Typing and Proof by Cases

in Program Verification
by

W. W. Bledsoe and Mabry Tyson

May 1975 ATP 15

*# The work reported here was supported by NSF Grant #DCR74-12886.

Typing and Proof by Cases

in Program Verification

W.W. Bledsoe and Mabry Tyson

ABSTRACT

Special procedures have been added to an automatic prover to facilitate
its handling of inequalities and proof by cases. A data base, called
TYPELIST, 1is used which maintains upper and lower bounds of variables
occuring in the proof of a theorem. These procedures have been coded and

used to (interactively) prove several theorems arising in automatic program

verification.

Introduction

We describe here procedures that have been added to an automatic theorem
prover [1] to make it more effective in proving verification conditions
(theorems) that arise in the field of program verification. These procedures,
which handle inequalities and equalities, and proof by cases, are based upon
a pointer system used by Bundy [2], SRI [3,4], and others to handle inequal-
ities, and upon the interval types used in [5]. The present description follows
somewhat the discussion in [6].

In order to follow this presentation the reader should have some under-
standing of the prover described in [1]. However we feel that many workers
in this field are already generally familiar with our prover and can read this
paper directly, referring to [1] only when the need arises. Tables I and II
from [1] are included here in Appendix 1, for convenience, but the reader is
referred to Section 2 of [1] for a fuller understanding.

These methods can also be used in Resolution based provers and other

Gentzen type systems. Section 5 gives a brief description of this for reso-

lution.

1. Types

Typing information can be a powerful asset in automatic theorem
proving. For example, knowing that j and k are non-negative integers
and that j < k 1lets us deduce that j*k >0, j<k~1, etc. Often,
we have other '"typing' information. For example, we may know (from a given
hypothesis) that j 1lies in some interval, a < j < b. 1In our system, we
have decided to include such information as part of the type of j. Thus
j has the type: 'non-negative integer in the interval a < j <b". Ve
express this fact by the notation {j: a b}.

In what follows, certain variables i, j, k,... occur in inequalities
and can assume only non-negative integer values. These will be "typed" as
indicated above. Such variables often arise as program variables in computer
programs. (Actually these variables are all universally quantified in the

theorem being proved and are converted to skolem constants by the skolemi-

zation process, but that need not concern us here. Refer to Appendix 1 of [1]

and Section 1, of [1].)

Upper and lower bounds are computed and maintained for these typed
variables. When a new inequality is encountered, as a hypothesis, the
bounds for these variables are updated appropriately. This interval infor-
mation is kept in a knowledge base (which we call the TYPELIST), which
represents the "state of the world for these variables at that particular
time, and serves as an additional hypothesis to the theorem or subgoal being

considered. For example, a hypothesis

(a<j<b)

is stored in TYPELiéfW‘as

{j: a b}

. s s s R 1 .
which means that j 1is in the closed interval [a,b]”. 1If a contradiction

such as {j: k k-1} occurs in TYPELIST, this represents a false hypothesis
and successfully terminates the proof. Also if an entry {j: N =} is already
in TYPELIST, any new hypothesis such as (j < N+1) causes the entry to be
updated to {j: N N+1}, which means that j can take only the value N
or the value N+1.

An entry of the form {j: N+1 N+1} which occurs in TYPELIST is

treated as the equality (j=N+1).

%initially all typed variables j a;é given théktype {j= 0 wjl

A subroutine SET-TYPE is used to convert information in the hypothesis
of a theorem to TYPELIST entries. It is called at the beginning of the
proof and at each point in the proof when new expressions are added to the
hypothesis of the theorem being proved. For example, if the theorem being

proved is

Ex. 1.

¢y CEMALTLSIANIT<A L I—2P(3)
the original value of TYPELIST is

({j: 0x}{n: 0 }) ,

1Except in the case when b 1is +«; then the interval is [a,»).

but then SET-TYPE is called on the hypothesis of (1) which changes

TYPELIST to

({j: 1 1}{n:3 =})
and converts (1) to
(2) G =1APML)—>P())

Notice that the program detected that j was equal to 1 from the entry

{j: 1 1}). The prover will now substitute 1 for J in (2) to obtain
®@L)—>P (1))

which it recognizes as true.

Other examples are now given.

Ex. 2.

3) A< iAPA)—3>G <k Ak <1—>P()))

An initial call to SET-TYPE, on the hypothesis of (3), changes TYPELIST

to ({j: 1 o}{k: 0 =}) and converts (3) to

(%) CPL—>G <k Ak <1—>P({K)))
Now Rule 7 of IMPLY (see [1], Table I), comnverts (4) to
(5) PO A J<kALk<I—>Pk))

at which time SET-TYPE is again called, which uses j <k and k<1

to change TYPELIST to ({j: 1 1}{k: 1 1}), and converts (5) to

(3=1Ak=1AP1)—>Pk))

The prover, as before, converts this to
®)—>P (1))
which it recognizes as true.

Ex. 3.

- A4

(2<iNI<1I—>P()

SET-TYPE changes TYPELIST to ({j: 2 1}). The program detects the con-

tradictions in TYPELIST (i.e., 2 < 1) and successfully concludes the proof.
Whenever an inequality (a < b) occurs in the conclusion of the theorem
being proved, the prover updates TYPELIST with the negation of (a < b),

and looks for a contradiction. Thus, for the example

Ex. 4.

(6) G<lAk<<iNnP—>k<3) ,
TYPELIST is given the value ({j: k 1}{k: 0 j}) and (6) is converted to
F—>k < 3)

The prover now uses (k £ 3), which is first converted to (4 g_k)z, to

update TYPELIST, getting ({j: k 1}{k: 4 j}), which contains the contra-

diction

G<k<ig<l)

2Since k is an integer. See [7, p. 27].

lower bounds, sup and inf, for j and k. For this case

il

i
o~

sup j 1, inf j

Il
£

sup k 1, inf k

Since 4 > 1 we have a contradiction. The prover uses the routines SUP
and INF to evaluate these bounds. In [7] we carefully define the algorithms
SUP and INF and prove that they have the required properties.

Formula (6), (without the P), is an example of a formula in Presburger
Arithmetic. These often arise from computer programs and are discussed in

[7] and by Cooper in [8].

Ex. 5. (2< 3i<4ANk<jANk<T7->»C). Here we use the symbols 'max'

and ‘min' in typing j and k. TYPELIST is given the value

[{j: max(2,k) 4}{k: O min(j,7)}1.

2. TYPELIST in PROVER
In Section 2 of [1] we describe IMPLY and HOA, the main algorithms
of Prover, and give Tables I and II which define them, and list several ex-

amples of their use. Tables I and II are reproduced in Appendix 1 of this

paper for convenience. The reader is referred to the Section 2 of [1] for a

fuller understanding.

IMPLY has five arguments

(TYPELIST, H, C, TL, LT)

s

but in Section 2 of [1] we deal with only H, C, and TL, the hypothesis,

conclusion, and theorem label of the theorem or subgoal being proved. For

convenience to the reader we represent, in this paper, a call to

IMPLY (TYPELIST, H, C, TL, LT) by the notation

(TL) (H= C)

As mentioned earlier TYPELIST represents an additional hypothesis,

s0 we will augment this notation as follows:

(TL) ([TYPELIST] A H=C) .

Thus Ex. 2., after it isrpartially converted, is represented by
(1) ([{3: 1 13{k: 1 1}]AP(1) = P(k))

We will now describe some changes and additions to the Rules of TIMPLY
and HOA (Tables I and II, of [1]) which have been made to facilitate the

use of TYPELIST. Before doing so we first describe the algorithm SET-TYPE,

which was mentioned earlier.

SET-TYPE (A)

This algorithm updates TYPELIST by using inequalities and equalities
in conjunctive positions of A, and returns a value A', which is the re-
mainder of A not used in updating TYPELIST.

For example, if TYPELIST = [{j: O k}{k: j 7}] then a call
SET-TYPE(k < 5 A P(3))
updates TYPELIST to
[{j: 0 k}{k: j 5}]

and returns the value P(j).

10.

IMPLY RULE CHANGES

IF ACTION RETURN

7. C= (A-»B) IMPLY(H A Ay B)
is changed to

7. C= (A—>B) Put A': = SET-TYPE(A)

7.1 TY' has a R
contradiction

7.2 ELSE IMPLY (TY?,

HAA', B)

Where TY' 1is the updated value of TYPELIST after the action of SET-TYPE(A).

Rule 11 and 14 are added to IMPLY

11. C = (a S.b) Put A': = SET-TYPE (~(a S.b))
Let TY' be the updated
TYPELIST
11.1 TY' has a wp
contradiction
11.2 TY'® = TYPELIST Go to 12 (with TYPELIST

and C as they were)

11.3 TY' # TYPELIST (T TY')
4.1 C=(a=b) PutC'= (a<bAbca) IMPLY (H, C')
14.2 C=(a#b) Put C' = (a< bV b<a) IMPLY(H, C')

11.

Later in this description we will further change these tables, but the
reader need not be concerned with that at this time. We will summarize all

of these changes in Tables I-T, II-T, of Sectien 3.
Ex. 5. Q—>{ <1Ak<jAP—>k < 3))

(1) ([{3: 0 »}{k: 0 }]

= Q—>(i<1Ak<jAP—>k <3)))

Note that each of j and k is given the original type [0 «), when the

theorem is given to Prover.

1) ([{j: 0 =}{k: 0=}] A Q

= (J<1AkKk<LIAP—>k < 3)) 17

In this case SET-TYPE(Q) 1left TYPELIST wunchanged and returned the

value Q.
TYPELIST H -~ Cc
L ([{j: k 1}{k: 0 331 A QA P) >k < 3) 17

Here SET-TYPE (j < 1Ak < jAP) has updated TYPELIST to the new

value shown, and returned P, which was conjoined to Q.

Now the new Rule I-11, employes SET-TYPE(~(k < 3)) = SET-TYPE(4 < k)
to update TYPELIST to TY' = [{j: k 1}{k: 4 j}], and Rule 11.1 detects the

contradiction

12.

in TY' and terminates the proof successfully.

As mentioned in Section 1, we detect the contradiction in
TY' = [{j: k 1}{k: & j}]
(or any other list of inequalities) by computing
»supTY,(j) and infTY,(j) .
In this case
suppye () = 1, inf (D =4 ,

and since 4 > 1 we have a contradiction. These are computed by the
algorithms SUP and INF (See [7], especially Section 3). 1Imn this
example the values of sup and inf are rather obvious; for more involved
examples see Section 5 of [7].

We have decided to give each variable j just onme interval {j: a b}

in TYPELIST. So if we are proving a goal of the form
(3<1V 3ji>5) AE=>C) ,

where there is a disjunction of inequalities in the hypothesis, then we use

two TYPELIST's expressed in the form

(([{3: 0 1}{k: }ooel voI{3: 5 o) {k: }oor)

A H==>C).

To handle such examples we add Rule 2 to 1IMPLY to split such goals into

two subgoals.

2. TYPELIST = TY' v TY" Put 8:

2.1 © = NIL

i

2.2 © # NIL
2.3 A = NIL

2.4 N # NIL

Put A

i

IMPLY (TY*,H,C)

i

IMPLY (TY",H, C)

Ex. 7. (k<3—>k<1V2<kc<3).

¢H) ({k: Ow}= (k< 3—>k <1V 2<k<3)

(1) ({(k: 03)=>k<1V2<kc<3)

({k: 03} A~2<k<3)=>k<1)

({(k: 03} A (k<1V4a<k)=k<1)

(({k: 01} v {k: 4 3}))=k< 1)

(11) ({k: 01} =%k

Rule 10" uses ~(k

<D

< 1) to update TYPELIST to

detects the contradiction.

(1 2) ({k: 4 3} =%k

Proved since

<1

(k: 4 33

is a contradiction.

NiL
NIL
G oA
17
H4.
12
{k: 2 1} and Rule 10.2
”TH

13.

2

14,

3. Cases

Many of the theorems (verification conditions) from program validation

require a proof by cases, in that the theorem must be proved separately for
two different ranges of values for some variable. Ex. 7 is such a case, but

there the proof was straightforward because the two cases,
k<1 and 2<k <3

were stated explicitly in the theorem.

On the other hand, consider the following equivalent form of Ex. 7.
Ex. 8. (k<3N (kk<1—C AN 2<k<3—>C)—>0C).
1) ({k: 03} N k<1—>C) A 2<k<<3—>C)=C) 17

Backchaining (Rule H7) off of the hypothesis (k < 1—>C) we

obtain the subgoal
(1 ®H) (fk: 03} A k<1—>C) A 2<k<3—>C)—>k < 1)

which is false. Similarly if we backchain off of the hypothesis
(2 <k <3—>C) we fail again.
If the prover could somehow be made to know that it should consider the

two cases
k<1 and 2 <k <3

as it did in Ex. 7 the proof would proceed routinely.
We could, of course, require that prover backchain off of both of these

hypotheses and thereby set up the provable subgoal

k<lv2gk<d) ,

15.

but such a rule is not only unmatural, it is combinatorially explosive.

What's more, a similar problem arises in many other theorems, such as

Ex. 9. (1 <n)
/\Vm 2<nAlgLoAn<l—Am] < A[2])
/\Vk k+l<nA2<k—>A[k] < Alk+1])

—>Y RE+1<nA1<K—>AK] < AR+1])

and Example 10 below, which are more complicated than Exercise 8 and

which will not submit to such an attack.

The procedure we employ to prove Ex. 8 and all others like it, forces
the prover into a proof by cases in a natural way. This is effected by further
changes and additions to Tables 1 and 2. These are shown (for the most part)
in Tables I-T and II-T below. These changes are justified by the results in
Appendix 2.

These changes require that IMPLY and HOA mnow return a pair
(6 T') ,

where © 1is the same substitution we got before, and TY' 1s a new value of
TYPELIST which can be used in subsequent calls to IMPLY. This outputed

value TY' represents the part of the theorem that has not been proved. Thus
if (@ TY') 1is returned from a call IMPLY (TYPELIST, H, C), it means that

(TYPELIST A H—>C) 1is valid except for the case TY', or that
(~ TY' A TYPELIST A H—>C)

is valid. See Appendix 2.

2.1
2.2
2.3

2.4

3.1
3.2
3.3

3.4

4.1
4.2
4.3

4.4

7.1

7.2

Table I-T
TYPELIST VERSICN

*
IMPLY RULE CHANGES

16.

IF ACTION RETURN
TYPELIST = (TY' v TY") Put Z: = IMPLY(TY', H, C)
Zz = NIL NIL
Z = (8 TYL) Put Z2: = IMPLY(TY", H, C)
Z2 = NIL NIL
72 = (02 TY2) (0°82 (TYLl V TY2))
H= (AV B) Put Z: = IMPLY(TYPELIST, A, C)
Z = NIL NIL
7z = (0 TYL) Put Zz2: = IMPLY(TYPELIST, B®, C)
z2 = NIL NIL
72 = (02 TY2) (8002 (TYL VvV TY2))
C= (AAB) Put Z: = IMPLY(TYPELIST, H, A)
Z = NIL NIL
Z = (0 TY1) Put Z2: = IMPLY (TYPELIST, H, B®)
z2 = NIL NIL
z2 = (82 TY2) (8062 (TY1 Vv TY2))
cC= (A—>B) Put A': = SET-TYPE(A) -
TY' is the updated
TYPELIST

TY' has a contradiction

ELSE

*
IMPLY has arguments (TYPELIST, H, C, TL, LT). H

the conclusion. We are ignoring TL and LT here,

(T NIL)

IMPLY (TY', HAA', B)

is the hypothesis and C

17.

Table I-T (Continued)

11. C=(a<hb) Put A': = SET-TYPE(~ (a2 < b))
TY' is the updated TYPELIST
11.1 TY® has a contradiction (T NIL)
11.2 TY' = TYPELIST Go to 12
11.3 TY' # TYPELIST® T 1Y)
3

If TY' has an equality entry of the form {k: t t} then k is replaced
by t in H, C, and TY'.

18.

Table II-T
TYPELIST VERSION

*
HOA RULE CHANGES

IF ACTION RETURN
C=AVD Put Z: = HOA(B A~D, A)

4.1 Z = NIL HOA(B A~A, D)

4.2 7 = (8 TYL) Go to 4.3.

4,3 TY1l = NIL (8 NIL)

4.4 TY1 # NIL Put Z2: =

IMPLY (TY1, BA~ A, D)

4.5 72 = NIL (8 TYL)

4.6 22 = (82 TY2) (8002 TY2)
B=AAD Put Z: = HOA(A, C)

6.1 Z = NIL HOA (D, C)

6.2 Z= (9 TY1) Go to 6.3.

6.3 TYLl = NIL (8 NIL)

6.4 TY1 # NIL Put Z2: = IMPLY (TY1, D, C)

6.5 Z2 = NIL C] 'rYl)4

6.6 72 = (82 TY2) (6 0 02 TY2)
B = (A—>D) Put 9: = ANDS(D, C)

7.1 © = NIL GO TO 7E

7.2 0 # NIL Put Z2: = IMPLY (TYPELIST, H, A9)

7.3 Z2 = NIL NIL

7.4 72 = (02 TY2) (6 082 TY2)

4In case Z2 = NIL it repeats Rule 6 (once) with D A A instead of A A D.
If on this second time Z2=NIL then (€ TYl) is returmned.

*
HOA has arguments (B,C,HL). B is the hypothesis and C the conclusion.
We are ignoring HL here.

7E.

7E.

7E.

7E.

7E.

7LE.

7LE.1

7LE.2

7LE.3

TLE.4

7LE.5

71LE.6

B = (A—>»a=Db)
Z = NIL

Z = (0 TYL)

z2 = NIL

Z2 = (82 TY2)

B = (A a<b)

TY' = TYPELIST

TY' # TYPELIST

Z = NIL

Z = (8 TY1)
Z2 = NIL

Z2 = (02 TY2)

Table II-T (Continued)

Put Z: = HOA{(a=Db, C)
Go to 7LE

Put Z2: =
IMPLY (TYPELIST, H, A@)

Put A': = SET-TYPE(a < b)
Let TY' be the updated
TYPELIST

Go to 8

Put Z: = IMPLY(TY',H,C)

Put Z2: = IMPLY (TYPELIST,H, AQ)

19.

NIL

(802 (TYlV TY2))

NIL

NIL

(8002 (TYLVTY2))

20.

The other rules of IMPLY and HOA should be changed similarly,

always changing an output

to
(e NIL) .

These changes are best explained by the use of examples.
In the following proofs, the theorem label (X hl) is used to indi-
cate that the first hypothesis is being used to try to prove the subgoal
(X). Similarly for (X h2), etc. Also the label (X h2 H) 1is used to
indicate that, after backchaining on the second hypothesis (see Rule H7),

it is now trying to prove the hypothesis of the second hypothesis, etc.

Ex. 8. k<3Ak<1l—C) AN 2<k<3—>C)—>0)

a B

(1) ({k: 03} A (k<1—>C) A 2<kAk<3—>C)=0)
(1 h1) ({k: 03} A (k<1—>C)=0C)

(1 hiH) ((k: 03} AaAB=k<1)

SET-TYPE(~(k < 1)), 2 < k
TY' = {k: 2 3}, has no contradiction.
Returns (T {k: 2 3}) for (1 hl H)

and for (1 hl)

(1 h2) ({k: 2 3} Ap=0C)
(th2H) {k: 23} AaApP=2<kAk<3)

(1 h2 "H1) ({k: 23} Aa AB=2 < k)

SET-TYPE(~(2 < k)), k < 1
TY' = {k: 2 1}, has a contradiction
Returns (T NIL)

(1 h2 52) ({k: 23} A aAB=k < 3)

SET-TYPE (~(k < 3)), 4 <k

TY' = {k: &4 3}, has a contradiction.
Returns (T NIL)

Returns (T NIL) for (1 h2 H)
Returns (T NIL) for (1 h2)

Returns (T NIL) for (1)

Thus the theorem is true.

Z1.

17

H6

H7, 7.2

I11

I11.3
H7.4

H6.4

H7,7.2

L4

111

I1i.1

14.2

I11.1
14.2
H7.4
H6.6

Ex. 9. (1 <n)

/\Vm(Zgn,A\lgm/\mg_l-%A[m] < A[2])
/\Vk(k <nA2<k=—>Alk] < Alk+1])

E—— VK(K_<_n/\ 1 < K—>A[K] < A[R+1])

o8

M —
1 l<nA @<nAl<mAngl—Am] <A[2])

AN k<nA2<k—AlKk] < A[k+1])
Y

—> (K <n A 1l<K—>A[K] < A[K+1]))

n and K are skolem constants

TY
-~ A Y
(1) (1{k: 1 n} {n: K «}] A a A p=>AIK] < AIK+1])
(1 nl) (a=>v) Returns NIL
(1n2) B=y)

(Alk] < A[k+1]—> A[K] < A[K+1]), {R/k}

(1 h2 H) (TY Ao AB=K<nA2<K)

(1 h2 H1) (TY A A B=K < n)
SET-TYPE(~(K < n)), n < K =1
TY' = [{K:n+1 n} {n: KK=-1}] ,

has a contradiction, so returns (T NIL)

(1 h2 H2) (TY A o A B =2 < K)
SET-TYPE (~(2 < K)), K< 1
Y" [{K: 1 min(1,n)}{n: K «}]
TY" = [{K: 1 1}{n: K «}]

I

i

22.

17

H6

H6.1

-)

H7.2

14
I1l1

I11.1

14.2
111

23.

Here min{(l,n) is converted automatically to 1, because it deduces

that

n>K>1

TY" has no contradiction but the program detects {K: 1 1} in TYV
and therefore replaces K by 1 in H, C, and TY", (and in v for (1 hl)

below). Thus (A[K] < A[K+1]) becomes (A[Ll] < A[2]) and TY" becomes

TY'™ = [{K: 1 1}{n: 1 «}]

It then returns (T TY™) for (1 h2 H2). 111.3
It then returns (T TY™) for (1 h2 H) . H7.4
It then returns(K/k TY'™) for (1 h2) . I4.4
(1 hl) (TY™ A o= Al1] < A[2]) H6.4
and Footnote 4
(A[m] < A[2] = A[1] < A[2]), 1/m H7
(1 hl H) (TY" NaAB=22<nAl<1IALLSL H7.2
(1 hl H1) (TY™ A o A B=2< n) 14
SET-TYPE(~(2 < 1)), n < 1 111

TY" = [{K: 11}{n: 1 1}]

Replaces n by 1 throughout and I11.1
Returns (T NIL) for (1 hl HI)

(1 hl H2) (TY" NaAB=1<1A1<T)
Returns (T NIL) by REDUCE
Returns (T NIL) for (1 hl H) H7.4
Returns (1/m NIL) for (1 hl} H 4.4.3
Returns ((K/k 1/m)NIL) H 6.6

Thus the theorem is true.

