Bisecting the Version Space

Anish K. Arora
Daniel L. Dvorak
Thomas C. Vinson

Al TR87-62 August, 1987

This research was conducted by the authors in the Machine Learning
course of Spring 1987, taught by Professor Bruce Porter.

Bisecting the Version Space

Anish K. Arora
Daniel L. Dvorak
Thomas C. Vinson

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

August 12, 1987

Abstract

A class of problem in machine learning is concept learning where an experimenter
poses questions to an oracle. The ideal ezperimenter learns the target concept with the
fewest questions. For learners using Mitchell’s version space algorithm (a.k.a. candidate
elimination algorithm) for concept formation, Mitchell had conjectured that the best
questions would be those that bisect the version space. To date, no published research
has attempted to verify the conjecture (or even define what it means to “bisect” the
version space).

This paper reports the results of an effort to devise an ideal experimenter that has no
a priori knowledge about the target concept. Several strategies were programmed and
tested on single- and multiple-attribute learning on concept hierarchy trees and directed
acyclic graphs. We obtained the best results with an experimenter that:

e selects the training instance based on a concept midway on a path between elements
of the G and 5 sets bounding the version space, and

e for multiple-attribute concepts it modifies only one attribute at a time (divide-and-
conquer).

For the special case where training instances are allowed to be non-leaf nodes in the
concept hierarchy, an even better result can be obtained with the addition of a new rule
for updating the version space.

Contents
1 Introduction
2 Learning from Experimentation

Learning in the Version Space

Experiment Generation Strategies

4.1 genrandomo
4.2 genl e e e e e
43 genQ o Lo e
S =
4.5 genbisecto

Performance and Bias

Directed Acyclic Graphs

6.1 geninterior.

6.2 DAG Performance Results

Multiple-Attribute Concepts
Copclusions
Acknowledgements
References

Proof of Optimality

Software

...............

CONTENTS

-3 o Ut Gt

=3

10

e e e e e e e e e 11
e e e e e e PR & |

13

14

14

i5

16

18

1 Introduction

In the field of machine learning there is a class of systems that perform “learning from
experimentation” where a learner acquires a theory or concept by posing questions to an
oracle. The oracle can be a human or a program or a mechanism. The technique is suited
for the situations where previous knowledge is not sufficient to explain some observations —
where reasoning has to be replaced by experimentation. Examples of such systems are Meta-
DENDRAL [4], LEX [1], MARVIN [3] and EG [2]. Standard assumptions in these systems
are that:

e the oracle gives correct answers (no noise),
e the learner knows the theory representation language,
e the learner is given an initial positive training instance, and

e the learner tries to ask the fewest questions.

This last point is the subject of this paper. At every stage in trying to learn a concept, the
experimenter must try to find the best question to ask the oracle.

This paper first quickly reviews the general model of learning from experimentation and
the version space algorithm. It then describes several experiment generation strategies that
we devised and tested. Experimental results are shown for single-attribute and multiple-
attribute concepts in concept hierarchy irees and graphs.

Experiment
Generation
) updated
question concept
space
response Concept
Oracle Formation

Figure 1: The learning cycle

2 Learning from Experimentation

The process of learning from experimentation is a continuous cycle in which the learner asks
a question of the oracle, evaluates the oracle’s response, and then asks a new question. The
cycle continues until the learner narrows down the space of possible concepts to one concept.

The learner performs two tasks in this scenaric — ezperiment generaiion and concept
formation — and there is a continuous interplay between the two. Partial theories guide
experiment generation and experiment results guide concept formation.

4 3 LEARNING IN THE VERSION SPACE

Concept formation may be based upon any of several techniques — clustering, induc-
tion, explanation-based learning, analogy, etc. The design of the experiment generator is
necessarily influenced by the concept formation techniques. In this research we have selected
Mitchell’s version space algorithm (candidate elimination algorithm) [5] as the concept for-
mation technique. Our goal is to create the “ideal” experiment generator — the one that
asks the fewest questions in the learning cycle.

3 Learning in the Version Space

Concepts are represented as nodes in an acyclic concept hierarchy graph with directed arcs
representing a more-specific-than relation between pairs of nodes. The version space algo-
rithm performs a bi-directional search in this concept hierarchy graph that progressively
narrows the distance between the two “boundaries” of the search space. These boundaries,
named & and 5, are defined as follows:

G = the most general set of generalizations consistent with the observed instances;
S = the most specific set of generalizations consistent with the observed instances.

Initially, G is set equal to the root of the concept hierarchy graph and 5 is set equal to the
first positive training instance. With subsequent positive and negative training instances, the
algorithm updates G and § in ‘accord with their definitions. The target concept always lies
somewhere in the space between the two boundaries {the so-called version space). Eventually,
the G and 5 boundaries meet at the target concept and the learning algorithm terminates.

root

arget concept

esis node

leaves

Figure 2: Positions inside a concept hierarchy tree

Figure 2 shows the relative positions of different items as learning proceeds in a concept
hierarchy tree. G begins at the root and descends as it is specialized by negative training
instances. S5 begins as a leaf and ascends as it is generalized by positive training instances.
The target concept is always somewhere in between and eventually, after enough training
instances, (G and 5 converge to the target concept. Traditionally, training instances are leaf
nodes. A smart learner selects each training instance to test some hypothesis about the target

concept. Thus, we introduce the notion of a hypothesis node to represent the concept that
the learner is actually asking about indirectly through a leaf node. In one of the experiment
generators described later, we part with tradition and allow the learner to directly ask the
oracle about a hypothesis node.

4 Experiment Generation Strategies

For any experiment generator to be considered optimal, it must ask questions that cause G
and § to converge rapidly. By implication, it must avoid “dumb” questions. Any question
that is not covered by G or is covered by § is a “dumb” question since it can be answered
without asking the oracle. Such questions cause no narrowing of the version space. All other
questions are termed “intelligent”, and the best of these maximize the change in G or 5.

There are many possible strategies for selecting intelligent questions. These strategies will
vary according to bias, computational complexity, and amount of domain-specific knowledge.
Mitchell has conjectured that the ideal strategy would be one that, in some sense, “bisects”
the version space with each question. To date, no published research has tested and confirmed
that hypothesis. However, some unpublished results have suggested that it is not possible
to do better than random questioning. (Indeed, random questioning works very well with
the version space algorithm). This research seeks an experiment generation algorithm that
is optimal in the number of questions asked and is a domain-independent, computationally-
modest strategy.

We devised and tested several experiment generators. The sole figure of merit for com-
parison purposes is the number of questions asked while learning a concept. Figure 3 shows
the performance of each generator on a symmetric 9-level 511-node! concept hierarchy tree
having a branching factor of 2. In the following subsections we describe the strategy used by
each generator and explain its resulting performance.

4.1 genrandom

This generator randomly selects a leaf node descended from G. That node may also be
descended from S, which would be a “dumb” question. However, we have eliminated such
questions in measuring its performance since our objective with genrandom was to establish
as a benchmark the performance of an “intelligent” but random questioner.

The strategy of questioning at random is actually a reasonable one since, at any moment,
all that is known about the target concept has been summarized in G and 5. Thus, on the
assumption that “one guess is as good as another”, this generator selects a hypothesis node
randomly from the version space. Any such guess, regardless of whether it is classified by the

1A 511-node 9-level tree was chosen for two reasons. First, a 9-mode path from S to G can be repeatedly
bisected vielding a true middle node each time (the next larger tree having this property is a 17-level tree
of 131,071 nodes). The second reason for the 511-node tree was time; the execution time for our experiment -
generators averaged 3—4 hours when run through all 511 nodes, which was necessary when we later converted
the tree to a graph.

6 ' 4 EXPERIMENT GENERATION STRATEGIES

genl

R R
R/ \R genrandom

Number 21

of
gquestions -
47 gen
asked

3 -

7. genbisect

1% genl

O 5 !] i : 4] !
0 1 2 3 4 5 6 7 8

{root) (leaves)

Depth of target concept

Figure 3: Results for 9-level 511-node tree.

oracle as positive or negative, is guaranteed to cause an update to G and/or 5, thus shrinking
the version space.

As Figure 3 shows, genrandom performs best for target concepts near the root. Because
of its random nature it tends, in successive questions, to select leaves from different subtrees
of G. The closer that the target concept is to the root, the higher the probability of getting a
positive response from the oracle. Each positive response can generalize S several levels and
thus very quickly collapse the version space to a single node. In the opposite situation where
the target concept is near the leaves, genrandom does not perform as well. Here, the best
questions to ask would be about nodes closely related to known positive instances. However,
genrandom selects randomly from the space of leaves and therefore asks many questions.

4.2 genl

The guiding principle behind this generator is to generate questions that have the potential
for making the greatest changes in the version space. The generator begins by building a list
of the immediate children of G. A node is chosen from this list that has no descendants in
S. Finally, a leaf descendant of this node is selected as the question to pose to the oracle.
So, in this situation the hypothesis node is a child of G. A positive response from the oracle
can cause S to be generalized up through many levels. A negative response causes GG to be
specialized only one level, but in so doing it eliminates one or more large subtrees of the

4.3 gen(7

version space.

The performance of gent shows a characteristic ascending slope. It asks the fewest ques-
tions for target concepts at the root and the most questions for concepts at the leaves. In
fact, of all the generators, it is the worst performer for leaf concepts. The reason is that each
question will receive a negative response from the oracle and cause G to be specialized only
one level. This is an example of the worst “intelligent” question — a question that narrows
the distance between G and S by only one level. This clarifies that what is important in any
experiment generator is to reduce the number of levels between G and 5. While it may seem
appealing to eliminate a large subtree of the version space (by specializing G by one level),
it is better to ask a question that has the potential to cause G and § to converge by more
than one level.

4.3 genO

This generator is the dual of genl in that it has exactly the opposite bias. It selects a leaf
node that is a close relative (a sibling or, if necessary, a cousin) of a previous positive training
instance. Effectively, the hypothesis node is a parent of an element of S (and a leaf descended
from this hypothesis node is selected). A negative response from the oracle can cause G to
be specialized many levels; a positive response causes S to be generalized only one level.

As Figure 3 shows, genO has a characteristic descending slope, the opposite of geni. gen0
performs the best for leaf target concepts since the first question causes G to be specialized
many levels. For target concepts near the root, gen0O generates the worst “intelligent” ques-
tions and therefore S gets generalized only one level at a time. As we shall see later in the
performance comparisons, gen0 is one of the best overall generators, in spite of its poor per-
formance for concepts approaching the root. The reason is simple — there are many more
nodes near the leaf level (where it performs well) than the root level.

4.4 gen

This generator is an attempt to combine the strengths of gen0 and genl without their weak-
nesses. Its strategy is as follows:

e If the previous training instance was positive, that supports the possibility that the
target concept is near the root, so use the genl strategy.

e If the previous training instance was negative, that supports the possibility that the
target concept is near the leaves, so use the genO strategy.

This generator is unique among all the other generators in that it uses the history of the
previous training instance.

As Figure 3 shows, its performance is quite good. It avoids the bad worst-case behaviors
of gen0 and genl and its performance is much more consistent over the range of depth of
target concept. Its performance for leaf target concepts is not as good as genO for a simple
reason. Part of gen’s behavior is due to the fact that the version space algorithm is always
“primed” with a “first positive training instance”. Thus, gen will always begin with the geni

8 4 EXPERIMENT GENERATION STRATEGIES

16 17 18 19 20 21 22 23 24 25 26 27 28 29 36 31
Figure 4: Sample concept hierarchy tree.

strategy, which is the correct one to use for target concepts near the root. This explains why
it performs better near the root than near the leaves. In general, gen will alternate between
the genO and geni strategies as it homes in on the target concept.

4.5 genbisect

As described above, gen repeatedly chooses between two very biased strategies. Intuitively,
however, it seems that an experiment generator should not be biased if it is to perform well
overall. Genbisect is such a generator. Its strategy, which is roughly analogous to binary
search, was inspired by Mitchell’s use of the term “bisect”. The algorithm is easily explained
by example.

Consider the binary tree shown in Figure 4. Assume that the target concept to be learned
is “11”7. The following steps illustrate the alternation between the experiment generator (EG)
and the version space algorithm (VSA) as the concept is learned.

e EG produces a first positive instance of “22”.
e VSA initializes the version space with S = {22 }and G = {1 }.

e EG constructs a path from 5 to G: {22, 11, 5, 2, 1 }. It takes the middle element (5)
and finds a leaf descended from it that is not also descended from any lower element
on the path (i.e., not descended from 22 or 11). In this case it generates “20” as a new
training instance.

e The oracle classifies “20” as a negative instance. VSA updates G = { 11 } (§ remains
the same).

e EG constructs a path from 5 to G: {22, 11 }. It takes the “middle” element (11) and
finds a leaf descended from it that is not also descended from any lower element on

the path (i.e., not descended from 22). In this case it generates “23” as a new training
instance.

e The oracle classifies “23” as a positive instance. VSA updates S = { 11 } (G remains
the same). Since S and G now match, the concept has been learned.

The target concept, which could have been any one of the 31 nodes, has been learned
with 3 training instances (a first positive training instance plus two questions). In the worst
case, an intelligent experiment generator would learn every concept in at most 5 questions
(i.e., one question per level of the concept hierarchy tree).

The performance results confirm the value of the bisection strategy. Although genbisect
is not quite as good as genl at the root level and not quite as good as genO at the leaf
level, it is well-behaved at all levels. Appendix A offers a proof that, as an iterative bisection
strategy, genbisect is optimal when it chooses the node midway on the path between G and

S.

5 Performance and Bias

There are two ways of judging overall performance. The first way assumes that the target
concept can be at any level with equal probability. In this case it is appropriate to take the
average of the average number of questions asked at each level. By that metric, the generators
are ranked as shown in Table 1.

Generator Average
genbisect 3.33

gen 3.77
genrandom 3.94
geno 4.88
geni 4.88

Table 1: Average number of questions per level

The other way to judge overall performance assumes that the target concept can be at
any node with equal probability. In this case we must take the average number of questions
over all nodes. This latter measure favors generators that do well near the leaves since there
are many more nodes at or near the leaves than at or near the root. A binary tree, for
instance, has more leaves than all other nodes combined. By this metric the generators are
ranked as shown in Table 2. So, even though genO has a bad worst-case behavior near the
root, it outperforms all others because it is biased in favor of concepts near the leaves.

This observation about the importance of good performance at the leaf nodes stimulated
a modification in our initial version of genbisect. Whenever the path from § to & contains
an odd number of nodes, genbisect is able to select the exact middle of the path. However,
when there is an even number of nodes in the path, there are actually two candidate nodes,
neither of which is the exact middle. Our initial algorithm arbitrarily selected the “middle

10 6 DIRECTED ACYCLIC GRAPHS

Generator ~ Average

genO 1.98
genbisect 2.69
gen 4.01
genrandom 4.92
genl 7.51

Table 2: Average number of questions over all nodes

node” closer to G. When we changed it to select the node closer to S, the average performance
over all nodes improved significantly because it asked one less question on leaf concepts. (It
also asked one more question at the root, but that’s a good tradeoff since there is only one
root node.) It is this latter version of genbisect whose performance is reported in this paper.

6 Directed Acyclic Graphs

All of the results reported so far deal with a concept hierarchy free. In general, the version
space algorithm allows the concept hierarchy to be a directed acyclic graph (DAG). To test
the effe¢t of a DAG versus a tree, we modified the 511-node tree so that every third node
gained an extra arc linking it to a node that was previously a nephew. Figure 5 shows the
first 5 levels of the DAG with the extra arcs as dashed lines.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 5: Sample concept hierarchy DAG.

In addition to testing the performance of the existing experiment generators, we devised
an additional generator (described below) to test a new idea.

6.1 geninterior ' 11

6.1 geninterior

Applications of the version space algorithm have generally assumed that only leaves can
be.used as training instances. However, if the learner was allowed to ask questions about
interior (non-leaf) nodes, then it could ask directly about a hypothesis node rather than
asking indirectly through a leaf of the hypothesis node. This is what geninterior does; it
is different from genbisect only in that it asks questions about the hypothesis node directly
rather than indirectly. This provides no advantage in a tree since there is always a single
path between a hypothesis node and a leaf descended from it. However, this is not truein a
DAG. As we shall see, geninterior outperforms genbisect in a DAG.

In all previous examples the questions posed to the oracle were of the form “Is this node
an instance of the concept?” and the oracle always classified the training instance as “+7 or
«_» Now, however, it is possible that geninterior will ask about a node (the hypothesis
node) that is more general than the target concept. Since this node has some descendants
that are instances of the target concept and other descendants that are not, the oracle cannot
respond with either “+” or “~”. For this case we have modified the oracle to respond with

“Rn

The version space algorithm, of course, only knows how to update G and 5 for positive
and negative training instances. Can the version space be updated on an indeterminate
training instance? The answer is “yes’i, but not in the ordinary way. Since an indeterminate
training instance is more specific than G (and more general than the target concept) then G
can be specialized. We developed the following new update rule to do this:

Update Rule: Let G = { children of the training instance }. Eliminate from
G any element that is more specific than any other element of G (subsumption
test). Retain in G only those elements that cover all members of 5.

6.2 DAG Performance Results

Since our 511-node DAG is not symmetric like the 511-node tree, the number of questions
asked can vary from node to node within a level. Accordingly, we ran each generator on the
entire DAG (each node was designated, in turn, as the target concept). The performance
results are shown in Figure 6 and tabulated in Tables 3 and 4. As before, Table 3 ranks the
generators according to the average number of questions asked per level and Table 4 ranks
them according to the average number of questions over all nodes. We discuss only the latter
ranking here since it seems the fairer basis for comparison.

As Table 4 shows, the two bisection-based generators (genbisect and geninterior)
clearly outperform the next closest competitor. Also, geninterior performs slightly better
than genbisect for concepts near the root. With its ability to ask directly about hypothesis
nodes, geninterior avoids the problem facing all other generators that use leaf training
instances in a DAG — the problem that any given leaf training instance may imply more
than one hypothesis node. The problem diminishes as the target concept gets closer to the
leaves since there are less likely to be multiple paths from leaf to target.

12 6 DIRECTED ACYCLIC GRAPHS

el
I
]

84

Number
of

uestions] >% — /g\
zsked 43)\I> %/ \]&
] \g\ij izzo

O VA e

/:7“‘ geninterior
1K
0 2 J : 3 4 3 a

g 1 2 3 4 5 6 7 8
(root) (leaves)

Depth of target concept

Figure 6: Results for 9-level 511-node DAG.

Interestingly, one of the generators (geni) performed significantly better in the DAG than
in the tree (5.08 questions versus 7.51). Recall that geni’s strategy causes it to specialize
G by one level with each negative training instance in a tree; the number of questions that
it asks is proportional to the depth of the target concept. So why does it perform better
in a DAG? The reason is that the extra parent-child links in the DAG can cause G to be
specialized by more than one level per question. Consider an example with the DAG in
Figure 5 where the target concept is node 8. After the first positive training instance G =
[1] and S = [16]. Geni’s first question would be node 24, which the oracle would classify
as negative. In the tree G would have been specialized to [2] but in the DAG it must be
specialized to [4] since node 2 is (now) an ancestor of node 24. Thus, G has been specialized
by more than one level. Nonetheless, genl is still a poor performer overall because of its
root-bias.

genrandom

genbisect

13

Generator Average
geninterior 3.79
genl 3.83
gen 3.92
genbisect 3.96
genrandom 4.62
genO 6.23

Table 3: Average number of questions per level (in the DAG)

Generator Average
geninterior 2.82
genbisect 2.84
gen 3.71
genoO 3.80
genl 5.08
genrandom 5.33

Table 4: Average number of questions over all nodes (in the DAG)

7 Multiple-Attribute Concepts

All of the preceding discussion has dealt with single-attribute concepts; how do we handle
multiple-attribute concepts? Figure 7 shows a 2-attribute example. Since the different at-

Sample concept: [yellow, polygon]

anycolor anyshape
/dark\ /light roundi polygon
black brown white yellow circle oval triangle rectangle

Figure 7: Concept trees for 2-attribute concept

tributes do not interact (a key assumption in this domain), the best strategy is “divide and
conquer”. Specifically, this means that given a first positive training instance such as [yellow,
triangle], the experiment generator will modify only one attribute at a time. In fact, the
program is written so that G and S must be converged on the first attribute before moving
on to the second attribute. This strategy avoids the problem of credit/blame assignment.
So, the performance of any generator on a multi-attribute concept is simply the sum of the
number of questions asked on each of the separate concept hierarchies.

14 9 ACKNOWLEDGEMENTS

8 Conclusions

For learning in the version space, the results clearly show that it is possible to do better
than random questioning. The technique described herein for bisecting the version space
(i.e., selecting a hypothesis node equidistant between the G and § boundaries), yields an
experiment generator for concept learning that asks far fewer questions. As embodied in the
genbisect and geninterior experiment generators, the technique is domain-independent,
computationally simple and unbiased?. However, given some a prior: domain knowledge
(such as the fact that the target concept is near the root), a biased generator such as geni
can outperform genbisect. We believe that the bisection technique is optimal given no a
priori knowledge.

The ability to pose questions about non-leaf nodes requires: (1) an oracle that can say
“I can’t classify this concept as + or —” and (2) a new update procedure that specializes G
in this case. The resulting experiment generator (geninterior) performs better on irregular
concept hierarchy graphs than any generator that poses questions about leaf nodes only.

The idea of using the results of a previous training instance (history) is very useful in
selecting between biased strategies, as in gen. However, for an unbiased strategy such as
bisection, history plays no role. After all, the results of every previous training instance are
summarized in G and S by the version space algorithm.

The experiment generation strategies described in this paper are limited to classical con-
cept definitions in which concepts are ordered by the more-specific-than relation and in which
the attributes of a multiple-attribute concept are independent of one another. Unfortunately,
this severely limits the range of applicability because many real-world concepts do not admit
such classical definitions.

9 Acknowledgements

We wish to thank Professor Bruce Porter for suggesting this particular problem in “learning
from experimentation” and for his thoughts on using the results of previous training instances.
We also commend Philippe Alcouffe and Nicolas Graner on a fine Prolog implementation of
the version space algorithm; it made our job much easier.

2 Although it sounds appealing to say that a generator is unbiased, this is not necessarily desirable. Russell
and Grosof [7] point out that it is better to have an explicit semantics for bias. They show how the process of
learning a concept from examples can be implemented as a first-order deduction from the bias and the facts
describing the instances. This has the following advantages: 1) multiple sources and forms of knowledge can
be incorporated into the learning process; 2} the learning system can be more fully integrated with the rest
of the beliefs and reasoning of a complete intelligent agent.

10

(&3]

=

References

. Mitchell, Utgoff and Banerji, 1983. “Learning by Experimentation” in Machine Learn-

ing, Vol. I, editors R. S. Michalski, J. G. Carbonell and T. M. Mitchell.

. T. G. Dietterich, 1984. Constraint Propagation Technigues for Theory-Driven Data

Interpretation, HPP-84-46, Stanford University.

. Sammut and Banerji, 1986. “Learning Concepts by Asking Questions” in Machine

Learning, Vol. II, editors R. S. Michalski, J. G. Carbonell and T. M. Mitchell.

. Cohen and Feigenbaum, 1982. “Meta-DENDRAL” in Al Handbook, Vol. 3, pages

428-437.

. T. M. Mitchell, 1982. “Generalization as Search”, Artificial Intelligence, Vol. 18, No.

2, pages 203-226, March 1982.

. Philippe Alcouffe and Nicolas Graner, 1985. An Implementation of the “Candidate

FElimination” Algorithm. CS W395 report, available through Prof. Bruce Porter, Com-
puter Sciences Department, The University of Texas at Austin.

. Stuart J. Russell and Benjamin N. Grosof, 1987. A Declarative Approach to Bias in

Concept Learning. Proceedings, Sixth National Conference on Artificial Intelligence
(AAAI-87), pages 505-510.

16

A

A PROOF OF OPTIMALITY

Proof of Optimality

The following proof shows that for an incremental bisection algorithm such as genbisect,
the best node to pick as the hypothesis node on the path from § to G is indeed the node
halfway in between. This proof applies only to the case where the target concept may be at
any level with equal probability.

1.

[

For concept hierarchy trees, when we are given the initial leaf node (the first positive
training instance), we are assured that the target concept is on the unique path from
the root node to the given leaf node.

. We now abstract the problem to:

Given:
a path (determined by endpoints 5, G)
a concept k (§ <k < G);
an oracle (which knows k);

Find:
k, where the only questions that the oracle can ask are: for point p, “is p < k7?7
or “is p > k77

. Hence, to determine k the following program can be implemented. It is assumed that

0<ex 1.

do
if k>S54 (G- S)cthen S« S+ (G~ S
if < S+(G—S)cthen G~ 5+ (G- 8
until (G-9) <1
print ("k =", §)

. We observe that since our level-of-generality metric® is isomorphic to the natural num-

bers, the assignment should actually be 5 := [§+ (G — §)c] and G := |5+ (G~ SF)c].
We shall, however, base the subsequent proof on the level-of-generality metric being
isomorphic to the real numbers so as to make the average case analysis easier. Hence,
the termination condition becomes (G'— §) < 1.

. Average Case Analysis

The probability distribution is assumed to be uniform. Hence, for a path of length [,
the probability of a point being chosen is 1/I. Let the number of statements required
to determine a concept be m (m = m; + my) where:

my = number of times the first assignment was executed;
my = number of times that the second assignment was executed.

At any step, since the probability distribution is uniform, the probability that the
statement is chosen is ¢; that the second is chosen is (1 — ¢). Note that the point
S+ (G — §)c first divides the path between § and G into two paths of ratio ¢/(1 ~ ¢).
Thus in the average case m; = mc and mg = m(1 —¢).

®The level-of-generality metric refers to the level of a node, where the root is at level 0.

e

ok
-3

6. Theorem: genbisect is optimal when ¢ = 1/2.
After m steps the length of the path is (G — §)c¢™ (1 —¢)™?. The termination condition
ensures that this length is at most 1.

(G=8)m™(1—-¢c)ym™ <1

log(G — 5) + myloge + malog(l—¢) <0

e mclogc+ m(l—c)log(l—c) < ~log(G~25)
e m < —log(G— §)/cloge + (1 —¢)log(l —¢)

To minimize m we require:

e z =cloge+ (1 - ¢)log(l— ¢) be maximized;
e dz/de=1+c-1—-(1~¢)=0

e c=1l—¢

Therefore, ¢ = 1/2.

18 B SOFTWARE

Oracle Problems
treebil
Knows target ' tree5i1x3
concept. Replies numbers
e toys Experiment
Generators
Version genbisect
i}:{ace‘th Master genrandom
orithm
g Control gen0
genl
geninterior
No. of questions asked
Figure 8: Testbed for experiment generators.
B Software

All of the software used in this project (which is shown in Figure 8) is available upon request.
The software is written in Prolog; brief descriptions of the different files are provided below.

vsa A modified version of the Alcouffe and Graner implementation of the version
space algorithm in which some clauses have been removed since they are
modified and replaced by other files.

upd This contains the new rule for the version space algorithm to update G and
S in the case of an indeterminate (“?”) training instance.

oracle The oracle. It is the only module that knows the target concept. It classifies
every training instance as “+7, “-”7, or *77.

master This is the master control program that reads in the appropriate problem
file and experiment generator and then controls the learning cycle involving
the generator, oracle, and version space algorithm.

tree511 Contains a simple binary tree of 511 nodes.

tree511x3 The same as tree511 except that every third node has an extra arc linking
it to a nephew. This provides a directed acyclic graph.

genask For testing/debugging/tutorial purposes, this is a generator that asks at the
terminal for a training instance (instead of generating one by itself according
to some algorithm).

enrandom, genl, genl, gen, genbisect, geninterior Fach of these experiment gen-
g 9 s & 5 5 5 5
erators is described in the text.

