.

Discussions on Automatice
Theorem Proving

W. W. Bledsoe
November 1973

University of Texas, Austin, Texas

ATP-10

Discussions on Automatic
Theorem Proving

W. W. Bledsoe

This is a set of notes and ideas which were presented at a talk in
the Department of Computational Logic, University of Edinburgh, Scotland,
June 13, 1973.

Some of these ideas have been presented before [2], but many were
developed at the University of Edinburgh during a visit there, Hay 15 -
June 14, 1973. During this period many discussions were held with Bernard
Meltzer and his staff in which several suggestions were made regarding
these‘matters.

The talk of June 13 followed an earlier one at Edinburgh in which the
work on automatic theorem proving at the University of Texas at Austin, was

reviewed [1].

Theme.

Man-machine provers are here to sta&. As the user interacts with the
computer, the presentation on the terminal scope must be easy for him to
follow; he should find it easy to intervene only when his help is needed.
Purely syntactic approaches are doomed to failure. Semantic information,
in terms of semantic tables and clever programs for their use, must be
utilized, along with provisions for easily adding to and changing these

tables. Much can be learnmed by looking at the way humans work and by working

with many examples.

Cutline

The talk centered around ways of improving automatic theorem proving

programs, with particular emphasis on the man-machine program developed .
by Bledsoe, et al, at Texas [2].

This 1s discussed below in a series of topics, A - K.

- A. Graphic Representations.

This work follows some earlier ideas of Bill Henneman and myself but
has also been highly influenced by recent discussions with Alan Bondy [3].
(See also [4]1).

When a mathematician is asked to prove the theofem

@8] ASCBABcCC>ACC

he merely draws a picture

and says ''behold." fhe picture (on paper or in his head) carries the
transitivity law as a bonus. He does not have tb remind himself that (1)
holds, he just uses it automatically when the need arises.

Similarly if ‘F, G, H are families
(2) FCCGAGESCH+FCCH
where " < < " is the refinement relation, (i.e. FSc G if each»member’ of
F d4s a subset o. a member of G).

One wants to be able to use (1), (2), and other éuch transitivity 1awé
whenever they are needed. But experience with automatic provers (especially
resolution) has shown that when these laws are added as hypothese; (as
additional clauses in revolution) they greatly complicate and lengthen the
proof, because they interact witg S0 ﬁany other hypotheses (and even interact
with themselves). Boyer (Chap. 7 of [5]) and Slagle [6] have offered solu~-
tions to this difficulty, but I prefer a "graphic" solution in the spirit
of Bundy [3]. /

Thus if AO’ BO’ and Co are skolem constants, and AO E;BO is ever

asserted to be true, we simply "draw" in the computer the connection

(e
- B

AO-——--—~> 0

o

which means that A CB

0 Later if we learn that B_ < C we extend the

0’ | 0="0

connection

e oy
= - ¢

A 0 Lo

0 N

and automatically connect AO and CO’ as well. Of course these connections

are made by property lists, giving A, the property "subset of B", and B
0 0 0
the property ''superset of AO", etc.
Notice that this places the emphasis on the objects A s Bay C.y, 1imstead

of the predicates ©, €<, <, etc. Present provers seem to be based on the
idea of predicates with the objects (terms) as secondary. Maybe we should devise
a prover based on objects with predicates as secondary.

Now let us consider the theorem
(3) ACBABCC—>ACC

where B represents the closure of B. Represented graphically we have

ok _ _
o——>a el T>,,
A B B C
We want the dotted line to gold. By using the fact that — is an "increasing"
. function we get |
KE‘B- (Since A € B)

and hence we close the gap

G/ngi;__‘___‘“&;;;)

A B B o

and get X-g C. (We have also added the lines A C A and B o B but they were
not needed in this particular proof.)

Similarly
FCCGAGCCH—>FCCH

where G represents the set of closures of members of G.

A 4

moe

Note how geometric the proof is. We move in a "direction" from
AtoB, from A to A, from F to F , etc. This "geometry" helps
the intuition of man and should therefore help that of the computer.

Whole networks of connecting links can be build up between objects,
not only for these connectors but for others such as ¢, =, etc. Then
when we want to know 1f something is true for object AO we first interro-
gate the graph to see if it has already been established before we proceed
with a regular proof.

A similar geometric interpretationm can be given the following theorem:

(Po A (Px+PEfx) »PEfffffffELfffo)
Notice that one does not count the f's, he just notices that he has Po
and that he can 'move" from any x to fx, and henceygan have Pfo, Pffo, etc.

I believe much in mathematical proofs is influenced by such geometrical

intuitions. These graph type programs are a step toward programs that make

more use of such interpretations.

(Note: While the author was in Edinburgh, Ballantyne and Bennett, working

independently, developed ideas similar to these and more. See [4].)

B, Counterexamples<énd Graphics;

Counterexamples play a large role in a mathematician's life. When
working on a conjecture he often alternates between trying to prove it and
trying to construct a counterexample. In fact many of his proofs are
constructions that show that counterexamples are impossible.’

As an example consider the "theorem"

(1) accum{accum AO) C accum AO,

Where Accum D means the accumulation points of D,

Df. x € Accum D = for each neighborhood N of x there is a point
of D for which y ¢eN and y # x.

We might give the following "proof':

1. Suppose Xy € accum(accum AO)

2. We must show that XO € accum AO

3. So let NO be a neighborhood of X0

4, We must show that there is a 'ZO € AO N NO for which ZO # x,

5. . Since Xy € accum{accum AO) we know there is a Vg € (accum AO)(W NO

with Yq # X,

6. And since Yo E accum AO we know there is a zy € AO N NO with zg # Yo

7. Thus Z0 € AO N NO with ZO # X, as required by Step 4. Q ED.

But (1) is false! Where did we err? The picture seems to verify our proof.

In fact we don't know that Zy # Xy + We only know that Y, # X, and 2y #

0
The above '"proof'" has in fact been the construction of a counterexample:

Let X be the space of two points,
With the only open sets being ¢ (empty set), and [xo , yo}.

And let A, be {xo}. Thus

0

X, € accum AO > ¥, € accum AO , [yo} = accum AO,,
X € accum(accum AO) .

Thus accum(accum AO) = {xo} & (accum AO) = {yo}.

We now change (1) a little to make it true.
(2) accum{accum AO) S accum AO U AO

A proof similar to the above will succeed for A(Z) . We change only
Steps 1 and 7 as follows:
1. Suppose Xy € accum{accum AO)

If X sAO we are finished, so assume

X £ Ay -

7. ' Since zy € AO and X fAO (from Step 1) w‘e know that 2 # Xq -

Thus zy € (AO N NO) with zq # x, as required by Step 4.» Q ED.

This technique of "constructing-a-counterexample" proof is used

quite often by mathematicians, and would be profitable in computer provers.

Cases. Notice also we used a '"by cases" argument in Step 1, and continued
the proof under the assumption that X ¢AO . A convenient way of recording

such a condition is to record that fact on the property lists of x,. and A

0 0

(See Graphic Representations).

The principal use of counterexamples in proofs should be for the elimin-
ation of unfruitful search branc‘hes in the proof tree. This was used for
dramatic success by Gelerntner in his geometry program. Also Hennemann

(unpublished work at MIT) has collected and used a set of groups of orders

up to 30 in computer proofs. Similar counterexample sets should be developed

for topology, analysis, and other areas of mathematics for use in proofs.

C. Types.

In set theory we have the following three types (and many others)

abec Xy z points
A BC XY 2 sets
F GH families of sets

It is very convenient for the mathematician to use different letter
gsets for different types (as above) because then the notation itself
carries much of the information, saving added hypotheses and confusion.
Type theory has already been introduced into authomatic theorem proving
for higher order logic [7,8,9,10], and in proving limit theorems [11].
Surely it will find further utility later.

Here we ﬁish to introduce another idea regarding types. We do this by
an example. First we give two definitions:

DE. OCf = F is an open cover of the space X (ie, each member of F is
open, and each x £ X is in some member of F)
Df. regular = \VZXV A(x € A.open A —*3 B((x € B.open B.B.£ A))

If we are given the two hypotheseé
) OCF * regular
it is not immediately clear, especially to the computer, how they can be
combined to give additional information. On the other hand if we rewrite

the definition of regular in the equivalent form

Df. regular = v F(OCF » JG(0CG.GE < F)), then "OCFO" immediately forward
chains into "'regular" to produce
- G(ocG A GEg F)

which might be used to produce further results.

This example comes up in the proof of a theorem about paracompactness in

topology, which is described in the appendix. When the ''set-class" definition

of regularity is used the proof of this difficult theorem is considerably
simplified, and is done by computer alone except for one (essential) human
intervention (see Appendix).

Notice that what happened was that we changed the type of the definition
of regular froﬁ

point-set
to
set-class.

One could have évailable in the computer both definitions and let the
one triggered by the pafticular application be the one which is used or one
could have an automatic converter.

A Mathematician seems to do this kind of type conversion in his head
as the need arises, and one woﬁld expect in the long run for the computer
to do likewise; however, as an interim measure, such conversions could be

made by man ahead of time, and stored for computer usage.

D. List of all Theoremn.

It is intriguing to contemplate the day when a mathematician will have
at his disposal, on an interactive computer, the list of all theérems ever
proved.

Such a list would not be too awfully difficult to produce for a small
team given a modest grant. We couldn't get all proved theoremé but could
get a close approximation. Such a list might be made available to essen—
tially everyone by the ARPA net.

However, I do not propose accumulating such a list at this time because
we do not yet know what to do with it.

Certainly present day computer provers are unable to cope with such
‘lists (they are usually swamped with only a few axioms). But it is time
(following the lead of workerd in date retrieval and question answering)
to start developing provers which do work with such large data bases.

As an interim solution one could devise interactive commands that
allowed the user to see "pertinent" parts of the theorem file.

For'example, he could ask for all theorems on "regularity' (topological)
and the response might be.

3563.
Meaning that there were 3563 of them. At which time he could restrict his
inquiry to "regularity" and "hausdorff", and get a response of a smaller num-
ber, say 356. Further restriction could bring numbers, like 10, in which case
he could ask to see all 10 of the theorems.

Along with each theorem could be stored atoptional list of special cases
of it which would help to explain it to the user. Someday we might have the
computer generate there special cases.

It would be handy for the user to use a light pen to direct the cdmputer

through a large list of theorems, quickly rejecting large subsets of them with

certain properties, and zeroing in on those with desired characteristics.

E. Book Order.
The ‘problem of automatic provers using a large data base of theorems
and definitions is a severe one. (see list of all theorems). There are too

many possibilities to try.

One way that might alleniate the difficulty is to arrange the known
theorems and definitions in a linear order, as they are in a book. Then

if the prover is stuck and needs more information about a concept (a predicate)

P, it searches back through the list in reverse book order, looking for theorems

about P. When it comes to the definition of P it stops.
One might try retailoring the theorems in the list to make them more.
useful to the prover, marking lemmas as only of local intefest, so that the

prover can try using only the 'big'" theorems in later proofs. Such retailoring

might be done automatically, or partially so.

F., Paired Hypotheses.

In mathematics one if familiar with theorems of the form
1) . P<X1)“P(X2) - P(f(xl,xz).
For example:
open.AAopen B - open (AN B)
open A,open B » open (A B)
NbAx A NbBx > Nb{(A A B)x (Nb means neighborhood)
x<0.y<0->rx+y<0

Provers of the future should be, above all, pattern recognizers. In

the above the prover would recognize the paired hypothesis structure, and
look in a PAIRED-HYP table (similar to PAIRS table (See [2])) to see ghe
desired conclusion is at hand.
For example:
(2) Nbon n NbBox - Nb(AO,\ Bo)x
could be referred to a PAIRED-HYP table entry
(Nb(NBAx ~ NBBx -~ Nb(A n B)x)T),
which would assert its truthfulness.
However, suppose we had to prove (2) and there was no table entry for
Nb. Then the program should expand the definition of Nb and try again.
Getting

(3) ({open D xeD, .D & A]

1 1 1
x eD2 . DZC Bl

——

~ [open D2 N

-+~ f[open D . xeD .DES AN B])

This raises three similar paired hypothesis subgoals

4) - (open D open D2 + open D)

lh
1(5) (x ¢ Dy ax e Dz +x ¢ D)

(6) (0,€ A.D,S B>DS AN B)

2

Now if we have a PAIRED-HYP entry
(7) (open(open E . open E' = open(En E'))"T™),
then (4) can be matched in (7) by the substitution Dl/E’ DZ/Ef, Dlr\ DZ/D’
proving (4), and reducing (5) and (6) to
(5") (x € Dy ~xeDy>xeD N D2)
(6") (DIQAA DZSB-»DlnDZ_C, AN B)
which are proved by conventional methods (See [2]).

Thus we could have the following algorithm:

ALGORITHM. When presented with a paired hypothesis theorem
P(xl) ~ P(X2> -~ et P(f(xlSX2))
1. Look in the PAIRED-HYP table

2. If not found there, expand the definition of P 4in all three places,

and return to 1.

If this algorithm is applied to the above example (2), it would also
expand the definition of € in (6') getting an easy to prove theorem. However,

the techniques of [2] will easily prove (5') and (6'), without this further

expansion.

G. Family Closure
Much of mathematics is devoted to proving closure properties for certain
functions and predicates. For example
Open A A Open B - Opeﬂ (A N B)
Group G A Group H - Group (G N H)
Countable A A Countable B - Countable (A U B)

ACCABCC>AUBCC

Many of these properties are known theorems. When they are not known they
can often be reduced to other closure theorems at a lower level by instantiating
a definition. We now define tﬁe closure of a predicate P with respect to a
function £ .

For a unary predicate P and a binary function £, define

@(P,f) z \z’A\r/B(P(A) A P(B) + P(A,B))

[=

Example. ©(Countable, U) = VA YV B(cbl A A cbl B + cbl(A U B))
We can generalize this as follows:

Df. If P dis an n-ary predicate and f is a k-ary function, let

€(P,f,m) = ‘v’Al. . .VAk(P(Xl, KSR e eX)

/\ P(" 3y2, 1")
PO " LEeey) ")
Example. Z(Nb, N ,1) EVA\V{B(Nbe A NbBx > Nb(A N B)x)

We could further generalize this to €(®,f,m,m").

Example. e(c,nN, 1,2) E\{/A}/B \?/C _7‘/D(‘Ag:_B/\Cg:_D+A NCcBND)

FAMILY CLOSURE HEURISTIC

When proving ¢(P,f,m)

(i) Change @(P,f,m) to its defined form (see p. 2)

(ii) Expand the definition of P in (1) P(Xl""xm—l’yl’xm-i-l""’xm)

) :
® PC " Ly, ")
(®) PO " LEG,eax), ")

(iii) If (*) asks for a set B , then get B,,B,,...,B from the corresponding
1°72 k

places in (1),...(k), and put f(B]_""’Bk)/B .

(iv) Verify that this value of B satisfies the theorem.

As an alternate to (iii) we could have

(iii') First invoke ¥(Q,f,j) for each Q in the definition of P in the
hypothesis, where 3j is the place in Q cdrresponding to m in P.

(These j's can be given as extra information in the definition

table).

(This is like forward chaining)
Example. Th. g(Nb, MN,1)

(1) V& VB Ax A Nb Bx > Nb(A N BYx)

> (Nb AO X, A Nb BO Xy > Nb(AO N Bo)xo) Skolem form

(ii) [(Open Al A Al < AO A Xy € Al)

l/\Blc_:BO/\XO eBl)

> (Open B A B c (AO ﬂBO)/\x

A(Open B

OeB)]

foala mnnmm A = A[lRA ~ o a albbalan Frmeatdan ata~ N

17

(iii) Note that a B is needed; B corresponds to Al and Bl’ so put

B = f(Al’AZ) = Al N Bl'

(iv) Easily verify

(OpenAl/\A EAO/\XOEA /\OpenAz/\AngO/\erBl

1 1

— Open (A; NB) A (A NB;) = (&) NBY Axye A NBy)

Example. Using (iii'). Th. €(Nb, N, 1)

(i) same - . Wb Ax
(ii) same 11_; i leb
(1i1i') Forward chain
Open Al A Open Bl gives Open (Al N Bl)
AS A, A %&2 < B, gives Ap NA, S Ay NB,
Xy € Al A Xq € Bl gives Xy € Al ﬂB‘

Open A' A A' CA Ax e Al

(S A'A) (e x A")
Q = Openjy Q =¢C Q=€

we get

N By

(...A Open (Alﬂ Bl) /\Al ﬂAz EAO ﬂBO /\xO £ A]

— Open B A B EAOOBO/\X e B,

0

(iv) Which is easily proved by Ay N BO/B.A

Df. If F is a family and f is a k-ary functionm, let

€£(F,f) = \;}Al \;/Ak(Al e FAc.AN A e F>£(A,..4) & F)

 Example. Let Nbb x = {A:Nb A x}.

Then ®f(bb x , N) is a theorem.

HEURISTIC for @f(F,f)

(i) Change to (AleF/\AzeF Neo A Ake F—>f(Al,...,Ak) e F).

(ii) Reduce Ai e ¥ to P(xl,...,xm,yi,...,xn), for 1 = 1,...,k.

(iii) Define P() in terms of

Q .

(iv) Involk #(Q,f,j) as before.

Example. #f (Nbb x, N)

(1) (A = Nbb x A B e Nbb x - A MNB e Nbb x) .

(i) (Nb Ax ANb Bx > Nb (A NB)

etc as before.

X)

Reversing in %(P,f,m) and ¥£(P,f)

In case the definition of P
of P , then use f' , the reverse

‘the algorithms.

tH

Example. Open' closed, closed'

Ul

1
)

m'

O"

"
3

1
N ™

#f (closed,U)

is converted to %f(open', N")

%f (open, N)

is given in terms of P' the reverse

of f , instead of f in the output of

open

i
Q

H. Generating Theorems. An orderly way to generate theorem (by computer)
would be to proceed though a list of closure theorems (forward, or

backwards) '.

% (open, U) define

% (open, N) define

% (closed,U) Use € (open, N) and Reverse

% (closed, N) Use ¢ (open, U)

g (b, N ,1) Use ®(open, M), €(<,N,1,2), €(g,2)
g(Nb’ U ’l) USe 14) U 1t U 1 1
'c?(countable,- U Won't work without augmentation

€ (finite, U) "

@f(Nbb x, (1) Use €(Nb,N,1)

Also we could try certain commutative and distributive laws:

£(g(a)) = g(£(a)), £(g(A,B)) - g(£(a),£(b))

If f is an enlarger (i.e., A < £(A))

and g is a decreaser (" , g(A) € A) ,

then we can expect

7

£(g(a)) < g(£(A))

or f(g(A)) < g(£(a))

a—

I. Table Function Evaluation

For certain functions, we define them in the computer by a Table. To

prove a theorem for such a function f :

(a) If the argument of f is a known constant c¢ then look
up f(e¢) and prove the theorem for that.
(b) 1If the argument of £ is a skolem constant X then prove

f(xo) for all allowable xO's in the table.

Example. Suppose Reverse (g) is defined by the following table:

(here f is "reverse')

revlU z N
CrevN=U
rev g =7
rev mE ¢
Then a theorem: p(rev M) 1is proved as ¢ Q) .

whereas a theorem: ¢(rev xo) is proved as ¢(M ¢W) o(m) (o)

or a theorem: [¢(x0) > Y(rev xo)} is proved as

[BW) > v(DI A [6(M) > ¥vNT AcccA [d(m) + ¢ (0)]

J. Target

- In some proofs we can see that certain things have to be equal and we

simply force them to be by whatever manipulation is necessary.

21

For example in the following proof we could have expanded the definitions

of interior and acec, and got

(4 D(open DA x e DADCB)

& < I D(open DAxeDA V'y(y é X~B)vVy i DVvy=x)))
This essentially forces
(2) OcB+ VygeBvyénvy=x)

so we might as well try to prove (2).
When we find we cannot prove (2) we then try proving (2) with the additional

hypothesis

open D Ax e D

and succeed. But in both cases we had recognized the target (2) that had
to be proved and insisted on seeing it through.

Notice that (2) was got from (1) by simply deleting equal parts so one

would expect a computer to do such targeting. .

Theroem. dinterior x B +— n acc x(X ~ B)
Proof.

v oace x(X v B)

-y

TSy k/ D(open DAxe D+ = y(ye (X n B) AYEDAY % x))
«~ I D(penDAXxeD A Yyt XKAvB vyEiDyy=x)
ey ED(openD/\xeD/\ Vy(y€D+ yeEBAY=X)

— ! D(open DA xeD A D B)

[P Interinr v R N o TN

K. Over director.

The.major difficulty with any automatic theorem prover is the
program not knowing what to do next. In the man-machine mode the human
can assume the role of a director and force the machine along productive
lines tqward completing the proof. A hope is that computer programs can
be made to do this in the future. Of course, the general problem solver
gives the framework for this in concept, but in fact one does not know
how to build the GPS tables to make it work.

In the UT-theorem prover a theorem label (TL) is carried which pretty
well defines the part of the proof that the program is working on. TFor’
example 1f TL is (1 2 1) thg program is trying to proof the first subgoal
of the second<subg§al of the first subgoal of the main theorem. Similarly
the letter P is used in the label to denote that the pairs heuristic has
been used.

It is proposed that this theorem label can be used to direct the
proof. When a line of proof seems unproductive, the proof is stopped there
and its theorem label is sfored for possible use later. Each time the
. program is stopped in this way, a subroutine looks at all the o0ld theorem
labels and the immediately available new ones and decides which one should
next be pursued furthér. In this way the proof is forced into a breath
first search mode, which could be hélpful especially if the overdirector

can cleverly choose the next path to take.

10.

11.

References

W. W. Bledsoe, "Some Ideas on Automatic Theorem Pro-
ving", Computer Science Department Memo, University
of Texas, May 14, 1973.

W. W. Bledsoe and Peter Bruell, "A Man-Machine Theorem
Proving System", Third International Joint Conference
on Artificial Intelligence, Stanford, California,

August 20-23, 1973. Accepted for Artificial Intelli-
gence Journal.

Alan Bundy, "Doing Arithmetic with Diagrams'", IJCAI,
130-138 (1973). '

Michael Ballantyne and William Bennett, "Graphing
Methods for Topological Proofs", Computer Scilence
Department Memo, University of Texas, August, 1973.

Robert Boyer, Locking: A Restriction on Resolution,
Ph.D. Dissertation, Mathematics Department, University
of Texas, Austin, 1972.

J. R. Slagle, "Automatic Theorem Proving with Built-in
Theories Including Equality, Partial Ordering and
Sets," . J. ACM 19, No. 1, 120-135.

J. A. Robinson, "Mechanizing Higher Order Logic",
Machine Intelligence 4, 151-170 (1969).

P. B. Andrews, "Resolution in Type Theory", Report
70-72, Department of Mathematics, Carnegle-Mellon
University, July 1970.

G. P. Huet, "A Mechanization of Type Theory", IJCAI,
139-146 (1973).

T. Pietrzykowskl and D. Jensen, "A Complete Mechaniza-
tion of w —order Type Theory", Associlation for Comp.
Mach. National Conference, vol. 1, 82-92 (1972).

W. W. Bledsoe, R. S. Boyer, and W. H. Henneman, "Com-
puter Proofs of Limit Theorems", Artificial Intelli-
gence 3 (1972), 27-60.

