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Abstract

Text Understanding systems often commit to asingle
bestinterpretation of a sentence before analyzing sub-
sequent text. The single best interpretation is chosen
by resolving ambiguities to the alternatives for which
the system has the highest confidence, given the context
available at the time of commitment. Subsequent text,
however, may contain information that could change
which alternatives have the highest confidence. This
may especially be the case when the system is able to
read multiple redundant texts on the same topic. Ideally,
the system would delay choosing among ambiguous al-
ternatives until more text has been read.

One solution is to maintain multiple candidate inter-
pretations of each sentence until the system acquires
more evidence. Unfortunately, the number of alterna-
tive interpretations explodes quickly. In this paper, we
propose apacked graphical representation(PG repre-
sentation) that can efficiently represent a large number
of alternative interpretations along with dependencies
among them. We also present an algorithm for combin-
ing evidence from multiple PG representations to help
resolve ambiguity and prune alternatives once the deci-
sion to commit to a single interpretation has been made.

Our controlled experiments show that by delaying
ambiguity resolution until multiple texts have been read,
our prototype’s accuracy is higher than when commit-
ting to interpretations sentence-by-sentence.

A typical text understanding system confronts ambigu-
ity at each step of processing, including parsing, map-
ping words to concepts and formal relations, resolving co-
references, and integrating the knowledge derived from sep-
arate sentences or texts. The system is forced to discard
many candidate interpretations in order to dampen the com-
binatorial explosion of possibilities. Commonly, after read-
ing each sentence, a system will commit to its top ranked
interpretation of the sentence before reading the next.

If a text understanding system could postpone committing
to an interpretation without becoming swamped by a combi-
natorial explosion of alternatives, its accuracy would almost
surely improve. This intuition follows from the observation
that text is redundant in at least two ways. First, within a sin-
gle coherent text (with sentences referencing the same set of
entities and events), each sentence informs the interpreta-
tion of its neighbors. Second, within a corpus of texts on
the same topic, the same information will be expressed in
different surface forms, ambiguous in different ways. Each
text provides context that may help inform the interpretation
of the others. Related fields, such as Information Extraction,
exploit textual redundancy to good effect, and perhaps text
understanding can as well.

One approach is for the text understanding system to
maintain multiple complete candidate interpretations. Af-

ter reading each sentence, for example, the system would
retain a beam of the n-best interpretations of the sentence.
While this approach avoids a combinatorial explosion (for
reasonable values of n), several problems remain. First, be-
cause the beam width is limited, the system may still discard
correct interpretations before benefiting from the extra con-
text from related text. Second, enumeration of the candidate
interpretations does not represent the dependencies among
them. For example, there may be multiple candidate word
senses and semantic roles for a given sentence, but sense
alternatives might be dependent on role selection (and vice-
versa). The set of reasonable interpretations may be a subset
of all combinations. Finally, maintaining distinct interpreta-
tions does not contribute to addressing the problem of com-
bining evidence to narrow down alternatives and ultimately
select a single best interpretation of a text.

This paper addresses these three problems. We propose
an approach to text understanding in which the system post-
pones committing to the interpretation of a text by represent-
ing ambiguities and the dependencies among them. With
our approach, there may be combinatorial growth in the set
of alternative interpretations, but they are represented only
intensionally, using a packed representation, which main-
tains alternatives while avoiding enumerating them. Further-
more, we propose an algorithm for updating and pruning the
packed representation as more sentences and texts are read.

We evaluate our approach by comparing the accuracy of
two reading systems: a baseline system that commits to its
best interpretation after each sentence, and our prototype
system that uses a packed representation to maintain all pos-
sible interpretations until further reading enables it to prune.
For this initial proof of concept, we use a small corpus of
redundant texts. The results indicate that our approach im-
proves the quality of text interpretation by preventing ag-
gressive pruning while avoiding combinatorial explosion.

In the following sections, we first describe our target se-
mantic representation of the interpretation of sentences.We
then present the details of ourpacked graphical representa-
tion (PG representation)and our algorithm to resolve am-
biguities in the PG representations as disambiguating evi-
dence from subsequent text accrues. We describe the archi-
tecture of a prototype that produces PG representations for
text and implements the disambiguating algorithm. Finally,
we present the results from controlled experiments designed
to compare the accuracy of the prototype to a baseline sys-
tem that prunes more aggressively.

Target semantic representation
Our target representation is a simple semantic graph in
which nodes are words from the sentence and the types in
an ontology to which the words map. Edges are formal se-



Figure 1: The target semantic graph representation for S1

mantic relations which may correspond to words from the
sentence or to syntactic relations in the sentence’s parse.

Fig. 1 shows the target semantic representation for the fol-
lowing simple sentence:

S1: An engine ignites gasoline with its spark plug.

PG representation
Multiple alternative semantic interpretations for a sentence
can be captured with a single PG representation in which
ambiguities are represented as local alternatives. Because
the candidate semantic representations are often structurally
similar, a PG representation can significantly compress the
representation of alternative interpretations.

Fig. 2 shows the PG representation of alternate interpreta-
tions of S1 (PG1). The different types of ambiguity captured
by the PG representation are as follows.

Type ambiguity. Ambiguity in the assignment of a type
for a word. In PG1, the node engine-2a corresponds to the
word “engine” in S1. Its annotation [LIVING -ENTITY .3 |
DEVICE .7] says that the word may map to either LIVING -
ENTITY (probability 0.3) or DEVICE (probability 0.7). The
PG representation does not presume a particular uncertainty
formalism. Any formalism, (Dempster-Shafer theory (Pearl
1988), Markov Logic Networks (Richardson and Domingos
2006), etc.) could be used.

Relational ambiguity. Ambiguity in the assignment of se-
mantic relation between nodes. In PG1, the edge label
<agent .6| location .4> from ignite-3a to engine-2a says
that the engine is eitheragentor locationof the ignition.

Structural ambiguity. The PG representation also cap-
tures structural alternatives. In PG1, edges D and E
are alternatives corresponding to the different prepositional
phrase attachments for “with its spark plug” (to ignite-3a
or gasoline-4a). The annotation{D .3 | E .7} says that the
choices are mutually exclusive with probabilities of 0.3 and
0.7.

Co-reference ambiguity. Co-reference of nodes in a PG
representation is captured using a “co-reference” edge. In
PG1, the edge labeled<coref .7> represents the probability
that engine-2a and its-7a are co-referent.

In addition to storing ambiguities explicitly, the PG rep-
resentation also captures dependencies among alternatives.

Simple dependency. The existence of one element in the
graph depends on the existence of another element. If subse-
quent evidence suggests that an element is incorrect, its de-
pendents should be pruned. For example, the dependency A
→ C, means that if LIVING -ENTITY is ultimately rejected as

Figure 2: The PG representation for S1 (PG1)

the type for engine-2a, the agent relation should be pruned.

Mutual dependency. Elements of a mutual dependency
set are mutually confirming. If enough evidence accrues to
confirm or reject an element, other elements in the set should
also be confirmed or rejected. In the example, the box la-
beled B says that the two elements (engine-2a type DEVICE)
and (ignite-3a location engine-2a) should both be confirmed
or pruned when either of them is confirmed or pruned.

Formally, the PG representation is a structure consist-
ing of (a) semantic triples– e.g., (ignite-3a type BURN),
(b) macros– e.g., the symbol A refers to (ignite-3a agent
engine-2a), and (c)constraints– e.g., A depends on C.

Combining multiple PG representations
Maintaining ambiguity within the PG representation allows
us to delay commitment to an interpretation until enough
evidence accrues to disambiguate. For any text fragment
that results in a PG representation (PGa) containing ambigu-
ity, there may exist other text fragments somewhere that are
partly redundant, but result in a less ambiguous (or differ-
ently ambiguous) representation (PGb). The less ambiguous
representation (PGb) can be used to adjust confidences in
the ambiguous representation (PGa). Enough such evidence
would allow us to prune unlikely interpretations, ultimately
disambiguating the original representation.

For example, sentence S3 does not have sufficient context
to disambiguate between the MOTOR sense of “engine” and
the VEHICLE sense (as inlocomotive).

S3: General Electric announced plans this week for
their much anticipated new engine.

The PG3 representation for S3 (PG3) would maintain the
ambiguous representation (with confidences for each sense
based on prior probabilities, for example).

On subsequently encountering sentence S4, a Lesk-based
word sense disambiguation module (such as the one we use
in our prototype) would produce a PG4 representation with
a strong preference for the locomotive sense of “engine”,
given the more specific context of S4.

S4: The announcement comes to the relief of many in
the railway industry looking to replace the engines in
their aging locomotive fleets.

To use interpretations from PG4 to disambiguate PG3, we
need to align PG3 and PG4 semantically and merge their
conflict sets. (In the simple example, the conflict sets for the
word engine might be something like [MOTOR.5 | VEHICLE
.5] in PG3 and [MOTOR .2 | VEHICLE .8] in PG4).



Algorithm 1 Combining PG representations
1. Identify the initial seed mappings between the two in-

put PG representations using coreference detection meth-
ods. Currently, we use a naive heuristic which considers
nouns derived from the same base form to be candidate
co-references.

2. Starting from the current mappings, identify additional
mappings by aligning the labels of the edges and the types
of the nodes (similar to the greedy algorithm of finding a
maximal common subgraph); merge the mapped nodes
and edges; mutate the PG representations as follows:

(a) Update associated constraints:
• type/relational ambiguity Combine the conflict sets

of merged nodes or edges according to the uncertainty
formalism used in the PG representation.

• structural ambiguity If one alternative in a structural
interpretation has been aligned and merged, increase
the relative confidence of that alternative.

• co-reference ambiguity Merge two nodes connected
by a co-reference edge if merging them produces more
mappings (strengthening the alignment).

(b) Prune interpretations whose confidence falls below
threshold; if only one interpretation remains after prun-
ing, that interpretation is confirmed.

(c) If a pruned interpretation has dependents, prune its de-
pendents; if a dependent interpretation is confirmed,
confirm the interpretation it is dependent on; if an inter-
pretation within a mutual dependency set is confirmed
or pruned, confirm/prune the other interpretations in the
set.

(d) If an interpretation is confirmed, prune competing al-
ternatives.

3. Repeat Step2 until no more mappings are discovered.

Algorithm 1 describes how two PG representations can be
combined to help resolve their ambiguities. The algorithm
attempts to identify their isomorphic subgraphs (redundant
portions of the interpretations) and then adjusts the confi-
dence scores in alternatives. Finally, the algorithm provides
a method for confirming/pruning the interpretations of the
PG representations based on confidence scores and the de-
pendencies within the PG representations.

We will now step through Algorithm 1, merging PG1
(fig. 2) with PG2 (fig. 3). The resulting representation, fully
pruned, is identical to the target representation for S1 (fig. 1).
The uncertainty formalism and confidence thresholds in the
example are simple for illustration.

1. The algorithm identifies (engine-2a, Engine-1b), (spark-
plug-8a, spark-plug-3b) and (gasoline-4a, gasoline-6b) as
candidate co-references. It merges the pairs and their con-
flict sets according to the uncertainty formalism used in
the PG representation. In our current prototype, the con-
fidences of the conflict sets are simply added. Therefore,
[L IVING -ENTITY .3 | DEVICE .7] of engine-2a is merged

Figure 3: PG representation for S2,“The engine’s spark
plug combusts gasoline.”

with [DEVICE 1] of Engine-1b to produce [LIVING -
ENTITY .3 | DEVICE 1.7]. LIVING -ENTITY is discarded,
because its relative score falls below threshold.1.

2. Deleting LIVING -ENTITY causes deletion of theagent
edge between ignite-3a and engine-2a due to the depen-
dency constraint A→ C, (meaningagent(in A) depends
on the existence of LIVING -ENTITY (in C)).

3. Co-reference between engine-2a and its-7a is greedily
confirmed because merging the two nodes enables the
alignment of (its-7a has-part spark-plug-8a) with (Engine-
1b has-part spark-plug-3b).

4. The algorithm aligns (ignite-3a instrument spark-plug-
8a) with (combust-5b instrument spark-plug-3b), because
ignite-3a and combust-5b share the same type, [BURN].
This operation increases the score of D (the structure cor-
responding to PP attachment of “with its spark plug” to
“ignite”) over E (the structure corresponding to attach-
ment of “with its spark plug” to “gasoline”).

Any remaining ambiguity could simply be left in the PG rep-
resentation (to be dealt with by subsequent reasoners). If an
unambiguous final representation is appropriate, all lower
scoring interpretations could be pruned. In this example, E
would be pruned, making the result identical to fig. 1.

Prototype system
To evaluate our approach, we built a prototype system im-
plementing the PG representation and Algorithm 1.

Parser. The system uses the Stanford Parser (Klein and
Manning 2003). To capture structural ambiguity for our
experiments, we manually converted the parser output to a
syntactic PG representation by adding corrections as alter-
natives wherever the parse tree was incorrect. This gave a
syntactic PG representation with both incorrect and correct
alternatives. We arbitrarily gave the original, incorrectalter-
natives high confidence scores and the added, correct alter-
natives low scores. This approach simulates the situation in
which the parser pruned the correct interpretation in favorof
an incorrect one with a higher confidence score. The syn-
tactic PG representation for S1 is shown in fig. 4. We have
recently designed a modification to the Stanford Parser to
make it produce syntactic PG representations natively, based
on the complete chart built during parsing.

Semantic Interpreter. The semantic interpreter assigns
types to nodes in the syntactic PG representation and se-

1In our prototype, we set the pruning threshold at1

3
×the score

of the top-scored interpretation.



Figure 4: Syntactic PG representation for S1, capturing the
PP-attachment ambiguity of “with its spark plug”.

mantic relations to the edges. The resulting semantic PG
representation has the following semantics and constraints.

• Type ambiguity. Types and confidence scores are as-
signed to words using SenseRelate (Patwardhan andet al
2005), WSD software based on the Lesk Algorithm (Lesk
1986). Assigned senses are then mapped to the Com-
ponent Library ontology using its built-in WordNet map-
pings.

• Relational ambiguity. Semantic relations are assigned to
the dependency relations in the syntactic PG representa-
tion according to semantic interpretation rules [self-cite].
Most of the rules consider the types of the head and the
tail as well as the dependency relation, but do not pro-
duce confidence scores. Our experimental prototype sim-
ply scores candidates equally. We plan to incorporate a
more sophisticated scoring method such as (Punyakanok
andet al2005).

• Structural ambiguity. Parse ambiguities (such as PA vs.
PB in fig. 4) are converted directly to structural ambiguity
representations (D vs. E in fig. 2) in the semantic PG
representation.

• Simple Dependency. A dependency is installed between
a type t for word w and a semantic relation r when (1) r is
produced by a rule based on t and (2) r is dependent on no
other candidate type for w. In fig. 2, a dependency relation
is installed from A to C, because (1) LIVING -ENTITY in
engine-2a was used in the rule assigningagentbetween
ignite-3a and engine-2a and (2) the assignment ofagent
is not dependent on DEVICE, the other candidate type of
engine-2a.

• Mutual dependency. If multiple interpretations depend
on one another, a mutual dependency set is created to in-
clude them.

PG Merger. This module implements Algorithm 1 to
combine PG representations from multiple sentences. The
PG representation for each sentence is merged with the
combined PG representation from previous sentences. The
global PG representation integrates sentence-level PG rep-
resentations to the extent that they align semantically. Inthe
worst case (completely unrelated sentences), the global PG
representation would simply be the union of individual PG
representations. The extent to which the global PG repre-
sentation is more coherent reflects redundancy and semantic
overlap in the sentences.

Original Text Hearts pump blood through the body. Blood
carries oxygen to organs throughout the body. Blood leaves
the heart, then goes to the lungs where it is oxygenated.
The oxygen given to the blood by the lungs is then burned
by organs throughout the body. Eventually the blood returns
to the heart, depleted of oxygen.

Paraphrase The heart begins to pump blood into the body.
The blood first travels to the lungs, where it picks up oxygen.
The blood will then be deposited into the organs, which burn
the oxygen. The blood will then return to the heart, where it
will be lacking oxygen, and start over again.

Figure 5: The original text and a paraphrase

Experiment 1
Our first experiment attempts to evaluate the claim that
delaying ambiguity resolution improves accuracy. Redun-
dancy and semantic overlap in subsequent sentences should
allow Algorithm 1 to adjust the confidence in ambiguous al-
ternatives given more context. To do this, we needed known
redundant texts. In practice, we envision a system whose
task is to develop a model of a particular topic by interpret-
ing multiple tutorial texts on the topic. Such a system might
be given, a priori, a clustered set of documents on the topic.
Alternatively, given a single tutorial text on a topic, a sys-
tem could perform its own information retrieval to collect a
small corpus of texts with some confidence in their seman-
tic overlap. For this experiment, to ensure redundancy, we
generated a set of ten texts by having volunteers rewrite a
short, tutorial text, using Amazon Turk (http://mturk.com).
The volunteers had no knowledge of the purpose of the task,
and were asked simply to rewrite the text using “different”
language. Fig. 5 shows the original text and one volunteer
rewrite. The total number of sentences over the ten texts was
37. Average sentence length was 14.5 words.

Evaluation Procedure

We ran two systems over the ten texts. The baseline sys-
tem commits to the highest scoring consistent interpreta-
tion after each sentence. The prototype system produces
an ambiguity-preserving PG representation. As the proto-
type reads each sentence, it uses Algorithm 1 to merge the
PG representation of the sentence with that of the previous
sentences. After N sentences (varying N from 1..37), the
system is forced to commit to the highest scoring consis-
tent interpretation from the PG representation. For N=1 (the
prototype system is forced to commit after reading the first
sentence), both the baseline and prototype systems produce
the same result. For N=2, the baseline system produces
the union of the highest scoring interpretations for each of
the first two sentences in isolation. The prototype system
produces a merged PG representations for the first two sen-
tences and then prunes to the highest scoring alternatives.

At each value of N, we measured the correctness of the
interpretations (the percentage of correct semantic triples)
committed by each system by comparing the committed
triples against human-generated gold standard triples forthe
texts.
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Figure 6:Correctness scores for the prototype vs. baseline system on (a) type triples (word sense assignment), (b) content triples (semantic
relations) and (c) all triples (with standard deviation).

We repeated the experiment ten times with different ran-
dom orderings of the 37 sentences, averaging the results.

Evaluation result
Fig. 6 shows that the quality of both type assignment and
semantic relation assignment by the prototype system in-
crease as the system acquires more evidence from other sen-
tences. This result confirms our hypothesis that delaying
commitment to an interpretation resolves ambiguities better
by avoiding overly aggressive pruning.

To determine an upper bound of correctness for the pro-
totype system, we inspected the PG representations to see
how many alternative sets within the PG still contained the
correct interpretation even if not the highest scoring alterna-
tive. This number is different from the correctness score in
fig. 6, which is the percentage of gold standard triples in the
PG representation after committing (pruning) to the highest
scoring alternatives.

baseline prototype
nodes containing the correct type 76 91

edges containing the correct relation 74 88

Table 1: Percentage of nodes and edges maintaining the correct
types and semantic relations in the baseline system and the proto-
type system for all 37 sentences.

Table. 1 shows that 91% of the nodes in the PG contain
the correct type (though not necessarily the highest scor-
ing). 88% of the edges contain the correct semantic relations
among the alternatives. In contrast, the baseline system has
pruned away 24% of the correct types and 26% of the correct
semantic relations.

Experiment 2
Our second experiment aims to evaluate the claim that the
prototype system can efficiently manage a large number of
alternative interpretations. The top line in Fig. 7 shows the
number of triples in the PG representations input to the pro-
totype system. This is the total number of triples (includ-
ing ambiguity alternatives) in the PG representation for each
sentence prior to invoking Algorithm 1. The middle line is
the number of triples remaining after merging and pruning
by Algorithm 1. The bottom line is the number of triples af-
ter pruning all but the highest scoring alternatives (the base-
line system). The results show that Algorithm 1 achieves
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Figure 7: Total number of triples in individual sentence PG rep-
resentations (top); total number of triples in the PG representation
after merging in the prototype system (middle); total number of
triples after pruning to the highest scoring alternative (bottom).

significant compression over unmerged PG representations.
The resulting size of the merged PG representations more
closely tracks the size of the aggressively pruned represen-
tations.

Experiment 3

Finally, we wanted to measure the sensitivity of our ap-
proach to the quality of the natural language interpreta-
tion. In this experiment, we artificially varied the confi-
dence scores for the correct interpretations in the PG rep-
resentations input to the prototype and baseline systems by
a fixed percentage. For example, consider a node heart-1 in
a PG representation. Among the candidate types is the cor-
rect sense for its context: INTERNAL-ORGAN with confi-
dence 0.8. We reran Experiment 1 varying the confidence in
INTERNAL-ORGAN in increments of both +10% and -10%,
while scaling the confidences in the incorrect types equally.
As the confidence in correct interpretations is increased, all
correct interpretations become the highest scoring, so ag-
gressive pruning is justified and the baseline system perfor-
mance approaches the prototype system performance. As
the confidences in correct interpretations are decreased, they
are more likely to be pruned by both systems.

Fig. 8 shows that Algorithm 1 is able to recover at least
some correct interpretations even when their original scores
(relative to incorrect alternatives) is quite low.
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Figure 8:Sensitivity of the prototype and baseline systems to the
quality of the NL system output. The quality of input triples is
perturbed affecting performance accuracy of the two systems. For
example, when the quality of input triples is such that the baseline
system performs at 70% accuracy, the prototype system performs
at 80%. The arrow indicates unperturbed language interpreter per-
formance.

Discussion and Future Work
The results of our controlled experiments suggest that it is
both desirable and feasible to delay commitment to ambigu-
ity resolution beyond the sentence and text boundaries. Im-
provements in the correctness of the semantic interpretation
of sentences is possible without an explosion in size when
maintaining multiple interpretations.

Nevertheless, the experiments reported are proofs of con-
cept. The results confirm that it is worthwhile subject our
prototype to a more real-world, practical application. To do
so, we need to address several issues.

First, we will complete modifications to the Stanford
Parser to produce PG representations natively. This change
will result in a significant increase in the number of alter-
natives stored in the PG representation over the current pro-
totype. Our initial investigations suggest that there is still
enough structural overlap among the many possible parse
trees to allow the PG representation to control explosion, but
this is an empirical question that will need to be confirmed.

We are modifying our semantic interpreter to admit in-
duced semantic interpretation rules [self-cite] which will al-
low us to train the system on corpora from new domains.

The current prototype uses a simple, naive heuristic for
identifying co-reference candidates. We plan to plug in a
more sophisticated, off-the-shelf co-reference system.

Finally, we will explore the use of more sophisticated
mechanisms for managing uncertainty. In particular, the cur-
rent heuristics for adjusting probabilities when merging PG
representations and the thresholds for confirming or pruning
interpretations need to be replaced.

Once these updates are complete, we will perform more
wide-scale evaluations. We will investigate test corpus con-
struction using text clustering to find redundant/overlapping
texts and conduct experiments in multiple domains.

Related Work
The idea of succinctly representing multiple interpretations
has been explored by several researchers for different NLP

tasks. For example,the packed representation(Crouch
2005), represents alternative semantic representations for
a sentence succinctly with first-order logic and then runs
a SAT solver against several types of constraints to find
probable interpretations that are consistent with the con-
straints. Theunderspecified representationused in (Alshawi
and Crouch 1992) (Bos 2004) (Schilder 1998) allow systems
to defer interpretation decisions until they acquire sufficient
evidence. Unlike the PG representation, this work generally
focuses on one particular type of ambiguity such as scope
ambiguity (Alshawi and Crouch 1992) (Bos 2004) or dis-
course representation (Schilder 1998).

Conclusion
In this paper we have begun to address the challenge of effi-
ciently managing multiple alternative interpretations oftext
in a text understanding system. We have presented (1) a
packed graphical representationthat succinctly represents
multiple alternative interpretations as well as the constraints
among them, and (2) an algorithm for combining multi-
ple PG representations to reinforce correct interpretations
and discount implausible interpretations. Controlled exper-
iments show that it is possible to improve the correctness
of semantic interpretations of text by delaying disambigua-
tion, without incurring the cost of an exponentially expand-
ing representation.
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