Z 3'22,;».4 7“""

e A
A

PROGRAM CORRECTNESS

The following is an explanation of routines that have been added to our

interactive theorem prover ([1l], [2]) for efficient handling of inequalities

and proofs by cases which arise from proving correctness of computer programs.

1. TYPES
Certain variables such as i, j, k, 1, m, n, are typed. These are the ones

that serve as indices in computer programs, and\for-which inequalities are stated.

The human usef is asked to give a list of the variables to be typed at the beginning

of the proof and they are placed in the list TYPE-ATOMS. Actually these will be

skolem constants of the form

(3=-)s &)y Bo-2), ...

1
but the first letter of each of these (i.e., the fear™) is stored in TYPE-ATOMS.

At some point in the proof the program might ask the question

(TYPED (3..))

in which case the answer is true if j 1s an element of TYPE-ATOMS.
The typed variables (or equally correct, we could say the typed skolem
'constants) will assume only non-negative integer values: 0, 1, 2, 3,... . The

program will maintain an interval

(L a<j<b

for each of them, which indicates that, at this stage in the proof, the variable j

is restricted between the values a and b. a and b are either integers or they

may be expressions given in terms of other such typed variables, e.g.,
) ‘ N-1< j<k+5.

This interval information is maintained in a list called TYPE-LIST, which represents
the "state of the world" for these variables at that time. The inequality (1) (or

(2)) is represented in TYPE-LIST by the expression
(j int a2 b)

which means simply that a2 < j < b. In this case, j 1s said to have been "typed"
and has type [a,b]. This is not unlike the typing used in [2].
. After the human has designated the members of TYPE-ATOMS, the program uses

the subroutine kORIG—TYPE to give them ;heirbinitial types
(j int O inf)

where inf stands for «. Thus at the beginning we assume that
0<i<e=

for each j in TYPE-ATOMS.
The type (j int a b) of j may be changed as the Sroof proceeds. For

example, if the theorem has a typothesis of the form
jg3

it is used to convert the original type (j imt O inf) to (j iant O 3). This is
accomplished by the subroutine SET-TYPE which is called at the beginning of 2

proof and at other times when new material is added to the hypothesis of the theorem

being proved.

For example 1f we are proving the theorem

(@ABAT< IAI<NAG<I
(3)
— > 1<KAK<N-1—>1))
the original types are ({j int O inf) (K int O inf) (¥ inf O inf)), but then

SET-TYPE 1is called on (3) which uses
I1<jinj<iNAj<1

to change the types to ((j int 1 1) (K int O inf) (N int j inf)), and to convert

(3) to

(%) (j=1/\C’»/\Bk———->(IS_K/\KS_N-l——)r)).

Note that the program has detected that j=1 from its type (j int 1 1), and at a
later point in the proof, the value 1 will be substituted for j throughout the

theorem.

The formula (4) is then converted (by IMPLY Rule 5 (See Section 4 of [2]) to
3) G=1AaAhNBA ISK/\KSN—I—) T)

at which time SET-TYPE 4is again called which uses (1 < KA K < N-1) to change

the types to ((j int 1 1)(K int 1 N-1)(N int K+1 inf), and converts (5) to
(6) ’ (G=1AacAB—> 1).

The typing information given in TYPE-LIST 4is derived from parts of the

theorem's hypothesis and hence itself serves as additiomal hypotheses. Thus when

a contradiction such as {(int j 2 1) occurs in TYPE-LIST, this represents a
null hypothesis and thus terminates successfully the proof of the theorem. Also

when an entry of the form
{(j int 2 2)

occurs, the expression j==2‘Ais transferred back to the hypothesis of the theorem
and is later used to replace j by 2 throughout the theorem. The subroutine
REDUCE-TT is used to detect such contradictions and equalities in TYPE-LIST,
and to generally update TYPE-LIST, accounting for’the fact that the entries have
effects on each other.

Since TYPE-LIST is dynami;, changing as the proof proceeds, it is carried és
an additional argument of iMPLY.

Entries of the form
(j int a b)

which occur in TYPE-LIST are complicated by the fact that a and b may them-
selves be expressed in terms of other typed variables such as K, N, M, etc. Thus
in any one case it may not be immediately obvious whether b < a or a=b, and

we have provided routimes to establish absolute lower and upper bounds 2z and b

for i,
a<a<ig<bgb,

a and b (which are numbers) are obtained by calling the subroutines (GRE a)
and (LES b) respectively.

For example, 1f the present types are

ol
({(j int 1 (min 1 N -1)) (N int 1 2))

then (GRE 1) = 1, and

(LES (min 1 N = 1).) = {(min 1 (LES N-1))

(min 1 ((LES N) - 1))

i

(min 1 ((LES 1) -1))

(min 1 (1 - 1))<

]

{min 1 0) =0
Hence

1<l<j<(mnl (N-1))<0
a a b b

Since 1‘<_£_ 0, this would successfully terminate the proof.

In all such manipulations a simplification routine SIMP is used to f£orce
algebraic expressions into canonical form. Such simplification routines are in-
‘valuable in proofs in analysi\s since they avert the need for adding to the hypothesis

the field exams for real numbers.

2. CASES

Many of the theorems (verification conditions) arising in program correctness
require proof by cases. For example, Example __ below requires the cases K=1
and K#1l. Our program handles this in thg following way.

When proving a theorem (H+C) a call is made to {(IMPLY H é)*. If C Thas

. : -
Actually IMPLY also has the argument TYPE-LIST but we have suppressed that
in this write-up.

the form of an inequality
(A < B)

then an appeal is made by IMPLY to the routine SOLVE<, which tries to determine
whether (A < B) 1is true by consulting TYPE-LIST. If it cannot completely verify
(A < B) it might still be able to partially verify it; in which case the program

returns a message indicating the part yet unverified which might be proved in some

other way.

For example, if TYPE-LIST 1is equ‘al to
(.(j int 1 2) K int 1 inf))
i.e., » e
(7)‘ (<1 AN 1<K)
and we are trying to prove
(8) (> 2 <K)

then SOLVE< will return the expression (K=1) which represent the CASE not
handled. That is, for the case K > 2 (8) follows, and (7) shows that the case
K=0 is impossible, so the case K=1 1s the only one left. 1Imn this way X=1)
can be addea to the hypothesis in alternate proof routes. These proceedures which
have been developed to handle CASES are based on the follom;.ng theorems which are

implemented by the rules shown.

Theorem 1. (P+Q)A(~‘P—>R) + QVR

RULE 1. When attempting (IMPLY H (Q V R))
If (IMPLY H Q) returns (P, crl)*
" and (IMPLY H (P —>§ crl)) returns 9y

then return 0100, for (IMPLY H (Q V R))

Example. If (IMPLY H Q) returns ((K=1),
and (IMPLY H (K=1 > R)) returns "TRUE"
them (IMPLY H (Q V R)) returns "TRUE".

Theorem 2. PAA+>C)AN(~PAB>C)> (AAB>C)

‘ *k
RULE 2. When attempting (IMPLY (A A B) C)
(a) If (IMPLY A C) returns (P, cl)

(b) and (IMPLY B (P > Coy)) returms o

2
(¢} then (IMPLY (A A B) C) returns 05.00,-
Example. Suppose TYPE-LIST = ((j int 1 2)(k int 1 3)) and we are trying to
evaluate
(9) (IMPLY [2<KE>C)A K< 1>C)]C).

RULE 2a: (IMPLY (2 < K> C) C) returns (K=1) (see below).
RULE 2b: (IMPLY K< 1> C)XK=1+C)) returns "TRUE' (see below).

RULE 2c¢: Gives "TRUE" as the result for 9.

To see how (D'EP‘LY (2<K>C)C) returns (K=1), the program first backchains

to get

. _
Here o, 1s a substitution of the form usually returned by IMPLY and P 1is an
expression of the form under discussion here. For example, P might be (K=1).

*% .
Actually this rule is implemented in HOA a subroutine of IMPLY.

(IMPLY NIL 2 < K)

which returnsv K=1 as explained .above, since the typing of K assures that-
1 <K< 3. Also (MPLY K< 1>C)K=1>C)) 1is converted to
(IMPLY K=1A K< 1+>C))C) and then to (MPLY (1 <1+ C) C) and to
(IMPLY C C) which is "TRUE".

Thes‘e rules, when installed as indicated in IMPLY, cause the machine to
automatically do cases. Also there 'is an interactive command (CASES K i <) which
allows the user to force proof by cases. This’ can be used to override or augment

the program's automatic CASES proceedure.

3. DETAILS
These remarks will refer to certain routines already in PROVER and others

that we are now adding. The reader is assumed to be generally familiar with PROVER.

3.1. CYCLE
CYCLE 1is a routine which calls the main routine IMPLY. Before the theorem
is placed in skolem form, preparing it to be sent to IMPLY, it should be SPLIT

if possible, thus sending omly those theorems that cannot be further SPLIT.

3.2. TYPE-ATOMS

After the theorem is skolemized and before it is sent to IMPLY, the human
user is asked to designate the members of TYPE-ATOMS. He does this by considering
expreséions of the form (< ab), Kab), & a b), (> a b), which occur in the
theorem, and choosing from them the first entry (i.e., the "car") of each skolemized

expression. Thus if j has been skolemized as (js x y) and

€ (Gsxy) N)

occurs in the theorem then js 1is placed in TYPE-ATOMS. At this point the program
also calls (ORIG-TYPE TYPE-ATOMS) and (SET-TYPE H) as explained in Sectiomn 1,

and puts C-LIST to NIL.

3.3. CASES

IMPLY (and HOA) ordinarily returns a substitution ¢ (see [1] and [2]) which
represents a set of instantiatioms for variables in the theorem (or subgoal) being
proved. The entries of ¢ are of the form (x-t), where t 1is a term to be sub-
stituted for the variable x.

.In the augmented systems expressions of the form
(TL j int a b) or (TL < ab)

(where TL 1is the current theorem label) are placed in a list, called C-LIST, by

the routiﬁe SOLVE< (see above). |
Exéressions of the form (TL < a b) which occur in C-LIST cax;;se no harm, and

have no effect unless acted upon by the human user at IMPLY-STOP. The user can treat

these as information which he may or may not use in deciding what to do next (cases

he might try, etc.).\

On the other hand expressions of the form (TL j int 2 b) which occur in C-LIST

must all be removed before IMPLY reports back to CYCLE. These represent cases that
have not yet been handledvby the program, and these cases must be dealt with before
the proof is complete. ‘Thus at each OR-BRANCH im IMPLY and HOA, we look for
the occurance in C-LIST fof expressions of the form (IL' j‘int a b), where the

current theorem label TL 1is an initial part of TL', and if %ound try to clear

10.

them out. For example, if the current theorem label is (121) and we are trying to

prove the subgoal
(AAB+>C),

(which is equivalent to ((A>C)V (B > C))), (IMPLY (A AB) C) calls'
(HOA (A A B) C) which would try (HOA A C) and (HOA B C). If (HOA AC) succeeds

there is no need for a call to (HOA B C) wunless the call to (HOA A C) has placed

on C-LIST an entry of the form
¢ ' ((12122) j int a b).
In that case, a nmew call is made with (j int a b) as an added hypothesis, i.e.,

(2) (DMLY ((§ int a b) A B) C).

+

If (2) succeeds then the entry (1) is eliminated from C-LIST and the proof proceeds,
if not the entry (1) is left im C-LIST and the proof proceeds. —(HOA—{AABI~Er
-whtchr el Ts—HoA 26 ~(H0A-A-L)— xeturns-

33 SR W ACIRAVE RS ST oy e

e 4

i) LM DL oo 2 e N oD Y
" CITTr =T ;;xt*&“‘b’;"l\ 7 v

L

' ngWWinWm&%yM&a&Mméw ipvothesds

Lidint a b)) If {43 succeeds then {iintep—ti——isoliminstedfron rr—tt-mrot-it
WMMJWM This is explained by Rules 1 and 2

of Section 2 above, and is more precisely detailed in the LISP ecorrections given for

11.

IMPLY and HOA. It is also depicted in the flowchart in Figure 1. Figure 1 also

applies to goals of the form
(AAB > C)

since this is equivalent to

A>C)V B >C).

SEE ATTACHED CHART

BT

\r S CLIST buid | BT 6T

with T

s o s w7 ot

Gokhy \ /\ \/B w‘@%m}%ﬁﬁ;

™®Y A,
Get T

\
| B ™Y B,
< W= T v;/\
NO '

0w u&f&j (12! P)
With, TLETL [
\L‘QQS .

\ ™Y (P> B@[

Gt T3, -
(W;&z m}
| Emli Lkl

VoW,

Figune !

Flews Ghat for CASES
?MW,@ B L4AL Mha«d&/@qu}i.

1z.

3.4, SIMPLIFICATION

The simplification routine SIMP is designed to place algebraic expressiéns
in canonical form, and in doing so like terms with different signs are cancelled
(e.g., (7 +3B + A+ (-B)) goes to A + 7). SIMP now only handles + and -.
Earlier simplification routines in [2] handled e and %, as well, and the present
one may be extended when needed.

A 1list, SORT-LIST, is kept which contains all expressions that have already
been simplified. Thus a check is first made to see if the formula being simplified
is already on. SORT-LIST. If not, 1t is simplified and then placed there.

The .basic function of SIMP 1is a sorting routine. SORT tries to place

expressions in canonical form. It depends on a list L+ which tells which atoms

preceeds others in its orderipg. For example if L+ = (A B C) then the expression
((A+C) + B) 1is simplified to (A+ (B+C)), whereas if L+ = (C A B) then it is
simplified to (C + (A+B)). Numbers are always placed last, and ordinary additiqné
and substractions are made.)
~ calls to
SORTT is a routine that counts the number of ASORT, forcing it to stop after
12 attempts (usually two or three will suffice). SORTL shecks to see if SORT-LIST

already has the expression and if not calls SORTT.

The basic rules used by SORT are shown in Table 1.
4. CASES (by hand)
The following is an interactive command
(CASES K 1 >)

wvhere K is an atom which has been "typed"” (i.e., is a member of TYPE-ATOMS), i

13.

is an integer (like O, 1, or 2), and > might also be repiaced by <.

This causes the computer to call the two subgoals
K=1iAH>C)
and
(i+1<KAH>C)
jnstead of the curremt goal (H + C). That is the machine calls

(DPLY NIL (A (> [A (= Ri) H] ©€)

>IN 1i+1K) H] C)))

Before the user gives the CASES command he needs to see those entries of
C-LIST which are related to the current theorem label. He does this by the inter-

active command
CL

which causes the machine to print out all entries (TL' j int a b) of C-LIST where
the current theorem label ‘T, 1is a subset of TL'. The machine finds and prints

these by calling

(PRINT (car (F;ND-CS C-LIST TL))).

14,

References

1. W.W. Bledsoe and Peter Bruell; "A Man-Machine theorem proving system',
‘ 1JCAI-73.

2. W.W. Bledsoe, Robert S. Boyer, and William H. Henneman, ""Computer Proofs
of Limit Theorems", Artificial Intelligence 3(1972), 27-60.

NOTES

Change

[&eq

GRE

LES

REDUCE-TT

{3 int a b)

TYPE-LIST

to

to

to

to

to

INF

sUpP

{(maybe not)

15.

