
Copyright

by

Daniel Adam Stronger

2008

The Dissertation Committee for Daniel Adam Stronger

certifies that this is the approved version of the following dissertation:

Autonomous Sensor and Action Model Learning for

Mobile Robots

Committee:

Peter Stone, Supervisor

Dana Ballard

Benjamin Kuipers

Risto Miikkulainen

Nicholas Roy

Autonomous Sensor and Action Model Learning for

Mobile Robots

by

Daniel Adam Stronger, B.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2008

Acknowledgments

I would like to acknowledge many people who have helped me over the course of

my graduate career. I would especially like to thank my advisor, Peter Stone, for

his generous time and commitment. Over the course of my doctoral work, he has

taught me how to be a scientist, a researcher, a writer, and a member of the academic

community.

I would also like to thank my committee members, Dana Ballard, Benjamin

Kuipers, Risto Miikkulainen, and Nicholas Roy, for the extensive time, technical

suggestions, and advice that they have given me. Additionally, I would like to

extend thanks to the many professors, colleagues, and friends whose suggestions

about my work have been truly invaluable: Mazda Ahmadi, Patrick Beeson, Craig

Boutilier, Kurt Dresner, Gregory Dudek, Selim Erdogan, Ian Fasel, Peggy Fidelman,

Dieter Fox, Todd Hester, Nicholas Jong, Nate Kohl, Gregory Kuhlmann, Daniel Lee,

Juhyun Lee, Yaxin Liu, Tekin Mericli, Raymond Mooney, Aniket Murarka, Gregory

Plaxton, Michael Quinlan, Mohan Sridharan, Ken Stanley, Jeremy Stober, Matthew

Taylor, and Shimon Whiteson.

I would especially like to thank Patrick Beeson for helping me run the au-

tonomous car to collect the data used in the experiments reported in Chapter 5.

I am also very grateful to the entire Marvin team from Austin Robot Technology

and the University of Texas at Austin for their work in developing the code base

that enabled the car to drive autonomously and record its actions and sensations

iv

over time. I would also like to thank the UT Austin Villa team for their work in

developing the code base that is used in the experiments reported in Chapters 3

and 4.

Finally, I would like to thank my family for always believing in me and for

surrounding me with computers since I was a toddler. I am especially grateful to

my wife, Yia, for her unwaivering support and encouragement.

Daniel Stronger

The University of Texas at Austin

August 2008

v

Autonomous Sensor and Action Model Learning for

Mobile Robots

Daniel Adam Stronger, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Peter Stone

Autonomous mobile robots have the potential to be extremely beneficial

to society due to their ability to perform tasks that are difficult or dangerous for

humans. These robots will necessarily interact with their environment through the

two fundamental processes of acting and sensing. Robots learn about the state of the

world around them through their sensations, and they influence that state through

their actions. However, in order to interact with their environment effectively, these

robots must have accurate models of their sensors and actions: knowledge of what

their sensations say about the state of the world and how their actions affect that

state.

A mobile robot’s action and sensor models are typically tuned manually, a

brittle and laborious process. The robot’s actions and sensors may change either

vi

over time from wear or because of a novel environment’s terrain or lighting. It is

therefore valuable for the robot to be able to autonomously learn these models. This

dissertation presents a methodology that enables mobile robots to learn their action

and sensor models starting without an accurate estimate of either model.

This methodology is instantiated in three robotic scenarios. First, an algo-

rithm is presented that enables an autonomous agent to learn its action and sensor

models in a class of one-dimensional settings. Experimental tests are performed on a

four-legged robot, the Sony Aibo ERS-7, walking forward and backward at different

speeds while facing a fixed landmark. Second, a probabilistically motivated model

learning algorithm is presented that operates on the same robot walking in two di-

mensions with arbitrary combinations of forward, sideways, and turning velocities.

Finally, an algorithm is presented to learn the action and sensor models of a very

different mobile robot, an autonomous car.

vii

Contents

Acknowledgments iv

Abstract vi

Chapter 1 Introduction 1

Chapter 2 Background 8

2.1 Probability Density Functions . 8

2.2 Sensor and Action Models . 10

2.3 Normal Distributions and Linear Regression 11

2.4 Kalman Filtering . 13

2.5 Robotic Platforms . 15

2.5.1 The Sony Aibo ERS-7 . 15

2.5.2 The Autonomous Car . 19

Chapter 3 Model Learning in One Dimension 25

3.1 Setup . 26

3.2 Methods . 31

3.2.1 Learning the Sensor Model 31

3.2.2 Learning the Action Model 33

3.2.3 Learning Both Models Simultaneously 34

viii

3.3 Empirical Validation . 38

3.3.1 Learning One Model at a Time 39

3.3.2 Learning Both Models Simultaneously 41

3.3.3 Additional Results . 47

Chapter 4 Model Learning in Two Dimensions 51

4.1 Setup . 51

4.2 Adapting the E-step . 54

4.3 Adapting the M-step . 58

4.3.1 Learning the Action Model 59

4.3.2 Learning the Sensor Model 61

4.4 Empirical Validation . 64

4.4.1 Real Robot Results . 65

4.4.2 Simulation Results . 70

4.4.3 Additional Results . 71

Chapter 5 Model Learning on an Autonomous Car 77

5.1 Learning the Sensor Model . 79

5.2 Constructing the Odometry . 80

5.3 Learning the Action Model . 85

5.4 Empirical Validation . 86

Chapter 6 Related Work 90

6.1 Developmental Robotics . 90

6.2 Sensor and Action Modeling . 92

6.3 Dual Estimation of a Kalman Filter 95

Chapter 7 Discussion and Future Work 97

Bibliography 104

ix

Vita 117

x

Chapter 1

Introduction

One long-term goal of artificial intelligence is the development of physically embod-

ied agents that behave effectively in a wide range of environments without human

supervision. The development of these autonomous robots has tremendous potential

to improve people’s lives in a wide range of contexts. Autonomous robots may be

able to go places that are too dangerous or difficult for people to go, such as the

surface of Mars, where they could collect data or perform experiments, or the rubble

of a collapsed building, where they could help find people that are trapped. Addi-

tional potential applications include autonomous robots designed to assist people in

their homes and autonomous vehicles that can transport people and cargo without

human supervision.

As an autonomous robot interacts with its environment, it necessarily relies

on two fundamental processes: sensing and acting. In sensing, the robot receives

observations through its sensors that are designed to provide information about the

state of the world : the relevant features of the current environment. In turn, the

robot takes actions to bring about desired changes in that same world state. How-

ever, in order for the robot to use these sensors and actions effectively, it must have

accurate sensor and action models: knowledge of how its observations provide in-

1

formation about the world and knowledge of how its actions correspond to changes

in the world state. More precisely, a sensor model is a mapping from the world

state to a probability distribution over observations from the sensor. The action

model maps the current state of the world and action being executed onto a proba-

bility distribution over subsequent world states. These definitions are formalized in

Chapter 2.

For a mobile robot, one important aspect of its world state is its pose (posi-

tion and orientation). For example, one type of mobile robot, which we will discuss

in detail in Chapter 5, is a driverless car. An autonomous car’s action model maps

its actions, such as the position of the throttle, brake, and steering wheel, to the

components of its motion, such as its forward acceleration and angular velocity. At

the same time, the car’s sensors might include a stereo camera or laser range finder,

and the sensor model describes the observations that are expected from these sensors

as a function of the car’s pose (in conjunction with the layout of the environment).

These relationships are depicted in Figure 1.1.

Throttle Position
Brake Position
Steering Position

Action

Control Policy

Agent

Observations
Sensations

Action Model

Sensor
Model

World State

Car Position
Car Velocity

Range Finder Readings
Camera Image

Figure 1.1: A mobile robot’s actions influence its world state, while its sensors
inform its knowledge of that state. In order for the robot’s actions and sensors to
be effective and informative, it must have accurate action and sensor models.

2

One way to construct a robot’s action and sensor models is through manual

calibration. This process involves systematically recording the robot’s observations

over the complete range of world states and the change in the world sate caused

by each of its actions. Manual calibration can be laborious, inaccurate, and in

particular, brittle, due to the possibility of the behavior of the robot’s sensors and

actuators changing over time because of wear or properties of a novel environment,

such as its terrain or lighting conditions. Furthermore, previous work in model

learning (discussed in detail in Chapter 6) has typically assumed the presence of an

accurate action model to provide labeled training data for the sensor model or vice

versa.

This dissertation considers the following question: Is it possible for au-

tonomous mobile robots to learn their action and sensor models without either

human supervision or an accurate initial estimate of either model? To demonstrate

that achieving this goal is indeed possible, Chapters 3 through 5 present learn-

ing algorithms that autonomously learn action and sensor models in three different

robotic domains. In each case, experimental results show that the learned models

closely match the measured true properties of the actions and sensors.

In order to autonomously learn the robots’ action and sensor models, despite

having no source of accurate training data for them, the algorithms that are pre-

sented leverage redundancy in the combination of the robot’s sensory input and its

knowledge of its own actions, which we refer to collectively as perceptual redundancy.

For example, if a robot were equipped with a stereo camera and a laser range finder

with known models, they would at times provide redundant information regarding

the distance of the robot to obstacles.

Perceptual redundancy in general is depicted in Figure 1.2. The arrows in

the diagram represent the robot’s processing modules, algorithms that convert the

robot’s raw sensory inputs and action knowledge into useful information about the

3

state of the world. These algorithms are dependent on the robot’s knowledge of

its corresponding sensor and action models. Although any one information source

by itself may not determine the world state, when taken together, all of a robot’s

inputs can often provide highly redundant world state information. This redundancy

affords the robot a valuable opportunity to learn its action and sensor models from

each other.

Extracted
Information

Processing
Modules

Extracted
Information

Raw Input
Sensor N

World State
Estimate

Extracted
Information

Raw Input
Sensor 2

Raw Input
Sensor 1 Information

Extracted

Action
Knowledge

Figure 1.2: Perceptual redundancy provides the robot with multiple sources of in-
formation about its world state.

Because the world state can be estimated from redundant sources of infor-

mation, the robot can use this information to learn its action and sensor models.

The learning compares the input to each module to an expected output: an estimate

of what that module should return, based on all of the other information sources.

Figure 1.3 shows (in an example with one sensor) how the robot can use redundant

information to learn about multiple processing modules. In this example, a sen-

sor and the robot’s knowledge of its own actions each provide enough information

to deduce the state of the environment. Note that for the sensor model, it is the

4

inverse of the model that is used by the processing module to convert sensations

into information about the state of the world. This distinction is discussed in more

detail in Chapter 2.

Estimate
World State

A

D
C

World State

World State

Action
Model

Action
Knowledge

Sensory
Input

Information

Information
About

AboutModel
Sensor
Inverse

B

Figure 1.3: Dashed arrows A through D show how information can be propagated
back from a redundantly informed world state estimate to learn components of two
processing modules.

In this example, the robot learns its sensor model by first relaying a world

state estimate based on the action knowledge back through arrow A to the “infor-

mation about world state” from the sensor. This tells us what the output of the

inverse sensor model should have been, assuming the world state estimate is per-

fectly accurate. When this data is combined with the sensory input through arrow

B, the result is training data that can, for example, be used by a supervised learn-

ing method to learn components of the sensor model. Simultaneously, a world state

estimate based on the sensory input can be relayed back through arrow C to the

“information about world state” based on the action knowledge. This information

can be combined with the actual action knowledge through arrow D to train the

5

action model.

The procedure described above represents a useful conceptual plan; how-

ever, realizing it algorithmically is not straightforward. Standard supervised learn-

ing methods require accurately labeled training data; in the absence of manually

labeled data, the robot must combine information from its various sensors to boot-

strap accurate processing modules. The resulting challenges are addressed in this

dissertation.

Specifically, Chapter 3 introduces a class of settings in which the world state

space is one-dimensional. In these settings, the agent has access to a sensor whose

reading corresponds to the state of the world and a continuum of actions that

correspond to the rate at which the state changes. These two correspondences are

the sensor and action models that are learned by the algorithm presented in that

chapter. This algorithm is empirically validated on a four-legged robot, the Sony

Aibo ERS-7, walking forward and backward at different speeds while facing a fixed

landmark.

The work presented in Chapter 3 demonstrates the possibility of autonomously

learning a mobile robot’s action and sensor models starting without an accurate es-

timate of either model. Specifically, it enables a robot in a one-dimensional domain

to learn both models starting with no sensor model and only a linear approximation

for the action model. (Section 3.3.3 discusses the sensitivity of the algorithm to this

starting model.) However, mobile robots commonly traverse two-dimensional areas

in which they can turn and sometimes move sideways, in addition to moving forward

and backward. Such a domain raises many additional challenges for autonomous

model learning. These challenges are addressed in Chapter 4. That section presents

an adaptation of the EM algorithm [26] to learn parameters of a Kalman filter [44]

that correspond to the robot’s sensor and action models. The resulting algorithm

is empirically validated both on the Sony Aibo walking on a field with known, fixed

6

landmarks, as well as in a simulation of that same scenario.

The methods presented in Chapters 3 and 4 essentially follow the procedure

depicted in Figure 1.3. However, note that this procedure relies on the sensory

input and action knowledge each being able to independently provide an estimate

of the world state. In Chapter 5, a robotic scenario is examined in which this is

not the case. In particular, an algorithm is presented that learns the action and

sensor models of an autonomous self-driving car. In this work, the learning process

starts with no knowledge of the map of the environment. Treating the map as a

component of the world state, this means that the robot’s action knowledge does

not by itself contain enough information to determine the world state sufficiently

to learn a sensor model. However, the sensor that is modeled is a high-bandwidth

three-dimensional laser range finder. This sensor provides so much information that

it contains a significant degree of redundancy by itself. This redundancy is used to

first learn a sensor model, which is then used to learn an action model.

Chapter 6 discusses the wide range of previous work that is related to the

contributions of this dissertation. Finally, Chapter 7 discusses these contributions

and possibilities for future work.

7

Chapter 2

Background

This chapter presents background information that is needed for the algorithms

and empirical evaluations presented in Chapters 3 through 5. First, recall from

Chapter 1 that a robot’s sensor and action models are described as mappings onto

probability distributions. Since the domains discussed in this work have continu-

ous state and observation spaces, these distributions are represented by probability

density functions, which are described in Section 2.1. In Section 2.2, the sensor and

action models are formally defined as conditional probability distributions. Normal

distributions and Kalman filtering are discussed in Sections 2.3 and 2.4. Finally,

Section 2.5 describes the robotic platforms used in the experiments reported in this

thesis.

2.1 Probability Density Functions

A probability distribution over a continuous variable, x ∈ X can usually be repre-

sented by a probability density function (PDF),1 a mapping P : X 7→ [0,∞). The

1Probability distributions that concentrate a non-zero amount of probability in a region with
volume zero can not be represented by a PDF; however, any distribution can be arbitrarily closely
approximated by distributions that do have PDFs.

8

key property of this mapping is that for any set A ⊆ X, the probability that x is in

A is given by:

p(x ∈ A) =

∫

A
P (x) dx (2.1)

where we use lowercase p for discrete probabilities, which range from 0 to 1. In

particular, taking A = X yields
∫

X P (x) dx = 1. Note that if x is an n-dimensional

vector, the integral in Equation 2.1 is used as a shorthand for:

∫∫

· · ·

∫

A
︸ ︷︷ ︸

n integrals

P (x) dx1dx2 . . . dxn (2.2)

If the region of integration A is omitted, each integral is taken to be from −∞ to

∞.

Note that if x represents a physical quantity such as a length, the magnitude

of P (x) depends on the units in which x is measured. For example, consider a length

that is uniformly distributed between five and six centimeters. If x is that length

in centimeters, its probability density is 1 for 5 < x < 6 and 0 elsewhere. On the

other hand, if x represents the length in meters, its density is 100 for 5
100 < x < 6

100

and 0 elsewhere.

Additionally, a conditional probability density function can be defined in

analogy with a discrete conditional probability:

P (x|y) =
P (x, y)

P (y)
(2.3)

This conditional density satisfies:

p(x ∈ A|y) =

∫

A
P (x|y) dx (2.4)

Again taking A = X yields
∫

X P (x|y) dx = 1.

9

In the following section, sensor and action models are defined as conditional

probability density functions.

2.2 Sensor and Action Models

As mentioned in Chapter 1, a sensor model is a mapping from the world state

to a probability distribution over observations reported by the sensor. Formally,

denoting the world state and observation as w and o respectively, the sensor model is

the conditional distribution P (o|w). As desired, for any given world state the sensor

model specifies a probability distribution over the space of possible observations.

To define the action model, note that in a deterministic continuous-time

system, the rate of change of the state of the world is a function of the action being

taken and the world state:

dw

dt
= A(c(t), w) (2.5)

where A is the action model and c(t) is the action command being executed at time

t. A can also be thought of as the process dynamics, holding the action constant.

If the random noise in the process is taken into account, the result is a continuous-

time stochastic process that varies based on the action command. In the work

presented in this dissertation, however, time is treated as discrete. In a discrete-time

stochastic process, the action model can be thought of as a mapping from each state-

action pair to a probability distribution over possible next states, as mentioned in

Chapter 1. The action model is therefore represented by the conditional probability

density function P (wt+1|wt, ct), where wt and ct represent the world state and action

command executed at time t.

10

2.3 Normal Distributions and Linear Regression

One commonly used probability distribution is the multivariate normal (Gaussian)

distribution. In n dimensions, each such distribution is determined by a mean n-

vector µ and an n× n positive-semidefinite covariance matrix Σ. An n-dimensional

random variable x having this distribution is indicated by: x ∼ N (µ,Σ). If Σ is

non-singular, this distribution can be represented by the following PDF:

P (x) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(x− µ)⊤Σ−1(x− µ)

)

(2.6)

This PDF can be used to prove the following properties of normal distribu-

tions, used in Chapter 4. If x1 ∼ N (µ1,Σ1) and x2 ∼ N (µ2,Σ2) are independent

random n-vectors and A is an m× n matrix:

Ax1 ∼ N (Aµ1, AΣ1A
⊤) (2.7)

x1 + x2 ∼ N (µ1 + µ2,Σ1 + Σ2) (2.8)

Real-world probability distributions can often be closely approximated as

Gaussian. One reason for this is the central limit theorem: The distribution of a

sum ofN independent, identically-distributed random variables approaches a normal

distribution as N approaches infinity. Additionally, Gaussian distributions are often

used for their analytical tractability. For example, techniques that minimize a sum of

square errors, such as linear regression, can be thought of as maximizing a likelihood

where measurements are perturbed by Gaussian noise in the output variable.

Specifically, least squares regression, a technique used repeatedly in Sec-

tions 3 through 5, can be thought of as the solution to the following problem. An

output m-vector, y, is generated from an input m× n matrix, X, by the equation

y = Xβ + ǫ, where the random noise ǫ ∼ N (0m, σ
2Im) and β is an n-vector of un-

11

known coefficients. Given X and y, find the value of β that maximizes the likelihood

of y, P (y|X,β).

To solve this problem, note that given X and β, y ∼ N (Xβ, σ2Im). Since

|σ2Im| = σ2m and multiplying by (σ2Im)−1 is equivalent to dividing by σ2,

P (y|X,β) =
1

(2π)m/2σm
exp

(

−
1

2σ2
(y −Xβ)⊤(y −Xβ)

)

(2.9)

=
1

(2π)m/2σm
exp

(

−
1

2σ2

m∑

i=1

(yi − (Xβ)i)
2

)

(2.10)

Maximizing this likelihood with respect to β is equivalent to minimizing
∑m

i=1 (yi − (Xβ)i)
2. Noting that (Xβ)i =

∑n
j=1Xi,jβj , this is the standard formu-

lation of least squares regression. If (X⊤X) is invertible, the maximum likelihood

value, β̂, is given by [89]:

β̂ = (X⊤X)−1(X⊤y) (2.11)

In Chapters 3 through 5, the use of least squares regression can therefore be

thought of as an implicit use of normal distributions. Weighted least-squares regres-

sion, used in Section 3.2.3, is motivated by replacing σ2Im above with a diagonal

matrix of different variances (the reciprocals of the weights), one for each data point.

Additionally, multivariate normal distributions are used explicitly to represent the

world state uncertainty in Chapter 4. In a setting in which the initial state distribu-

tion, sensor model, and action model are represented by normal distributions, the

a posteriori state distributions can be estimated by Kalman filtering, described in

the following section.

12

2.4 Kalman Filtering

Consider a setting where the initial world state, w0, is drawn from a known normal

prior distribution and where a series of observations, ot, and the process dynamics

are linear but perturbed by Gaussian noise:

w0 ∼ N (µ0,Σ0) (2.12)

wt = Awt−1 + qt−1 (2.13)

ot = Hwt + rt (2.14)

qt ∼ N (0, Q) (2.15)

rt ∼ N (0, R) (2.16)

where µ0 and Σ0 define the prior distribution on the initial state, and A, H, Q, and

R are matrices that specify the behavior of the system. Note that if a constant offset

vector is added to the righthand side of Equation 2.13 or 2.14, it can be eliminated

by appending it to the right edge of A or H and adding a final component to w that

always equals 1.

In such a system, the a posteriori distribution of wt can be determined by

employing a Kalman filter [44, 99]. Specifically, if the prior distribution over wt is

normal with mean µt and covariance Σt, the posterior distribution that takes the

observation, ot, into account is also normal, with mean µ′t and covariance Σ′
t given

by the Kalman filter measurement update:

Kt = ΣtH
⊤(HΣtH

⊤ +R)−1 (2.17)

µ′t = µt +Kt(ot −Hµt) (2.18)

Σ′
t = (I −KtH)Σt (2.19)

13

Once µ′t and Σ′
t are known, they can be used to determine the prior distri-

bution at time t+ 1, represented by µt+1 and Σt+1 through the Kalman filter time

update:

µt+1 = Aµ′t (2.20)

Σt+1 = AΣ′
tA

⊤ (2.21)

However, if the system is nonlinear or dependent on agent’s action commands,

ct, Equations 2.13 and 2.14 must be modified accordingly:

wt = a(wt−1, ct−1) + qt−1 (2.22)

ot = h(wt) + rt (2.23)

where functions a and h now represent the system dynamics and random vectors

qt and rt satisfy Equations 2.15 and 2.16 as before. In order to apply the Kalman

filter to a nonlinear system, the extended Kalman filter (EKF) employs a first-order

approximation to Equations 2.22 and 2.23:

wt ≈ a(µ′t−1, ct−1) +At−1(wt−1 − µ
′
t−1) + qt−1 (2.24)

ot ≈ h(µt) +Ht(wt − µt) + rt (2.25)

where At and Ht are the Jacobian matrices:

14

At =
∂a

∂w
(µ′t, ct) (2.26)

Ht =
∂h

∂w
(µt) (2.27)

Note that the righthand sides of Equations 2.24 and 2.25 only differ from

those of (2.13) and (2.14) by known offsets, namely a(µ′t−1, ct−1) − At−1µ
′
t−1 and

h(µt) − Htµt respectively. As discussed above, such offsets can be incorporated

into At and Ht by adding a final component to w that is always 1. Equations 2.17

through 2.21 can thus be used with At and Ht to execute the EKF.

One common use for the extended Kalman filter is in mobile robot localiza-

tion [12, 96]. The EKF’s ability to estimate a probability distribution over robot

poses is a critical component of the model learning technique described in Chapter 4.

2.5 Robotic Platforms

This section describes the two robotic platforms used in the experiments reported

in this dissertation, the Sony Aibo ERS-7 and the autonomous car developed by

Austin Robot Technology.

2.5.1 The Sony Aibo ERS-7

In Chapters 3 and 4, experiments are performed on a Sony Aibo ERS-7. The robot

is roughly 280 mm tall and 320 mm long. It has 20 degrees of freedom: three in each

of four legs, three in the neck, and five more in its ears, mouth, and tail. At the tip of

its nose there is a CMOS color camera that captures images at 30 frames per second

in YCbCr format. The images are 208×160 pixels giving the robot a field of view of

56.9◦ horizontally and 45.2◦ vertically. The robot is depicted in Figure 2.1. In the

robot’s coordinate system, the positive x-axis points to its right, positive y points

15

forward, and positive z points up. The origin of the Aibo’s coordinate system is at

the center of its body. The robot’s world state is its pose in the world coordinate

system, w = (x, y, θ)⊤.

Figure 2.1: The Sony Aibo ERS-7 has four legs that each have three degrees of
freedom, three additional degrees of freedom in its neck, and a color camera in its
nose.

The Aibo’s basic acting and sensing capabilities used in Chapters 3 and 4

were developed by the UT Austin Villa robot soccer team as part of the international

RoboCup research initiative [82]. These capabilities and their underlying algorithms

are detailed in the UT Austin Villa 2003-2006 technical reports [84, 85, 86, 87].2

Action Model

The different actions taken by the Aibo are walking motions that cause the robot

to move in combinations of forward, sideways, and turning velocities. These walk-

2Modifications made in 2006 [87] were not used in the experiments presented in Chapter 3.

16

ing motions are parameterized by a set of attempted velocities, (ax, ay, aθ), that are

converted into the robot’s leg motions through a “virtual wheel” technique that

determines the sizes and directions of the steps taken by the robot’s four legs [40].

These attempted velocities, however, are not exactly the same as the robot’s cor-

responding actual forward, sideways, and turning velocity components, because of

unmodeled properties of the robot’s joints and friction with the ground. This corre-

spondence between actions and resulting velocities is the aspect of the action model

that is learned in this work.

Specifically, the action model function, A, maps each action ct onto a set of

actual velocities with respect to the robot’s coordinate system, A(ct) = (vx, vy, vθ)
⊤.

Each possible velocity vector corresponds to a conditional probability distribution

over subsequent world states, as discussed in Section 2.2, as follows. If at time t the

robot is at pose wt = (xt, yt, θt)
⊤, then the pose at time t+ 1 is modeled as:

wt+1 ∼ N (wt +R(θt)(A(ct)∆t),Σm) (2.28)

where ∆t is the amount of time between consecutive time steps, R(θ) represents a

counterclockwise rotation through an angle of θ,3 and Σm represents the covariance

matrix of the zero-mean Gaussian white noise in the motion. Although Σm may

be different for each action, these values are not learned in this work and a fixed,

constant value is used for Σm, as discussed in Section 4.4.1.

In Chapter 4, the actual velocities A(ct) that result from each of a set of

40 discrete actions are learned. These results could additionally be interpolated for

intermediate actions [28, 68]. In Chapter 3, only actions that walk directly forward

or backward are considered (ax = aθ = 0), and the action model function A maps

the attempted forward velocity, ay, to the actual one: vy = A(ay).

3Because rotations are only applied to velocities and pose differences in this work, the rotation
R(θ) does not affect the third (θ) component of the vector on which it acts.

17

Sensor Model

The Aibo’s observations are based on its ability to recognize color-coded cylindrical

landmarks in its camera’s field of view, like the one shown in Figure 2.2. These

landmarks are in fixed locations that are known by the robot. Each landmark

observation has two components. The first, denoted as o1, is the landmark’s height

in the image in pixels, as depicted in Figure 2.2b). The second component, o2, is the

robot’s estimate of the landmark’s horizontal angle from the robot, computed based

on the landmark’s horizontal position in the image and the pan angle of the robot’s

head. Recall from Section 2.2 that the robot’s sensor model specifies a probability

distribution over observations that depends on the world state. If the Aibo is at a

distance d from the landmark, as depicted in Figure 2.2a), and a horizontal angle

of α, the sensor model specifies that the corresponding observation distribution is:

o =




o1

o2



 ∼ N








f(d)

α



 ,




σ2

1 0

0 σ2
2







 (2.29)

where the function f and constants σ1 and σ2 are the unknown parameters of the

sensor model.

The Aibo’s camera specifications can be used to derive an estimate of f(d),

namely f(d) = 38388.7/d, where d is measured in millimeters. However, experi-

mental results show that this estimate is not exactly correct (see Section 4.4). In

this work, we take the approach of starting the learning process with no a priori

knowledge of what functional form f might have.

Given a sequence of observations and actions, one way to estimate the world

state over time is through Kalman filtering, as discussed in Section 2.4 and Chap-

ter 4. However, in a scenario where any one observation provides enough information

to estimate the world state accurately, another option is to use an inverted sensor

model : a mapping from the observation to the world state. This is the case in

18

distance
observation

a) b)

component

Figure 2.2: a) The Aibo faces a color-coded, cylindrical landmark. Its distance to
the landmark is an important aspect of the world state. b) The landmark is depicted
from the robot’s point of view. Its height in pixels in the image is a component of
each landmark observation.

Chapter 3, where the robot’s distance to a landmark is the entire world state. In

this case, we learn a function S = f−1 through polynomial regression (note that

f is naturally monotonically decreasing and thus invertible). The condition that f

is invertible restricts the perceptual aliasing that the domain can have, where two

states yield the same observation, to be only that caused by random noise. This

assumption is relaxed in the algorithm presented in Chapter 4, which does not rely

on f being invertible.

2.5.2 The Autonomous Car

Chapter 5 addresses the challenge of learning a mobile robot’s action and sensor

models on a second robotic platform: a self-driving car. The autonomous car used

in this work is a modified 1999 Isuzu VehiCross, shown in Figure 2.3. The car’s

software can control its throttle, brake, and steering wheel, and has access to sensors

that enable the car to navigate and avoid obstacles. This section describes the car’s

action and sensor models and the parameters of these models that are learned in this

work. The algorithms that control the car and store its observations are described

19

in the Austin Robot Technology technical reports [9, 16, 83].

Figure 2.3: The autonomous car.

The car’s model learning process does not require prior knowledge of the

map of the environment. This map is considered part of the state of the world.

Additionally, the car’s world state at time t is taken to include its forward velocity,

vt, as well as its position and orientation, pt and θt, enabling the action model to

specify the car’s forward acceleration, as discussed in the following section.

Action Model

There is a wide range of previous work in modeling a car’s motion as a function of the

throttle, brake, and steering wheel positions. For example, Sayers and Han present

a multibody dynamic model that predicts the car’s motion [74, 73]. In this section,

a highly simplified car model is presented, with six parameters that are the aspect

of the car’s action model learned in Chapter 5. Despite the model’s simplicity, it is

able to accurately model the car’s motions (see Section 5.4 for experimental results).

Learning a simple but accurate model is made possible by a judicious choice of the

model features described below. An interesting area for future work, discussed in

Chapter 7, is the automation of the feature selection process.

The car’s action command at time t, ct, is the combination of the positions

of the throttle, gt, the brake, bt, and the steering wheel, st. The action model

specifies the car’s corresponding forward acceleration, at, and angular velocity, ωt,

20

in accordance with the following simplifying assumptions.

First, if the throttle is held at a fixed position, the car will approach a

corresponding steady state velocity, which is approximated as a linear function of the

throttle position: C1 +C2gt. A further approximation is that the car’s acceleration

is proportional to the difference between its current velocity and this steady state

velocity: C3(C1 +C2gt − vt). However, this acceleration does not take into account

the deceleration caused by braking, which is presumed to be proportional to the

brake position and the car’s velocity: C4vtbt (when the velocity is zero, so is the

deceleration from braking). In summary, we can write the acceleration model as:

at = C5 + C6gt +C7vt + C8vtbt (2.30)

where C5 through C8 are determined by C1 through C4 and vice versa. Furthermore,

the car’s angular velocity is modeled as proportional to its forward velocity and as

a linear function of the steering wheel position:

ωt = C9vt + C10vtst (2.31)

The coefficients C5 through C10 are the parameters of the action model that

are learned in this work. Since a and ω are the outputs of a linear regression

discussed in Section 5.3, the corresponding assumption is that zero-mean Gaussian

white noise is added to the righthand side of Equations 2.30 and 2.31. Finally, the

car’s pose and forward velocity, x, y, θ, and v, satisfy:




xt+1

yt+1



 =




xt

yt



+R(θt)




0

vt∆t



 (2.32)

θt+1 = θt + ωt∆t (2.33)

vt+1 = vt + at∆t (2.34)

21

Sensor Model

The sensor modeled in this work is the Velodyne HDL-64E,4 depicted in Figure 2.4a).

The Velodyne consists of n lasers that each report the distance to the nearest obstacle

along the direction it is facing at a frequency f . Each laser is positioned at a unique

vertical angle, while the entire set of lasers rotates around a vertical axis at a known

angular speed, ω, with respect to the Velodyne base, which is affixed to the top of

the car.5 Each laser is additionally pointed at a different horizontal angle inside

the rotating unit, denoted as θl for l = 0 to n − 1. The lasers are modeled as all

emanating from the same point at the center of the Velodyne; this approximation

relies on the assumption that the sensors’ reported distances to obstacles are much

larger than any distances between lasers inside the Velodyne. An example of the

data obtained from the sensor is shown in Figure 2.4b).

a) b)

Figure 2.4: a) The Velodyne HDL-64E. b) An example of the data reported by the
sensor.

On the Velodyne, n is 64, f is 7800 Hz, and ω is 20π rad/s, corresponding to

a rate of 600 rpm. The lower 32 lasers’ vertical angles are evenly spaced from −24.7◦

to −8.9◦ (spaced every 0.512◦), and the upper 32 range from −8.5◦ to +2.0◦ (spaced

every 0.340◦). The horizontal angles, on the other hand, can differ for different units,

4www.velodyne.com/lidar/
5Although the car undergoes moderate pitching and rolling while driving, these rotations are

not modeled. That is, the Velodyne base is assumed to remain horizontal at all times.

22

and they are the aspect of the sensor model that is learned in this work, starting

without any a priori knowledge about these horizontal angles.

We denote the lth laser’s vertical angle from horizontal as φl and its hor-

izontal angle as θl. The lasers are ordered by vertical angle so that the φl are

strictly increasing. In each distance reading, the distance, d, is reported as well as

the current angle of the Velodyne with respect to its base, θr. Finally, we denote

the constant angle between the base and the car as θb. These horizontal angles are

depicted in Figure 2.5. The car’s coordinate system is centered at the Velodyne

center and oriented so that positive x, y, and z point rightward, forward, and up

respectively. Although the car may experience moderate pitching and rolling in the

course of driving, these rotations are not included in the model. The coordinates of

the point observed by the laser in the car’s coordinate system are given by:

(x, y, z) = (dcos(φl)cos(θl + θr + θb), dcos(φl)sin(θl + θr + θb), dsin(φl)) (2.35)

The algorithm does not rely on knowing θb, enabling the Velodyne base to

be affixed to the roof of the car at an arbitrary and unknown angle. If it is not

known originally, the quantity θb is fundamentally unknowable, as increasing θb and

decreasing all of the θl by the same amount leaves the expression (2.35) unchanged.

Therefore, our goal is to learn the n values of θl + θb over the n values of l, which

we denote as θ̂l. Note that these values can be thought of as the angles of the lasers

with respect to the car when the Velodyne reports a θr of 0.

This chapter presented mathematical preliminaries and robot models that

define the problems that this dissertation aims to solve. The following three chap-

ters apply the methodology proposed in Chapter 1, yielding algorithms that are

able to learn action and sensor models, starting without an accurate estimate of

either, in three different mobile robot scenarios. These algorithms are the technical

23

r

l
b

b

l

r

Time t Time t + 30 msec

Car x−axis

Base
Car

Base

Rotating

Car x−axis

Base
Car

Base

Rotating

Figure 2.5: Top view of the relative horizontal angles between the laser, the Velo-
dyne, and the car. As the car moves, θr, which is continually reported by the sensor,
varies as the unit rotates. The angle of the base of the velodyne, θb, is constant but
unknown, and the n values of θl are what the algorithm aims to learn.

contributions of the dissertation.

24

Chapter 3

Model Learning in One

Dimension

Chapter 1 presented a general framework by which a mobile robot can learn its

action and sensor models starting without an accurate estimate of either model.

In this chapter, that framework is realized by a concrete algorithm on a class of

one-dimensional autonomous agent settings [90]. This class of settings is introduced

and discussed in Section 3.1. The algorithm presented in Section 3.2 serves as

an initial concrete instantiation of the model-learning plan depicted in Figure 1.3.

Experimental results described in Section 3.3 provide empirical validation of the idea

that simultaneously training the action and sensor models from each other can yield

accurate models. In contrast to the relatively limited class of the settings discussed

in this chapter, a general probabilistic framework for model learning is presented in

Chapter 4.

25

3.1 Setup

This chapter considers the class of autonomous agent settings that satisfy the fol-

lowing properties, depicted in Figure 3.1:

• The set of possible states of the world can be characterized as a one-dimensional,

continuous state space.

• The agent has one sensor that converts the state of the world into numerical

input data.

• The agent has access to a continuum of actions that it can take. Each action

maps onto a single rate of change in the state of the world over time.

• The effects of the actions and the sensor readings are perturbed by zero-mean,

random noise.

World State 1−D World

Vel.

Sensor Action

Agent

Figure 3.1: The agent interacts with a one-dimensional world state via a sensor and
a continuum of actions.

Even in this somewhat restricted setting, there are many interesting domains

that satisfy these conditions. One straightforward example is a robot on a one-

dimensional track that has a global positioning sensor and takes actions that control

its velocity along the track. Another example is a temperature regulator that can

26

sense the temperature in a room and set the rate at which the temperature changes.

Yet another example is where the velocity of a vehicle is the state and the agent has

access to a velocity sensor and a throttle whose settings correspond to accelerations.

The algorithm presented in this chapter is validated on an approximation of the first

setting (a robot on a track) in the empirical results presented in Section 3.3.

In the context of this class of settings, a model of the sensor consists of a

function from the state of the world to the corresponding observations. The action

model is learned as a function from the selected action to the rate of change of

the state of the world. The agent learns both models at once by simultaneously

performing the following three operations.

1. Exploring the state space of the world, covering the entire range of world states

and state velocities.

2. Learning a function from action commands to actual state velocities, assuming

the sensor model is accurately calibrated.

3. Learning a function from sensor readings to the actual state of the world,

assuming the action model is accurately calibrated.

For operation 1, any action policy that allows the agent to experience the

full range of possible combinations of states and velocities will suffice. An example

of such a policy is described in Section 3.3. Section 3.2 describes in detail how

to perform operations 2 and 3, first individually, and then simultaneously via a

bootstrapping process.

As the agent interacts with its domain, it has two sources of information

about its location along its axis of movement. For one, the agent receives a sequence

of sensor observations, ot at time t. Recall from Section 2.5.1 that the observations

are modeled as ot ≈ f(wt), where the function f specifies a typical observation

resulting from world state wt and the actual observations are perturbed by zero-

27

mean random noise. In this chapter, we restrict our attention to situations in

which f is invertible. As mentioned in Section 2.5.1, this restriction implies that

the domain has no perceptual aliasing except for that caused by random noise, an

assumption that is relaxed in Chapter 4. We denote the inverse function, f−1, as S

and refer to it as the sensor model, so that on average wt = S(ot). This function

S is one of the two functions that the agent is trying to learn. This relationship is

depicted in Figure 3.2.

Data Points
Sensor Model (S)

Observation

World
State

Figure 3.2: The sensor model S maps observations onto the corresponding world
states: wt = S(ot).

At the same time, the agent executes action command ct at each time step

t. Each action command changes the world state at a specific velocity, and the

action model is represented by the function A, which maps action commands onto

the mean velocity at which the robot moves when executing that command. This

action model function A is the function that the agent learns along with the sensor

model function S. The action model also provides an estimate of the state of the

world: wt = w0+
∑t−1

i=0 A(ci)∆t, where ∆t is the amount of time between time steps.

For example, if the agent executes a piecewise constant series of actions, each action

28

c will cause the robot to move at a constant velocity, A(c), over the corresponding

period of time, so the world state will vary in a continuous, piecewise linear manner

with respect to time. This scenario is depicted in Figure 3.3.

t

Data Points
Best Fit, with

Slope = A(C(t))
w

Figure 3.3: When the robot executes a piecewise constant series of actions, the rate
of change of the world state is depicted by the slopes of the lines here. These slopes
are equal to A(ct), where ct is the action command being executed at time t and
A is the action model. The data points here represent the agent’s estimates of the
world state over time.

Because the agent is trying to learn two arbitrary continuous functions, it

must represent them with a function approximator. We use polynomial regression

for both functions. From among the many function approximator systems that

exist, we chose to use polynomial regression for both functions due to its robust-

ness, versatility, and simplicity. Specifically, it can filter out random noise, closely

approximate any continuous function, and incorporate new data points efficiently.

Initially, the degrees of the polynomials for the sensor and action models are chosen

manually, although Section 3.3.3 discusses the possibility of further automating the

process by choosing the degree itself on-line.

The agent learns the sensor model by identifying the coefficients s0 through

sd such that the polynomial S(ot) =
∑d

i=0 sio
i
t approximates the corresponding wt

29

as closely as possible, where d is the degree of the polynomial being fit to the data.

Similarly, the agent learns coefficients a0 through ad for the action model, with the

goal of A(ct) =
∑d

i=0 aic
i
t approximating the corresponding velocities over the range

of actions ct.

The algorithm presented in this chapter works by implicitly performing a

continual comparison between the information from the action and sensor models.

Specifically, since they are used to calculate the same location function wt, we can

set them equal, yielding:

S(ot) = w0 +

t−1∑

i=0

A(ci)∆t (3.1)

Although both sides of the equation are perturbed by random noise, because

the noise is unbiased, the equation is true in expectation, and can therefore be used

to learn the action and sensor models. The agent knows the values of ot and ct at

each time, and its task is to learn the functions A and S.

The algorithm presented in Sections 3.2.1-3.2.3 learns the action and sensor

models from each other, without requiring as input any ground truth knowledge of

the actual world state or its rate of change. Therefore, it does not learn the two

models in any particular units. The sensor model maps observations onto points

on a linear axis, but it makes no claims as to what particular state corresponds to

the number zero, or what magnitude in the domain’s single dimension corresponds

to the model’s unit. For instance, if the domain is a temperature, the model’s unit

could correspond to any fixed number of degrees. Similarly, the action model is

also learned in arbitrarily units, although here the number zero is constrained to

correspond to a rate of change of zero.

Despite this lack of grounding to actual units, the learned action and sensor

models are consistent with one another. That is, the ratio between the actual

velocities and the corresponding learned velocities is considered the units of length

30

in which the action model was learned. These are the same units in which the

sensor model represents distances. Note that this property is sufficient for the agent

to perform domain-specific planning, for instance by predicting the amount of time

a specific action command will take to yield a certain visual sensor reading. In other

words, we enable the agent to learn models in its own natural frame of reference,

rather than imposing upon it human units such as meters or meters per second.

3.2 Methods

This section presents the algorithm that is used to learn the action and sensor models

starting without an accurate estimate of either model. Specifically, Sections 3.2.1

and 3.2.2 show how each model can be learned by assuming the other one is al-

ready accurate. The remaining question of how the agent can learn both models

simultaneously is addressed in Section 3.2.3.

3.2.1 Learning the Sensor Model

First we demonstrate that it is possible to learn a relative sensor model given any

constant action, even in the absence of any knowledge about that action. We will

then generalize to the case of varying actions, assuming access to an accurate action

model. Section 3.2.3 shows how this ability can be incorporated into a process that

can learn both models from scratch.

Consider the situation in which the agent executes a constant action. Recall

that the sensor model is a function from the observations, ot, to the corresponding

world states, wt. Furthermore, while the agent executes a constant action command,

c, the state changes at a constant rate, A(c). Thus if this command is executed

continuously starting at time 0, the state of the world at time tk will be given

approximately by wt = w0 + tA(c). As long as the constant A(c) is not zero, solving

for t yields t = (wt − w0)/A(c). This expression represents a shifted and scaled

31

version of the world state at time t. Furthermore, since our goal is only to learn a

sensor model up to shifting and scaling, it suffices to learn a function directly from

ot to t. Such a function will represent a relative sensor model. Thus a satisfactory

sensor model can be learned even without knowing the constant rate of change

A(c). The agent learns the function by performing polynomial regression on the

pairs (ot, t).

Polynomial regression is implemented as a special case of multivariate linear

regression, discussed in Section 2.3. Specifically, to fit a d-degree polynomial to

points (xi, yi), Equation 2.11 is employed where the d+ 1 columns of X correspond

to the powers of xi: Xi,j = xj−1
i . Notably, although X and y grow in size as

data points are received, the regression can be performed in constant space, taking

constant time to incorporate each new data point by instead storing X⊤X and

X⊤y, which suffice to compute β as in Equation 2.11. This is possible because

(X⊤X)i,j =
∑

k Xk,iXk,j and (X⊤y)i =
∑

k Xk,iyk, so these entries can simply be

incremented as needed for each new data point. This computation, when applied to

the data (ot, t), identifies a suitable sensor model under the restrictive assumption

that the agent is executing a constant action command.

With access to an accurate action model, it is possible to use a very similar

process to learn a sensor model while the agent performs an arbitrary series of

actions. Specifically, since the sensor model is a function from the observations to

the world state, if the agent can compute a world state estimate from its actions, it

can perform polynomial regression on its observations and those state estimates to

learn a sensor model. Given an action model A, the agent can use its knowledge of

the state velocities to compute the world state as a function of time. As discussed

in Section 3.1, the world state wt is approximated by w0 +
∑t−1

i=0 A(ci)∆t, which

we denote as wa,t, the estimate of the world state at time t based on the action

model. Since the algorithm is learning relative distances, it suffices to assume that

32

w0 = 0. Thus the agent can maintain an estimate for wt by initializing it to be 0

at time 0 and incrementing it by A(ct)∆t at each time step. The agent then learns

a sensor model from the action model by performing polynomial regression on the

pairs (ot, wa,t).

3.2.2 Learning the Action Model

In the previous section, we showed how to learn a sensor model when given an

accurate action model. In this section, we show that the reverse is also possible: we

assume that the agent has an accurate sensor model and show how the agent can

use it to learn an action model. This learning uses the sensor model to provide an

estimate of the state of the world from each observation. We denote this estimate

by ws,t, and it is given by S(ot). For learning the action model, the training data

consists of the state estimates ws,t, combined with the knowledge of the action

selections ct. Since the action model maps the action selections to the rate of change

of the world state, rather than directly to the state itself, the training data does not

allow for a direct polynomial regression as in the previous section. Intuitively, the

task is to learn a function from the action command to the rate of change of the

world state.

More precisely, the agent’s goal is to learn the function A(ct) =
∑d

i=0 aic
i
t

that causes the values of w based on A and S, wa,t and ws,t, to match each other

as closely as possible. That is, the agent computes the coefficients ai that minimize

the error defined by:

33

E =
T∑

t=1



ws,t −



w0 +
t−1∑

i=0



∆t
d∑

j=0

ajc
j
i













2

=
T∑

t=1



ws,t −



w0 +
d∑

j=0

aj

(

∆t
t−1∑

i=0

cji

)







2

(3.2)

where the agent knows the values ot, ws,t, and the values of ct. This problem is an

instance of a multivariate linear regression, with d+ 2 coefficients being learned, w0

and a0 through ad, where the input data is 1 for w0 and ∆t
∑t−1

i=0 c
j
i for aj and the

output data is ws,t. This regression has the effect of identifying the curve that fits

the data (t, ws,t) as closely as possible, provided that the slope of the line at any

time t is a constant d-degree function of ct. Figure 3.3 shows what this curve might

look like in the case where the executed actions are piecewise constant over time.

3.2.3 Learning Both Models Simultaneously

The previous sections presented algorithms that enable the agent to learn the sensor

model from the action model and vice versa. Making use of both of these capabilities,

this section shows how the agent can simultaneously learn both models, even when it

is given very little useful starting information. This learning is possible because, even

though an action model learned from an inaccurate sensor model (and vice versa)

will be inaccurate, it will often be an improvement. As each model grows more

accurate, its ability to help the other model improve grows. As this bootstrapping

process continues, the two models converge to functions that accurately reflect what

they are trying to model.

Because both models grow in accuracy as time goes on, the regressions should

give more weight to the more recent data points. Thus a weighted regression is used,

where each data point has a weight that decreases over time. Note that for both

34

learning directions, there is one regression data point for each observation. We define

the weight of each data point to start at one and decrease by a constant factor γ < 1

every time a new observation is taken. Thus if there have been n observations so

far, the weight of the data points corresponding to the ith one is γn−i.

To compute the solution to the weighted regression, the diagonal n×n weight

matrix D is defined by Di,i = γn−i. The coefficients are then given by a weighted

version of Equation 2.11 [98]:

β = (X⊤DX)−1(X⊤Dy) (3.3)

where X and y are the input matrix and output vector defined in Section 2.3.

As discussed in Section 3.2.1 for unweighted regression, these quantities can

be represented in terms of sums that are maintained incrementally. For example,

(X⊤DX)i,j =
∑

k γ
n−kXk,iXk,j. For each new data point, such a sum is updated

by taking advantage of the fact that
∑n+1

k=1 γ
(n+1)−kzk = γ(

∑n
k=1 γ

n−kzk)+ zn+1 for

any sequence zk.

At time t, the agent makes use of its best estimates thus far of the action

and sensor models, denoted as At and St. These model estimates are continually

updated in accordance with world state estimates ws,t and wa,t, with each model

being updated by the location estimate based on the other model. These incremental

updates comprise the weighted polynomial regressions that give the best fit estimates

of S and A, as described above. In turn, these world state estimates are updated

based on the current models. Specifically, after observation ot, ws,t is given by St(ot).

At the same time, wa,t is maintained by continually incrementing it by At(ct)∆t,

At(ct) being the current estimate of the state velocity.

The update of wa,t ensures that its rate of change is the agent’s best estima-

tion of the state velocity. However, by itself this constraint allows for the possibility

that there is a large, persistent difference between the estimates wa,t and ws,t. It is

35

necessary to avoid such a difference because it would have the following adverse ef-

fect. Because the sensor model S is trained based on the values of wa,t, the estimates

ws,t would gradually drift toward these wa,t values. Then, when the action model A

was learned from the estimates ws,t, the drift would be interpreted as state velocity,

which would in turn cause the values of wa,t to drift in the same direction. This

would cause the difference between the estimates to persist while both drifted in the

same direction continually. With both state estimates drifting, At and St would be

unable to converge on accurate estimates of the action and sensor models.1

To avoid this problem, a mechanism is included that constrains wa,t and

ws,t to come into closer agreement with each other over the course of the learning.

The mechanism adjusts wa,t toward ws,t every time an observation is taken. The

adjustment is implemented by the assignment wa,t ← (1 − α)wa,t + αws,t, where α

is a constant that determines the strength with which wa,t is pulled toward ws,t.

Figure 3.4a) depicts the overall flow of information.

At the start of the training, there is no data to ground either the action

model or the sensor model, raising the challenge of how to get the learning process

started. If regression is performed on too little data, the resulting models may have

extreme inaccuracies that lead the process to diverge. To address this challenge,

for a period of time at the beginning, the agent uses a fixed, pre-set action model,

A0, instead of At. The function used for A0 can be a very rough approximation

of the true action model, discussed in Section 3.3.3. During this time, the sensor

model is learned based on A0, but the action model is not learned yet, because the

sensor model is based on too few data points. The amount of time taken to initialize

a model is denoted as tstart. After this time has passed, the sensor model can be

used to start learning an action model. However, until another period of time has

passed, this new action model is not based on enough data points for it to be used

1In preliminary experiments, such a divergence was indeed observed.

36

for learning. We set this second period of time to be the same length as the first

for the sake of parsimony. After these two periods of length tstart, the action and

sensor models can learn from each other. This process is depicted in Figure 3.4b).

tS A tA 0
t = 0

t = t

t = 2tstart

start

a) b)

S A

S A

s aw w

Figure 3.4: a) The flow of information. The thick arrows represent incorporating a
data point into the weighted regression for a model. The thin arrows indicate that
each model is used to construct the corresponding estimate of the world state. The
dashed arrow signifies the influence of ws on the estimate wa as described above.
b) The ramping up process. The arrows indicate one model being learned based on
another. Note that aside from A0, a model is not learned from until it has been
learned for a sufficient amount of time.

Pseudocode for the entire process is given in Algorithm 1. The routine

UPDATE incorporates one new data point into the weighted regression for the

model being updated. The goal of the algorithm is for the models S and A to

grow in accuracy over time, so that their estimates of the world state and velocity

eventually come to closely match the true state of the world and its rate of change.

The following section presents empirical evidence that these goals are met in a test

domain.

37

Algorithm 1 Autonomous Sensor and Action Model Learning.
1: wa,t ← 0
2: for each time step do

3: if t < 2tstart then

4: wa,t ← wa,t +A0(ct)∆t
5: else

6: wa,t ← wa,t +At(ct)∆t
7: end if

8: if an observation ot is made then

9: if t > tstart then

10: ws,t ← St(ot)
11: UPDATE At based on ws,t

12: wa,t ← (1− α)wa,t + αws,t

13: end if

14: UPDATE St based wa,t

15: end if

16: end for

3.3 Empirical Validation

This section presents an empirical validation of the algorithm presented in this

chapter on the Sony Aibo ERS-7 robot described in Section 2.5.1. The test domain

for the robot is designed to meet the four characteristics described in Section 3.1.

Specifically, the robot navigates through a one-dimensional state space, its sensor

readings map onto possible states, its actions map onto rates of change in that same

state space, and its sensations and actions are corrupted by zero-mean random noise.

To realize these characteristics, the robot walks forward and backward at different

speeds while facing a visible landmark. Experimental results bear out that the robot

successfully learns accurate models of its sensor and actions in this domain.

As discussed in Section 3.1, the robot simultaneously performs three op-

erations. Operations 2 and 3 consist of learning the action and sensor models.

Operation 1 is for the agent to act so that it experiences the full range of action

commands and observations. To achieve this goal, the Aibo walks alternatingly

forward and backward across a pre-set range of distances from the beacon. As dis-

38

cussed in Section 2.5.1, the robot’s walking action commands are parameterized by

the attempted forward velocity, ay. The value of ay ranges from −300 to 300, spec-

ified in mm/s. The robot chooses a random action command in the range [0, 300]

while going forward and from [−300, 0] during the backward phase. It continues to

execute each action for three seconds before choosing a new one. It switches between

walking forward and backward when the beacon height in the image gets too big or

too small. These size thresholds are chosen manually so as to keep the robot in its

field of operation. This behavior covers the full range of distances and velocities, as

desired.

Although the action commands being executed only attempt to move forward

and backward, random drift would cause the Aibo to slowly get off course. To

counteract this effect, the walking controller is set to constantly turn toward the

beacon with an angular velocity proportional to the beacon’s horizontal angular

distance from straight ahead. This small angular velocity has a negligible impact

on the robot’s forward or backward velocity.

Section 3.3.1 demonstrates the robot’s ability to learn one model from the

other developed in Sections 3.2.1 and 3.2.2. Section 3.3.2 shows that the robot is

able to learn both models simultaneously, as described in Section 3.2.3. Finally,

Section 3.3.3 presents some additional experimental results that illustrate the algo-

rithm’s robustness and flexibility.

3.3.1 Learning One Model at a Time

This section demonstrates that the robot can learn the sensor and action models, as

described in Sections 3.2.1 and 3.2.2, in the test domain. The experiments in this

section show qualitatively how the different components of the model learning work,

in isolation, on the robotic platform. The following section demonstrates the robot’s

ability to learn both models simultaneously and provides quantitative experimental

39

results.

The sensor and action models are learned as polynomials of degree three and

four respectively, based on the estimation (without detailed experimentation) that

these are roughly the polynomial degrees necessary to capture the complexity of the

functions being modeled. The possibility of having the agent autonomously select

the polynomial degrees is discussed in Section 3.3.3.

First we show that the robot can learn a sensor model while executing a con-

stant action. As discussed in Section 3.2.1, this learning entails applying polynomial

regression to the pairs (ot, t) with d = 3 while a constant action command is being

executed. When this process is performed, the cubic learned is typically quite an

accurate fit to the data, as shown in Figure 3.5a).

Second, the robot must also be able to learn a sensor model while executing

any control policy, such as the randomized one described above. In this case, we

assume that the robot already has access to an accurate action model. Then it can

use the action model to compute its velocity at any time, and use its velocity to

accumulate an estimate of its location: wa,t = w0 +
∑t−1

i=0 A(ci)∆t. To test this

hypothesis, we provide the robot with a starting action model estimate, and train

the sensor model based on the resultant world state estimates, using a third-degree

polynomial regression. The result of such a regression is shown in Figure 3.5b).

Note that because the action model used here is actually not perfectly accurate, the

estimates taken while walking forward and backward are not well aligned with one

another. Nonetheless, the learned sensor model is still a qualitatively reasonable

one, in that as the beacon height increases, the rate of change of the corresponding

location decreases, as would be expected.

Recall from Section 3.2.2 that the robot can also learn an action model if

given an accurate sensor model. To verify this ability in our test domain, the

robot first learns a rough sensor model using the constant action method described

40

Best Fit Cubic (to all data):
Walking Backwards Observations:

Walking Forwards Observations:

Beacon Height

x (t)a

Observations:
Best Fit Cubic:

Beacon Height (in pixels)

Time
(s)

a) b)

wa,t

Figure 3.5: a) After walking forward via a constant action, these are the observed
data points (+), mapped against time. The dashed curve is the best fit cubic to
these points. The variation in beacon height at any given time is due to inherent
noise in vision. b) The plotted points are (ot, wa,t) as the robot performs one full
cycle of walking toward the beacon and backing away from it. The +’s are the
observations while walking forward and the ×’s are while walking backward. The
polynomial is fit to all the points.

above. It then uses that sensor model to produce a running estimate of the robot’s

location, ws,t. As discussed in Section 3.2.2, this data can be combined with the

knowledge of the executed actions to identify the action model that minimizes the

disagreement between the location estimates based on the sensor and action models.

Equation 3.2 is used to convert this minimization problem into a multivariate linear

regression. Performing the regression yields the action model estimate. The result

of this process is shown in Figure 3.6.

3.3.2 Learning Both Models Simultaneously

This section demonstrates the robot’s ability to learn the sensor and action models

simultaneously using the technique described in Section 3.2.3. The learned sensor

and action models were evaluated by comparing them to models measured manually.

41

Learned Action Model:
Observations:

Time (s)

s, tw

Figure 3.6: The plotted points are (t, ws,t) as the robot performs one full cycle of
walking toward the beacon and backing away from it. The learned action model
is applied to the executed action commands to yield the piecewise linear location
estimate shown here. Note that the units in the vertical axis of this graph are
arbitrary, since it is based on the relative learned sensor model.

These comparisons found that the learned models closely matched the measured

models.

Implementing Algorithm 1 on a specific platform requires finding suitable

values for a few algorithmic constants. Finding these values did not require any

extensive tuning. The discount factor used for the regression weights, γ, was 0.999.

The strength of the pull of wa,t toward ws,t, α, was 1/30. These values were the first

ones that were tried for γ and α. The starting phase time, tstart, was 20 seconds.

We tried 10 seconds first but that was too short. The initial action model, A0, was

the assumption that the attempted velocities are correct: A0(c) = c. Section 3.3.3

discusses the sensitivity of the algorithm to this initial action model.

When the models S and A are learned simultaneously, Figure 3.7 depicts how

ws,t and wa,t vary over time. Note that both oscillate as the robot walks toward

and away from the beacon. As A and S grow more accurate, their corresponding

42

estimates of the location come into stronger agreement.

Time (s)

wt

Figure 3.7: This figure shows how wa,t, and ws,t vary over time. In this example
run, the +’s are values of ws,t, and the curve depicts wa,t. Over time, each model
learns how to keep its estimate of the location close to the other model’s estimate.

The model learning process consists of two regression updates every time the

robot processes an image. The images were processed as they were received, at a

frequency of roughly 20 Hz. The model learning was performed concurrently with all

of the robot’s other real-time computation, including vision and motion processing,

all on-board on a single 576 MHz processor.

After the learning algorithm was performed for a pre-set amount of time (two

and a half minutes), its estimates of A and S at that point were considered to be

the models that it had learned. In order to evaluate the learned models, the robot’s

actual action and sensor models were measured manually. These measurements were

performed with a stopwatch and a tape measure.

43

The measured action model was obtained by measuring the velocity of each

action command that is a multiple of 20 from −300 to 300. These velocities were

measured by timing the robot walking across a distance of 4.2 meters five times.2

The standard deviation of the velocity measurement for a given action command

across the five timings never exceeded 7 mm/s. The measured action model is shown

in Figure 3.8a).

Similarly, the accuracy of the learned sensor model was gauged by comparing

it to a measured sensor model. The sensor model was measured by having the

Aibo stand at measured distances from the beacon. The distances used were the

multiples of 20 cm from 120 cm to 360 cm. At each distance, the robot looked at the

beacon until it had collected 100 beacon height measurements. The average of these

measurements was used as a data point for the sensor model, and their standard

deviation did not exceed 1.1 pixels at any distance. The measured sensor model is

shown in Figure 3.8b).

a) b)

Measured Action Model:
Learned Action Model:

Vel.

Action Command

Learned Sensor Model:
Measured Sensor Model:

Beacon Height

Dist.

Figure 3.8: A learned action and sensor model

The learning process was executed 15 times, with each trial lasting for two

and a half minutes. Figure 3.8a) shows a typical learned action model, compared to

2For a few very slow action commands, shorter distances were used.

44

the measured action model data. Note that since the action model is not learned in

any specific units, in order to compare the learned model to the measured one, we

must first determine the appropriate (linear) y-axis scaling factor. This evaluation

is done by calculating the scaling factor that minimizes the mean squared error. On

average, the root mean square error between the scaled learned action model and

the measured action model was 29.6± 12.4 mm/s. Compared to the velocity range

of 600 mm/s, this average error is 4.9 percent. The best fit possible by a fourth

degree polynomial to the measured action model has an error of 17.2 mm/s. By

contrast, when the the initial action model, A0, is evaluated in the same manner,

the error is 43.0 mm/s.

Figure 3.8b) shows a typical learned sensor model with the measured sensor

model. The learned model S maps observations to relative distances, S(o), which

are intended to model the actual distances from the beacon. These actual distances

are given by a + bS(o), where a and b are two constants that are not learned.

Thus in order to evaluate a learned sensor model, we compute the values of a

and b that minimize the mean squared error between a + bS(o) and the measured

sensor model. This minimization is done with a linear regression on the points

(S(oi), Sm(oi)), where the oi are the sensor readings corresponding to the measured

distances Sm(oi). Our evaluation of a learned sensor model is the root mean square

error between it and the measured model, once this process has been applied. This

value was, on average, 70.4±13.9 mm. Compared to the distance range of 2400 mm,

this average error is 2.9 percent. The best fit possible by a cubic to the measured

sensor model has an error 48.8 mm.

Over the course of a trial, both models get progressively more accurate. The

learning curves are depicted in Figure 3.9. Both models’ errors are shown, compared

to the best possible error for the measured model and the degree of the polynomial

being learned. The data is averaged over all 15 trials.

45

Learned Action Model Error

Learned Sensor Model Error

Time (s)

Error
(mm,
mm/s)

Figure 3.9: This figure depicts the average error in the learned models as a function
of time. The error for the action model is in mm/s, and for the sensor model in mm.
The horizontal lines are at the minimum possible error to the measured models for
a polynomial of the appropriate degree.

Although the action and sensor models were not learned to any particular

scale, since they were learned from each other they should be to the same scale. This

property was tested by comparing the scaling constants used to give the best fits to

the measured models, the scaling constant for the action model and b for the sensor

model. These two values should be equal to each other in absolute value. The degree

of equality was evaluated by computing the average distance between the absolute

value of the ratio between the two scaling constants and 1. The average distance

was 0.08±0.06. This result shows that the two learned models were consistent with

each other.

46

3.3.3 Additional Results

This section examines the impacts of two assumptions used to this point: that there

is a reasonable initial action model, and that the degrees of the polynomials used

for regression are chosen manually. For the initial action model, I show that it

can convey very little information and still be sufficient to get the learning started.

In fact, even when the initial action model function is a constant, conveying no

information about ct, the robot can frequently learn accurate action and sensor

models. Additionally, I discuss the challenge of choosing the polynomial degree

autonomously and present some preliminary results in this regard.

Initial Action Model

Recall from Section 3.2.3 that an initial action model A0 is used for an amount of

time tstart to seed the learning. This approximate model is the only information that

the robot starts with about either the action or sensor model. The results described

in Section 3.3.2 use a linear initial action model, A(c) = c, that is somewhat similar

to the measured action model (shown in Figure 3.8). To examine the reliance of

the learning algorithm on this initial action model, we performed two tests with

more impoverished starting points. First, we used a piecewise constant model equal

to Sgn(c): 1 for positive action commands and −1 for negative ones. This model

conveys only the direction of the action but no information about its speed. In 15

runs, the robot achieved an average error of 85.3 ± 24.5 mm in its learned sensor

model and 31.3±9.2 mm/s in the action model after two and a half minutes. These

errors are comparable to those attained with the linear model (70.4± 13.9 mm and

29.6 ± 12.4 mm/s for the sensor and action models respectively).

Even with a starting model of A(c) = 1, which imparts no information about

the action model, on 10 out of 15 trials the robot was able to achieve an average

performance of 88.6 ± 11.5 mm error in the sensor model and 27.3 ± 6.2 mm/s in

47

the action model after five minutes. The remaining trials diverged, presumably

due to initially learning a pair of models that were so inaccurate that no useful

information could be recovered from them. The results from the three different

starting conditions are presented in Table 3.1. Note that the errors achieved with

these more impoverished models are similar to those achieved with the linear model,

indicating that our results are not particularly sensitive to the choice of the starting

action model.

A0 Sensor Model (mm) Action Model (mm/s) Success Rate

A0(c) = c 70.4 ± 13.9 29.6 ± 12.4 15/15

A0(c) = Sgn(c) 85.3 ± 24.5 31.3 ± 9.2 15/15

A0(c) = 1 88.6 ± 11.5 27.3 ± 6.2 10/15

Table 3.1: For each of three initial action models tried, this table shows the average
fidelity of the learned sensor and action models. The last column shows how many
of the 15 trials resulted in the sensor and action models converging. The top row
replicates the results presented in Section 3.3.2.

Polynomial Degree Selection

A potential enhancement to the model learning algorithm presented in this chapter

would be to enable it to choose the degrees for the polynomial regressions automat-

ically. The remainder of this section presents some results toward that goal based

on a method that explicitly distinguishes random noise from model error [92].

Choosing the degree of the polynomial is a type of model selection, the prob-

lem of identifying the best parameters for a function approximator. There are many

popular model selection techniques, such as the Akaike Information Criterion [2],

the Bayes Information Criterion [77], and cross-validation [38]. For choosing the de-

gree of a polynomial for regression in the context of robotic model learning, we tried

a method that takes advantage of the increasing expressive power of the successive

possible polynomial degrees and the wealth of data typically available in a robotic

48

setting.

To choose the degree, we start by fitting a first degree (linear) polynomial

and continually monitoring the fit to see if the degree needs to be increased. If so,

the regression is restarted with the degree incremented by one. The degree continues

to be incremented until a satisfactory fit is found. In order to determine whether or

not a particular degree is satisfactory, the robot compares a global prediction error

and a local noise estimate, two values that are continually maintained. A high global

prediction error indicates a poor fit, suggesting that the polynomial degree should

perhaps be increased. However, such an error might also be accounted for by a large

amount of random noise in the observed data, in which case increasing the degree

will not help. This comparison finds the lowest degree polynomial that achieves a

satisfactory fit, which has the effect of implicitly balancing the higher computational

costs of higher degrees against their improved accuracy.

Because of the added complications in learning an action model (see Sec-

tion 3.2.2), we tested this method on only learning a sensor model. While the robot

executed the same randomized behavior described in Section 3.3.2, it obtained train-

ing data for the sensor model by using a fixed action model that is the best fit fourth

degree polynomial to the measured data. The estimates of the robot’s location based

on this action model were used as training data for the sensor model learning with

automated degree finding.

Fifteen trials were run, each lasting five minutes. In each trial, the degree sta-

bilized within two and a half minutes and did not increase after that time. The fact

that the robot was able to settle on a degree every time demonstrates the method’s

stability. Nevertheless, randomness in the training data caused some variation in

the final polynomial degree. The average degree chosen was 3.33, with a standard

deviation of 1.29. This degree corroborates our earlier estimate that a third degree

polynomial was roughly the amount of complexity needed to learn the sensor model.

49

The learned sensor models were evaluated as described in Section 3.3.2. The

average errors for the learned sensor models was 101 ± 34 mm. Compared to the

distance range of 2400 mm, the average error is 4.2 percent. For comparison, with

the manually chosen fixed degree, the average sensor model in Section 3.3.2 was

70.4± 13.9 mm. This experiment demonstrates the potential feasibility of enabling

the robot to autonomously choose the degrees for its polynomial regressions during

the model learning process.

This chapter demonstrated the possibility of an autonomous agent learning

its action and sensor models starting without an accurate estimate of either model.

The algorithm presented achieves this goal in a class of one-dimensional settings

that includes a robot walking forward and backward while facing a fixed landmark.

In the following chapter, the challenges that arise from extending this framework to

a robot walking in a two-dimensional domain are addressed.

50

Chapter 4

Model Learning in Two

Dimensions

In this chapter, we consider the scenario of an autonomous legged robot walking on

a two-dimensional surface with observations that correspond to the robot’s distance

and angle to landmarks. The robot used in the experiments, the Aibo ERS-7,

and the robot model are described in Section 2.5.1. Section 4.1 summarizes this

model and describes the maximum likelihood framework used to learn the action

and sensor models, namely the Expectation-Maximization (EM) algorithm [26]. The

adaptation of the E-step, described in Section 4.2, is partly achieved by an extended

Kalman filter and smoother (EKFS) [31]. The remainder of the E-step and the

adaptation of the M-step to this domain, presented in Section 4.3, are primary

contributions of this work [91]. Finally, Section 4.4 presents experimental results.

4.1 Setup

Recall from Section 2.5.1 that the robot’s motions lead to combinations of forward,

rightward, and turning velocities. Its observations consist of the vertical size of an

51

observed landmark in the robot’s camera image and the horizontal angle at which

the landmark is observed. These actions and observations are depicted in Figure 4.1.

d

a) b)

Figure 4.1: a) The robot moves in arbitrary combinations of forward, rightward,
and turning velocities. b) The robot’s observation components are a function of its
distance to the landmark and the landmark’s horizontal angle from the robot.

The components of the sensor model that are learned in this chapter are

the function f from landmark distance to observation height (see Figure 2.2) and

the variances of the random noise in the observation components, σ2
1 , and σ2

2 . The

function f is approximated as a third-degree polynomial. As discussed in Chapter 3,

this degree was chosen manually based on the estimated complexity of the function

being modeled. The component of the action model that is learned is the action

model function A from action commands to the corresponding velocity combinations.

This function is learned as a table of function values, namely the velocities that

correspond to a suite of 40 actions that are designed to cover the full range of

combinations of forward, rightward, and turning velocities, described in Section 4.4.

Previous work has shown that these velocities can be interpolated for intermediate

actions [28, 68].

As in the previous chapter, the action and sensor models are learned starting

without an accurate estimate of either model. Specifically, here the starting sen-

52

sor model consisted of an inaccurate linear polynomial, combined with inaccurate

estimates of σ1 and σ2. These values are presented along with the experimental

results in Section 4.4.1. Additionally, the starting action model corresponded to the

assumption that each action has no effect.

The action and sensor models, referred to collectively as λ,1 are learned by

identifying those models that have the maximum likelihood, P (O|C, λ), where O

and C represent the set of all of the robot’s observations and action commands

respectively. This likelihood is marginalized over the possibilities for W , the series

of world states. The EM algorithm is a method for identifying a maximum likelihood

parameter set given a set of observations in the context of hidden data. In this work,

the hidden data is the world state (pose) of the robot over time, wt = (xt, yt, θt). The

learning process therefore operates in batch on a series of actions and observations

recorded by the robot over a period of time.

The EM algorithm starts with an initial guess for the parameters, λ0, and

repeatedly revises it by a sequence of two steps, expectation (E) and maximization

(M). The E-step assumes the current parameter estimate is correct and identifies

the probability distribution over the hidden variables, denoted as P̂ , given all of the

actions and observations, P̂ (W) = P (W |O,C, λi).

The M-step uses the distribution P̂ computed in the E-step to compute a

new set of parameter estimates, λi+1. The new parameters are defined to be those

that maximize the expected log likelihood of λ leading to the observed and hidden

variables, where the expectation is taken with respect to P̂ (W):

λi+1 = argmaxλ′

(
EP̂ [logP (O,W |C, λ′)]

)
(4.1)

= argmaxλ′

(∫

P̂ (W)logP (O,W |C, λ′) dW

)

(4.2)

1A prior distribution over the initial state, denoted as π(w0), is also included in λ.

53

where the integral is taken over the space of all possible sequences of world states

W . Alternating between the E-step and M-step causes the parameter estimate to

converge to a local maximum likelihood. However, under the approximations made

in the following two sections, convergence is not guaranteed.

The following section explains the adaptation of the E-step to the problem

of learning the robot’s action and sensor models. The adaptation of the M-step is

presented in Section 4.3.

4.2 Adapting the E-step

As described above, the E-step aims to find the posterior distribution over the

sequence of world states given the sequence of actions and observations and the

previous parameter estimate, P̂ (W) = P (W |O,C, λi). The M-step described in the

following section relies specifically on knowledge of P̂ viewed as a distribution over

the world state at one time step, P (wt|O,C, λi), or over two consecutive time steps

(in Section 4.3.1), P (wt, wt+1|O,C, λi). These distributions are marginalized over

the world state at all of the time steps except for the one or two in question. This

section describes how they are estimated.

First, consider P (wt|O,C, λi), which we denote as γt(wt). Section 2.4 de-

scribed how an extended Kalman filter can be used to estimate a distribution over

wt given all of the observations and actions up until that point. However, we are

interested in the distribution over wt that also incorporates the knowledge of the

future observations and actions, ot+1 through oT and ct through cT−1. This infor-

mation can be incorporated through the EKFS, which can be implemented as a

forward-backward smoother [31].

The forward-backward smoother can be thought of as an instance of the

forward-backward algorithm for hidden Markov models [69]. That is, it can be

understood in terms of the functions αt and βt, defined as follows:

54

αt(wt) = P (o1 . . . ot, wt|c0 . . . ct−1, λi) (4.3)

βt(wt) = P (ot+1 . . . oT |wt, ct . . . cT−1, λi) (4.4)

To compute γt, we apply Bayes’ theorem to wt and ot+1 . . . oT :

P (wt|O,C, λi) =
P (wt|o1 . . . ot, C, λi)P (ot+1 . . . oT |wt, o1 . . . ot, C, λi)

P (ot+1 . . . oT |o1 . . . ot, C, λi)
(4.5)

Removing dependencies that have no effect, we get:

P (wt|O,C, λi) =
P (wt|o1 . . . ot, c0 . . . ct−1, λi)P (ot+1 . . . oT |wt, ct . . . cT−1, λi)

P (ot+1 . . . oT |o1 . . . ot, C, λi)
(4.6)

Multiplying the numerator and denominator by P (o1 . . . ot|C, λi) yields:

P (wt|O,C, λi) =
P (o1 . . . ot, wt|c0 . . . ct−1, λi)P (ot+1 . . . oT |wt, ct . . . cT−1, λi)

P (O|C, λi)

γt(wt) =
αt(wt)βt(wt)

P (O|C, λi)
(4.7)

Note that αt(wt) is equal to the constant P (o1 . . . ot|c0 . . . ct−1, λi) multiplied

by P (wt|o1 . . . ot, c0 . . . ct−1, λi), the density function computed by the EKF in Sec-

tion 2.4. The distribution’s mean and covariance, µ′t and Σ′
t are denoted here as

µα,t and Σα,t.

On the other hand, the function βt(wt) is a likelihood function of wt, and it is

not guaranteed to be proportional to a probability distribution. That is, the integral
∫
βt(wt) dw is not guaranteed to converge for all t (e.g., βT (wT) ≡ 1). However, for

55

most values of t, the integral does converge and βt can be considered as a distribution

by dividing it by this constant. The resulting distribution’s mean and covariance

matrix are denoted as µβ,t and Σβ,t. They can be estimated by running a separate

EKF backward in time, starting from a mean and covariance matrix of 0 and ∞.2

The means and covariances of α and β are combined to find those of γ by

applying the definition (2.6) to Equation 4.7:

γt(wt) ∝ exp

(

−
1

2
((wt − µα,t)

⊤Σ−1
α,t(wt − µα,t) + (wt − µβ,t)

⊤Σ−1
β,t(wt − µβ,t))

)

∝ exp

(

−
1

2
((wt − µγ,t)

⊤Σ−1
γ,t(wt − µγ,t))

)

(4.8)

where µγ,t and Σγ,t are defined by:

µγ,t = (Σ−1
α,t + Σ−1

β,t)
−1(Σ−1

α,tµα,t + Σ−1
β,tµβ,t) (4.9)

Σγ,t = (Σ−1
α,t + Σ−1

β,t)
−1 (4.10)

Expanding Expression 4.8 accordingly yields the exponent in the preceding expres-

sion plus a constant. Hence Equations 4.9 and 4.10 determine the mean and covari-

ance of γt(wt) = P (wt|O,C, λi), as desired.

Next, we wish to find the mean and covariance of the joint distribution over

wt and wt+1, which we refer to collectively as wt,t+1, given O, C, and λi. We denote

this distribution, P (wt,t+1|O,C, λi), as ξt(wt,t+1). It can be factored as [69]:

ξt(wt,t+1) =
αt(wt)βt+1(wt+1)P (ot+1|wt+1, λi)P (wt+1|wt, ct, λi)

P (O|C, λi)
(4.11)

2In practice, a very large diagonal matrix can be used for Σβ,T .

56

Section 4.3.1 relies on knowledge of the mean and covariance of the dis-

tribution ξt. To compute these quantities, first note that multiplying βt+1(wt+1)

by P (ot+1|wt+1, λi) is, up to a constant, the operation that is considered by the

Kalman filter measurement update (2.17)-(2.19). The mean and covariance of this

quantity (when normalized) are therefore computed in the backward sweep of the

forward-backward smoothing; we denote them as µδ,t+1 and Σδ,t+1. Next we com-

bine these values with our knowledge of αt, specifically µα,t and Σα,t, which are

generated in the forward EKF sweep. The mean and covariance of the product

αt(wt)βt+1(wt+1)P (ot+1|wt+1, λi) (when normalized) are denoted as µζ,t and Σζ,t

and given by:

µζ,t =




µα,t

µδ,t+1



 and Σζ,t =




Σα,t 0

0 Σδ,t+1



 (4.12)

The final factor of Equation 4.11 that must be incorporated is the action

likelihood P (wt+1|wt, ct, λi). We accordingly define D(wt,t+1) to be the relative

displacement between the two states, specifically R(−θt)(wt+1 − wt).
3 Note from

Equation 2.28 that P (wt+1|wt, ct, λi) has the value of a normal distribution with

mean A(ct)∆t, which we denote as µct, and covariance Σm, evaluated at D(wt,t+1),

where A is the action model function according to λi. This multiplication by the

PDF of a normal distribution over a function of the state is again the operation per-

formed by the extended Kalman filter measurement update: the state, observation,

and function h in Equation 2.23 correspond to wt,t+1, µct, and D, and the role of

R in Equation 2.16 is played by Σm, the motion uncertainty. Applying the EKF

measurement update as described in Section 2.4, linearizing around µζ,t, yields our

estimate of the mean and covariance of ξt, denoted as µξ,t and Σξ,t. These quanti-

ties, along with µγ,t and Σγ,t derived above, are the properties of the distribution

3Whenever angles are subtracted, such as in the third component of w here, the result is nor-
malized to be within the interval [−π, π) throughout this dissertation.

57

P̂ (W) = P (W |O,C, λi) that are used in the following section to determine the next

iteration of action and sensor models, λi+1.

Finally, the experimental results reported in Section 4.4 incorporate knowl-

edge of the overall likelihood of the current parameter set, P (O|C, λi). During the

E-step, this likelihood can be determined by factoring it as:

P (O|C, λi) =
T∏

t=1

P (ot|o1 . . . ot−1, c0 . . . ct−1, λi) (4.13)

=

T∏

t=1

∫

P (ot|wt, λi)P (wt|o1 . . . ot−1, c0 . . . ct−1, λi)dwt (4.14)

The second factor in this integral is the state distribution computed in the for-

ward sweep of the EKF at time t, with mean and covariance µα,t and Σα,t. Lineariz-

ing the sensation function as described in Equation 2.27 yields the approximation

ot = Hwt + rt where rt ∼ N (0, R) (Equations 2.14 and 2.16). Hence the probabil-

ity distribution over ot in Equation 4.13 is given by ot ∼ N (Hµα,t,HΣα,tH
⊤ + R)

from Equations 2.7 and 2.8. The likelihood density of the observed values of ot at

each time step according to this distribution are multiplied into a running overall

parameter likelihood.4

4.3 Adapting the M-step

As discussed in Section 4.1, the M-step of the EM algorithm is to determine the next

parameter set λi+1, defined by Equation 4.1 to be the value of λ′ that maximizes

EP̂ [logP (O,W |C, λ′)], where P̂ (W) is the distribution based on λi that was analyzed

in the previous section. This quantity can be decomposed as follows:

4To avoid overflow or underflow, the log likelihoods are added to a cumulative overall log likeli-
hood.

58

EP̂ [logP (O,W |C, λ′)]

=

∫

P̂ (W) log P (O,W |C, λ′) dW

=

∫

P̂ (W) log

[

π′(w0)

T∏

t=1

P (wt|wt−1, ct−1, λ
′)P (ot|wt, λ

′)

]

dW

=

∫

P̂ (W)

[

log π′(w0) +

T∑

t=1

(log P (wt|wt−1, ct−1, λ
′) + logP (ot|wt, λ

′))

]

dW

=

∫

P̂ (W) log π′(w0) dW +
T∑

t=1

∫

P̂ (W) log P (wt|wt−1, ct−1, λ
′) dW

+

T∑

t=1

∫

P̂ (W) log P (ot|wt, λ
′) dW (4.15)

where π′ is the prior distribution over w0 according to λ′.

This expression decomposes the expected log likelihood into a sum of three

terms that are functions of the three components of λ′: π′, the action model,

P (wt|wt−1, ct−1, λ
′), and the sensor model, P (ot|wt, λ

′). Maximizing this expression

with respect to λ′ consists of maximizing each term with respect to the correspond-

ing component. The distribution π′ that maximizes the first term is equal to the

distribution of w0 according to P̂ , namely γ0(w0) [69]. Maximizing the other two

terms corresponds to learning the action and sensor model, discussed in the next

two sections.

4.3.1 Learning the Action Model

The revised action model in each iteration of the EM algorithm is the one that

maximizes the second term in (4.15). For each action a, let Q(a) = {t : ct = a}, the

set of time steps at which action a occurred. Then, the portion of the second term

in (4.15) affected by action a is given by:

59

∑

t∈Q(a)

∫

P̂ (W) logP (wt+1|wt, ct, λ
′) dW

=
∑

t∈Q(a)

∫

P̂ (wt,t+1) log P (wt+1|wt, a) dwt,t+1

=
∑

t∈Q(a)

∫

ξt(wt,t+1)

[

C −
1

2
(D(wt,t+1)− µa)

⊤Σ−1
m (D(wt,t+1)− µa)

]

dwt,t+1

where D and ξ are defined in Section 4.2 as the relative displacement function and

the state distribution P̂ over two consecutive time steps, respectively, and C is a

constant with respect to µa. The last step follows from Equations 2.28 and 2.6.

Completing the M-step requires finding the displacement resulting from ac-

tion a, µa, that maximizes the above expression. Equivalently, the new value of µa

is the one that minimizes:

∑

t∈Q(a)

∫

ξt(wt,t+1)(D(wt,t+1)− µa)
⊤Σ−1

m (D(wt,t+1)− µa) dwt,t+1 (4.16)

Taking the gradient with respect to µa and setting it equal to zero, we get:

∑

t∈Q(a)

∫

ξt(wt,t+1)(2Σ
−1
m µa − 2Σ−1

m D(wt,t+1)) dwt,t+1 = 0

2Σ−1
m




∑

t∈Q(a)

∫

ξt(wt,t+1)µa dwt,t+1 −
∑

t∈Q(a)

∫

ξt(wt,t+1)D(wt,t+1) dwt,t+1



 = 0

∑

t∈Q(a)

∫

ξt(wt,t+1)µa dwt,t+1 =
∑

t∈Q(a)

∫

ξt(wt,t+1)D(wt,t+1) dwt,t+1

Using the fact that
∫
ξt(wt,t+1)dwt,t+1 = 1, we get:

60

∑

t∈Q(a)

µa =
∑

t∈Q(a)

∫

ξt(wt,t+1)D(wt,t+1) dwt,t+1 (4.17)

µa =
1

|Q(A)|

∑

t∈Q(a)

∫

ξt(wt,t+1)D(wt,t+1) dwt,t+1 (4.18)

In order to complete the computation of µa, we must compute
∫
ξt(wt,t+1)

D(wt,t+1)dwt,t+1 for each t in Q(a) and average the results. This integral can be

thought of as the expected value of D(wt,t+1) with respect to the probability dis-

tribution ξt. To evaluate this expected value, Eξt
[D(wt,t+1)], note that in general

if E[x] = µ, E[Ax] = Aµ. Therefore, approximating D as linear, we get that the

expected value is D(µξ,t), where µξ,t is the (six-dimensional) mean of the ξt distribu-

tion computed in Section 4.2. Averaging this quantity over the |Q(a)| relevant time

steps yields the new estimate for the mean displacement µa corresponding to action

a. This mean displacement is divided by ∆t to yield the corresponding learned

velocity components.

4.3.2 Learning the Sensor Model

Recall from Section 2.5.1 that the robot’s observations correspond to sightings of

the landmarks in the environment, which are assumed to be visually distinguishable.

In world state wt, the distribution over observations is given by:

ot =




ot,1

ot,2



 ∼ N








f(dist(wt))

ang(wt)



 ,




σ2

1 0

0 σ2
2







 (4.19)

where the functions dist(wt) and ang(wt) represent the distance and horizontal angle

respectively from a robot at state wt to the landmark that is observed. The sensor

model that is learned consists of the function f plus the standard deviations σ1 and

σ2.

61

To learn this sensor model, we maximize the third term in (4.15) with respect

to f , σ1, and σ2:

T∑

t=1

∫

P̂ (W) log P (ot|wt) dW (4.20)

=

T∑

t=1

∫

P̂ (wt) log P (ot|wt) dwt (4.21)

=
T∑

t=1

∫

γt(wt)

[

C −
1

2

(

log σ2
1σ

2
2 +

(
f(dist(wt))− ot,1

σ1

)2

+

(
ang(wt)− ot,2

σ2

)2
)]

dwt (4.22)

where γt(wt) is the probability of wt according to P̂ discussed in Section 4.2 and

σ2
1σ

2
2 is the determinant |Σ| in Equation 2.6.

Maximizing the above expression is equivalent to minimizing both

∑T
t=1

∫
γt(wt)

(

log σ2
1 +

(
f(dist(wt))−ot,1

σ1

)2
)

dwt (4.23)

and
∑T

t=1

∫
γt(wt)

(

log σ2
2 +

(
ang(wt)−ot,2

σ2

)2
)

dwt (4.24)

First, note that Expression 4.23 can be minimized with respect to f , inde-

pendent of σ1 and σ2, by minimizing
∑

t

∫
γt(wt)(f(dist(wt))− ot,1)

2dwt, which we

approximate as:

T∑

t=1

Ns∑

i=1

(f(dist(w
(i)
t))− ot,1)

2dwt (4.25)

where the w
(i)
t areNs samples of wt that are drawn from the γt distribution. Samples

are drawn from this distribution, N (µγ,t,Σγ,t), by taking the Cholesky decomposi-

62

tion Σγ,t = LL⊤, generating samples of z(i) ∼ N (0, I) using the Box-Muller trans-

form, and choosing the sample w
(i)
t to be µγ,t +Lz(i). The resulting desired variance

of LL⊤ follows from Equation 2.7. The function f is represented as a polynomial

and thus learned by polynomial regression applied to the pairs (dist(w
(i)
t), ot,1). In

the experiments reported in the following section, the number of samples used from

each frame was one.5

The resulting polynomial f minimizes Expression 4.23 for any choice of σ1.

To find the minimizing value of σ1, we differentiate the expression with respect to

σ1 and set the result equal to 0, using the new value of f . The result is:

T∑

t=1

∫

γt(wt)

(
2

σ1
−

2(f(dist(wt))− ot,1)
2

σ3
1

)

dwt = 0

T∑

t=1

∫

γt(wt)
2

σ1
dwt =

T∑

t=1

∫

γt(wt)
2(f(dist(wt))− ot,1)

2

σ3
1

dwt

Because
∫
γt(wt)dwt = 1:

2T

σ1
=

T∑

t=1

∫

γt(wt)
2(f(dist(wt))− ot,1)

2

σ3
1

dwt (4.26)

σ1 =

√
∑T

t=1

∫
γt(wt)(f(dist(wt))− ot,1)2 dwt

T
(4.27)

This weighted RMS error is estimated by again using the Ns samples drawn from

each γt distribution and taking the RMS average of the corresponding errors, namely

f(dist(w
(i)
t))− ot,1.

Similarly, minimizing (4.24) with respect to σ2 yields:

5Because of the large number of frames in the data set, it was not necessary to draw many
samples from each one.

63

σ2 =

√∑

t

∫
γt(wt)(ang(wt)− ot,2)2

T
(4.28)

This value is also estimated based on the samples of γt as the RMS average of the

corresponding errors: ang(w
(i)
t)−ot,2. This computation completes the reestimation

of λ in the M-step.

As mentioned in Section 4.1, the EM algorithm alternates between the E-step

and M-step until convergence is reached. In general, this process is guaranteed to

converge to a local maximum likelihood parameter set. However, a number of ap-

proximations have been made throughout the algorithm. Primarily, the EKFS used

in the E-step approximates the system dynamics and observations as being linear

and as having Gaussian noise. These approximations, along with the distribution

sampling in the M-step, mean that the learning process is in fact an approxima-

tion of the EM algorithm, and is therefore not guaranteed to converge. In practice,

informal experiments suggested that the nonlinearity and non-Gaussianity of the ob-

servations can potentially cause persistent severe inaccuracies in the EKFS, which in

turn keeps the entire EM process from converging, especially if observation outliers

are not explicitly rejected, or if a sufficiently poor starting model is used. However,

even starting with no action model and a very inaccurate sensor model, this approx-

imation to EM is able to learn accurate action and sensor models for the robot, as

shown in the following section.

4.4 Empirical Validation

The technique described in this chapter was validated both on a physical mobile

robot and in simulation. In both cases, accurate sensor and action models were

learned, starting with no action model and a very poor sensor model. On the real

robot, the learned translational velocities were not evaluated due to the difficulty

64

in measuring the ground truth for these velocities. All of the other aspects of the

action and sensor models were measured and compared to the learned models. In

simulation, ground truth is known, and all components of the learned models were

evaluated. Additionally, Section 4.4.3 provides two demonstrations of the versatility

of the algorithm presented in this chapter. First, it shows that the technique pre-

sented in this chapter can be easily adapted to the class of one-dimensional domains

considered in Chapter 3. Second, I demonstrate the possibility of relearning the

action and sensor models after one of them has changed.

4.4.1 Real Robot Results

The robot used in the experiments was a Sony Aibo ERS-7, depicted in Figure 2.1.

The Aibo’s field of operation, shown in Figure 4.1, measures 5.4m × 3.6m. The

landmarks on the field are four distinct cylindrical beacons in fixed, known locations.

Recall from Section 2.5.1 that the robot’s action commands correspond to attempted

velocities, ax, ay and aθ. These attempted velocities determine the robot’s step

sizes and directions. However, they are often significantly inaccurate because of

inaccuracies in the robot’s joint movement and its feet slipping against the ground.

The action model learned by the robot maps these action commands onto actual

velocity combinations. A set of 40 action commands was used, determined as follows.

The attempted velocity combinations, (ax, ay, aθ), were all chosen to walk as

fast as possible in a given direction (including turning as a component of the direc-

tion). With each component normalized to be in the range [−1, 1], such combinations

satisfy the equation a2
x +a2

y +a2
θ = 1. The velocities are uniquely determined by the

combination of this equation, an angular velocity (specified as a fraction of the maxi-

mum), ω ∈ {−1
2 ,−

1
6 , 0,

1
6 ,

1
2}, and the direction of (ax, ay), ψ ∈ {0,±

π
4 ,±

π
2 ,±

3π
4 , π}.

Specifically:

65

aθ = ω (4.29)

ax = cos(ψ)
√

1− a2
θ (4.30)

ay = sin(ψ)
√

1− a2
θ (4.31)

This set of motions was designed to cover the range of possible motions,

excluding ones that have a very high angular velocity, which all effectively just

cause the robot to spin in place. This parameterization is based on the one used by

Duffert and Hoffman [28].6

The constant value that was used for the motion variance, Σm, was chosen to

be large enough to accommodate the inaccuracy of all the starting velocity estimates

being zero. Specifically, it corresponded to standard deviations of 10 mm in each

direction and 0.1 radians, at each time step (30 Hz). In preliminary experiments,

the algorithm was robust to these values being at least doubled or halved. Note

that the different actions each have their own true variances that were not learned

in this work. Because these action covariance matrices each have six degrees of

freedom, the space of sets of action covariances is a high-dimensional space, making

it inherently difficult to search in. These action covariance matrices are nevertheless

an important aspect of the action model, and adapting the method for learning the

action model presented in Section 4.3.1 to also learn these variances is an important

area for future work.

As the robot walked, it scanned its head from side to side to see as many

beacons as possible. At each time step, the action command executed and any

observation made was recorded. In some frames, no observation was made. When

the algorithm processed these frames no EKF observation updates are made, and

6Duffert and Hoffman [28] used a parameterization that includes an additional parameter for
overall speed.

66

those frames were omitted in the sensor model reestimation. To attenuate the

effect of false positives in object recognition, outlier observations were pruned in

the first iteration of EM by discarding observations that represented too large of an

innovation in the forward Kalman filter. Specifically, the observation is discarded

if abs(ot,2 − h(wt)2) > 0.6k radians, where k is the number of time steps that have

elapsed since the previous observation was made. The robot ran at its native frame

rate of 30 time steps per second.

The training run lasted for 15 minutes, with each of the 40 actions being

executed roughly four times for five seconds at a time. As in the previous chapter, a

control policy is needed that enables the robot to explore the full range of actions and

states. To meet this constraint, after every five seconds a new action was selected

randomly, with priorities being placed on staying on the field and on distributing

the executed actions evenly. As a matter of convenience, a previously developed

accurate localization module was used to help choose actions that keep the robot

on the field. This measure would not be necessary if a larger field were used.

The parameter estimation algorithm was run on the resulting data set until

convergence, defined as follows. In an ideal setting, EM is guaranteed to converge

with the overall likelihood increasing with every iteration. However, approximations

made, such as the linearization for the EKF, the assumption of Gaussianity, and

drawing samples from a distribution, cause the overall likelihood, P (O|C, λ), to

fluctuate. The learning is considered finished when 50 iterations pass without a new

highest likelihood, indicating that these fluctuations have started to overshadow the

learning. On the data collected by the robot, the algorithm took 152 iterations

to converge. The learning curve is shown in Figure 4.2, with the log likelihood

computed as described in Section 4.2.7 The entire process took 15 minutes of data-

7Recall from Section 2.1 that the magnitudes of these likelihood densities depend on the units
in which the random vector is measured. The 5639 observations that comprise O each have one
component measured in pixels and one measured in radians.

67

collection plus about 10 minutes of offline processing on a 2.79 GHz Pentium 4

processor.

-7400

-7200

-7000

-6800

-6600

-6400

-6200

-6000

 0 50 100 150 200

Lo
g

Li
ke

lih
oo

d

Iteration

Figure 4.2: This learning curve shows the computed total log likelihood, P (O|C, λi)
during each iteration of EM. The log likelihood of the starting parameter estimates
was −23000.

The sensor model consists of a polynomial function from distances to bea-

con heights, a variance for those beacon heights, and a variance for the observed

landmarks’ horizontal angles. For each quantity, a starting value was used that

was very inaccurate and the learned value was compared to the measured actual

value. Specifically, the starting polynomial was a very poor linear model, shown

in Figure 4.3. Preliminary experiments suggested that a significantly less accurate

starting sensor model would cause the learning to diverge.

The actual sensor model was measured as follows. The robot was placed

at distances from the beacon every 100 mm from 1275 to 4175 mm, the range of

distances at which the robot can recognize the beacon. Distances were measured

from the center of the robot’s body, because this is the point from which the hor-

izontal angle observations are computed. At each distance, 100 observations were

made, and the mean and variance of the beacon heights and angles were computed.

During this time the robot was stepping in place and scanning its head from side

68

to side, to replicate the conditions during the learning. The actual beacon height

means are shown as the measured sensor model and compared to the learned model

in Figure 4.3.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1500 2000 2500 3000 3500 4000

H
ei

gh
t i

n
Im

ag
e

(P
ix

el
s)

Landmark Distance (mm)

Starting Model
Analytical Model
Measured Model

Learned Model

Figure 4.3: The starting, learned, and measured sensor models. For comparison, an
analytical sensor model is also shown, derived from the specifications of the camera.
The learned model successfully approximates the measured one.

To obtain the measured beacon height and angle variances, the variances

at each distance were averaged, each weighted by the frequency with which that

beacon distance occurred during the learning. The starting, measured, and learned

standard deviations for the beacon height were 10, 1.59, and 1.69 pixels respectively,

an error of 6.3% in the learned value. The starting, measured, and learned angle

standard deviations were 0.2, 0.0267, and 0.0116 radians, an error of a factor of

2.3. This error was likely due to the very small magnitude of the actual angle

variances being dwarfed by the uncertainty in the robot’s orientation at any time.

This hypothesis is supported by the results in the following section, in which a much

69

larger simulated angle variance was learned accurately.

For the action model, the starting velocity estimates were all zero. Rota-

tional velocities were measured for each of the 40 actions. Each one was measured

by allowing the robot to execute that action for 30 seconds and measuring the total

angular change. The RMS difference between the measured and learned angular

velocities was 0.135 rad/s, a relative error of 3.2% compared to the the measured

range of angular velocities, 4.21 rad/s. By contrast, the original “attempted” angu-

lar velocities, which were manually calibrated (and not used by the robot), had an

RMS error of 0.331 rad/s, a relative error of 7.9%.

4.4.2 Simulation Results

The above experiment was also run in the exact same way in simulation, using the

same starting action and sensor models. The simulation engine models the robot’s

pose and observation vectors, but not its physical joint angles or camera image. This

experiment verified that the method was able to learn accurate action and sensor

models, including the translational velocities of the action model. The simulator’s

time steps represented 0.05 seconds. The observations were computed by applying

a simulated “actual” sensor model to the distances and adding gaussian noise to

yield beacon height and angle observations. Gaussian noise was also added to the

robot’s motion at each time step.

The algorithm converged on the simulated data after 959 iterations, with

the learning taking roughly one hour. The learning curve is shown in Figure 4.4a).

Each action’s learned velocities were compared to the ground truth. The final RMS

errors in vx, vy, and vθ were 23.06 mm/s, 18.34 mm/s, and 0.086 rad/s, relative

errors of 3.2%, 2.2%, and 2.7%, respectively, with respect to the total range of ve-

locities in those three directions, namely 710 mm/s, 840 mm/s and π rad/s. The x

and y velocity RMS errors are shown decreasing over the course of the EM itera-

70

tions in Figure 4.4b). Note that this RMS error improvements mirror the overall log

likelihood improvements shown in Figure 4.4a). This similarity provides confirma-

tion that the log likelihood is a useful measure of the accuracy of the models being

learned.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000
R

M
S

 E
rr

o
r

(m
m

/s
)

Iteration

Side Velocity
Forward Velocity

-20000

-19800

-19600

-19400

-19200

-19000

 0 200 400 600 800 1000

L
o
g
 L

ik
e
lih

o
o
d

Iteration

a) b)

Figure 4.4: a) The log likelihood of the 8659 observations improves over the course
of 1000 iterations of EM. The starting model had a log likelihood of −50881. b)
As the action model estimates converge, the average velocity errors decrease. The
angular velocities (not pictured) converge within the first 100 iterations.

Additionally, the standard deviations of the Gaussian noise added to the two

observation components in the simulator were 1 pixel for the beacon height and

0.5 radians for the observed horizontal angles. The learned values of these standard

deviations were 0.980 pixels and 0.474 radians, errors of 2.0% and 5.3% respectively.

The learned, starting, and actual sensor model functions are shown in Figure 4.5.

4.4.3 Additional Results

This section presents additional results that illustrate two important capabilities of

the algorithm presented in this chapter. First, I show that the EM-based approach

can be adapted to learn models in the one-dimensional domain considered in Chap-

ter 3. Second, I demonstrate the possibility of periodically relearning the action and

71

 0

 10

 20

 30

 40

 50

 1500 2000 2500 3000 3500 4000

H
ei

gh
t i

n
Im

ag
e

(P
ix

el
s)

Landmark Distance (mm)

Starting Model
Actual Model

Learned Model

Figure 4.5: The learned sensor model closely matches the actual one.

sensor models to accommodate the models changing over time.

Expectation-Maximization in One Dimension

Compared to the algorithm presented in Chapter 3, the model learning framework

presented in this chapter was motivated by the additional challenges raised by a

more complex two-dimensional domain. Specifically, the algorithm presented in

Sections 4.2 and 4.3 is designed to accommodate a domain with perceptual aliasing,

especially that which is caused by the world state space having a higher dimension-

ality than the observations. This section tests the hypothesis that the EM-based

model learning technique presented in this chapter can also be effective in a do-

main without these complications, specifically the one-dimensional domain used in

Chapter 3.

Adapting the EM-based technique to a one-dimensional world state does

72

not require any significant modifications to the algorithm described in Sections 4.2

and 4.3. The learned action model maps each of a suite of 21 actions onto its

corresponding velocity. The robot used actions whose normalized attempted forward

velocities, ay, were the multiples of 0.1 from −1 to 1. These actions were executed

with the attempted rightward and turning velocities, ax and aθ, set to zero. The

action standard deviation used in the learning was 10 mm. The learned sensor model

was the polynomial function f that maps the robot’s distance to the landmark onto

the landmark’s height in pixels in the camera image.

The experimental setup used to collect the data was the same as the one

described in Section 3.3.2, with alternating phases of forward actions and backward

actions. However, the learning was performed offline in batch, as needed for the

EM-based approach. The initial sensor and action models used were the same as in

Sections 4.4.1 and 4.4.2, namely a poor linear model for the starting sensor model

and the assumption of no motion for the starting action model.

Data was collected over the course of eight minutes of the robot walking

forward and backward at different speeds. EM converged after 639 iterations, taking

just 2 minutes and 14 seconds. As in Chapter 3, the experimental setup only provides

information about relative distances and velocities, not absolute ones measured in

meters or meters per second. The robot therefore learns the models in its own

arbitrary units, although the action and sensor models should be learned in units

that are consistent with each other. In order to evaluate the learned models, they

were optimally scaled when compared to the measured models, as in Section 3.3.2.

The learned and measured action and sensor models are depicted in Figure 4.6.

The RMS error in the learned sensor model shown in Figure 4.6a) was 0.83

pixels, an error of 2.52% compared to the total range of observed landmark heights.

Note that this error is not directly comparable to the sensor model error learned in

Chapter 3, because there the inverted sensor model was learned. Its average error

73

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

V
el

oc
ity

 (
m

m
/s

)

Action Command

Measured Model
Learned Model

 10

 15

 20

 25

 30

 35

 40

 45

 1000 1500 2000 2500 3000 3500 4000

La
nd

m
ar

k
H

ei
gh

t (
pi

xe
ls

)

Distance (mm)

Measured Model
Learned Model

a) b)

Figure 4.6: a) The learned polynomial sensor model closely matches the measured
ground truth observations. b) Similarly, the learned table-based action model closely
matches the measured one.

was 70.4 mm, or 2.9% of the range of distances. For the action model shown in

Figure 4.6b), the RMS error was 22.1 mm/s, an error of 2.80% of the total range

of velocities. By comparison, the average action model error observed in Chapter 3

was 29.6 mm/s. Note however that the table-based action model function used here

has more expressive power in its ability to represent different action models than the

fourth degree polynomial used in Chapter 3. The ratio between the scaling factors

that were determined for the action and sensor models was 0.91, showing that the

two learned models were relatively consistent with each other.

Learning a Changing Model

This section describes an experiment in which the robot’s models change over time.

The possibility of such a change, for example because of a new environment’s ter-

rain or lighting conditions, or from the robot’s parts wearing down over time, is

a primary motivation for the work presented in this dissertation. By having the

robot periodically record a series of actions and observations and apply the learning

algorithm to that data series, it can be ensured that after a change the models do

74

not stay miscalibrated for very long. Specifically, when a change occurs, the next

complete data series that is recorded and analyzed can be expected to yield the

newly accurate action and sensor models.

This experiment is performed in the model learning setting described above,

where the EM-based algorithm is adapted to a one-dimensional domain. Sixteen

minutes of data were collected from the robot walking forward and backward at

different speeds. At the halfway point, the robot’s underlying motions were changed,

simulating a degradation of the robot’s motors. This change was accomplished by

multiplying the attempted velocities by 3/4 before they were converted into low-

level motions. The eight minutes of data from before the change are those used in

the experimental results reported above and shown in Figure 4.6. On that data, the

EM-based algorithm was able to learn accurate one-dimensional action and sensor

models, as described above.

The eight minutes of data from after the change were treated as a separate

batch of data and used to learn a second action and sensor model. The learning

process converged on this data in 2906 iterations of EM, taking 9 minutes and 17

seconds. The new learned action model is compared to the new ground truth in

Figure 4.7.

The RMS error of the learned velocities after the change was 16.53 mm/s,

2.78% of the range of observed modified velocities. At the same time, the sensor

model was also learned accurately, with an error of 0.72 pixels or 2.18%. In this

case the ratio between the two scaling factors was 1.03. These average errors were

all smaller than those reported above for the models learned from the data recorded

before the actions changed.

To illustrate the improvement provided by relearning the models, we also

evaluated the model learned before the change as an estimate of the ground truth

after the change. The resulting average action model error is 33.9 mm/s, over

75

-400

-300

-200

-100

 0

 100

 200

 300

 0 5 10 15 20

V
el

oc
ity

 (
m

m
/s

)

Action Command

Measured Model
Learned Model

Figure 4.7: After the action model changed it was accurately relearned.

1.5 times the two action model errors reported above. Additionally, in this case

the ratio between the scaling factors was 0.65. The difference between this ratio

and 1 indicates a significant inconsistency between the learned model combination

before the change and the ground truth combination after the change. Conversely,

evaluating the models learned after the change using the ground truth from before

it, we get an average action model error of 43.3 mm/s, or 5.48%, and a scaling factor

ratio of 1.42, again indicating a significant inconsistency.

This chapter presented an algorithm that enables a legged robot walking in

two dimensions to learn accurate models of its action and sensor models, starting

without an accurate estimate of either model. The following chapter addresses

the challenges that arise in adapting the model-learning methodology presented in

Chapter 1 to a different autonomous mobile robot: a self-driving car with no prior

knowledge of the map of its environment.

76

Chapter 5

Model Learning on an

Autonomous Car

In the previous two Chapters, techniques were presented that are able to autonomously

learn the action and sensor models of a small legged robot in a known environment.

In this chapter, the methodology presented in Chapter 1 is adapted to learn the

models of a large wheeled robot in an unknown environment, specifically an au-

tonomous car. Recently, research in autonomous cars has been spurred on by the

DARPA Grand Challenge, a competition for driverless cars [9, 55, 63]. The experi-

ments reported in this chapter have been performed on an autonomous car that was

developed for the DARPA Urban Challenge by the University of Texas at Austin

and Austin Robot Technology. The car’s hardware and its control algorithms are

described in the Austin Robot Technology technical reports [9, 16, 83], and the

model of the car learned in this chapter was presented in Section 2.5.2.

Recall from that section that for the car the structure of the environment

is treated as an unknown aspect of the world state. Thus applying the EM-based

technique presented in the previous chapter would require reasoning explicitly about

probability distributions over the shape of the environment. One possibility might

77

be to use three-dimensional occupancy grids for this purpose. However, preliminary

experiments suggested that such a structure would be prohibitively computationally

expensive at the resolution needed to learn accurate models.

Additionally, recall from Chapter 1 that the model-learning techniques pre-

sented in this dissertation are made possible by the concept of perceptual redun-

dancy, depicted in Figures 1.2 and 1.3. The mobile robot scenario discussed in this

chapter, however, differs from those presented in the previous two chapters in two

significant ways. First, as mentioned above, the map of the environment is treated

as an unknown aspect of the world state. Second, as described in Section 2.5.2, the

car’s Velodyne sensor reports data at a high bandwidth: 64 lasers, each at a rate

of over 7800 Hz. These differences alter the “flow” of perceptual redundancy, as

depicted in Figure 5.1.

Estimate
World State

Action
Model

Model
Sensor
Inverse

World State

World State

Action
Knowledge

Sensory
Input

Information

Information
About

About

Figure 5.1: For the autonomous car, the information coming in from the sensor
is highly redundant in and of itself. The action knowledge, on the other hand, is
insufficient to yield complete estimates of the world state, which includes the map
of the environment.

Because the action knowledge is insufficient to estimate the world state by

itself, it cannot be used directly to provide training data for the sensor model. At

the same time, the Velodyne by itself provides redundant information about the

combination of the robot’s pose and the state of the environment. This situation

78

suggests the following general plan for learning the car’s models. First, the sensor

model is learned, based on just the Velodyne data. Second, the car’s motion over

time is determined from the resulting sensory information. Finally, these motions

are combined with the car’s actions to learn the action model. The following three

sections present algorithms that accomplish these three steps. Section 5.4 demon-

strates empirically that these algorithms are able to learn the car’s action and sensor

models, starting without any initial estimate of either the action or sensor model.

The model learning process operates in batch on a data set consisting of actions and

sensations that the car recorded while driving for a short period of time.

5.1 Learning the Sensor Model

Recall from Section 2.5.2 that the aspect of the sensor model that is learned is the

set of horizontal angles of the Velodyne lasers, θ̂l (defined as θl + θb, the angle of

the Velodyne base), where l goes from 0 to n − 1. The first step in learning these

angles is to determine the n−1 differences between the horizontal angles of vertically

adjacent lasers, θ̂l − θ̂l−1, as follows.

The velodyne rotates at a known constant speed of ω so that θr, the angle of

rotation reported by the Velodyne, is equal to ωt (mod 2π).1 (Time 0 can be chosen

to be one at which θr is 0.) Therefore at time t the lth laser points in direction

θ̂l +ωt. Additionally, recall that the n lasers are ordered by their vertical angles, so

that vertically consecutive lasers have consecutive indices.

The sensor model is learned based on the principle that if two observed points

are close to each other in their vertical and horizontal angles from the Velodyne

center, they should have similar distances as well. Specifically, consider a pair of

vertically consecutive lasers, l− 1 and l. At any one time, the two lasers’ horizontal

angles differ by θ̂l−θ̂l−1. However, readings from the two lasers at times that differ by

1The notation (mod 2π) shall be omitted from this point on.

79

(θ̂l− θ̂l−1)/ω, denoted as δ, will be pointing at the same horizontal angle. Since the

car will not have moved much during that time and the vertically consecutive lasers

have close vertical angles, the distances from those two readings can be expected

to be relatively close to each other. One natural measure of this closeness is the

normalized cross-correlation, a function of δ:

Kl(δ) = corr(dl−1(t), dl(t− δ)) (5.1)

where dl(t) denotes the distance reading from laser l at time t and the correlation

is taken over all times t for which laser l− 1 reports a valid distance reading at time

t and laser l does so at time t− δ.2

For each l, the normalized cross-correlation is evaluated for each value of δ

ranging from −π/ω to π/ω over the integer multiples of 1/f , the temporal resolution

of the sensor. The values of δ that maximize Kl(δ) are multiplied by ω to yield the

learned differences θ̂l − θ̂l−1.

These n−1 differences determine the angles themselves, up to a constant off-

set. That is, defining C to be θ̂0, θ̂1−C through θ̂n−1−C can be determined by accu-

mulating the angle differences between consecutive lasers: θ̂k−C =
∑k

l=1 (θ̂l − θ̂l−1).

This offset, C, corresponds to the angle of the entire set of lasers with respect to the

car. A method for determining C is presented at the end of the following section

based on knowledge of the car’s motion over time.

5.2 Constructing the Odometry

The previous section presented a method for determining the horizontal angles of

the Velodyne lasers up to a constant offset C: θ̂l −C, which we denote as θ′l. Now,

consider a coordinate system, denoted as (xC , yC), that is centered at the Velodyne

2Invalid distance readings arise from sensor noise or from the laser not hitting any objects within
its range.

80

center but oriented an angle C counterclockwise from the coordinate system of the

car (in which the y-axis points forward). In this coordinate system, a laser reading

with distance d and unit rotation θr corresponds to an object point at distance

d and known horizontal angle θr + θ′l. By comparing scans at nearby times, the

motion of the car with respect to (xC , yC) is determined. This information is used

to determine both C and the action model.

The problem of inferring a robot’s motion from range scans is a well stud-

ied one. One common approach is map matching [75, 79], in which each scan is

compared to a map of the environment that has either been learned or provided

to the robot. Alternatively, the approach of scan matching [5, 35, 51] first deter-

mines the relative motion of the environment with respect to the robot and inverts

it to yield the robot’s motion. Identifying the transformation between the two sets

of points is done primarily through variants of the Iterative Closest Point (ICP)

method [10, 105], described below. In the experiments reported in Section 5.4, the

robot’s motion is learned through scan matching with ICP.

Although there are a number of variants of ICP that improve its robustness

(e.g. [21, 65]), these methods are still sensitive to outliers in the data (albeit to

varying extents), and they require an initial guess that is relatively close to the

correct transformation. In this work, a relatively straightforward implementation of

ICP is used, illustrating the robustness of the technique presented in this chapter.

For the initial guess, at first the identity transformation is used, corresponding to

a starting estimate of no car motion. The following section describes an iterative

process by which, once an action model is learned, it can be used to provide improved

starting guesses for ICP, which can in turn be used to learn a more accurate action

model.

Although ICP can be applied to learn transformations between sets of points

in either two or three dimensions, certain difficulties arise in applying ICP directly

81

to the three-dimensional sets of points produced by the Velodyne. The primary

difficulty arises from the way in which the Velodyne lasers’ rays intersect the ground

plane. As seen in Figure 2.4b), these intersections form circular patterns on the

ground. Furthermore, as the car moves, the ground typically remains invariant with

respect to its motions, causing these circular patterns to remain stationary with

respect to the car, leading to incorrectly learned non-motion. To circumvent this

problem, points that are over a meter below the height of the Velodyne are discarded

from the scans and the car’s motion is learned in two dimensions.

The set of points observed by the laser as it rotates through an angle of 2π

are considered as a single scan. At times t that are a multiple of a fixed interval,

∆t, scans are recorded. Scans from consecutive times are matched to each other

to determine the car’s motion over the corresponding time. An example of two

consecutive scans is shown in Figure 5.2.

Given two consecutive scans, we define the one with fewer points to be D1

and the other one to be D2. The goal of ICP is to identify the matching function

µ : D1 7→ D2 and the rigid transformation T that minimizes the RMS error:

√
1

|D1|

∑

p∈D1

||T (p)− µ(p)||2 (5.2)

The basic ICP algorithm is presented in Algorithm 2.

Algorithm 2 The Iterative Closest Point algorithm.

1: T ← Tinit

2: repeat

3: for each p ∈ D1 do

4: define µ(p) to be the point in D2 that minimizes ||T (p)− µ(p)||.
5: end for

6: Identify the transformation T that minimizes Expression (5.2).
7: until convergence

Step 4 can be done in O(log|D2|) time by representing the scans with kd-

82

Scan Motion

Car Motion

Time t + t:
Time t:

Figure 5.2: The red and blue scans are sets of points observed by the Velodyne at
times that differ by ∆t. The black × represents the location of the sensor. The
transformation between the two scans is inverted to determine the motion of the
car. The area depicted here has a sidelength of 300 meters.

trees [32]. Step 6 can be solved exactly in O(|D1|) time by using rotation matrices

and the singular value decomposition [37]. In the results presented in this paper,

the transformation is approximated via a least squares regression based on treating

T as a function of dx, dy, and dθ, the x, y, and θ components of the displacement

between the scans: T (p) = R(dθ)p + (dx, dy)
⊤. This function is linearized around

the value of T from the previous iteration, enabling the parameters dx, dy, and dθ

to be estimated by least squares regression. Additionally, points p for which the

distance ||T (p)−µ(p)|| is above a fixed threshold3 are discarded in this computation

of T in step 6.

If the scan D1 preceded D2, the transformation T is inverted to yield the

car’s motion, M . If instead D2 was the earlier scan, M is equal to T . The rightward,

3The value used for this threshold was 7 meters.

83

forward, and rotational components of M , denoted as mx, my, and mθ, yield the

learned rightward, forward, and angular velocities of the car at each time, with

respect to coordinate system (xC , yC): mx/∆t, my/∆t, and mθ/∆t. Since the

vector (mx,my) is originally in the reference frame of the earlier scan, it is first

adjusted by a rotation through an angle of −mθ/2 (which never exceeded three

degrees) to more accurately reflect the average translational motion over the time

step.

As mentioned above, the car’s motion can now be used to determine the

sensor model’s constant offset, C. This constant is determined based on the following

straightforward definition: Forward is the direction in which the car moves. Even

though the car’s motion has a rotational component when it turns, it should not

have a significant average sideways component. Since (mx,my) represents the car’s

motion with respect to a coordinate system that is rotated counterclockwise through

an angle of C, the vector (mx,my) will point in an angle of π/2 − C when the car

moves forward along its y-axis. Therefore, C can be computed by taking an average

of the angles of the different (mx,my) vectors and subtracting the result from π/2.

In order to eliminate error caused by outliers in the values of (mx,my), first

those values that correspond to a speed below a certain threshold4 are discarded.

Then, to further reduce the effect of outliers, an angle median is used: the angle

with the minimum total absolute distance from the angles of all of the remaining

(mx,my). This median angle is subtracted from π/2 to yield our estimate of C.

This value of C is then added to the relative horizontal laser angles θ′l to yield the

correct absolute angles, θ̂l.

4The value used for this threshold was 2 m/s.

84

5.3 Learning the Action Model

Recall from Section 2.5.2 that the car’s acceleration and angular velocity are modeled

as function of the action command, ct = (gt, bt, st), and the forward velocity:

at = C5 + C6gt + C7vt + C8vtbt (5.3)

ωt = C9vt + C10vtst (5.4)

vt = vt−1 + at−1∆t (5.5)

The aspect of the action model that we wish to learn is the constants C5

through C10. At each time step, the procedure discussed in the previous section

yields values of ωt = mθ/∆t, vt: the component of (mx,my) in the direction of

π/2− C, and at = (vt+1 − vt)/∆t.

These values of vt, at, and ωt, in conjunction with the recorded action com-

mands ct, comprise the training data that is used to learn the action model. Linear

regression is performed on Equation 5.3, yielding the values of C5 through C8 that

minimize the mean squared error in that equation over t. Similarly, linear regression

is performed on Equation 5.4, yielding the learned values of C9 and C10.

The learned action model can be used to predict the car’s motion by applying

Equation 5.5 first in each time step to determine vt, and then using this value in

Equations 5.3 and 5.4 to estimate at and ωt. The derived values of vt and ωt

can now be used to determine more accurate starting guesses, Tinit, for the ICP

procedure discussed in the previous section: mx = 0, my = vt∆t, and mθ = ωt∆t.

Since these values of Tinit are more accurate than the original values, namely the

identity transformation, the resulting motions suggested by ICP should also be more

accurate. In turn, these motions can be used to learn the action model again, which

should again be more accurate than the first one. This process is iterated until

convergence.

85

Algorithm 3 summarizes the process by which the car’s action and sensor

models are learned.

Algorithm 3 Model learning on an autonomous car.

1: Learn the relative horizontal Velodyne angles, θ̂l−C, as described in Section 5.1.
2: repeat

3: Use scan matching to estimate the car’s motion at each time step, using the
action model to generate starting guesses, if available.

4: Use the estimated motion to determine C.
5: Use the estimated motion to determine the action model parameters: C5

through C10.
6: until convergence

5.4 Empirical Validation

The method described above was empirically validated on the Austin Robot Tech-

nology autonomous car, described in Section 2.5.2. Over the course of 200 seconds of

driving autonomously during which the car made three left turns, the car recorded

all of its action commands and Velodyne observations.

In the execution of the model learning, the value of ∆t used was 0.5 seconds.

Because actions were recorded at a higher frequency than this (roughly 20 Hz), the

recorded actions were averaged over each ∆t to yield the corresponding values of

ct = (gt, bt, st). The iterative learning process converged after four iterations. The

model learning was performed offline on a 2.79 GHz Pentium 4 processor.

For validation purposes, the car was additionally equipped with an Applanix

Pos LV system, a sensor that combines GPS and inertial motion data [102] to provide

pose estimates with accuracies of under one meter and 0.02◦ [83]. The difference

between the pose reported by the Applanix at times that differ by ∆t are used to

construct the ground truth estimates of the car’s forward and angular velocities.

These velocities are used to evaluate the learned action models, as described below.

86

To evaluate the learned sensor model, it was compared to ground truth values

for the lasers’ horizontal angles that were manually calibrated by Velodyne. These

values are interpreted as the raw θl described in Section 2.5.2. Recall from that

section that the learned angles, θ̂l, are defined as θl + θb, the angle at which the

Velodyne is affixed to the car. The Velodyne and Applanix are both affixed and

aligned to a frame that is in turn affixed to the top of the car. However, data from

the Applanix suggests that this frame is not exactly aligned with the direction of

the car’s motion. That is, while the car was moving forward, the median angle of

the motion observed by the Applanix was 0.9◦, suggesting that the Velodyne and

Applanix are oriented at an angle of −0.9◦ with respect to the car’s motion, or 89.1◦

with respect to the car’s x-axis. Accordingly, the value of θb used was 89.1◦. The

resulting ground truth angles are compared to the learned ones in Figure 5.3. The

RMS angle error taken over the 64 lasers is 0.544◦. This error is 3.0% of the range

of true horizontal angles, 18◦.

To evaluate the action model, estimates of the car’s accelerations, forward

velocities, and angular velocities were generated by applying the model to the actions

taken by the car. The resulting quantities were compared to the ground truth

reported by the Applanix. In Figures 5.4 and 5.5, this comparison is depicted

over the course of 25 seconds in which the car stops and accelerates through a left

turn. Note that although the errors in the acceleration are relatively small, they

accumulate over time into moderate errors in the forward velocity.

The RMS errors between the learned and measured values over the entire

400 time steps are shown in Table 5.1, as well as those errors as percentages of the

total range of observed accelerations, velocities, or angular velocities, namely 5.79

m/s2, 6.30 m/s, and 0.202 rad/s. Additionally, for comparison the errors obtained

by fitting the action model directly to the ground truth motions is shown in the

column labeled From-Truth.

87

 70

 75

 80

 85

 90

 95

 100

 105

 110

 0 10 20 30 40 50 60 70

H
or

iz
on

ta
l a

ng
le

Laser index

Learned Angles
True Angles

Figure 5.3: The learned sensor model closely matches the ground truth laser angles.

The entire learning process took 3 hours and 40 minutes, broken down as

follows. The first stage, learning the relative horizontal angles, took 83 minutes,

although this time can be reduced by leveraging knowledge of a maximum absolute

horizontal angle difference between consecutive lasers. For example, using a maxi-

mum difference of 23◦ leads to this stage taking 10.7 minutes. The remainder of the

learning took 2 hours and 17 minutes, 34 minutes for each of the four iterations.

In Chapter 1, I presented a methodology for learning a mobile robot’s action

and sensor models, starting without an accurate estimate of either model. The

algorithms presented in Chapters 3, 4, and 5 have accomplished this goal in three

different robotic settings. In the remainder of the dissertation, the following chapter

discusses previous related work and Chapter 7 discusses the contributions of this

work and possibilities for future research.

88

-4

-3

-2

-1

 0

 1

 2

 125 130 135 140 145 150

A
cc

el
er

at
io

n
(m

/s
2)

Time (seconds)

Action Model
Ground Truth

 0

 1

 2

 3

 4

 5

 6

 7

 125 130 135 140 145 150

F
or

w
ar

ds
 v

el
oc

ity
 (

m
/s

)

Time (seconds)

Action Model
Ground Truth

a) b)

Figure 5.4: The learned action model is compared to the ground truth accelerations
(a) and forward velocities (b).

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 125 130 135 140 145 150

A
ng

ul
ar

 v
el

oc
ity

 (
ra

d/
s)

Time (seconds)

Action Model
Ground Truth

Figure 5.5: The action model yields forward angular velocities that closely match
the measured ones.

RMS Error % Error From-Truth

Acceleration 0.392 m/s2 6.77% 0.254 m/s2

Fwd. Vel. 1.04 m/s 16.5% 0.64 m/s

Ang. Vel. 0.0129 rad/s 6.39% 0.013 m/s

Table 5.1: The learned action model is evaluated by comparing the resulting accel-
eration and velocities to the ground truth values.

89

Chapter 6

Related Work

This dissertation introduces a methodology for enabling mobile robots to learn mod-

els of their actions and sensors, starting without an accurate estimate of either

model. This chapter discusses the wide range of previous related work. First, Sec-

tion 6.1 situates this work within the burgeoning field of developmental robotics.

Section 6.2 describes previous work in learning sensor and action models individu-

ally. Finally, Section 6.3 discusses previous work related to the learning paradigm

used in Chapter 4, namely the dual estimation of the parameters of an extended

Kalman filter.

6.1 Developmental Robotics

The work presented in this dissertation is motivated in part by the ideals of de-

velopmental robotics [11, 52, 100], an approach to artificial intelligence in which a

robot autonomously learns about itself and its environment via a general exploration

process, as opposed to a task-specific learning algorithm. In order to enable such

a general exploration, one possibility is to endow the robot with a curiosity mech-

anism whereby the robot seeks out novel areas of the state space [62, 61]. In the

90

context of reinforcement learning, where an agent learns to maximize an external

reward, an intrinsic motivation can be employed to enable the agent to learn a set

of task-independent competencies in its environment [80, 81]. Other work in this

area has focused on specific challenges that are crucial to the success of a developing

embodied agent, such as acquiring a language [48] or learning about the properties

of environmental objects [54, 57, 76, 88].

One common goal of developmental learning processes is for the agent to

learn about itself and its environment starting from as little innate knowledge as

possible. For example, Philipona et al. suggest using sensorimotor dependencies to

learn “the structure of reality,” including such things as the number of dimensions

of the external physical world [64]. Dangauthier et al. show how statistical regular-

ities in the robot’s sensorimotor information can be used to acquire new skills in a

Bayesian framework [24]. Alternatively, Bowling et al. apply an action-respecting

dimensionality reduction to the raw sensory input that yields an ability to predict

how actions will affect the agent’s sensations [14]. This idea of representing state

purely in terms of action-sensation predictions is also employed in a setting with a

discrete state space by a predictive state representation (PSR) [49].

Additionally, starting with only uninterpreted sensorimotor information, Pierce

and Kuipers enable a robot to learn a tiered representation of its sensations, actions,

and environment known as the spatial semantic hierarchy (SSH) [46], starting by

learning the relative orientations of a set of range finder elements [66]. Provost

et al. additionally show how to combine the SSH with a self-organizing map that

learns a set of actions and their effects with respect to salient locations in the en-

vironment [67]. On a Sony Aibo, where the primary sensor is a camera, Olsson et

al. show how the robot can learn an informational map of its camera pixels that

corresponds to their physical configuration [60]. The robot then uses this map to

learn about the effects of certain actions on its sensations, resulting in the robot

91

being able to perform visually guided movement.

The model learning processes presented in this dissertation start with rela-

tively little innate knowledge. The robot initially has no accurate knowledge of how

its actions and sensations correspond with the external world, and the only inputs

to the learning are the robot’s sensations and action selections; there is no externally

generated training data. However, in contrast to some of the work described above,

the algorithms presented in Chapters 3-5 do rely on some implicit innate knowledge

about the structure of the robot’s body and the state space of its world. This struc-

ture is inherent in the formulation of the models being learned (i.e. Section 2.5).

The algorithms presented here learn model functions and parameters that specify

how its sensory input and actions correspond with the state of the world and its

changes. These processes rely on less innate knowledge than previous work in model

learning, as discussed in the following section.

6.2 Sensor and Action Modeling

In contrast to the work presented in this dissertation, previous work in action and

sensor modeling typically assumes the presence of reliable training data. For ex-

ample, one common type of sensor modeling is camera calibration. Cameras have

both intrinsic parameters, such as focal length and distortion factors, and extrinsic

parameters, such as the camera’s location and orientation. Tsai presents a gen-

eral method for calibrating all of these parameters by a combination of geometric

analysis, linear regression, and nonlinear optimization [97]. This method relies on

labeled training data in the form of coordinates of points in the world and their

corresponding coordinates in the image plane.

On a mobile robot, training data for the sensor model can be generated based

on the robot’s action model if it is already known. Different techniques have been

used to calibrate models of different types of sensors. In the context of constructing

92

occupancy grids, Moravec and Blackwell present a method to learn a model of a

sonar range finder [56], while Thrun suggests a method for the robot to learn the

inverse sensor model of its laser range finder [94, 96]. To model the range of RFID

tags, Hähnel et al. represent the sensor model as a piecewise constant probability

distribution [36]. For a robot with multiple sensors, one important challenge is to

calibrate the relative poses of the different sensors. A range of approaches have been

proposed to address this challenge on a robot learning different sets of calibration

parameters between a camera and a laser range finder [6, 70, 104]. All of these sensor

calibration methods rely on the robot’s knowledge of its pose over time, which is

based in part on its action model being known and accurate.

Another common type of sensor modeling involves calibrating networks of

stationary sensors. For example, Bychkovskiy et al. present an algorithm for cal-

ibrating the biases of a network of light intensity sensors [18]. For a network of

temperature sensors that suffer from occasional drift, Hines et al. show how an au-

toassociative neural network can be used to learn to identify and correct this sensor

drift [41]. One challenge for a sensor network is to determine their respective lo-

cations and orientations. Toward this end, Ihler et al. present an efficient belief

propagation technique [42] and Savvides et al. introduce a set of distributed algo-

rithms for precise sensor localization [72]. Additionally, Cevher and McClellan show

how an extended Kalman filter can be used to calibrate the orientations of an array

of directional sensors [20].

If the robot’s pose can be known reliably, this information can be used to

provide training data for either model. This approach is taken by Borenstein and

Feng, using manually measured robot poses to identify systematic odometry errors

on a wheeled robot [13]. Ojeda et al. show how to use a global positioning sensor

to train an accurate model of wheel slippage as a function of the wheels’ motor

currents [59]. Burlet et al. use an overhead camera that can accurately localize the

93

robot to calibrate both its action and sensor models [17].

If the robot has prior knowledge of an accurate sensor model, its pose can be

determined by localization. On an Aibo, Quinlan et al. discuss such a method for

calibrating the odometry based on the robot’s vision-based localization [68]. Düffert

and Hoffmann extend this approach by using an enhanced landmark set that ensures

accurate localization [28]. On wheeled robots, other approaches to learning an

action model have included using an augmented Kalman filter to estimate odometry

errors [47, 53], as well as adaptations of the EM algorithm [8, 29, 30, 71]. These

applications of EM are specific to learning an action model. EM has also been used

on a mobile robot for Simultaneous Location and Mapping (SLAM) [4, 95]. In that

work, the parameters being learned are a map of the environment, not the robot’s

action and sensor models, which are presumed to already be accurately known.

In order to learn a mobile robot’s action or sensor models, all of the above-

mentioned work relies on either prior knowledge of the robot’s sensor or action

models (respectively) or a reliable method of determining the robot’s pose over

time. However, as an autonomous robot explores novel environments, it cannot

necessarily expect to have reliable access to any of this information. The techniques

presented in this dissertation address this challenge, enabling a robot to learn its

action and sensor models starting without knowledge of its pose over time or an

accurate estimate of either model.

Some previous work has learned a small number of model parameters on a

mobile robot starting without either model being known. Kaboli et al. use a Markov

chain Monte Carlo method to learn five variance parameters of a probabilistic ac-

tion and sensor model [43]. Censi et al. show how to simultaneously learn three

parameters of a wheeled robot’s action model and three parameters that specify the

relative pose of a laser range finder [19]. Yap and Shelton have suggested using two

nested applications of the EM algorithm to learn twelve motion model parameters

94

and six sensor model parameters for a wheeled robot [103]. However, the parameter

values learned in that work are not evaluated against the ground truth properties

of the robot. Finally, in a discrete state space, Koenig and Simmons [45] use the

Baum-Welch algorithm [7, 69], an adaptation of EM for an HMM, to learn a map

as well as a sensor and action model for a simulated robot.

By contrast, the work presented in Chapters 3 and 4 enable a mobile robot

to learn aspects of its action and sensor models that are treated as arbitrary func-

tions and learned via a function approximator, specifically polynomial regression.

In Chapter 5, the linear coefficients of an action model are learned along with 64

parameters of the robot’s three-dimensional laser range finder. Overall, the tech-

niques presented in this dissertation are unique in both the complexity of the models

learned and the paucity of the knowledge with which the robots start.

6.3 Dual Estimation of a Kalman Filter

The model learning technique presented in Chapter 4 frames the problem of learning

a robot’s action and sensor model functions in terms of an extended Kalman filter. In

this context, the robot’s models correspond to the system dynamics. Dual estimation

is the problem of estimating these system dynamics in addition to the unknown world

state over time. A number of approaches have been applied to the problem of dual

estimation for nonlinear dynamical systems. One such approach is the dual extended

Kalman filter, in which two EKFs run in parallel, one that estimates the hidden state

and one that learns the system model [22, 58]. Another possible approach is the

joint extended Kalman filter, in which the state vector and unknown parameters are

combined into an augmented state [23, 50]. Additionally, Abbeel et al. [1] describe

a discriminative training method that learns the noise parameters of an EKF.

In Chapter 4, the EM algorithm is used to estimate the EKF parameters,

namely the robot’s action and sensor models. Ghahramani and Roweis discuss a

95

number of advantages of using the EM algorithm for dual nonlinear estimation over

the joint and dual EKF methods [34]. In particular, EM generalizes well to learning

complex models or parameter combinations. This property makes it well-suited to

learning the action and sensor model functions for a mobile robot.

When the EM algorithm is applied to dual estimation in a linear system, the

E-step is an optimal smoother such as forward-backward smoothing [31]. The M-

step yields new parameter settings that can be computed from summary statistics of

the E-step distributions [27, 33, 78]. In a nonlinear system, Ghahramani and Roweis

use an EKFS for the E-step, and restrict the nonlinear function to a radial basis

function with the nonlinear parameters held fixed [34]. Briegel and Tresp compare

a number of possibilities for the E-step, including an EKFS, Fisher scoring, and

a mixture of Gaussians [15]. For the M-step, they assume the nonlinearities are

represented by a neural network, and compute the gradient for a generalized M-

step based on samples drawn from the E-step distribution. Assuming that the state

features are the weights of a neural network and the process dynamics are linear, de

Freitas et al. use an EKFS for the E-step and compute closed form expressions for

the result of the M-step in this context [25].

The algorithm presented in Chapter 4 contributes an extension and adapta-

tion of the above approaches that enables learning a robot’s action and sensor model

functions. The resulting method uses an EKFS for the E-step, and a combination of

methods for the M-step. For the sensor model, a novel combination of polynomial

regression and drawing samples from the E-step distribution is presented. For the

action model, Section 4.3.1 derives a closed form expression for the mean relative

displacement corresponding to each of a set of actions.

96

Chapter 7

Discussion and Future Work

This dissertation considers the following question: How can a mobile robot learn

models of its actions and sensations without relying on human supervision or prior

knowledge of either model? In this context, the robot has no reliable source of

information about its pose over time, and therefore no reliable source of training

data for the models being learned. I have presented a model-learning methodology

that is algorithmically instantiated to address these challenges in three different

robotic scenarios.

First I consider a legged robot, the Sony Aibo ERS-7, in a one-dimensional

domain where it walks forward and backward at different speeds while facing a

fixed landmark. Second, the same robot’s action and sensor models are learned in

a richer, two-dimensional domain. In this domain, the robot walks with arbitrary

combinations of forward, sideways, and turning velocities, and observations provide

the robot with indirect noisy information about its distance and angle to landmarks.

Finally, I consider a large wheeled robot: an autonomous car. The method presented

for this robotic platform learns a model of the car’s acceleration and angular velocity

as a linear function of its steering, throttle, and brake positions, as well as a model

of the internal horizontal angles of a high-bandwidth three-dimensional laser range

97

finder. Furthermore, the car is not presumed to have any prior knowledge about

landmarks or a map of its environment.

The differences between these three scenarios lead to differences in the corre-

sponding learning algorithms that are introduced. In Chapter 3, where the robot’s

world state is its one-dimensional pose, the robot’s sensations and actions each pro-

vide enough information alone to yield a useful estimate of this world state. The

method presented therefore simultaneously maintains two estimates of the robot’s

pose over time, one based on each model, and each is used to provide training data

for the other model. The two models are treated as arbitrary functions and approx-

imated through polynomial regression. Because neither model is known accurately

initially, a bootstrapping process is introduced that enables both models to gradu-

ally grow in accuracy until they both converge to correct estimates of the robot’s

true models.

The two-dimensional setting considered in Chapter 4 presents the robot with

additional challenges. In this domain, the robot’s pose is a three-dimensional world

state that requires care to estimate even if the robot’s models are known accurately.

One effective method to accomplish this mobile robot localization is an extended

Kalman filter. In this context, the models being learned correspond to the system

dynamics of the Kalman filter. These models are learned in a probabilistic frame-

work, with the learning process identifying the models with the maximum likeli-

hood of having produced the data that was observed. This likelihood maximization

is achieved by an adaptation of the Expectation-Maximization algorithm. A novel

adaptation of the M-step enables the robot to learn a sensor model that combines a

polynomial function with variances of the random noise components that are added

to the observations. Additionally, a closed form expression is derived for the M-step’s

estimate of the action model, specified as the velocity combinations corresponding

to a discrete set of 40 actions. Because this probabilistically motivated framework

98

is designed to address the greater challenges posed by the two-dimensional domain,

we would expect that the same framework could also be used to learn the robot’s

models in the one-dimensional setting discussed in Chapter 3. This expectation is

confirmed in Section 4.4.3.

Chapter 5 presents an algorithm that is able to learn the action and sensor

models of an autonomous car. This robotic scenario has a number of properties that

differ from those discussed in Chapters 3 and 4. First, because the car drives through

arbitrary environments, the learning algorithm is not able to rely on prior knowledge

of the map or structure of the environment. Since the map of the environment is a

component of the world state, the action model is not sufficient by itself to estimate

this state, and therefore cannot be used to provide training data for the sensor model.

At the same time, the car’s primary sensor, a three-dimensional laser range finder,

provides highly redundant information about the car’s environment. Therefore, the

sensor model is learned first, based only on the range finder data. Once this learning

is accomplished, the sensor data can be used to estimate the car’s motion over time,

which is used in turn to train the action model. Finally, an iterative procedure is

introduced by which the learned action model is repeatedly used to reestimate the

car’s motions, which are then used to improve the action model’s accuracy.

In all three robotic domains, the algorithms presented are validated by com-

paring the learned models to direct measurements of the properties of the robot’s

actions and sensations. On the Aibo, the mean and variance of the robot’s obser-

vations are recorded over a range of distances between the robot and the landmark.

Its velocities while executing the different action commands are also measured man-

ually. Chapter 4 additionally presents results learning in a simulation where the

ground truth is known. On the autonomous car, an additional accurate global po-

sitioning sensor is used to generate ground truth data for the car’s motion, while

the ground truth sensor model was provided to us by the sensor manufacturer. In

99

all three settings, the learned models are shown to closely approximate the true

properties of the robot’s motions and sensations, as desired.

The methods presented in Chapters 3-5 all address the same challenge, learn-

ing the action and sensor models without human supervision or prior knowledge of

either model. Although the different robotic settings lead to the use of different

algorithms, these methods share a number of similarities. First, the methods rea-

son explicitly about functional relationships rather than simply sets of parameters.

Although many functional relationships, including the ones used here, can be rep-

resented in terms of a constant number of parameters, treating the relationships

as arbitrary functions opens up the possibility of replacing the function approxi-

mators used with qualitatively different ones, such as backpropagation of a neural

network [39] or CMACs [3].

Another similarity among the learning processes is the theme of having two

intertwined processes each relying on data from the other. In Chapter 3, the two

processes are the action model learning and sensor model learning, each of which

requires feedback from the other to be effective. In Chapter 4, the action and sensor

model learning processes rely on each other indirectly, mediated through the world

state distribution by the EM algorithm. On the autonomous car in Chapter 5, the

two processes that are intertwined are the scan matching used to determine the

car’s motion and the action model learning. Specifically, the car’s estimated motion

and its action model are alternately based on each other in an iterative procedure.

These pairs of intertwined processes have proven to be an effective tool for learning

multiple models starting with minimal innate knowledge.

Endowing mobile robots with the ability to autonomously learn their action

and sensor models can be beneficial in three qualitatively different ways. First, this

ability has the potential to be useful for applications in which a robot may need to

operate effectively in an unfamiliar environment without human supervision. Some

100

examples of such areas are space exploration, rescue robots, and robots that assist

people in their homes. Second, even if a robot stays in one environment, its parts

may wear down over time, causing the properties of its actions and sensations to

change over time. Section 4.4.3 demonstrates that the model learning process can

be executed repeatedly, learning new correct models after such a change occurs.

Third, research in autonomous robotic model learning can benefit manufacturers

that produce a large number of robots with the same qualitative structure, but

whose action and sensor models differ for each individual robot because of variation

in the production process. If each robot can autonomously learn its own action and

sensor models, it can eliminate the need for each robot to be manually calibrated.

Looking forward, the work presented in this dissertation represents a starting

point for a wide range of potential directions for future research. One important

area for future work is to adapt the methodology presented here to other robotic

platforms. At this time, enabling each new robotic platform to autonomously learn

its action and sensor models presents many new challenges. However, as research

along these lines progresses, the techniques that are developed to accommodate

various robotic features can be viewed as a suite of tools that may each be applicable

to a wide range of robotic platforms that share those features. These robotic features

may include aspects of the robot’s physical structure, its actuators and sensors, or

other properties. Given such a tool set, each new robotic model learning problem can

be approached more easily by incorporating the tools that apply to that platform.

The techniques presented in Chapters 3-5 can be thought of as initial contri-

butions to this tool set. For example, Section 5.1 describes a technique for learning

the horizontal angles of a specific type of three-dimensional laser range finder. Al-

though this technique is implemented and tested on a specific sensor and robotic

platform, the Velodyne HDL-64 on an autonomous car, the cross-correlation tech-

nique discussed in that section could be applied to any three-dimensional range

101

finder with a similar structure to the Velodyne, on any mobile robot.

Ultimately, one long-term goal for robotic model learning is the development

of an autonomous model learning algorithm that is not specific to a particular robotic

platform. That is, the algorithm would enable a general robot to autonomously learn

its action and sensor models, starting with only a description of the robot’s physical

structure, actuators, and sensors. Such an algorithm would automatically combine

the known model learning techniques that correspond to the features of the given

robot, while generating the required robot description would only need to be done

once for each robotic configuration that is developed.

Another potential area for future work is to reduce even further the method’s

reliance on human-supplied knowledge. For instance, the work presented in Chap-

ters 3-5 rely on the inputs to the models being correctly identified. One possibility

would be to incorporate an algorithm for automatically choosing the features that

are the most effective inputs to a function approximator, such as FS-NEAT [101].

Additionally, in this dissertation the primary aspect of the world state con-

sidered by the robots was their position and orientation in the environment. Another

important component of a robot’s world state is the positions and orientations of

objects in its environment. Including these object poses in the world state leads

to an important area for future work: enabling robots to learn about the geometri-

cal shapes, affordances, and appearances of objects in the environment as they are

grasped, pushed, and viewed from multiple angles. This future work may benefit

from combining ideas from this dissertation with those from the ongoing research in

developmental object learning [54, 88], mentioned in Section 6.1.

Furthermore, this dissertation has focused on the problem of enabling a mo-

bile robot to better understand what its sensations say about the state of the world

and how its actions affect that world state. However, another crucial challenge for

such an autonomous agent is that of choosing actions that achieve a desired effect.

102

For example, one natural use of the learned action and sensor models would be as

components of a planning algorithm. Such planning could be used to bring the robot

to a desired pose or carry out a complex task. Another approach to action selection

is reinforcement learning, where the agent learns through repeated trials which ac-

tions lead to an external reward [93]. In this context, action and sensor models such

as those learned in this work could be used to plan a path to the rewarding states.

Finally, as a developing robot explores its environment, one important ques-

tion is how it can choose actions that enable it to learn about new things. A number

of mechanisms described as intrinsic motivation or adaptive curiosity have been pro-

posed to maximize the robot’s learning progress in this way [62, 61], as mentioned in

Section 6.1. Given a mobile robot that is able to learn its action and sensor models,

the ability to autonomously seek out “interesting” areas of the state space may be

able to dramatically expedite this model learning process.

The work presented in this dissertation addresses the challenge of enabling a

mobile robot to reliably and accurately know what its sensations are saying about the

state of the world, and how its actions influence that state. Compared to previous

work, the algorithms presented in Chapters 3-5 expand the complexity of the action

and sensor models that the robot can learn, while reducing the amount of innate

knowledge that is required by the learning algorithms. As the field of intelligent

autonomous robots progresses, the continued development of learning algorithms

that learn as much as possible, starting with as little knowledge as possible, promises

to continue to improve the intelligence, autonomy, and overall effectiveness of such

robots.

103

Bibliography

[1] P Abbeel, A Coates, M Montemerlo, A Ng, and S Thrun. Discriminative

training of Kalman filters. In Proceedings of Robotics: Science and Systems,

Cambridge, USA, June 2005.

[2] Hirotugu Akaike. Information theory and an extension of the maximum like-

lihood principle. In Proc. Second International Symposium on Information

Theory, Budapest, 1973.

[3] J. S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH,

1981.

[4] W Burgard an D Fox, H Jans, C Matenar, and S Thrun. Sonar-based mapping

with mobile robots using EM. In Proc. of the International Conference on

Machine Learning, 1999.

[5] K Arras and S Vestli. Hybrid, high-precision localisation for the mail dis-

tributing mobile robot system MOPS. In Proceedings of the International

Conference on Robotics and Automation (ICRA), 1998.

[6] C Barat, J Triboulet, Y Chekhar, and E Colle. Modelling of a camera-3d

range finder system. Robotica, 15:225–231, 1997.

[7] L. Baum, T Petrie, G Soules, and N Weiss. A maximization technique oc-

104

curring in the statistical analysis of probabilistic functions of Markov chains.

Annals of Mathematical Statistics, 41:164–171, 1970.

[8] P Beeson, A Murarka, and B Kuipers. Adapting proposal distributions for

accurate, efficient mobile robot localization. In IEEE International Conference

on Robotics and Automation (ICRA-06), 2006.

[9] P Beeson, J O’Quin, B Gillan, T Nimmagadda, M Ristroph, D Li, and P Stone.

Multiagent interactions in urban driving. Journal of Physical Agents: Multi-

Robot Systems, 2(1), March 2008.

[10] P J Besl and N D McKay. A method for registration of 3-d shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256,

1992.

[11] D Blank, D Kumar, and L Meeden. A developmental approach to intelligence.

In Sumali J. Conlon, editor, Proceedings of the Thirteenth Annual Midwest

Artificial Intelligence and Cognitive Society Conference, 2002.

[12] J Borenstein, B Everett, and L Feng. Navigating Mobile Robots: Systems and

Techniques. A. K. Peters, Ltd., 1996.

[13] J Borenstein and L Feng. Correction of systematic odometry errors in mobile

robots. In Proceedings of the 1995 International Conference on Intelligent

Robots and Systems (IROS ’95), pages 569–574, August 1995.

[14] M Bowling, A Ghodsi, and D Wilkinson. Action respecting embedding. In

Proceedings of the 22nd International Conference on Machine Learning, pages

65–72, 2005.

[15] T Briegel and V Tresp. Fisher scoring and a mixture of modes approach

for approximate inference and learning in nonlinear state space models. In

105

M Kearns, S Solla, and D Cohn, editors, Advances in Neural Information

Processing Systems 11, Cambridge, MA, 1999. MIT Press.

[16] J Brogdon, R Dunlap, P Dyson, A Martin de Nicolas, J Martin

de Nicolas, J Martin de Nicolas, D McCauley, D Miner, J O’Quin,

S Polkowski, and J Roever. Austin Robot Technology, Inc. Technical Pa-

per, 2005. www.darpa.mil/grandchallenge05/TechPapers/Austin_Robot_

Technology.pdf, DARPA Grand Challenge, 2005.

[17] J Burlet, O Aycar, and T Fraichard. Robust navigation using Markov models.

In International Conference on Intelligent Robots and Systems, August 2005.

[18] V Bychkovskiy, S Megerian, D Estrin, and M Potkonjak. A collaborative

approach to in-place sensor calibration. In Information Processing in Sensor

Networks, pages 301–316. Springer, 2003.

[19] A Censi, L Marchionni, and G Oriolo. Simultaneous maximum-likelihood

calibration of robot and sensor parameters. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, May 2008.

[20] V Cevher and J McClellan. Sensor array calibration via tracking with the ex-

tended Kalman filter. In Proceedings of the Fifth Annual Federated Laboratory

Symposium on Advanced Sensors, pages 51–56, March 2001.

[21] D Chetverikov, D Stepanov, and P Krsek. Robust Euclidean alignment of 3d

point sets: the trimmed iterative closest point algorithm. Im. and Vis. Comp.,

23(3):299.

[22] J T Connor, R D Martin, and L E Atlas. Recurrent neural networks and robust

time series prediction. IEEE Transactions on Neural Networks, 5(2):240–254,

1994.

106

[23] H Cox. On the estimation of state variables and parameters for noisy dynamic

systems. IEEE Transactions on Auromatic Control, 9:5–12, 1964.

[24] P Dangauthier, P Bessiere, and A Spalanzani. Auto-supervised learning in

the Bayesian programming framework. In The AAAI Spring Symposium on

Developmental Robotics, March 2005.

[25] J de Freitas, M Niranjan, and A Gee. Nonlinear state space estimation with

neural networks and the EM algorithm. Technical report, Cambridge Univer-

sity Engineering Department, 1999.

[26] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society,

39(1):1–38, 1977.

[27] V Digalakis, J Rohlicek, and M Ostendorf. ML estimation of a stochastic

linear sytem with the EM algorithm and its application to speech recognition.

IEEE Transactions on Speech and Audio Processing, 1(4), October 1993.

[28] Uwe Duffert and Jan Hoffmann. Reliable and precise gait modeling for a

quadruped robot. In RoboCup Symposium, 2005.

[29] A Eliazar and R Parr. Learning probabilistic motion models for mobile robots.

In Internation Conference on Machine Learning (ICML-04), 2004.

[30] M Fox, M Ghallab, G Infantes, and D Long. Robot introspection through

learned Hidden Markov Models. Artificial Intelligence, 170(2):59–113, 2006.

[31] D Fraser and J Potter. The optimum linear smoother as a combination of two

optimum linear filters. IEEE Transactions on Automatic Control, 14(4):387–

390, August 1969.

107

[32] J Friedman, J Bentley, and R Finkel. An algorithm for finding best matches in

logarithmic expected time. ACM Trans. on Mathematical Software, 3(3):209–

226, 1977.

[33] Z Ghahramani and G Hinton. Parameter estimation for linear dynamical

systems. Technical Report CRG-TR-96-2, University of Toronto Department

of Computer Science, 1996.

[34] Z Ghahramani and S Roweis. Learning nonlinear dynamical systems using an

EM algorithm. In M Kearns, S Solla, and D Cohn, editors, Advances in Neural

Information Processing Systems 11, Cambridge, MA, 1999. MIT Press.

[35] J Gutmann and C Schlegel. AMOS: Comparison of scan matching approaches

for self-localization in indoor environments. In Proc. of the 1st Euromicro

Workshop on Advanced Mobile Robots. IEEE Computer Society Press, 1996.

[36] D Hahnel, W Burgard, D Fox, K Fishkin, and M Philipose. Mapping and

localization with RFID technology. In International Conference on Robotics

and Automation (ICRA-04), 2004.

[37] R Hanson and M Norris. Analysis of measurements based on the singular

value decimposition. SIAM Journal of Scientific and Statistical Computing,

27(3):363–373, 1981.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning. Springer-Verlag, New York, 2001.

[39] Simon Haykin. Neural Networks. Prentice-Hall, Inc., Upper Saddle River,

New Jersey, 1999.

[40] B Hengst, D Ibbotson, S Pham, and C Sammut. Omnidirectional motion for

quadruped robots. In RoboCup International Symposium, August 2001.

108

[41] J Hines, D Wrest, and R Uhrig. Plant wide sensor calibration monitoring. In

IEEE Symposium on Intelligent Control, September 1996.

[42] Alexander T. Ihler, John W. Fisher, Randolph L. Moses, and Alan S. Willsky.

Nonparametric belief propagation for self-calibration in sensor networks. In

Proceedings of the third international symposium on Information processing

in sensor networks, Berkeley, CA, April 2004.

[43] A Kaboli, M Bowling, and P Musilek. Bayesian calibration for Monte Carlo

localization. In Twenty-First National Conference on Artificial Intelligence

(AAAI), pages 964–969, 2006.

[44] Rudolph Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82:35–45, 1960.

[45] S Koenig and R Simmons. Unsupervised learning of probabilistic models for

robot navigation. In Proceedings of the IEEE International Conference on

Robotics and Automation, 1996.

[46] B Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119:191–233,

2000.

[47] T. D. Larsen, M. Bak, N.A. Andersen, and O. Ravn. Location estimation for

an autonomously guided vehicle using an augmented Kalman filter to auto-

calibrate the odometry. In FUSION98 Spie Conference, Las Vegas, NV, July

1998.

[48] S Levinson, K Squire, R Lin, and M McClain. Automatic language acquisition

by an autonomous robot. In The AAAI Spring Symposium on Developmental

Robotics, March 2005.

[49] M Littman, R Sutton, and S Singh. Predictive representations of state. In Ad-

vances in Neural Information Processing Systems 14, pages 1555–1561, 2002.

109

[50] L Ljung. Asymptotic behavior of the extended kalman filter as a parameter

estimator for linear systems. IEEE Transactions on Automatic Control, 24:36–

50, 1979.

[51] F Lu and E Milios. Robot pose estimation in unknown environments by

matching 2d range scans. In IEEE Computer Vision and Pattern Recognition

Conference (CVPR), 1994.

[52] M Lungarella, G Metta, R Pfeifer, and G Sandini. Developmental robotics: a

survey. Connection Science, 15(4):151–190, December 2003.

[53] Agostino Martinelli, Nicola Tomatis, Adriana Tapus, and Roland Siegwart.

Simultaneous localization and odometry calibration for mobile robot. In Pro-

ceedings of the 2003 International Confrerence on Intelligent Robots and Sys-

tems, Las Vegas, NV, October 2003.

[54] J Modayil and B Kuipers. Bootstrap learning for object discovery. In IEEE

International Conference on Intelligent Robots and Systems (IROS-04), pages

742–747, 2004.

[55] M Montemerlo, S Thrun, H Dahlkamp, D Stavens, and S Strohband. Winning

the DARPA Grand Challenge with an AI robot. In Proceedings on the AAAI

National Conference on Artificial Intelligence, 2006.

[56] H Moravec and M Blackwell. Learning sensor models for evidence grids. CMU

Robotics Institure 1991 Annual Research Review, pages 8–15, 1993.

[57] L Natale, G Metta, and G Sandini. A developmental approach to grasping.

In The AAAI Spring Symposium on Developmental Robotics, March 2005.

[58] L W Nelson and E Stear. The simultaneous on-line estimation of parameters

and states in linear systems. IEEE Transactions on Automatic Control, AC-

12:438–442, 1967.

110

[59] L Ojeda, D Cruz, G Reina, and J Borenstein. Current-based slippage detec-

tion and odometry correction for mobile robots and planetary rovers. IEEE

Transactions on Robotics, 22(2), April 2006.

[60] L Olsson, C Nehaniv, and D Polani. From unknown sensors and actuators

to actions grounded in sensorimotor perceptions. Connection Science, 18(2),

2006.

[61] P Oudeyer, F Kaplan, and V Hafner. Intrinsic motivation systems for au-

tonomous mental development. IEEE Transactions on Evolutionary Compu-

tation, 11(2):265–286, 2007.

[62] P Oudeyer, F Kaplan, V Hafner, and A Whyte. The playground environ-

ment: task-independent development of a curious robot. In The AAAI Spring

Symposium on Developmental Robotics, March 2005.

[63] U Ozguner, K A Redmill, and A Broggi. Team TerraMax and the DARPA

grand challenge: a general overview. In Intelligent Vehicles Symposium, pages

232–237, June 2004.

[64] D Philipona, J O’Regan, and J.-P. Nadal. Is there something out there?

Inferring space from sensorimotor dependencies. Neural Computation, 15(9),

2003.

[65] J M Phillips, R Liu, and C Tomasi. Outlier robust ICP for minimizing frac-

tional RMSD. In 6th International Conference on 3-D Digital Imaging and

Modeling, pages 427–434, August 2007.

[66] David Pierce and Benjamin Kuipers. Map learning with uninterpreted sensors

and effectors. Artificial Intelligence, 92:169–229, 1997.

111

[67] J Provost, B Kuipers, and R Miikkulainen. Developing navigation behav-

ior through self-organizing distinctive-state abstraction. Connection Science,

18(2):159–172, 2006.

[68] M Quinlan, C Murch, T Moore, R Middleton, L Li, R King, and S Chalup.

The 2004 NUbots team report, 2004. http://robots.newcastle.edu.au/

publications/NUbotFinalReport2004.pdf.

[69] L Rabiner and B Juang. An introduction to hidden markov models. ASSP

Magazine, 3(1):4–16, 1986.

[70] I Reid. Projective calibration of a laser-stripe range finder. Image and Vision

Computing, 14:659–666, 1996.

[71] Nicholas Roy and Sebastian Thrun. Online self-calibration for mobile robots.

In Proceeding of the IEEE International Conference on Robotics and Automa-

tion, volume 3, pages 2292–2297, Detroit, MI, May 1999. IEEE Computer

Society Press.

[72] A Savvides, C C Han, and M B Strivastava. Dynamic fine-grained localiza-

tion in ad-hoc wireless sensor networks. In Proceedings of the International

Conference on Mobile Computing and Networking, July 2001.

[73] M Sayers. Vehicle models for RTS applications. Vehicle System Dynamics,

32(4–5):421–438, 1999.

[74] M Sayers and D Han. A generic multibody vehicle model for simulating han-

dling and braking. Vehicle System Dynamics, 25:599–613, 1996.

[75] B Schiele and J Crowley. A comparison of position estimation techniques using

occupancy grids. In Proceedings of the International Conference on Robotics

and Automation (ICRA), pages 128–134, 1994.

112

[76] M Schlesinger. Decomposing infants’ object representations: a dual-route

processing account. 18(2):207–216, June 2006.

[77] Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics,

6(2):461–464, 1978.

[78] R H Shumway and D S Stoffer. An approach to time series smoothing and

forecasting using the EM algorithm. Journal of time series analysis, 3:253–

264, 1982.

[79] R Simmons, S Thrun, C Athanassiou, J Cheng, L Chrisman, R Goodwin,

G Hsu, and H Wan. ODYSSEUS: an autonomous mobile robot. AI Magazine,

1992.

[80] O Simsek and A Barto. An intrinsic reward mechanism for efficient explo-

ration. In Proceedings of the Twenty-Third International Conference on Ma-

chine Learning (ICML ’06), June 2006.

[81] S Singh, A Barto, and N Chentanez. Intrinsically motivated reinforcement

learning. In 18th Annual Conference on Neural Information Processing Sys-

tems (NIPS), December 2004.

[82] Peter Stone, Tucker Balch, and Gerhard Kraetzschmar, editors. RoboCup-

2000: Robot Soccer World Cup IV, volume 2019 of Lecture Notes in Artificial

Intelligence. Springer Verlag, Berlin, 2001.

[83] Peter Stone, Patrick Beeson, Tekin Mericli, and Ryan Madigan. DARPA urban

challenge technical report: Austin Robot Technology, June 2007. Available

from http://www.darpa.mil/grandchallenge/rules.asp.

[84] Peter Stone, Kurt Dresner, Selim T. Erdoğan, Peggy Fidelman, Nicholas K.

Jong, Nate Kohl, Gregory Kuhlmann, Ellie Lin, Mohan Sridharan, Daniel

113

Stronger, and Gurushyam Hariharan. The UT Austin Villa 2003 four-legged

team. In Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo Yoshida,

editors, RoboCup-2003: Robot Soccer World Cup VII. Springer Verlag, Berlin,

2004.

[85] Peter Stone, Kurt Dresner, Peggy Fidelman, Nicholas K. Jong, Nate Kohl,

Gregory Kuhlmann, Mohan Sridharan, and Daniel Stronger. The UT Austin

Villa 2004 RoboCup four-legged team: Coming of age. Technical Report UT-

AI-TR-04-313, The University of Texas at Austin, Department of Computer

Sciences, AI Laboratory, October 2004.

[86] Peter Stone, Kurt Dresner, Peggy Fidelman, Nate Kohl, Gregory Kuhlmann,

Mohan Sridharan, and Daniel Stronger. The UT Austin Villa 2005 RoboCup

four-legged team. Technical Report UT-AI-TR-05-325, The University of

Texas at Austin, Department of Computer Sciences, AI Laboratory, November

2005.

[87] Peter Stone, Peggy Fidelman, Nate Kohl, Gregory Kuhlmann, Tekin Mericli,

Mohan Sridharan, and Shao en Yu. The UT Austin Villa 2006 RoboCup four-

legged team. Technical Report UT-AI-TR-06-337, The University of Texas at

Austin, Department of Computer Sciences, AI Laboratory, December 2006.

[88] A Stoytchev. Learning the affordances of tools using a behavior-grounded

approach. In E Rome, J Hertzberg, and G Dorffner, editors, Affordance-Based

Robot Control, pages 140–158. Springer Lecture Notes in Artificial Intelligence,

2008.

[89] G. Strang. Linear Algebra and its Applications. Brooks Cole, 1998.

[90] Daniel Stronger and Peter Stone. Towards autonomous sensor and actuator

114

model induction on a mobile robot. Connection Science, 18(2):97–119, 2006.

Special Issue on Developmental Robotics.

[91] Daniel Stronger and Peter Stone. Maximum likelihood estimation of sensor

and action model functions on a mobile robot. In IEEE International Confer-

ence on Robotics and Automation, May 2008.

[92] Daniel Stronger and Peter Stone. Polynomial regression with automated de-

gree: A function approximator for autonomous agents. International Journal

on Artificial Intelligence Tools, 17(1):159–174, February 2008.

[93] R Sutton and A Barto. Reinforcement learning: an introduction. MIT Press,

1998.

[94] S Thrun. Learning metric-topological maps for indoor mobile robot navigation.

Artificial Intelligence, 99:21–71, 1998.

[95] S Thrun, W Burgard, and D Fox. A probabilistic approach to concurrent

mapping and localization for mobile robots. Machine Learning, 31(1–3):29–

53, 1998.

[96] S Thrun, W Burgard, and D Fox. Probabilistic Robotics. MIT Press, 2005.

[97] R Tsai. An efficient and accurate camera calibration technique for 3d machine

vision. In IEEE CVPR 1986, 1986.

[98] Sanford Weisberg. Applied Linear Regression. John Wiley & Sons, Inc., New

York, 1980.

[99] Greg Welch and Gary Bishop. An introduction to the Kalman filter. Technical

Report 95-041, University of North Carolina at Chapel Hill, Department of

Computer Science, 2004.

115

[100] J Weng, J McClelland, A Pentland, O Sporns, I Stockman, M Sur, and

E Thelen. Autonomous mental development by robots and animals. Science,

291:599–600, 2001.

[101] Shimon Whiteson, Peter Stone, Kenneth O. Stanley, Risto Miikkulainen, and

Nate Kohl. Automatic feature selection via neuroevolution. In Proceedings of

the Genetic and Evolutionary Computation Conference, June 2005.

[102] W Whittaker and L Nastro. Utilization of position and orientation data for

pre-planning and real time autonomous vehicle navigation. In Proceedings of

IEEE/ION Position Location and Navigation Symposium, 2006.

[103] T Yap and C Shelton. Simultaneous learning of motion and sensor model

parameters for mobile robots. In Proceedings of the IEEE International Con-

ference on Robotics and Automation, May 2008.

[104] Q Zhang and R Pless. Extrinsic calibration of a camera and laser range finder.

In Proceedings of the IEEE International Conference on Intelligent Robots and

Systems, 2004.

[105] Z Zhang. Iterative point matching for registration of free-form curves. Inter-

national Journal of Computer Vision, 13(2):119–152, 1994.

116

Vita

Daniel Stronger began his doctoral work in the Department of Computer Sciences at

the University of Texas at Austin in August 2001. As an undergraduate, he attended

Harvard University from 1997 to 2001, receiving a Bachelor of Arts in Physics cum

laude. Growing up in New York City, Daniel attended Stuyvesant High School

and participated in mathematics competitions, where he achieved second place in

the USA Mathematical Olympiad. He subsequently represented the U.S. team in

the International Mathematical Olympiad in 1997, where he was awarded a Silver

Medal.

Permanent Email Address: stronger@post.harvard.edu

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

117

