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Abstract

Two restrictions of resolution and paramodual-
tion, named locking and equality atom term locking, ars
defined and shown to be complete. Locking restricts =he
number of new resolvents and paramodulants produced at
each round by assigning 2 positive integer, called the
index, to each literal of each clause and requiring that
resdlution and paramodulation be done only with literals
which are of minimal index among the indices of their re-—
spective clauses. lesolvents angd paramodulants zre
lockzd hereditarily in the senss that if two literals
merge as the result of a resolution or paramodulation

then the merged litersl is assigned the minimal index oFf




its parents. Equality atom term locking resiricts the

i'l;'l

number of paramodulants produced at each round in a man-

ner analogous %o locking., In addition, & new proof of .

-

e

the ground completeness of paramodulation isg established

without using the maximal model theorem,

1 Introduction

Several strategies for resolution and apramodu-
r. r
lation, such as set of supportiulj, linearity LZ}

renamable paramocdulation B: ’

s and
have been investigated with
the hope that these or other restrictions woulgd ultimately
lead to an efficient theorem prover for the first order

logic with equality,
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In this paper we Present two stragt-

G Ry

egies for resolution and paramodulation which are compat-

o)

e

ible and so may be used as a combination strategy. Ve

A
S _ "
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as well

assume the reader is familiar with +he basic terminology

of resolution and paramodulation found in [4,5 ]f

as the papers mentioned above,

2 Ground Hesolution and Paramodulation
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‘estavlished

the ground completencss of resolution and paramodulation

with the excess literal Parameter method, they remarked

that the method reduced the need for the maximal model



e ¢
theorem to the ground unit case zﬁA. By constructing a
maximal model for a suitable set of ground unit clauses
we show that the dependence uron the maximal model

theorem can be eliminated entirely,

Theorem 1 If S is a finite, R-unsatisfiable set of
ground clauses then there exists a deauctlon of O or
{tl # tl’ @ 9@ 9 .t # t’k from S, Wh.ere tl, ® @ , 'tm al‘e

in the Herbrand universe of ' S,

Proof The only case of the excess literal parameter
method which is not straightforward is the unit case, so
let us assume S consists entirely of unit clauses. 7e
argue by contradiction, assuming that for each non—
negative integer n (1) O ﬁ’ RP,(3) and (2) {t # t} f -
Rgn(s) for each term t in the Herbrand universe of S
(throughout, RPn(S) denotes S together with the set of
all clauses generated froam S after n rounds of resolution
and.paramodulation). Let St = 1;-}1 2P (b), let gt =

U {{tai ‘b} } % is in the Herbrand universe of S} 1et

= i’\.le AP (S''), end let M = (:{LQJS,,, 0 U -

C) where i is the negative interpretation of 3''' ang
where C is the set of all complenents of positive members

of jﬁig S Lo We will show that M is an R-model of 3ttt



hence an R-model of S, violating the R-unsatisfiability

e now establish that M is a model of S''' by
demonstrating that (3) M does not contain a complementary
pair, end (4) C ()i is not empty for each clause C of
g1rvr,  If M did contain a complementary pair then, because
of the definition of M, the pair would 56 in,X}zsjs,,, X.
T+ can be shown that each of the pair has a linear deduc-
tion from S'' such that all the side clauses are members
of S'', If either deduction has side clauses which are
members of {(t = t, | t is in the Herbrand universe of 5¢
then new linear deductions can be constructed by deleting
those side clauses. If both top clauses are members of
S' then the two new deductions are deductions from S;
violating (1). If the top clause of one of the deductions
is {t = f‘, where t is in the Herbrand universe of 5, then
it can be shown that {(t # t} can be deduced from S, vio-
leting (2). This completes the proof of (3). Tor (4),
notice that because of the definition of I, C f} I =23C
for any clause C of S'''. If C were empity then O woulad
have been a menmber of S''', which is lmpossible because

)

of (3).

To complete the proof that I is an R-model of

g111 i+ suffices to show that if x and tl = tz are members



of M and x' is the result of replacing one occurrence of
tl in x by t2 then x' is a2 member of M. Iet x € II and
observe that either x € K&E{jS"' Zorxe N-C, In
the first case, because 3 is closed under paramodulation,
if tl = t2 is in i then x' is in Kie K X, hence in M.
In the second case x and hence x' are negations of atoms.
Let x be the negation of the atom a and assume x' € 1.
Since M is a model, a € 1, hence a ¢ 197515"' X. Let
a' be thé result of replacing by tl in a the correspond-
ing occurrence of t2 which replaéed an occurrence of tl
in x (when passing from x to x' earlier)., Since S't! is
closed under paramodulation, if t) = t, is in 11 then it
follows that a' € I{tEJEN" X. But now both a' and x are

in I, and since a' and x are complements, (3) is contra-

dicted. This completes the proof of Theorem 1.

It is intriguing to notice that in view of
Theorem 1 the unit reflexive axiom, {x =,X§, is the only
reflexive axiom that must be added to an R-unsatisfizable
set of ground clauses in order to insure refutation
completeness, However, all mown methods of;lifting

e \:4 B ° ."n .
paramodulation (for example, see‘ﬂlj) involve the addi-

tion of the functional reflexive axioms,



3 Locking

A locked literal is an ordered pair (x,i) where

x is a literal and i is a positive integer (i is called

the index of the literal 1), and a locked clause is &

finite set of locked literals. ILet MERGE be the function
defined by MERGE(C) = {(c,1) | 1 = min{ k | (e,k) € o}
gnd (c,j) € C for some j}. (MERGE is the function whose
domain is the set of all locked clauses, and which merges
all locked literals (c’kl)’ coe 9 (c,kﬁ) of a given clause
which have the same literal info a single locked literal
(cyi) where i is the minimum of iy eee k <) Ris a

n
ground locked resolvent of C and D means R = MERGE( (¢ -

{e,i) U@ - {(a,9}) ) where (c,1) ¢ ¢, (4,3) € D,
]

and d are complements, i is a minimal index of the in-

dices of C;, J is a minimal index of the indices of D.

P is a grdéund locked paramodulant of ¢ by £ means P =

~— J c N : : s NS — 3 - o N7
MERGE( (C - L(C’l>j)u L(C'yl)é 5'} (2 - L(tl = tg!J?j) )
where (c,i) & C, (%, = t5,3) € T, ¢' is the result of re-

placing one occurrence of tl in ¢ by tz or of replacing
one occurrence of t, in ¢ by tl, i is a minimal index of

the indices of C, and J is a minimal index of the indices

of ©. A locked R-refutation from S is =2 locked deduction
e
AL ST

of 0 from s¥where” {x = x;is allowed only to resolve. The

following locked R-refutations may be compared with the P-

i~
J

o ¥ ~ f
hyper-refutations of

a8
NEJ



Example 1 {(12a,1), (18a,2), (172,3), (= = b,4)},
{(Qa,n)}, {(Sa,m)z, {(Ta,p)}, %fa # fb,q%, {(X = x,r)}
(the locking of unit clauses is irrelevant, so we have
used arbitrary instead of specific integers to lock the
unit clauses of these examples).
L: (1) {ass,2), (7%,3), (a = b,4)}
Ly: (2) {(172,3), (a = b,4)]
Ly (3) {e=724}
L (&) {e,1), @ss,2), (1ze, 3, (a =1, )}

(5)  {(ev,n)}

(6) {(Sb,m)3

(1) (Tp,p)

(8) {(fa # fe,a)}
L2 (9 O

Bxample 2 {(fa # £b,1), (2,7}, {(fc # £a,2), (wc,s)},
{(1ee,4), (e = a,5), ((a=12,6), (3,8}, {(x=x,m)}
Gy s Dy (1) {(fa # fa,l), (Qc,’?)}

Bl gt - (2) i( v # £b,1), (QC,’I’)}

L 1 (3) {20}

7T T (4) L(*“b # fa,l), (uc, 7)5

. - Ly: (5) z(c = a,6);

NS L,: (6) i(fe # fc,2), (‘!Qc,B)}
) @-giv i (7) y(fa # £a,2), (1@0,3@
xw (9)  {(ea,n}

. &
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(18)  {(1ac,3)}
(12) {(£a # £c,2), (MQe,3)}
L6: (1 EJ.

Although the locked R-refutations of these
examples are more efficient than the corresponding P-
hyperérefutations (9 clauses vs. 13 clauses, and 13
clausesAvs. 29 clauses), it is not our intention +to
claim an overall increase in efficiency. We have no
guarantee that the search is not forced so deep in order
to find & locked A-refutation that the otal number of
clauses produced is greater than the number produced in

the ordinary way.

Theorem 2 If S is a finite, R-unsatisfiable set of
ground cleuses and S' is the set of clauses of S which
have been locked in some way, together with i(x = x,n)},

then there is a locked R-refutation from S°7,

£roof For the unit case of the excess literal parameter
method, by Theorem 1, there is a deduction of U or {ﬁ # t}
from 5. Zince all the clauses of each deduction zre unit
clauses, the corresponding deductions from 3' are locked,
In the case of the deductlon of {jt # t,ﬂﬂ;, it lock

resolves with { = x, n) ¢ to produce [J.



For the induction step, it can be shown that
there is a locked clause C with at least fwo members
such that the index of one of the members (c;i) satis-
fies i = maX'{j | there exist a clause D ¢ 3' and 2
literal 4 such that (d,3) € D}. Split S on the literal
¢ and letkSl,Sl',Sz, and 52' denote the respective split-
tings with {c}in S,. It is clear that S, and S;' sat-
isfy the induction hypothesis, so there is a 1ockedﬁ?éfu—
tation %fom Sq'. hen {(c,ijg is adjoined to the R-refu-
tation the resulting deduction 01"!] or {(c,i)} remains
locked, Since 52 and 82' also'satisfy the induction
hypothesis, there is a locked R-refutation from 52'. It
{(c,i)} is not involved in the locked R-refutation from
Sy then that deduction is a locked R-refutation from S',

It {(c,i)} is involved in the locked R-refutation from S '

~2

then then the combination of the deduction from Sz' with
¢

the deduction of ifc,i)g from S,' is a locked R-refuta-

tion from S'. This completes the proof of Theorem 2,

The 1lifting of locking is straightforward and

so it will not be described here,

Locking is based on the simple idea that 1f one
were to resolve or paramodulate only on one literal in
each clause than the number of clauses deduced at each

round would certainly be reduced. So it seems that the
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best use of locking is realized when each literal of each
clause of the input set is assigned = distinct posi<ive
integer. Ve believe that a further increase\in efficien~-
¢y, reminiscent of hyper-deduction, is achieved by lock-
ing positive literals high and negative literals low (see

Example 2),

4 Equality Atom Term Locking

Equality atom term locking restricts the number
of paramodulants produced at each round by assigning an
arbitrary symbol * to one or both terms of each equality
atom of each clause and requiring that substitution be
done only with those ferms assigned the symbol *, Resdl—
vents and paramodulants are term locked herediterily in
the sense that if two equality atoms merge as the result
of a resoiution ar paramodualtion then the merged literal
has‘the symbol * assigned to'a term iff at least one of
the perents had the symbol * assigned o its correspond-

ing term.

A term Jlocked equalitv atom is 2 string 4. *= t
& "1

29
tl =% tg, or tl * =% t2 where tl and t2 are terms. A term

locked literal is en ordinary literal {other than an or-

dinary equality atom) or a term locked equality‘atom, and

a term locked cleuse is a finite set of term locked liter—
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als. Let MRG be the function defined by MRG(C) = (¢ - A){}
Al . A U’A where C is a term locked clause, 4 is the set
of all ter*iocxed equality atoms of ¢, Ay = {?l %=

tl #* = tz is & member of A and neither tl =% 4. or tl *=% 4

2
. i i .
1s a member of Al A2 = {tl =% tz X tl =% tg 1ls a member

2

of A and neither tl *= t2 or tl * =% tz is a member of A«,
and A = {tl ¥ =¥ t2 \ tl =¥ t2 is a2 member of A or

t) *= t, and t; =* %, are members of A} R is a groun

term Jocked resolvent of C and D means R = MRG( (cC —'icj)§)

(D - ld}) ) where ¢ &€ C, 4 & D, end ¢ and d are complements,

P is a ground term locked paramodulant of C by I means

P =ure( (¢ - Lcﬁ J {_c'} J (= - Le_;) where ¢ &€ C, e € %,
and (1) e is By *= %, or Ty *=x t2 and ¢' is the result
of replacing one occurrence of tl in ¢ by t2, or (2) e is
tl =% t2 or tl *zk T, and ¢' is the result of replacing
one occurrence of tz in ¢ by tl. A term locked R-refuta-

\§ )L )Lx.~‘$ ?
tlon from S is 2 term locked deduction of L]Irom S where

Kx = x; is allowed only to resolve. Since it will be

& ) :

shown that locking and equality atom ternm locking are
compatible, the following example is Example 2 which has

in addition been term locked,

Zxamole 3 {(fa # £o,1), (Qd,?)j, {(fc # f4,2), (}Qc,})},
190:4)5 (e %= 4,5)5, (= *= 1,6), (2¢,8), , (x = x,m))}..
TLy: (1) {(fp # £3,1), (20,7)]

Lyt (2) {(Qc 7>}

Wj.”,’fﬁz (?3 ‘aﬁf Gi:ﬁ)‘

(Y
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3 () fle %= a,57
L (4) (fa # £4,2), CYQO,3)§
(5) {( 28,4), (c *= a,5)}
(6) {(0a,7)
TLg:  (7) {('mc»3>§
TLe: (8) [

Theorem 3 If S is a finite, R-unsatisfiable set of
ground clauses, and S' is the set of clauses of S which
have been term locked in some Way'then there exists a
term locked R-refutation from S' or there exists a term

locked deduction of {?1 Fotyy eee ty # by} where b,

ees 5 L, are in the Zerbrand universe of Se

Proof Our procedure fe¥ establishing the unit case of
the excess literal parameter method may briefly be de-
scribed as follows. It can be shown that (1) there is o
linear deduction of a clause ¢ from S such that C is a
complement of some clause of S, all the side clauses of
the linear deduction are members of S, and each inference
of the linear deduction is g paramodulation, or (2) there
is a linear deduction of ;j # t; from S such that % is in
the Herbrand universe of S, all the side clauses are mem-
bers of S, and each inference is 2 paramodulation., In

case of (1), the deduction from S may be transformed (by

appropriate insertion of *) into a linear deduction from
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S' whose side clauses are menmbers of S°' (if C is ig} where
e is an equality atom then each clause of the linear de-
duction which is not a side clause inherits the term
locking of the clause above it). A contra term locked
paramodulant is a paramodulant of term locked clauses
such that the term opposite the term of substitution is
locked (we emphasigze that contra term locked paramodula-
tion is not necessarily paramodulation such that the term
’of substitution is not locked). It is clear that the
following transformation, which we refer to as the trans-—
formation, may be applied (perhaps none, and in any case
a finite number of times) to the above transformed linear
deduction to result in a linear deduction of the trans-—
fegmed C whose top clause isg a member of 87, whose side
clauses may be deduced from S' by term locked paraﬁodula—
tion, and such that the sequence of inferences consists
of zero or more term locked inferences followed by zero
or more centra term locked inferences (all of the term
locked inferences form an initial segment of the sequence,‘
while all of the contra term locked inferences form a
final segment). The transformation is best stated in
theorenm form: if PO, Pl, PZ’ El’ and 52 are term locked
clauses, Pl is 2 contra term locked peramodulant of POA
by Zq, and P2 is a term locked paramodulant of Py by Zs
then there exists a term locked clause P such that P is

a term locked paramodulant of PO by‘EE and P2 is a contra

&
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term locked paramocdulant of P by El, or there exists 2
clause E such that either E is a term locked paramodulant
of El by E2 and P2 is a2 contra term locked péramodulant

of Py by & or £ 1s a term locked paramodulant of E, by I

and P2 is a term locked paramodulant of PO by E. The
truth of the transformation follows by considering the
cases determined by whether the term of substitution of
El is contained in, is contained by, or is indipendent of

the term of substitution of E,. Now let Py, Eq, Pq, eee o

Eys Pys Byp 4 99 Py 4 79 ees 2, P denote the deduction
(here, P. is a paramodulent of i _q by Ei) mentioned

above, where the first k inferences are term locked and
the last n = (k + 1) inferences are contra term locked.
Since Pn i1s the transformed C, since the transformed C

is a complement of a member C' of S', and since the final
n - (k¥ + 1) inferences are contra term locked it follows
that En, ces 3 Ek 4 1 ey be used tb construct a term
locked deduction of the complement of ?k from S'. Thus
there is a term locked deduction of U from S'. The case

of (2) is done similarly.

The induction step is almost obvious, and so we omit

it., This completes the proof of Theorem 2.



The 1ifting of term locking possesses no guirks

and so is omitted,

Equality atom term locking was conceived of as
an analogy to locking. The direct analogy, locking with
positive integers instead of the symbol *, has not been
shown o be complete, but little, if any, efficiency
would seem to be lost. If the input set has all of its
equality atoms locked on the left (or right) then all
inferred equality atoms are locked on only one side; and
that is about the best that could be héped for. By lock-
ing a term of maximal length in each equality atom, term

locking can be viewed as a complete restriction which

closel gpproximates the demodulation of $+—Robimsom—amd
L. WosL],i. The heuristics of one sided peramodulaiion
and demodulation can be combined if we transform the in-
rut se% by switching terms of the equality atoms so that
a term of maximal length is on the left and then term
locking the transformed set on the left. Heuristies
other than the two just mentioned might suggest other in-
put schemes. As we will show next in Theoren 4, one
especially nice feature of equality atom term locking is
that it is compatible with locking (also, notice the in-

creass in efficiency of Ixample 3 over Zxample 2).

15
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Theorem 4 If S is a finite, R-unsatisfiable set of
ground clauses and S' is the set of all members of S
whichvhave been locked and term locked in some way ,

-

o , ~
together with 1(x = x,m)é , then there is a locked

and term locked refutation from S'.

Proof In the unit case, since every deduction is g
locked deduction, by Theorem 3 there is a locked and
term locked deduction of [J or {(t # t,i)} . Resolving
{(t # t,i)}) and {(x = X,m)} produces a locked and term
locked deduction of 1.

For the induction step, splitting is done on
a literal of meximel index, as in Theorem 2. hen the
split singleton is adjoined +to the locked and term locked
refutation obtained from the induction hypothesis, the
resulting deduction is cléarly locked and term locked,

This completes the proof of Theorem 4.

Again, the 1lifting is routine and so will not
be discussed here. In all cases, the functional reflex—
ive units must be added to insure refutation completeness

at the general leval,
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5 Conclusions

We have established the ground completeness of
resolution and paremodulation without using the maximal
model theorem and in the process learned that unit reflex—
ivity i1s sufficient for ground completeness. We have
shown that locking, equality atom term locking, and the
combination of these two strategies are refutation com—
plete for R-unsatisfiable, functionally-reflexive sets.
We believe that a good implementétidn of the combination
of the two is by the following outline: rearrange each
equality atom‘so that a term of meximal length is on the
left then term lock on the left; lock each literzl with =
different positive integer; and lock positive literals

high and negative literals low.
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