it in turn preferable for rational peers to contribute.

The fraction of altruistic participants sufficient to sustain rational contribution depends on
several system parameters, including the probability of network loss, the fraction of Byzantine
peers in the system, and the behavior that rational peers expect from altruistic and Byzantine
peers. Exploring this space through a simulator we find that:

• Altruistic peers make rational cooperation easy to achieve under realistic conditions. In par-
ticular, we find that even if less than 10% of the population is altruistic, rational participants
are incentivized to cooperate in a system where the network drops 5% of all packets and
Byzantine participants make up over 50% of the remainder of the population.

• Overly profligate altruistic peers, on the other hand, are indeed harmful to rational coop-
eration: if altruistic peers contribute every time they are pestered, then we cannot always
achieve rational cooperation; when we do, it requires an implausibly high fraction of altruistic
peers. This is good news: the less foolishly generous the behavior of the altruistic participants
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sufficient to incentivize rational contribution, the more feasible it becomes to design systems
with a sustainable population of altruistic peers.

• The uncertainty introduced by network loss is both a bane and a boon. On one hand, it
prevents each player involved in the last exchange from acquiring common knowledge about
what the other has observed and therefore significantly complicates the analysis of a player’s
optimal strategy. On the other, uncertainty lowers the bar for rational cooperation by leaving
open some possibility that the other player may be altruistic even when the observed behavior
suggests otherwise.

2 Formalizing the last exchange problem

We consider two peers in a cooperative service, P1 and P2, communicating through an unreliable
channel. We assume both peers believe to be engaged in their last exchange—neither peer expects
it will interact with the other beyond this exchange. We assume that P1 holds a contribution (e.g.,
some information) that is of value to P2. We are interested in studying under what conditions it
is possible to induce a selfish P1 to contribute. We call a non-Byzantine P2 destitute if P2 has not
observed P1’s contribution.

We model the last exchange as a game, in which P1 and P2 are the players. The game lasts
T + 1 rounds starting with round T and ending with round 0.2 In each round, P1 moves first by
either contributing (denoted by c) to P2 or doing nothing (denoted by n); P2 then responds by
either pestering (denoted by p) P1 or doing nothing (n). Each player initially is assigned a strategy
which, as we will see, the player may or may not end up following. We discuss a specific assigned
strategy in detail in Section 4.

Network loss and signals. To model the unreliable channel through which P1 and P2 communi-
cate we adopt from game theory the concept of private signals: for every action a played by some
player, both players privately observe some (possibly different) resulting signal.

Specifically, let ρ, 0 < ρ < 1, be the rate of network loss, and assume that ρ is common
knowledge. When a player plays a, the other observes a with probability 1−ρ and n with probability
ρ. Thus, although players observe perfectly their own actions, they do not observe perfectly their
peer’s action, and a player may not know what the other player has observed.3

The sequence of signals observed by a player defines that player’s history. A round-t history
ht consists of, for every completed round i, t < i ≤ T , a pair of signals ai

1 and ai
2 (corresponding

to P1 and P2’s actions) and, for round t, the proper prefix of the pair, which may be empty
(indicating P1’s move) or at

1 (indicating P2’s move).4 If it is P1’s move, given a round-t history
ht and a sequence of signals at

1a
t
2, . . ., (ht, at

1a
t
2, . . .) is the history that results from observing ht

followed by the specified sequence of signals. Similarly, if it is P2’s move, then given a round-t
history ht and a sequence of signals at

2, a
t−1
1 at−1

2 , . . ., (ht, at
2, a

t−1
1 at−1

2 , . . .) is the resulting history.

Player types and beliefs. We consider three different types of players:

• Byzantine (B): These players play an arbitrary strategy, independent of the assigned strategy.
2It is important not to confuse an exchange and a round. An exchange is an application-level transaction between

two peers, and the protocol required to achieve it may be comprised of multiple rounds of communication.
3A player who plays n knows what the other will observe; a player who observes c or p knows what the other

played.
4Throughout the paper, we use aj

i and bj
i to denote two signals from Pi in round j.
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• Altruistic (A): These players follow the assigned strategy.

• Rational (R): These players follow the assigned strategy only if deviating unilaterally does
not increase their utility.

P1 and P2 know their own type but can only make probabilistic guesses as to the type of
their peer. Pi’s beliefs are the probabilities µi(θ) that Pi assigns to the statement that the other
player is of type θ. For simplicity, we assume that, if P1 and P2 are non-Byzantine, then initially
µ1(θ) = µ2(θ) for all θ.

Utilities, strategies, and equilibrium. Sending and receiving (whether contributions or pesters)
incur positive costs: respectively, sc and rc for contributions and sp and rp for pesters. Receiving
a contribution, though, also yields a one-time benefit of bc. Doing nothing has neither a cost
nor a benefit. We assume P2 strongly prefers to receive a contribution and will pester to get it
(bc − rc − sp � 0).

We define P1 and P2’s utilities as follows:

u1(C, P̂ ) = −
(
|P̂ |rp + |C|sc

)
u2(P, Ĉ) = H[|Ĉ| − 1]bc −

(
|P |sp + |Ĉ|rc

)
where C and P̂ are, respectively, the sets of rounds in which P1 contributed and observed pes-
tering from P2; P and Ĉ are the sets of rounds in which P2 respectively pestered and observed
P1 contribute; and H[n] is the unit step function.5 Intuitively, rational players aim to minimize
contributing and pestering; additionally, P2 prefers to receive the contribution.

Let σ = (σ1, σ2) denote the strategy profile that describes the strategies σ1 and σ2 of P1 and
P2. Similarly, let µ = (µ1, µ2) denote the belief profile that describes, for each player type θ, the
beliefs µ1 and µ2 held by the two players. In general, a player’s strategy and beliefs depend on
the signals the player observed; for a given history ht, let µi(θ|ht) denote Pi’s conditional beliefs
computed using Bayes rule, and σi(a|ht) denote the conditional probability that a is played by Pi.

We are interested in perfect Bayes equilibrium, i.e., in a strategy profile σ∗ and a set of beliefs
µ∗ such that for all i ∈ {1, 2}, for all ht, and for all σ′ and corresponding beliefs µ′:

Eσ∗,µ∗ [ui|ht] ≥ Eσ′,µ′ [ui|ht]

where Eσ,µ[ui|ht] is, for each Pi, the expected utility of playing a strategy σi and holding beliefs
µi, both conditional on history ht.

Note that σ∗ and µ∗ must incorporate the expected Byzantine and altruistic strategies. We
assume that rational players expect that the strategy chosen by Byzantine players is independent
of the observed history, i.e., rational players do not expect that they can influence the strategy of
Byzantine players, and Byzantine players play independently of how they played in the past. We
denote the probability that a player expects to observe a Byzantine peer doing nothing in round t
as βt ≥ ρ (to account for network loss). We define the altruistic strategy later in Section 4.

We assume that all players are limited to actions in the strategy space. This can be accomplished
in practice if actions outside of the strategy space generate a proof of misbehavior [3, 9] and if the
associated punishments (e.g., exclusion from the service or financial penalties) are sufficient to deter
rational players and limit the damage that can be caused by any one Byzantine player.

5H[n] = 0 if n < 0; else H[n] = 1.
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3 The need for altruism

Our first result is to show that, in a bounded game, incentivizing contribution during the last
exchange is impossible without altruism, i.e., with only rational and Byzantine players.

In our proofs, we only consider a player’s expected utility when the other player is rational:
since a Byzantine player’s strategy is independent of the actions of the other player, one is always
better off doing nothing when facing a Byzantine player.

Lemma 3.1. There exists no equilibrium where a rational P2 pesters with any positive probability
if a rational P1 will not subsequently contribute.

Intuition. P2 incurs cost by pestering—with no chance of future contribution from P1.

Proof. Suppose such an equilibrium (σ∗, µ∗) exists where after some history ht, P2 pesters with
probability γ > 0 during some round t. Consider an alternate strategy/belief pair ((σ∗1, σ

′
2), µ

′) in
which P2 plays exactly as in σ∗2 until round t, after which P2 never pesters again. Since P1 will
never contribute again, then

Eσ∗,µ∗ [u2|ht,R] ≤ γ
(
−sp + Eσ∗,µ∗ [u2|(ht, p),R]

)
+ (1− γ)

(
Eσ∗,µ∗ [u2|(ht, n),R]

)
< 0 = E(σ∗1 ,σ′2),µ′ [u2|(ht, n),R]

Following σ′2 instead of σ∗2 improves P2’s utility. Contradiction.

Lemma 3.2. There exists no equilibrium where a rational P1 contributes with any positive probability
if a rational P2 will not subsequently pester.

Intuition. P1 incurs cost by contributing, yet there is no threat of pestering from P2.

Proof. Suppose such an equilibrium (σ∗, µ∗) exists where, after some history ht, P1 expects to
contribute with probability γ > 0 during some round t. Consider an alternate strategy/belief pair
((σ′1, σ

∗
2), µ

′) in which P1 plays exactly as in σ∗1 until round t, after which P1 never contributes
again. Since P1 is not pestered again from round t on,

Eσ∗,µ∗ [u1|ht,R] ≤ γ
(
−sc + Eσ∗,µ∗ [u1|(ht, c),R]

)
+(1−γ)Eσ∗,µ∗ [u1|(ht, n),R] < E(σ′1,σ∗2),µ′ [u1|(ht, n)]

Following σ′1 instead of σ∗1 improves P1’s utility. Contradiction.

Theorem 3.3. There exists no equilibrium in which a rational P1 contributes or a rational P2 pesters.

Proof. Suppose such an equilibrium (σ∗, µ∗) exists. Then there exists some last round tp ≤ T
during which P2 pesters with some positive probability and some round tc ≤ T after which P1 never
contributes again. By Lemma 3.2, a rational P1 never contributes after round tp and so tc ≥ tp.6

However, by Lemma 3.1, a rational P2 only pesters until round tc +1; thus, tp > tc. Contradiction.

A weaker, but in practice still crippling, result holds also for the unbounded version of the game.

Theorem 3.4. If there exist any positive proportion of Byzantine peers who never contribute or
always pester, then there exists no equilibrium in which a rational P1 contributes or a rational
P2 pesters.

6Recall that we count rounds in reverse.
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Proof. (Sketch) Suppose there exists some Byzantine P2 who always pesters, despite P1’s contri-
butions, then P1’s belief that P2 is Byzantine eventually grows arbitrarily close to 1. Similarly, if
a Byzantine P1 never contributes despite P2’s incessant pestering, then P2 becomes increasingly
certain P1 is Byzantine. It can be shown that, once that belief grows to the point that the expected
future benefit is lower than the cost of, respectively, contributing and pestering, P1 and P2 stop
cooperating, reducing the problem to the bounded case covered by Theorem 3.3.

4 Altruism to the rescue

Although altruism is necessary to motivate rational cooperation, computing a tight bound for
the fraction of altruistic peers needed to sustain cooperation is hard because of the uncertainty
introduced by the unreliable channel through which players communicate. For instance, when
P2 tries to determine whether to pester P1 in the current round, P2 generally does not have full
knowledge of the actions that P1 has actually played or the signals that P1 has observed. Analyzing
the game quickly becomes intractable.

We narrow the design space by considering strategies that result in a rational P2 pestering in
every round of the game (except for the last one). We feel that this is a reasonable design point,
since we expect that typically the benefit that P2 expects from P1’s contribution will significantly
outweigh the cost of a few rounds of pestering. We then prove that the threat of both altruistic
and rational pestering for every round but the last is sufficient to motivate P1 to contribute.

We assume that the cooperative service specifies the following strategy:

• P1 contributes during round T with probability 1. During round t < T , P1 contributes, if
pestered, with probability (1 − α)/(1 − ρ)2, where α is some known parameter such that
0 ≤ α < 1. Intuitively, if during round t P2 pesters a P1 following this strategy, P2 expects
to observe a contribution in round t− 1 with probability 1− α.

• P2 pesters until a contribution is received or round 0.

As stated in Section 2, altruistic players follow this strategy throughout the entire game.

4.1 Conditions for pestering

We derive the condition under which a rational P2 is motivated to pester in every round (except
the last) under three assumptions.

1. For any round t < T , a non-Byzantine P1 contributes only if pestered. We prove in Section
4.2 that rational P1 never contributes otherwise.

2. A rational P1 contributes in round t iff P1’s belief that P2 is destitute exceeds some threshold
µ̄t

1. We prove in Section 4.2 that this is indeed the case.
3. We assume that a rational P1 expects a non-Byzantine P2 to always pester (except in the

last round). The main result of this section is to prove that a rational P2 has no incentive to
unilaterally deviate from this expectation.

We start by making two simple observations that are easy to prove.

Lemma 4.1. If a rational P2 has received a contribution, P2 prefers to do nothing.

Intuition. If P2 already has the contribution, P2 receives no further benefit from receiving another
contribution. In fact, pestering and receiving another contribution only incurs cost.
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Proof. By contradiction. Let (σ∗, µ∗) be some equilibrium in which in round t, P2 pesters with some
probability γ > 0 after observing some history ht. Construct a strategy/belief pair ((σ∗1, σ

′
2), µ

′)
in which P2 plays the same as in σ∗2 but does nothing starting from h. The expected difference in
utility between σ′2 versus σ∗2 is at least

E(σ∗1 ,σ′2),µ′ [u2|ht]− Eσ∗,µ∗ [u2|ht] ≥ γsp > 0

P2 is better off following σ′2, a contradiction.

Lemma 4.2. A destitute rational P2 prefers to pester an altruistic P1 if in expectation the benefit
exceeds the cost, i.e. sp ≤ (1− α)(bc − rc).

Proof. If P1 is altruistic and is pestered, then P1 contributes with probability (1−α)/(1−ρ)2. The
condition above guarantees that the cost of pestering is at most that of the expected benefit.

We now show that a rational P2 is no less likely to get a contribution from a rational P1 if
P2 pesters more frequently. To prove this, we need to show hat P1 is as likely to contribute after
being pestered than not. As this involves P1’s beliefs, we use a lemma regarding P1’s beliefs and
behavior (Lemma 4.10) that we will later prove. Intuitively, because P1 expects a destitute P2 to
always pester whereas Byzantine P2 may not, P1 is more convinced that P2 is destitute if pestering
is observed.

Lemma 4.3. If a destitute P2 pesters following some history ht, P2 is no less likely to receive a
contribution from a rational P1 than if P2 instead did nothing.

Proof. Let ht
1 be the history that P1 has observed when P2 observed ht. If P2 pesters and P1 does

not observe it, then in either case, P1 starts from history (ht
1, n) and plays exactly the same. As a

result, the likelihood of P1 contributing and P2 receiving said contribution is exactly the same.
Thus, suppose that P1 observes the history (ht

1, p) if P2 pesters and (ht
1, n) otherwise. Consider

any two complete histories h1 = (ht
1, p, at−1

1 at−1
2 , . . . , a0

1a
0
2) and h′1 = (ht

1, n, bt−1
1 at−1

2 , . . . , b0
1a

0
2); let

mp and mn be the number of rounds following round t in which P1 observes P2 pestering and doing
nothing. By Lemma 4.10, we know that h1 must contain at least as many c as h′1; let mc and m′

c

be the number of rounds in which P1 contributes following ht
1.

Recall that P1 expects that a destitute P2 will pester every round except the last. The proba-
bility that, starting from (ht

1, p), play will evolve as specified in h1 yet P2 will not end up with the
contribution is simply ρmc+mn−1(1 − ρ)mp (since a destitute P2 never pesters in the last round),
whereas the probability that, starting from (ht

1, n), play will evolve as specified in h′1 yet P2 does
not have the contribution is

ρm′
c+mn−1(1− ρ)mp ≥ ρmc+mn−1(1− ρ)mp

since mc ≥ m′
c. As the probability of P2 not getting the contribution starting from (ht

1, p) and
(ht

1, n) is simply the sum of the probabilities of all possible complete histories h1 and h′1, it is
obvious that P2 is no less likely to get the contribution starting from (ht

1, p).

We are now ready to derive sufficient conditions under which a rational P2 prefers to pester.
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Theorem 4.4. Let t > 0 be the current round and ht be the current history. A rational and
destitute P2 prefers to pester7 if

µ2(A|ht) ≥ sp

αt−1(1− α)(bc − rc) + (1− αt−1)sp
(1)

Proof. By contradiction. Consider some equilibrium (σ∗, µ∗) in which P2 prefers not to pester in
round t after observing ht. Construct another strategy/belief pair ((σ∗1, σ

′
2), µ

′) in which P2 does
instead pester in t after ht. If P2 receives a contribution in round t − 1, P2 does nothing for the
remainder of the game; otherwise, for the remaining rounds σ′2 and σ∗2 are identical.

Consider P2’s difference in expected utility between playing σ′2 and σ∗2. There are three cases.
If P1 is Byzantine, the expected difference in utility between σ∗2 and σ′2 is sp. If P1 is rational, by
Lemma 4.3, P2 has a better chance of receiving the contribution in future rounds if P2 pesters in
round t. Hence, if at the end of round t P2 is still destitute, then the expected difference in utility
between σ′2 and σ∗2 is at most sp. Finally, if P1 is altruistic, then the expected utility from playing
an altruistic P1 starting from round t − 1 from σ∗ and σ′ are the same; let V (A, t − 1) represent
this utility. Thus, the expected difference in utility between σ∗2 and σ′2 is

Eσ∗,µ∗ [u2|ht,A]− E(σ∗1 ,σ′2),µ′ [u2|ht,A] = sp − (1− α)(bc − rc − V (A, t− 1))

By Lemma 4.2, pestering an altruistic P1 until P2 gets the contribution or t = 0 is in P2’s best
interest, and thus V (A, t− 1) ≤ −sp + (1−α)(bc − rc) + αV (A, t− 2), where V (A, 0) = 0. Solving
the recursion, we have V (A, t− 1) ≤ 1−αt−1

1−α (−sp + (1− α)(bc − rc)). Using condition (1) we get:

Eσ∗,µ∗ [u2|ht]− E(σ∗1 ,σ′2),µ′ [u2|ht] ≤ sp − µ2(A|ht)((1− αt−1)sp + αt−1(1− α)(bc − rc)) ≤ 0

This implies that P2 prefers to play σ′2 over σ∗. Contradiction.

4.2 Conditions for contributing

In every round, P1 must make a choice:

• Pay the cost of contributing now (sc), hoping to stop a non-Byzantine P2 from pestering in
the future. The savings are a function of the remaining rounds and the beliefs about P2.

• Delay contributing, at the risk of being pestered (with cost at most (1−ρ)rp), hoping to glean
more about P2’s type.

Procrastination has its lure. Since we are considering strategies where a non-Byzantine P2 al-
ways pesters (minus the last round) whereas a Byzantine P2 may not, every action and signal can
drastically affect future play and expected utilities, and possibly save P1 the cost of contributing.
Moreover, doing nothing now does not preclude P2 from contributing in the future.

In this section we show that if P1 can muster a sufficiently strong belief that P2 is destitute,
procrastination is something best put off until tomorrow: we prove that for every round t sufficiently
removed from the end of the game, there exists a belief threshold µ̄t

1 beyond which contributing
yields a higher expected utility for P1. Furthermore, we prove Lemma 4.10, which we previously

7Technically, P2 weakly prefers to pester (i.e., non-strict inequality), as the expected utility of pestering and
doing nothing may be the same. For simplicity, we assume for the remainder of the paper that weak preference for
pestering/contributing is sufficient and that players do nothing only if the preference is strong (i.e., strict inequality).

8



used to prove Lemma 4.3. We show these results under the assumption that a destitute P2 pesters
in every round (minus the last) and non-destitute P2 never pester.

“Sub-typing” non-Byzantine P2: D and ¬D. Recall that Lemma 4.1 states that a non-
Byzantine P2, upon receiving a contribution, stops pestering. Thus, a rational P1 is only interested
in contributing if there is a sufficient pestering threat from a destitute P2. Because destitute players
are effectively responsible for motivating P1 to contribute, we divide the group of non-Byzantine
players into two “sub-types”: destitute (D) and non-destitute (¬D).

These sub-types simplify the expected strategy of P2: if P2 is of type ¬D, P2 always does
nothing (by Lemma 4.1), whereas a P2 of type D always pesters except in round 0. In addition, if
P1 contributes, a P2 of type D has a 1− ρ probability of observing the contribution and becoming
a type ¬D:

µ1(D|(ht, c)) = ρµ1(D|ht) µ1(¬D|(ht, c)) = µ1(¬D|ht) + (1− ρ)µ1(D|ht)

Since P1 may observe a non-Byzantine P2 play either n or p, P1 can never choose an action knowing
for certain that P2 is Byzantine;8 thus, for any history ht, µ1(B|ht) < 1 and µ1(D|ht) > 0.

Result: P1 contributes only if pestered. We now prove that P1 contributes only if pestered.
This prevents a rational P2 from waiting for free contributions that may come without pestering.

We begin by stating some basic results that are easily proven.

Lemma 4.5. P1 prefers to do nothing for rounds t ≤ τ , where

τ =
⌈

1
(1− ρ)2

sc

rp

⌉
(2)

Lemma 4.6. Let ht and (h′)t be two histories observed by P1. Then µ1(D|ht) = µ1(D|(h′)t) if

1. For every round, P2’s signals in ht and (h′)t are the same;
2. The number of contributions played are equal in ht and (h′)t; and
3. The last contribution in both ht and (h′)t are followed by a pester at some future round.

Proof. Since pestering has been observed after the last contribution and a non-destitute P2 would
never pester (Lemma 4.1), µ1(¬D|ht) = µ1(¬D|(h′)t) = 0. Letting C represent the rounds in which
P1 contributed and P̂ and N̂ be the rounds in which P2 is observed to pester and do nothing,

µ1(D|ht) =
µ1(D)(1− ρ)|P̂ |ρ|N̂ |+|C|

µ1(B)
∏

i∈P̂ (1− βi)
∏

i∈N̂ βi + µ1(D)(1− ρ)|P̂ |ρ|N̂ |+|C|
= µ1(N |(h′)t)

We now show that P1 prefers to contribute only if pestering has been observed since the last
contribution. In other words, given the bound in condition (3), P1 is never better off trying to
contribute unless P1 knows for certain that P2 is destitute.

Lemma 4.7. Let t < T be the current round, where

T <
1− ρ + ρ2

ρ2(1− ρ)2
sc

rp
(3)

If P1 has contributed and has not been pestered since, then P1 prefers not to contribute in round t.
8P1 can become certain in the last round if a Byzantine P2 decides to pester, but at that point the game is over.
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Intuition. After contributing, P1’s belief that P2 is destitute is reduced by a factor of 1/ρ.
A sufficiently lossy network and high pestering cost could potentially motivate P1 to send an
unsolicited contribution to avoid further pestering. Condition (3) ensures that P1 is better off
waiting for P2 to pester .

Proof. By Lemma 4.5, P1 never contributes starting from round τ (as defined in (2)); thus,
assume t > τ . We first prove, by contradiction, the lemma if after round t, P1 contributes
only after being pestered again. Let mp and mc be the number of rounds since P1 has ob-
served pestering and contributing, i.e., P1 has done nothing and observed P2 doing nothing
in the past mc and mp rounds. By assumption, mp > mc ≥ 0. Let the current history be
ht = (ht+mc+1, cn, at+mc

1 at+mc
2 , . . . , at+1

1 at+1
2 ) where ai

1 = ai
2 = n for all t < i ≤ t + mc.

Let (σ∗, µ∗) be some equilibrium such that P1 prefers to contribute in some round t. Let V (θ)
be the continuation payoff after P1 contributes in round t given that P2 is of type θ. Construct
an alternate strategy/belief pair (σ′, µ′) such that P1 does not contribute in round t but for the
remaining rounds is identical to σ∗ (as if P1 had contributed in round t). Thus, the continuation
payoff from playing σ′ after doing nothing in round t is also V (θ). Note that V (¬D) = 0 since a
non-Byzantine P2 who has the contribution never pesters by Lemma 4.1.

Following σ∗ and contributing during round t results in an expected payoff of

−sc + µ∗1(D|(ht, c))V (D) + µ∗1(B|(ht, c))V (B)

whereas following σ′ and doing nothing earns

µ′1(D|(ht, n))V (D) + µ′1(B|(ht, n))V (B)

Observe that µ1(B|(ht, n)) = µ1(B|(ht, c)). Since σ∗ is an equilibrium strategy and µ∗1(θ|ht) =
µ′1(θ|ht), contributing results in a higher utility only if

−sc ≥ (1− ρ)µ∗1(D|ht)V (D)

Observe that by Bayes rule,

µ∗1(D|ht) =
µ∗1(D|ht+mc+1)ρmc+1

µ∗1(D|ht+mc+1)(ρmc+1 + (1− ρ)) + µ∗1(¬D|ht+mc+1) +
∏mc

i=0 βiµ∗1(B|ht+mc+1)

≤ ρ2

1− ρ + ρ2

Note that P1, in any optimal strategy, can do no worse than simply being pestered for the remainder
of the game. Thus, V (D) ≥ −T (1− ρ)rp, giving us

−sc ≥ −ρ2(1− ρ)2

1− ρ + ρ2
Trp

which contradicts (3).
We have proven the lemma if we assume that P1 will not contribute in the future unless pestered

again. We now finish the proof of the original lemma using induction; all we need is to show that
P1 does not contribute in the future unless pestering has been observed since P1’s last contribution.

Base case: t = τ + 1. By Lemma 4.5, P1 never contributes in the future.

Inductive step. Assume true for round t, τ +1 ≤ t ≤ t0; we prove our lemma for round t = t0+1.
By the inductive hypothesis, P1 will not contribute in future rounds unless pestered.
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We now prove that a rational P1 prefers to contribute only if pestered in the prior round.

Lemma 4.8. Let t < T be the current round and ht be the current history. Furthermore, suppose
that from round t on, P1 contributes iff P1’s belief that P2 is destitute is at least some threshold
µ̄t

1. If P1 was not pestered in round t + 1 and condition (3) holds, then P1 prefers to do nothing.

Intuition. The belief that P2 is destitute is strictly non-decreasing when P1 observes P2 do nothing,
and the number of expected pesters also drops as the number of remaining rounds decreases. Thus,
if P1 intends to contribute in the next round despite observing n, then P1 is better off contributing
in the current round.

Proof. By Lemma 4.5, P1 never contributes starting from round τ (as defined in (2)). Also, if P1 has
contributed and not been pestered since P1’s last contribution, then this follows from Lemma 4.7.
Thus, assume that t > τ and that either P1 has never contributed or has been pestered since the
last contribution. Let tp be the last round in which P1 observed pestering.

We prove Lemma 4.8 by first assuming for rounds t′ < t, P1 contributes only if pestered in
round t′ + 1. For the sake of contradiction, assume that there exists some equilibrium (σ∗, µ∗)
such that for tp > t + 1 (i.e., P1 last observed pestering more than one round ago), P1 does prefer
to contribute following some history (ht, nn). P1’s beliefs in P2 being non-Byzantine must be at
least as high following some history (ht, np); thus, P1 must also prefer to contribute following some
history (ht, np). Consider an alternate strategy/belief pair (σ′, µ′) in which P1 instead contributes
in round t+1 after ht but always does nothing in round t; the strategy played in subsequent rounds
is the optimal one.

If P2 is destitute, then starting from some history ht, P1 expects to earn

Eσ∗,µ∗ [u1|ht,D] = −sc + (1− ρ)(−rp + Eσ∗,µ∗ [u1|(ht, np, c),D]) + ρEσ∗,µ∗ [u1|(ht, nn, c),D]

following σ∗ versus

Eσ′,µ′ [u1|ht,D] = −sc + ρ((1− ρ)(−rp + Eσ′,µ′ [u1|(ht, cp, n),D]) + ρEσ′,µ′ [u1|(ht, cn, n),D])

following σ′. By assumption, after round t, P1 contributes only if pestered in the prior round.
If P1 is never pestered again, then P1’s continuation utility from round t on is 0. Suppose then
that P1 is pestered again in some round k < t; let hk = (ht, np, bt−1

1 at−1
2 , . . . , ak

1b
k
2) and (h′)k =

(ht, cp, at−1
1 at−1

2 , . . . , ak
1b

k
2), where bt−1

1 = c, bk
2 = p, and aj

i = n for all i ∈ {1, 2} and k ≤ j < t.
By Lemma 4.6, µ∗1(D|hk) = µ∗1(D|(h′)k). It follows that P1, in maximizing utility, plays the

same actions and expects the same responses following σ∗ and σ′. Thus, the continuation utility
from either strategy is the same, and thus Eσ∗,µ∗ [u1|hk,D] = Eσ′,µ′ [u1|(h′)k,D].

A similar argument gives us

Eσ∗,µ∗ [u1|(ht, nn, bt−1
1 at−1

2 , . . . , ak
1b

k
2),D] = Eσ′,µ′ [u1|(ht, cn, at−1

1 at−1
2 , . . . , ak

1, b
k
2),D]

Thus, comparing Eσ∗,µ∗ [u1|ht,D] and Eσ′,µ′ [u1|ht,D], we have

Eσ∗,µ∗ [u1|ht,D]− Eσ′,µ′ [u1|ht,D] ≤ −(1− ρ)2rp < 0

Finally, it can be easily verified through similar arguments that against a Byzantine player,
the expected utility of playing either σ∗ or σ′ is exactly the same. Thus, we have Eσ∗,µ∗ [u1|ht] <
Eσ′,µ′ [u1|ht], contradicting the assumption that (σ∗, µ∗) is an equilibrium.
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We have proven the lemma if we assume that P1 does not contribute in some future round t′ > t
unless pestered in round t′ + 1. We now finish the proof of the original lemma using induction; all
we need is to show is that this assumption holds.

Base case: t = τ + 1. By Lemma 4.5, P1 never contributes in the future.

Inductive step. Assume true for round t, τ +1 ≤ t ≤ t0; we prove our lemma for round t = t0+1.
By the inductive hypothesis, P1 will not contribute in future rounds unless pestered in the prior
round.

We can now prove that P1 contributes only when pestered.

Theorem 4.9. Let t be the current round, where t < T . Suppose that P1 observed nothing from
P2 in round t + 1. Then P1 prefers to do nothing in round t if (3) holds.

Proof. By Theorem 4.14 (proved later) and Lemma 4.8.

Result: P1 is as likely to contribute when pestered. We prove that a rational P1 is more
likely to contribute when P2 pesters. This result is previously used in proving Lemma 4.3.

Lemma 4.10. Suppose that P1 contributes iff P1’s belief that P2 is destitute is at least some threshold
µ̄t

1. Let hk = (ht, at
1p, . . . , ak+1

1 ak+1
2 ) and (h′)k = (ht, at

1n, bt−1
1 at−1

2 , . . . , bk+1
1 ak+1

2 ) be two possible
round-k histories from P1’s perspective, where k ≤ t. Then either:

1. µ1(D|hk) ≥ µ1(D|(h′)k) and hk contains at least as many c’s as (h′)k, i.e., for k < i ≤ t,
|{ai

1|ai
1 = c}| = |{bi

1|bi
1 = c}|; or

2. hk contains more c’s than (h′)k, i.e., for k < i ≤ t, |{ai
1|ai

1 = c}| > |{bi
1|bi

1 = c}|.

Proof. By induction on k.

Base case: k = t. Then since P1 expects that destitute P2 always pester, whereas Byzantine
P2 may not, then

µ1(D|(ht, at
1p)) =

(1− ρ)µ1(D|(ht, at
1))

(1− ρ)µ1(D|(ht, at
1)) + (1− βt)µ1(B|(ht, at

1))

≥ ρµ1(D|(ht, at
1))

ρµ1(D|(ht, at
1)) + µ1(¬D|(ht, at

1)) + βtµ1(B|(ht, at
1))

= µ1(D|(ht, at
1n))

Inductive step. Assume true for all k = t0 ≤ t; we prove the lemma for k = t0 − 1. By the
inductive hypothesis, we know that either:
µ1(D|ht0) ≥ µ1(D|(h′)t0) and ht0 contains at least as many c’s as (h′)t0 . If P1 prefers
to contribute following (h′)t0 , then P1 must also prefer to contribute following ht0 . Similarly, if
P1 prefers to do nothing following ht0 , P1 must also prefer to do nothing following (h′)t0 . In either
case, µ1(D|(ht0 , at0

1 at0
2 )) ≥ µ1(D|((h′)t0 , at0

1 at0
2 )).

If P1 only prefers to contribute following ht0 , then (ht0 , cat0
2 ) has more contributions than

((h′)t0 , nat0
2 ).

ht0 contains more c’s than (h′)t0 . If the number of c’s in ht0 exceeds the number in (h′)t0 by
more than one, then even if P1 contributes following (h′)t0 and not ht0 , then ((h′)t0 , cat0

2 ) still has
fewer contributions than (ht0 , nat0

2 ). Also, if P1 prefers to contribute (or do nothing) following both
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ht0 and (h′)t0 , then (ht0 , at0
1 at0

2 ) still contains more contributions than ((h′)t0 , at0
1 at0

2 ). Either way,
the inductive step is trivially proven.

Thus, suppose that ht0 has only one more c than (h′)t0 and P1 prefers to contribute after (h′)t0

but not ht0 . Since P1 prefers to contribute in (h′)t0 , by Lemma 4.7, this implies that µ1(¬D|ht0) =
µ1(¬D|(h′)t0) = 0. Let t̄ be the minimum (latest) round such that |{ai

1|ai
1 = c}| = |{bi

1|bi
1 = c}| for

t̄ < i ≤ t, and let ht̄ = (ht, at
1p, at−1

1 at−1
2 , . . . , at̄+1

1 at̄+1
2 ) and (h′)t̄ = (ht, at

1n, bt−1
1 at−1

2 , . . . , bt̄+1
1 at̄+1

2 ).
Since t̄ > t0, by the inductive hypothesis, µ1(D|ht̄) ≥ µ1(D|(h′)t̄) since ht̄ and (h′)t̄ have the

same number of contributions. Let P̂ be the rounds in which pestering is observed in ht0 following
ht̄, N̂ be the rounds in which doing nothing is observed in ht0 following ht̄, and mc be the number
of rounds in which P1 contributes in ht0 following ht̄. Then we know that

µ1(D|(ht0 , n)) = ρmc
µ1(D|ht̄)(1− ρ)|P̂ |ρ|N̂ |

µ1(D|ht̄)(1− ρ)|P̂ |ρ|N̂ | + µ1(B|ht̄)
∏

i∈P̂ (1− βi)
∏

i∈N̂ βi

whereas

µ1(D|((h′)t0 , c)) = ρmc
µ1(D|(h′)t̄)(1− ρ)|P̂ |ρ|N̂ |

µ1(D|(h′)t̄)(1− ρ)|P̂ |ρ|N̂ | + µ1(B|(h′)t̄)
∏

i∈P̂ (1− βi)
∏

i∈N̂ βi

It can be shown that µ1(D, (ht0 , nat0
2 )) ≥ µ1(D, ((h′)t0 , cat0

2 )) follows.

Result: P1 (sometimes) contributes if pestered. Up to now, we have proven that if a belief
threshold exists, then P1 contributes only if pestered in the previous round. We now prove that
such a threshold exists in every round except near the end of the game (Lemma 4.5 and Theorem
4.14); one simply needs to check whether beliefs fall above or below the threshold to determine
whether it is in P1’s best interest to contribute.

We first observe that Bayes rule, which maps prior beliefs to posterior beliefs, is continuous:
given some prior belief and its posterior beliefs, after any series of signals, we can find (infinitely
many) other prior beliefs which, after the same sequence of signals, map to posterior beliefs that
are arbitrarily close to the original posterior belief.

Lemma 4.11. Let ht be the current history and µ1(θ|ht) be P1’s belief. Then for all ε > 0, there
exists some δ > 0 such that for all beliefs µ′1(θ|(h′)t) where 0 ≤ µ′1(D|(h′)t) − µ1(D|ht) < δ and
0 < µ′1(¬D|(h′)t)− µ1(¬D|ht) < δ,

0 ≤ µ′1(D|((h′)t, at
1a

t
2))− µ1(D|(ht, at

1a
t
2)) < ε

and
0 ≤ µ′1(¬D|((h′)t, at

1a
t
2))− µ1(¬D|(ht, at

1a
t
2)) < ε

Proof. Recall that a destitute P2 always pesters, a non-destitute P2never pesters, and a Byzan-
tine P2 pesters with some probability independent of the history. Letting σ̂θ(at

2|(ht, at
1)) be the

probability of observing a type-θ P2 play at
2 after history (ht, at

1), we have

ε > µ′1(D|((h′)t, at
1a

t
2))− µ1(D|(ht, at

1a
t
2))

=
µ′1(D|((h′)t, at

1))σ̂D(at
2|((h′)t, at

1))∑
θ∈{D,¬D,B} µ′1(θ|((h′)t, at

1))σ̂θ(at
2|((h′)t, at

1))
− µ1(D|(ht, at

1))σ̂D(at
2|(ht, at

1))∑
θ∈{D,¬D,B} µ1(θ|(ht, at

1))σ̂θ(at
2|(ht, at

1))
> 0
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Consider the two signals that P1 may observe from P2.

Case 1. a2 = n. Then we need

ε >
µ′1(D|((h′)t, at

1))ρ
µ′1(D|((h′)t, at

1))ρ + µ′1(¬D|((h′)t, at
1)) + µ′1(B|((h′)t, at

1)))βt

− µ1(D|(ht, at
1))ρ

µ1(D|(ht, at
1))ρ + µ1(¬D|(ht, at

1)) + µ1(B|(ht, at
1)))βt

and

ε >
µ′1(¬D|((h′)t, at

1))
µ′1(D|((h′)t, at

1))ρ + µ′1(¬D|((h′)t, at
1)) + µ′1(B|((h′)t, at

1)))βt

− µ1(¬D|(ht, at
1))

µ1(D|(ht, at
1))ρ + µ1(¬D|(ht, at

1)) + µ1(B|(ht, at
1)))βt

Since µ′1(D|(h′)t) ≥ µ1(D|ht) and µ′1(¬D|(h′)t) ≥ µ1(¬D|ht), it suffices to show that

ε >
βt

ρ
(µ′1(D|(h′)t)− µ1(D|ht))

and
ε >

βt

ρ2
(µ′1(¬D|(h′)t)− µ1(¬D|ht))

Let δn = ερ2/βt.

Case 2. at
2 = p. Since a non-destitute player never pesters, ε > µ′1(¬D|((h′)t, at

1p))−µ1(¬D|(ht, at
1p)) =

0 which is trivially satisfied for any δ. For the destitute type, we need

ε >
µ′1(D|((h′)t, at

1))(1− ρ)
µ′1(D|((h′)t, at

1))(1− ρ) + (1− µ′1(D|((h′)t, at
1)))(1− βt)

− µ1(D|(ht, at
1))(1− ρ)

µ1(D|(ht, at
1))(1− ρ) + (1− µ1(D|(ht, at

1)))(1− βt)

If βt = 1, we end up with ε > 0, which is trivially satisfied. Thus, assume that βt < 1. It is
sufficient to show that

ε >
1− ρ

1− βt
(µ′1(D|(h′)t)− µ1(D|ht))

Let δp = ε(1− βt)/(1− ρ) > µ′1(D|(h′)t)− µ1(D|ht).

It is easy to show that δ = min(δn, δp) satisfies the necessary conditions.

Lemma 4.12. Let t be the current round, ht be the current history, and µ1(θ|ht) be P1’s belief.
Then for all ε > 0 and k, 0 < k ≤ t, there exists some δ > 0 such that for all beliefs µ′1(θ|(h′)t),
where 0 ≤ µ′1(D|(h′)t)− µ1(D|ht) < δ and 0 ≤ µ′1(¬D|(h′)t)− µ1(¬D|ht) < δ,

0 ≤ µ′1(D|((h′)t, at
1a

t
2, . . . , a

k
1a

k
2))− µ1(D|(ht, at

1a
t
2, . . . , a

k
1a

k
2)) < ε

and
0 ≤ µ′1(¬D|((h′)t, at

1a
t
2, . . . , a

k
1a

k
2))− µ1(¬D|(ht, at

1a
t
2, . . . , a

k
1a

k
2)) < ε
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Proof. By induction on k.

Base case: k = t. By Lemma 4.11.

Inductive step. Assume true for all k = t0 ≤ t; we now prove it true for k = t0 − 1. By Lemma
4.11, we know that in round t0, for any history ht0 , associated belief µ1(θ|ht0), and ε > 0, we
can find a ε′ such that for all beliefs µ′1(θ|(h′)t0) where 0 ≤ µ′1(D|(h′)t0) − µ1(D|ht0) < ε′ and
0 ≤ µ′1(¬D|(h′)t0)− µ1(¬D|ht0) < ε′,

0 ≤ µ′1(D|((h′)t0−1, at0−1
1 at0−1

2 ))− µ1(D|(ht0−1, at0−1
1 at0−1

2 )) < ε

and
0 ≤ µ′1(¬D|((h′)t0−1, at0−1

1 at0−1
2 ))− µ1(¬D|(ht0−1, at0−1

1 at0−1
2 )) < ε

By the inductive hypothesis, there exists some δ > 0 such that for all beliefs µ′1(θ|ht) where
0 ≤ µ′1(D|ht)− µ1(D|ht) < δ,

0 ≤ µ′1(D|((h′)t, at
1a

t
2, . . . , a

t0
1 at0

2 ))− µ1(D|(ht, at
1a

t
2, . . . , a

t0
1 at0

2 )) < ε′

and
0 ≤ µ′1(¬D|((h′)t, at

1a
t
2, . . . , a

t0
1 at0

2 ))− µ1(¬D|(ht, at
1a

t
2, . . . , a

t0
1 at0

2 )) < ε′

Chaining these two together gives us a δ and ε that fulfill the needed conditions.

We need one more important result: if P1 plays an equilibrium strategy and P2 is Byzantine, P1’s
expected utility from contributing is no more than that from doing nothing.

Lemma 4.13. Let t be the current round and ht be P1’s current history, such that t > τ . Assume
that there exists a belief threshold for rounds t− 1 through 0. Then for any equilibrium (σ∗, µ∗),

−sc + Eσ∗,µ∗ [u1|(ht, c),B] ≤ Eσ∗,µ∗ [u1|(ht, n),B]

Intuition. Since a Byzantine P2’s likelihood of pestering is independent of contribution, P1 never
does better contributing if P1’s peer is Byzantine.

Proof. Suppose that −sc + Eσ∗,µ∗ [u1|(ht, c),B] > Eσ∗,µ∗ [u1|(ht, n),B]. Since a Byzantine P2’s
actions are independent of P1’s actions, this implies that if P1 expects to contribute n times
in continuation from contributing in round t, P1 expects to contribute more than n + 1 times
in continuation from doing nothing in round t. It follows that there must exist two histories
hk = (ht, bt

1a
t
2, a

t−1
1 at−1

2 , . . . ak+1
1 , ak+1

2 ) and (h′)k = (ht, at
1a

t
2, . . . , a

k+1
1 ak+1

2 ) such that k < t, at
1 = n,

bt
1 = c, and P1 prefers to contribute following (h′)k but not hk.

Following this contribution, by Lemma 4.8, P1 does not prefer contributing again unless pestered.
If P1 is never pestered again, then P1 never contributes again in either history. Otherwise, if P1 is
next pestered in some round ` ≤ k, then we know by Lemma 4.6 that

µ1(D|((h′)k, bk
1a

k
2, a

k−1
1 ak−1

2 , . . . , a`
1p) = µ1(D|(hk, ak

1a
k
2, . . . , a

`
1p))

where bk
1 = c and aj

i = n for i ∈ {1, 2} and ` ≤ j ≤ k. It follows that P1 plays the same exact
strategy from this point on in either history. Consequently, P1, starting from any history (ht, n),
contributes at most once before returning to the same strategy that would have been played if
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P1 had started from (ht, c). It follows that the expected number of additional contributions after
doing nothing cannot exceed 1, thus

−sc + Eσ∗,µ∗ [u1|(ht, c),B] ≤ Eσ∗,µ∗ [u1|(ht, n),B]

contradicting the original assumption.

We now show the existence of a belief threshold.

Theorem 4.14. Let τ be as defined in (2); t be the current round, where τ < t ≤ T ; and ht be the
current history. Then there exists some threshold µ̄t

1 ≤ 1 such that:

1. If µ1(D|ht) ≥ µ̄t
1, P1 prefers to contribute; and

2. If µ1(D|ht) < µ̄t
1, P1 prefers to do nothing.

Proof. By induction.

Base case: t = τ + 1. Let (σ∗, µ∗) be some equilibrium. P1 prefers to contribute iff

−sc + Eσ∗,µ∗ [u1|(ht, c)] ≥ Eσ∗,µ∗ [u1|(ht, n)]

Since P1 never prefers to contribute afterwards, we have

−sc ≥ Eσ∗,µ∗ [u1|(ht, n)]− Eσ∗,µ∗ [u1|(ht, c)] = −(1− ρ)2µ∗1(D|ht)τrp

Solving for µ∗1(D|ht), we have

µ∗1(D|ht) ≥ 1
(1− ρ)2τ

sc

rp
= µ̄τ+1

1

Inductive step. Assume true for all t, τ < t ≤ t0; we prove t = t0 + 1 by contradiction. If a
threshold does not exist, there must be some beliefs (in P2 being destitute) in which P1 prefers to
contribute and higher beliefs in which P1 prefers to do nothing, i.e., there must exist some ηt

1 and
δ > 0 such that either:

1. For µ1(D|ht) = ηt
1, P1 prefers to do contribute, and for µ1(D|ht) such that ηt

1 < µ1(D|ht) <
ηt
1 + δ, P1 prefers to do nothing; or

2. For µ1(D|ht) such that ηt
1 − δ < µ1(D|ht) < ηt

1, P1 prefers to contribute, and for µ1(D|ht) =
ηt
1, P1 prefers to do nothing.

We only consider the first case, as the proof of the other case is very similar. Let (σ∗, µ∗) be an
equilibrium such that µ∗1(D|ht) = ηt

1. By the inductive hypothesis, there exists a threshold µ̄i
1 for

all rounds i < t. Let

ε = min
0≤i<t

{
µ̄i

1 − µ∗1(D|(ht, at
1a

t
2, . . . , a

i+1
1 ai+1

2 )) | µ̄i
1 > µ∗1(D|(ht, at

1a
t
2, . . . , a

i+1
1 ai+1

2 ))
}

ε represents the minimum difference between P1’s belief and the threshold at any future round
when P1’s belief in P2 being destitute is less than that round’s threshold.

By Lemma 4.12, we know that we can find some belief µ′1(θ|(h′)t) such that for 0 ≤ µ′1(D|(h′)t)−
µ∗1(D|ht) < δ, 0 ≤ µ′1(¬D|(h′)t)− µ∗1(¬D|ht) < δ, and 0 ≤ i < t,

0 ≤ µ′1(D|((h′)t, at
1a

t
2, . . . , a

i+1
1 ai+1

2 ))− µ∗1(D|(ht, at
1, a

t
2, . . . , a

i+1
1 ai+1

2 )) < ε
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Thus, for any round i < t, µ∗1(D|ht, at
1a

t
2, . . . , a

i+1
1 ai+1

2 )) < µ̄i
1 iff µ′1(D|((h′)t, at

1a
t
2, . . . , a

i+1
1 ai+1

2 )) <
µ̄i

1. It follows that a rational P1 with belief µ∗1(θ|ht), upon observing some non-empty sequence of
signals after ht, prefers to play the same action as if P1 held the belief µ′1(θ|(h′)t) and observed the
same non-empty sequence of signals after (h′)t. Given that P2 is of type θ, P1’s expected utility
of playing action at

1 followed by the optimal strategy σ∗ with either belief µ∗1(θ|ht) or µ′1(θ|(h′)t)
must be equal; let V (at

1, θ) be this expected continuation utility:

V (at
1, θ) = Eσ∗,µ∗ [u1|(ht, at

1), θ] = Eσ∗,µ′ [u1|((h′)t, at
1), θ]

Given belief µ∗1, P1 prefers to contribute during round t; by Lemma 4.7, this implies that µ∗1(¬D|ht) =
0 and thus µ∗1(B|ht) = 1 − µ∗1(D|ht). However, since µ∗1(D|ht) = ηt

1 < µ′1(D|(h′)t) < ηt
1 + δ, then

given belief µ′1, P1 prefers to do nothing during round t0 + 1:

−sc + Eσ∗,µ∗ [u1|(ht, c)] ≥ Eσ∗,µ∗ [u1|(ht, n)]

−sc + Eσ∗,µ′ [u1|((h′)t, c)] < Eσ∗,µ′ [u1|((h′)t, n)]

We know that

Eσ∗,µ[u1|(h, at
1)] = µ1(B|h)V (at

1,B) + µ1(D|h)V (at
1,D) + µ1(¬D|h)V (at

1,¬D)

for µ ∈ {µ∗, µ′}, h ∈ {ht, (h′)t}, and at
1 ∈ {c, n}. By Lemma 4.1, a non-destitute P2 stops

pestering if P2 has the contribution. By Lemma 4.8 and the inductive hypothesis (there exists a
threshold starting from round t0), P1 never contributes unless pestered; this gives us V (at

1,¬D) = 0.
Combining the last two groups of expressions and moving terms around, we have

µ∗1(B|ht)(V (n,B)− V (c,B) + sc) ≤ µ∗1(D|ht)(−sc + ρV (c,D)− V (n,D))
µ′1(B|(h′)t)(V (n,B)− V (c,B) + sc) > µ′1(D|(h′)t)(−sc + ρV (c,D)− V (n,D))

By Lemma 4.13 and the inductive hypothesis, V (n,B)−V (c,B)+sc ≥ 0. If V (n,B)−V (c,B)+
sc = 0, an immediate contradiction arises:

−sc + ρV (c,D)− V (n,D)) < 0 ≤ −sc + ρV (c,D)− V (n,D)

Thus, assuming that V (n,B)− V (c,B) + sc > 0, we have

µ∗1(B|ht)
µ∗1(D|ht)

≤ −sc + ρV (c,D)− V (n,D)
V (n,B)− V (c,B) + sc

<
µ′1(B|(h′)t)
µ′1(D|(h′)t)

However, µ′1(D|(h′)t) > µ∗1(D|ht) and

µ∗1(B|ht) = 1− µ∗1(D|ht) > 1− µ′1(D|(h′)t) = µ′1(B|(h′)t) + µ′1(¬D|(h′)t) ≥ µ′1(B|(h′)t)

Contradiction.

5 Working the numbers

To gain a better understanding for the implications of Section 4 on the design of MAD coop-
erative services, we explore, through simulation, the parameter space for which its claims hold.
We are especially interested in answering four questions: 1) What percentage of altruistic peers
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Figure 1: The belief thresholds and behavior of P1’s beliefs. Solid lines represent the threshold;
dotted lines represent how an initial belief of 1−µ1(B) = 0.85 evolves if P1 is continually pestered.

is sufficient to motivate a rational peer to pester—and what percentage of Byzantine peers does
it take to discourage it? 2) If all non-Byzantine peers are motivated to pester, what percentage
of Byzantine peers is required to discourage a rational peer from contributing? 3) How sensitive
is cooperation to the generosity of altruistic nodes? and 4) How sensitive is cooperation to the
number of rounds in the last exchange game?
Motivating P2. Figure 2 shows the conditions under which a rational P2 is willing to pester for
the entire game (save the last round). We assume that an altruistic P1 contributes in round T
and then with some fixed probability in the following rounds; a Byzantine P1 never contributes.
Finally, we assume that a rational P1’s beliefs are such that P1 is willing to contribute in round T .
To simplify our simulation, for tHe remainder of the game we assume that P1 never contributes.
This is of course a worst case and leads to conservative estimates for the altruism necessary to
motivate P2; in reality, we expect the threshold of altruism required to be lower than we report.

Not surprisingly, a larger ratio between the benefit of a contribution and the cost of pestering
lowers the initial belief in the altruism of P1 sufficient to motivate P2 and increases P2’s resolve to
pester in the face of higher odds that P1 may be Byzantine.
Motivating P1. We numerically compute the belief threshold for which P1 is motivated to con-
tribute. We assign P1 some initial belief on the probability that P2 is not Byzantine and construct
the entire game tree to determine whether that initial belief is sufficient to motivate P1 to con-
tribute at the beginning of the game. Through a binary search, we can identify the threshold with
an accuracy of 10−9.

The solid lines in Figure 1 show how the threshold changes as a function of the number of
rounds and different system parameters. As expected, the solid lines stop before the end of the
game when the remaining cost of pestering is not enough to overcome the cost of contributing.
The dotted lines in the figure represent how beliefs evolve if P1, starting with 1 − µ1(B) = 0.85,
is continually pestered throughout the game. P1 contributes whenever the dotted line exceeds the
corresponding threshold.

The maximum number of contributions, which varied from 2 to 17 times, increases when ρ
increases, sc/rp decreases, and if Byzantine P2 are less likely to pester. Whenever P1 contributes
and is subsequently pestered, then P1’s belief in P2 being non-Byzantine almost always drops. If
P1 does nothing and is pestered in subsequent rounds, then the effect on P1’s beliefs depends on
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Figure 2: Sufficient bounds on the initial beliefs to incentivize P2 to pester for varying amounts
of altruistic generosity (left) and numbers of rounds (right).

P1’s expectation of what Byzantine P2 would do. If a Byzantine P2 always pesters, then observing
a pester gives no clue as to P2’s type. If a Byzantine P2 rarely pesters, however, then observing
a pester increases P1’s belief that P2 non-Byzantine. Increasing network loss also makes P1 more
likely to contribute again when pestered, as it is more likely that the contribution was simply lost
on the network. Eventually, if P1’s beliefs rise beyond the threshold, P1 contributes again.
Too much of a good thing. Perhaps the most intriguing conclusion to come from Figure 2(a),
however, is that altruistic prodigality can make it far more difficult to motivate P2 to pester. The
reason is that the more generous altruistic peers are, the easier it is for a rational P2 to determine,
from observed signals, whether P1 is altruistic or not, which in turn affects whether P2 continues
to pester. Figure 2 shows that, with network loss at 5%, if there is a more than one-in-three chance
that an altruistic P1 will contribute when pestered, motivating a rational P2 to pester in every round
essentially requires P2 to believe that all non-Byzantine nodes are altruistic. Altruistic generosity
becomes a more obvious discriminant if a Byzantine P1 never contributes, while it becomes less
conspicuous with higher rates of network loss, for the same reason we saw when discussing Figure
1. Still, our results (not shown) show that spurring P2 to pester when there is two-third chance
than an altruistic peer will contribute requires an implausible loss rate of over 25%.
Short is beautiful. Figure 2(b) illustrates how the bounds that determine whether P2 will pester
evolve as a function of the number of rounds. Although a large number of rounds allow P1 to
contribute more times and thereby may increase the chance that P2 may receive the contribution, we
find that P2’s resolve to continue pestering wanes as the number of rounds increases. In particular,
we see that P2 can be motivated to continue pestering only if Byzantine participants are increasingly
unlikely. Indeed, more generous altruistic nodes, who are more likely to contribute when pestered,
discourage P2 more quickly in the absence of a contribution.

6 Related work

Incentive-compatible systems. There has been a lot of work in incentive-compatible systems
(e.g., [3, 4, 11, 12, 14, 17]). None of these systems assume the existence of altruistic players, and
only a few [3, 14, 17] consider the possibility of Byzantine peers. Our techniques can be applied
to many of these systems. For example, BAR Gossip [14], FOX [12], and PropShare [11] can use
altruism to incentivize key exchange.
Irrationality in incentive-compatible protocols. Eliaz [7] proposed the generalization of
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Nash equilibrium to scenarios where some number of peers may be Byzantine. Aiyer et. al [3]
later generalized this to the BAR model, which introduced the possibility of altruistic peers and
on which our model is based. Abraham et. al [1] describe (k, t)-robust equilibrium, a strategy
which is in a rational player’s best interest despite the possibility of collusion by groups up to size
k and up to t “irrational” agents that may play any strategy. Similarly, Martin [16] introduces his
own equilibrium concept in which rational players do not deviate regardless of what Byzantine or
altruistic participants do. Our work differs from previous work by showing the need for altruism
to address a key problem in cooperative services and considering real-world issues such as network
costs and lossy links.

Finally, Vassilakis et. al [19] study how altruism affects content sharing in P2P services at
the application level. Their approach and our own are complementary; we focus on network-level
incentives that motivate participants to actually send the content they share at the application
level. Moreover, they do not consider the possibility of Byzantine participants or lossy links.
Game-theory. There has been extensive work that has covered imperfect knowledge, private
signaling, and the use of altruism in game theory. The use of altruism to achieve cooperation in the
finitely-repeated prisoner’s dilemma game was first proposed by Kreps et. al [10]. It was shown that
reputations could be maintained even when there was imperfect observation of actions [8]. Cripps
et. al later showed that, under certain conditions, reputations cannot be maintained forever unless
the action played by the irrational player was part of a rational player’s equilibrium strategy [5, 6].
None of the previous work consider both the possibility of Byzantine and altruistic players. Many
of them also assume that actions or their corresponding signals can either be observed at least
publicly [5, 8], if not perfectly [10]. More importantly, the focus of this work is the existence (or
nonexistence) of equilibrium under general conditions and thus use models which differ from ours.
We focus on the application of theory to a specific problem and a realistic model that we believe
to be applicable to many distributed protocols and show how to construct such an cooperative
equilibrium that works under realistic conditions.

7 Conclusion

Despite the presence of altruistic peers in real-world MAD systems, little attention has been given to
their role in establishing rational cooperation. In this paper, we take the first step in understanding
their function by showing that altruism is necessary and sufficient to motivate rational cooperation
in the crucial last exchange between MAD peers. Our results suggest that, while a small fraction of
altruistic peers is sufficient to spur rational peers into action even in systems with a large fraction
of Byzantine peers, overly generous altruistic peers can irreparably harm rational cooperation.
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