24

It can be seen from these examples that the new TYPELIST TY' which

is returned as

(0 TY")

represents the cases that have not been proved by this call to IMPLY or

HOA. Thus it represents cases which are still to be proved by further calls
to IMPLY. As long as TY' 1is not NIL in the returned (8 TY'), then
the theorem has not been completely proved. Hence the final return from

IMPLY (for the original theorem itself) must be of the form

(6 NIL) .

Else the theorem is considered not to be proved.

25.

Ex. 10. VYV k(k < 2—>A[k] < A[k+1])

A Y m@

<m< 7—>A[m] < Alm+1])

AVnb<n< j—Aln] < Aln+1])

— Y&«

(1)

N

(1 nl)

(1 hl H)

(1 h2)

(1 h2 hl)

(1 h2 hl H)

(1 h2 hl HD)

j—>A[K] < A[K+1])

l

«

IN

Alk] < Alk+1])

3

IN
B3< g ®N .2 A

< 7—>A[m] < A[m+1])

A»
o

IN

IA

j=—>A[n] < Aln+1])

K < j—> A[K] < A[K+1]
((K: 0 33{j: Kw} A o A B A Y= A[K] < A[K+1])
(o —> A[K] < A[K+1]) K/k

({K: 0 j}{j: Ko} ANa ABAY=KL2)
SET-TYPE (~(K < 2)), 3 < K
TY' = [{K: 3 j}{j: K =»}], has no contradiction
Returns (T TY')
Returns (K/k TY') for (1 hl).
(TY' A (B A y) = A[K] < A[K+1])

(B = A[K] < A[K+1]) K/m

(TY' ABAY=3<KAKLT)

(TY' A B AY)=3<K)
SET-TYPE(~(3 < K)), K< 2

TY'=[{K: 3 min(2,3)}}, has a contradiction
Returns (T NIL)

17

H6

H7,7.2
I11

I11.3

H6.4

H6

H7,7.2

L4
I11

I11.1

(1 h2 hl H2)

(1 h2 h2)

(1 h2 h2 H)

(1 h2 h2 H1)

(1 h2 h2 H2)

26.

(TE' A (BAY)=K<T)
SET-TYPE(~(K < 7)), 8 <K

(TY! 1

Ty

(Ty"

(Ty"

TY' = [{Ks 8 j}{j: K »}], has no contradiction

Returns
Returns

Returns

(T TY")
(T TY") for (1 h2 hl H)
(K/m TY") for (1 h2 hl)

Ay = A[K] < A[K+1]) K/n

AY=6<KAK<J

ANY=6<K)
SET-TYPE(~(6 < K)), K < 5
TY" = [{K min(5,j)}{j: K »}], has a contradiction

Returns

(T NIL)

AY=K< J)
SET-TYPE (~(X S‘j)), j+1 <K
TY' = [{K: max(8,j+1)j}{j: K K-1}], has a

Returns
Returns
Returns
Returns

Returns

The theorem is proved.

contradiction
(T NIL)
(T NIL) for (1 h2 h2 H)
(K/n NIL) for (1 h2 h2)
({K/m, K/n} NIL) for (1 h2)
({K/k, K/m, K/n} NIL) for (1)

14.2
I11

I11.3
I14.4
H7.4

H6.4

H7,7.2

I11.1

I4.2
I11

I11.1
I14.4
H7.4
H6.6
H6.6

27.

Simplification.

The prover utilizes a simplification routine to manipulate algebraic
expressions. Its chief function is to put such expressions in canonical
form. See [7, p. 27]. Many such simplifiers have been programmed [14,
10, 3, 11, ete.].

Such a routine is crucial in our program for handling TYPELIST and
proving assertions about inequalities, because it eliminates the need for

adding the field axioms for the real numbers.

Algebraic Unification.

1f k 1is a skolem variable and b a counstant, an ordinary unification
algorithm will fail to unify the two expressions: k+2, and b+3.

We have augmented our algorithm to handle such arithmetic expressions.
In this case the expressions are subtracted and simplified, and then solved

for a variable, getting successively: k+2-(b+5) =0, k=-b=-3=20
k= (b+3)

Thus (b+3)/k is returned for UNIFY (k+2, b+5).

Similarly, the two expressions,

il

Blk+1] Amax (B, j, k+1)

2

it

A [i]

ol Amax(Ao, 1, 10)

where B, j, k are variables and Ao’ io are constants, are unified as

follows: (we show this in the prefix form).

28.

(UNIFY(= (Array B (+ k 1))(Amax B j (k+1)))

~
i

(Array Ao 10)(Amax A0 1 10)))

(UNIFY (Array B (+ k 1))

(Array A 10))

(UNIFY B Ao) . AO/B
(UNIFY (+k 1) io) It deduces that

+k (+ (-io) 1)) = 0, and returns the substitution

-+ io =) /k

UNIFY Amax(Ao, is io)

Amax(Ao, 1, io) 1/j
Returns {AO/B, (10-1)/k, 1/3}.
The routine also handles such examples as

UNIFY(A[iO] + A[3] , A[i] +A[j0]) s Easy

UNIFY(A[iO] + A[3] , A[jo] + A[iO])

In this last example, even though a canonical form is used there is no

assurance that

i receeds j
o P Jo

in the canonical ordering, even though io preceeds j. Hence the last

example and those like it can present problems.

29.

4. A Program Verification Svystem

The interactive prover described in [1] has been augmented by the
features described above in Sections 1-3, and used as part of a program
verification system [9]. This system is rumning on the PDP-10 in London's
group at the Information Sciences Institute, Marina Del Rey, California,

A and the PDP-10
and on the CDC 6600 in Good's group at The University of Texas at Austin.

The version at ISI has been augmented extensively by Larry Fagan and
Peter Bruell, especially with features to facilitate man-machine interaction.

Both versions are coded in approximately 200 functions im LISP. Two
additional sybsystems, INFPRINT and XEVAL, are used to augment the prover.
INFPRINT 1is a routine which was coded by Dom Lynn at ISI, and which takes
an expression in LISP prefix notation and prints it out in {more readable)
infix form, with appropriate identatiom. XEVAL which was developed at ISI
by Don Good, is a simplification package for handling arithmetic expression,
and also includes the rewrite rules of REDUCE described in [1] (Table IV).
Since the combined code of these programs exceeds the allowed core space for
the time=-sharing system at UT, a version of UT-LISP has been developed by
Mabry Tyson at UT which utilized virtual memory for ©LISP functions.

Appendix 3 is an example of output from the ISI program.

30.

5. TYPELIST in RESOLUTION

The typing and proof by cases procedures described above can also be
incorporated into RESOLUTION provers if an additional rule is added to
resolution, and if the algorithms for simplification, set-type, sup and
inf are included. Also a new algorithm INTERSECT is needed which com-
bines two typelists (see examples below).

Before the start of resolution, after the theorem has been put into

clausal form, each literal of the form

(a < b)

is converted to a TYPELIST by the algorithm SET-TYPE. Literals of the

form

~(a < b)

are first transformed to (b+1 < a) before being converted. Thus the
new clauses will consist of ordinary literals 1 and typelist literals T.

For example, the theorem

x<5AN x<1-—>C0) N 2<xARL 7w C) > C)

is first converted to ordinary clausal form

1. (xo < 5)

2. (~(xo <1)yveoe)

3. (~(2 <%)V ~(x0 <7)VvEC)
4. ~C |,

and then converted by SET-TYPE to

31.

1. {xot 0 5}

2. {xoz 2 w}ve

3. {xO: 0 1} v {XO: 8 w} VvV C
4, ~

Ordinary resolution is performed on non typelist literals. Any two
typelist literals T1 and T2 are resolved, by calling
INTERSECT(Tl,TZ)
The result is another typelist which is included as a literal of the resolvent.
If this resultant typelist contains a contradiction it is eliminated. For

example clauses 1 and 2 above can be resolved on their first literals. Since
INTERSECT({XO: 0 5], {xO: 2 =} = {xoz 2 5},
the resolvent of 1 and 2 is

5. {x : 2 5} VvCcC.
)

Similarly we get

6. {XO! 2 5} 5, 4
7. {XO: 0 1} v {xoi 8 o} 3, 4
8. {;;(;;:j'*z\;jlf} Vi{x, 8) 6, 7
9. {fﬁiﬁﬁ“ii} or ' 8, 6 .

Since {xoz 2 1} and {xoz 8 5} contained contradictions they were
eliminated. The algorithms SUP and INF are used for this purpose,

exactly as described in Section 1. Here, for {xo: 2 13,

SUP (x_, NIL)=1

INF(x_, NIL)=2

32,

Since [2,1] contains no integer we have a contradiction.

The algorithm INTERSECT when applied to type lists

({xlz a; bl} {xzz a, bz} {xn: a bn}) s

({xlz ¢y dl} {xz: c, dz} {xn: . dn)} ,

simply intersects the corresponding entries, getting

({xlz e fl} {xzz e, fz} {xn: e fn}) .
where ei=max(ai,ci) and fi=m1n(bi’di)'

Consider now Example 10, of Section 3.

(Vk(k < 2—>» Alk] < Alk+1])
Vm(3 <mAm< 7—>A[m] < Alm-+1])

Vn(ﬁ <nAn< j—>»Aln] < Aln+1])
—p VK(K_<_ J—>A[K] < A[K+1])) .

The ordinary clausal form is

1. ~k < 2) V A[k] < Alk+1]

2. ~3<m V~m<7)V AR < Alm+1]
3. ~(6 < n)V~m< jo) V Aln] < Aln+1]
4. K< i,

5. ~@A[K 1 < AR +1])

where Ko and jo are skolem constants, and %k, m and n are variables.

33.

The clauses are converted to

1. {k: 3 o} VA[k] < Alk+1]

2. {m: 0 2}V {m: 8 o}V A[m] <Am+1]

3. {n: 0 5}V [{n: j 1 w}{jo: 0 n=1}1 V Aln] < A[n+1]
4. x_: 0 33 {5 Ko =}

5. ~(A[R T < A[R_+1D)

Some of the resolvents of 1-5 are

6. (kK : 3 «) 1, 5
7. (KR: 0 2}V I(K: 8 =) 2,5
8. {KO: 0 5}\/[{1(0: jo+1 oo}{joz OKO—l}} 3, 5
9. {Ko 3 2} v K 8 =) 6, 7
10. {KO G 'S}\/[{KO: j0+1 oo}{jo: 0 Kowl}] 8, 9
11. ({Ko: i tt i g X K _-1}) or L 10, &4

In each of 9, 10, and 11, a typelist was removed which had a
contradiction.
In the above example we did not comvert the formula A[k] < Alk+1]

to typelist form
{Alk]: O A[k+1]}

This is controlled in the program by having a list (jo K k¥ m n) of
o
those variables and skolem constants which we allow to be typed.
One could allow all inequalities to be converted, but in that case a

mechanism would need to be provided for unifying expressions when two type-

list literals are resolved.

34.

Appendix 1

Tables I and IT listed below are lifted from Section 2 of [1].
They define IMPLY and HOA, the principal algorithms of the inter-
active prover described in [1]. The reader is referred to Section 2

of [1] for a full description of them and their use, and several examples.

4.1
4.2

4.3

- 4.4

5.1

5.2

5.3

5.4

35.

Table 1
ALCORITHM
TMPLY (H, C
IF ‘ ACTION RETURN
c="T" or H= YEFALSE"™ vepas
TYPELIST
H= AV B IMPLY (NIL,
' (A—>C) A (B—>C))
- (AND-SPLIT) C= (AAB) Put O: = TMPLY (H,A)
@ = NIL © NIL
0 £ NIL put h: = IMPLY (8,80)"
A = NIL » NIL
A # NIL g oN°
(REDUCE) Put H: = REDUCE(H)
Put C: = REDUCE(C)
¢ = "T" or H = "FALSE" Go to 1
H= (A Vv B) Go to 3
c=(AAB) Go to &
ELSE Go to 6

*
See Sections 1 and 2.

3By the expression "H= (AVB)" we mean that H has the form "AVB". Rules
4 and 3 are called VAND-SPLIT's". See [2] and [17]of [i1.

4If @ has two entries, a/x, b/x with a#b, then two A's, 7\1 and ?\2 are
computed, ome for each case, and ?\1 0?\2 is returned for A.

5'I'his is just (APPEND 827).If © has an entry a/x and A has an entry b/x

wvhere

a#b, then leave both values in geA. For example, if 8= (a/x b/y),

A= (c/x d/z) then ©oA = (a/x b/y ¢/x d/z).

7.
7.1

7.2

9.1

9.2
10.
11.
12.

12.1

12.2

~12.3

12.4

O
i

IMPLY (H,C) Cont'd

¥
c=(AVB)

(PROMOTE) C = (A—>B)
Forward Chaining

PEEK forward chaining

C = (A€<—>B)

(& = B)

0 # NIL

L+
n

NIL

C

i

(~ A)

*
INEQUALITY
(call HOA)

@ # NIL

(PEEK) 6 = NIL

0 # NIL

8 = NIL

6Actually we call IMPLY (OR-OUT (H A A), AND-OUT(B)). See p. 13 of [1].

7See p. 26 of [1]. The PEEK Light is turned off at the entry to MPLY.

ACTION

36.

RETURN
HOA (H, C)

IMPLY (H/\A,B)6 _

MPLY (H,

(A—>B) A (B—>A)

Put ©: = UNIFY(A,B)

Go To 10

Put ©: = HOA(H,C)

Put PEEK 1light "ON'
Put 0: = HOA(H,C)

Go To 13

IMPLY (H A A, NIL)

13.
13.1

13.2

14.

15.

IF

(Define C)
Cc* = NI

c' # NIL
(See Sectiom

ELSE

IMPLY (H.C) Cont'd

ACTTON

Put C': = DEFINE(C)

Go To 14

37.

RETURN

IMPLY (H,C*)

NIL

2.
2.1

2.2

4.
4.1

4.2

4.3

4.4

5.1

5.2

6.
6.1
6.2

81n Step 4.2, the "~
and ~(P—>Q) goes to PA~Q.
omitted and the call is made HOA(B,A).

Table II

38.

~ ALGORITHM
HOA

IF ACTION RETURN
Time limit. Exceeded NIL
(MATCH) Put 0: = UNIFY(B,C)
0 # NIL e
PEEK (See Section 4 of [1]) HOA(B,C)
PAIRS (See Section 4 of [1])
(OR-SPLIT) C= (A V D) Put C': = AND-OUT(C)
cC'#¢C IMPLY (H,C")
c' =¢C Put 0: = HOAGBA~D,A)
0 # NIL e
@ = NIL HOA(B/\~A,D)8

Cc = (A—>D) IMPLY (B, C)
c= (AAD) IMPLY (B, C)
B= (AAD) Put ©: = HOA(A,C)

© # NIL)

¢ = NIL HOA(D,C)

in (*' D) is pushed to the inside; e.g., ~(~P) goes to P,
1f D contains no "'~ or "—>" then (~D) is

Similarly in Step 4.4.

39.

HOA(B,C) Cont'd

IF

7. (Back-chaining)

B=(QA—>D)

7.1 @ = NIL

7.2 6 # NIL

7.3 A = NIL

7.4 A # NIL
7E. B = (A—>a=Db)
JE.1 0 = NIL
7E.2 @ # NIL

7E.3 A = NIL

78 .4 A # NIL

8. B = (A«——»D)

9. B = (a=b)

9.1 z=0

9.2 7Z 1is a number
9.3 7 1is not a number
10. B= (AVD

11. B =~A

i2. ELSE

*
ANDS 1is explained om p.ll. of rij.

8Actua11y we use AND-PURGE (H,~A)

ACTION RETURN
. *
Put ©: = ANDS (D,C)
Go To 7E
Put A: = TMPLY (H,A0)"
Go To 8 -
@A
Put ©:=HOA(a=b,C)
NIL
Put h: = TMPLY (i, A0)"
Go To 8
QoA

HOA((A—>D) A
‘ (D—>4),C)

Put Z: = MINUS-ON(a,b)

NIL

Put a’: = CHOOSE(a,b),
b':=OTHER(a,b) (see p.16 0of [1D)

Put H':=H(a'/b'"),

c':=C(a'/b") IMPLY (H',C')
MPLY (B,C)
8
DMPLY (H,AVv C)
NIL
instead of H, which removes ~A from H.

Appendix 2

Some Soundness Results

In this appendix we establish some soundness results for the system,

with particular emphasis on the role of TYPELIST.

We would like to establish the property:
1f TYPELIST has the value TY and IMPLY (TY, H, C) or
HOA (H,C) returns the value (6 TY'), then
(*) (VIY' oo TY A HO -+ CB)
is a valid formula.
This is equivalent to the informal statement that (TY . HO - Co6) is valid
"except for the case when TY' is false'". (Recall that TYPELIST does not contain
skolem variables so substitutions are not applied to it).
To establish this property we will use recursive induction (see [12,13], or
[7] p.28). Thus we need only prove that each rule of IMPLY and HOA preserves
the above property, assuming that it is preserved by each subcall to IMPLY and
HOA within the Rule. This last assumption is called the "induction hypothesis'.
These induction thypotheses appear as hypotheses in the various theorems below.
In every case we will use the abbreviation "TY" for "TYPELIST".
The property (*) is clearly preserved in all cases when a result of the
form (6 NIL) is returned for then TY' = NIL, and (%) becomes
(TY A HO - C6).
It also holds in case NIL is Returned. Since also IMPLY Rules 3, 5, 6, 7, 8,
10, 11, 12, and HOA Rules 2.2, 2.3, 3, 5, 8, 9, 10, 11, returns a single call

to IMPLY or HOA, we are left with only IMPLY Rules 2.4, 4.4, 11, and HOA Rules

4.5, 4.6, 6.5, 6.6, 7.4, 7E.4, and 7LE.6, to handle. These appear in Tables
I-T, and II-T, pp. 16-19.

For each of these, we state below: the goal being attempted when the
rule is applied; the rule itself; and the theorem validating that rule. The
proofs are given by Resolution.

In these proofs we assume that no contradictory substitution 6 dis ever
substituted (i.e., a case where a/x and b/x are both in 6, where a # b).
The results given here can easily be generalized to handle substitutions,
which consist of disjunctions of ordinary substitution (see Appendix 3 of iih,

where such contradictory entries are allowed.

GOAL (TY o~ H-> A A B)

Rule I-T 4.4. If (TY o E=3»A) returns (6 TY1) and (TY » H=3 B6) returns

(62 TY2) then return (6062 (TYlwv TY2)) for (TY, H=pA A B).
Theorem. (VIYl A TY ~ HO - AD)
(vTY2 A TY o HO2 (B8)ez2)

> (v(TYL v TY2) A TY » H > A~ B)

Proof. By Resolution
1. TY1 v ~VTIY v VHE , A8

2., TY2 v VIY v nHB2 v BE62

3. NIYL

4. nTY2

5. TY

6. H

7. “NA w B

8. A8 1,3,5,6
9. (Bo)o2 2,4,5,6
10. ~BO 7,8

1. @ 9,10

GOAL. ((TY'y,y TY") . H > C)

Rule I-T 2.4. If (TY' . H=p»C) returns (8 TY1l) and (TY¥" A H=3C)

returns (A TY2) then return (8 o A {(TY1 v TY2)) for
((TY' v TY") » H=>C).
Theorem. (VTY1 A TY' A HE > CB)
(VIY2 A~ TY" ~ HX > C))

>(v(TY1l v TY2) » (TY' v TY") A H > C)

Proof. By Resolution.
1. TYl o ~TY' o “HE + C8

2. TY2 v TY" v HAy CA

3. N~TYD

4. ~TY2

5. TY' « TY"

6. H

7. ~C

8. ATY' 1,3,6,7
9., ~IY" 2,4,6,7
10. 5,8,9

GOAL. (TY A H > a < b)
RULE I11l. Return (NIL v(a < b) A TY)

Theorem. ~[v(a < b) A TY] - (TY A H > a < b)

Pro.of.w ’\;['\:(a <b) ATY]+>[a < by VIY]
«>(TY » a < b)

+(TY A H > a < b)

GOAL. (TY ~ B > A v/ D)

Rule H-T 4.5. If (TY A B A “DT3>A) returns (6 TY1) and (TYlA B A Y A=>D)

returns NIL) then return (© TY1l) for (TY » B=» A v D).

Theorem. (VIYL » TY . BO& 4 D& > A0)
—> (VIYL 4 TY A BB > AB « DO)

Proof. These are equivalent.

Rule H-T 4.6. If (TY ~ B A “D=3-A) returns (0 TY1l) and (TYl . B » VA =3D)
returns (A TY2) then return (6 o A TY2) for (TY . B=> Ay D)
Theorem. {(VIY1 A TY ~ BB A D6 -~ AB)
(VIY2 A TYL, BX avAX - D)) '
— (TY2 ., TYA B->A v D)
E£gg£A By Resolution.

1. T™Y1I v TY v B9 + D6+ A8

2. TY2 ATYL + ~BA v Al v DA

3. ~IY2

4., TY

5. B

6. NA

7. D

8. TY1 1,4,5,7,6

9. ~IY1 2,3,5,6,7

10. Ll 8,9

GOAL. (TY. H . (A-=»D)->()

Rule H-T 7.4. 1If ANDS (D,C) returns © and (TY ~ Ha (A~ D) - A8) returns

(A TY2) then return (0 o X TY2) for (TY . Ha (A->D)==3-C).
Theorem. (DO = CO)

A(VIY2 o TY » Ha (A= D)X > AB))
— (VIY2 . TY 4 H A (A= D) > Q)
Proof. By Resolution.
1. ~D8 v C6

2. TY2 v ATY v MH ¢ Al e ADA

3. TY2 ¢« ~NTY v VH o VDA ABA

7. VA v D

8. aC

9. ~D6 1,8

10. AX v ABX 2,4,5,6
11, ~DXx v ABX 3,4,5,6

12. DA v DA 10,7

13. DA 9,12
14. A6A 13,11
15. D6 7,14
16. 9 9,15

GOAL. (TY ~ A A D> 0C)

Rule H-T 6.5. If (TY ~ A=C) returns (8 TY1) and (TY1l 5 D==>C)

returns NIL then return (8 TY1) for (TY A A A D:%;C).

Theorem. (VIY1 A TY A A8 > C(C8)
— (TYL A TY A A6 A D6 =% CB)
Proof. Obvious

Rule H-T 6.6. If (TY A A =3C) returns (B TY1) and (TYl Ao D=3-C)

returns (X TY2) then return (8 o A TY2) for (IY o A . D==:C).
Theorem. (VIY1 ~ TY A A6 - (B)
(VIY2 A TY1 . DA > CA)
—> (VIY2 A TY A A+ D -+ C)
Proof. By Resolution
1. TY1 v ~TY v “AB (6

2. TY2 v ATYL . DA« CA

3. ~:TY2 h T

4 TY
5 A
6 D
7. e

8. Tyl 1,4,5,7
9. Y1 2,3,6,7

10. 8,9

[

GOAL. (TY , H A (A> A =Db) =+ ()

Rule H-T 7E.4. If (TY A H A a = b=»C) returns (O TY1) and

(TY , H o (A > a = b)=3 A8) returns () TY2) then

returns (6 o A (TYLl TY2)) for (TY A H,. (A> a= b)=30C)

GOAL. (TY A Ha (A>a <b) » Q)

Rule H-T 7LE.6. If (TY - H ., a < b= r(¢) returns (& TYl) and

(TY 4 H A (A~ a f_b);;‘;;-Ae) returns (X TY2) then
return (6 ° A (TYl, TY2) for (TY o H. (A= a <b)=.0C).
Theorem. (For both). (D for a=b or a b.
(VTY1 , TY A HO A D > C6)
(VTY2 A TYA HA o (AA > D) » ABA)
—(v(TY1 v TY2) A TY A HAa (A > D) > C)
Proof. By Resolution.
1. TYl «~IY, ~HO v D, CH
2., TY2 ~VTY » VHA ~ A v ABA

3. TY2 v VTY v AHA v D ow ABA

4, VTY1
5. “TY2
6. TY
7. H

8. ~sAv D

9. ~C

10. ~D 1,4,6,7,9
11. Ax v AOX 2,5,6,7
12. ~D v A6X 3,5,6,7
13. ~A 10,8

14, 0 13,11

Appendix 3

Output from the IST Program Verification System
(The prover is called on page 5)

TELNET typescript file started at FRI 25 APR 75 8954:04v
eXVERIFIER/3-2-1.5AV;1

YERIFIER 3.2 UCILSP BASED 18-APR-75
HI LARRY

>SCANTR: =NIL;
NIL

>TY;

FILE TO BE TYPED? BSRCH.PAS;1 [Old versionl

PeR58 %This program does binary search on the array All .. P-11 irying
51514185 %to locate the element X. If successful, then LOOKUP is set
pBe78 %such that ALOOKUPI=X and ERROR is set FALSE. If unsuccessful,
BBB8B %ERROR is set TRUE. More on this problem may be found in

BBR98 %Section 5 of Igarashi, London, and Luckham.

Bogss

pe1BE8 ENTRY 1 < P & SORTED(A) & Alll LE X & X < AfPI;

8a28g EXIT (AILOOKUP)=X) AND {ERROR=FALSE) OR NOTFOUND(X,1,P} AND (ER
wveROR =TRUE);

pa388 BEGIN M:=1;N:=P;ERROR:=FALSE;

BR4B8 ASSERT M <« N & AIMI LE X & X < AIN] & SORTED (A) &ERROR=FALSE;
pesed WHILE M+1<N DO BEGIN

88600 [:=(M+NIDIV 23

88708 IF X < A[1} THEN N:=I ELSE IF AIlIl < X THEN M:=I
88800 ELSE BEGIN LOOKUP:=1;G0OTO 1 END

88964 END; '

p18086 IF AIM} NE X THEN GO 7O 2 ELSE BEGIN LOOKUP:=MM;GO TO 1 END;
g1189 2: ASSERT NOTFOUND (X, 1,P):ERROR: =TRUE:

81206 1: ASSERT (A[LOOKUPI=X} AND (ERROR=FALSE)} OR NOTFOUND(X,1,P) AN
w0 (ERROR=TRUE); '

81300 END. -

NIL

>PROVE BSRCH;

RESTORE: NO(%), OMP, PRE, VC, VCS
>4
PARSE: $=BSRCH.PAS,RESET (FILENAME)
>$PROCEEDING

Parsing .

VCGEN: P(ROCEED) ($), UNIT
>8
MAIN#L

MAIN#2
MAINA3
MAIN#G
MAIN#S
MAINHG
MAIN#7
MAIN#E

TRYING TO SIMPLIFY NMAIHN/AL
CHOICE: P (ROCEED) ($),+/-N,VCGEN, ASSUME,
END, DEFER, SWITCH, STATUS, RED (UCE)
>$PROCEEDING

VERIFICATION CONDITION MAIN#L

SIMPLIFICATION
>>> ENTERING RPV WITH

1<P
AND SORTED(A)
AND A[1] LE X
AND X < AIP]
IMP 1<P

AND AIl1) LE X
AND X < AIP]
AND SORTED{(A)
AND FALSE=FALSE

>>> ENTERING RPROVER WITH
TRUE
<<< LEAVING RPROVER WITH
TRUE
VC WAS MAINKL
TRYING TO SIMPLIFY MAINKZ
CHOICE: P (ROCEED) ($),+/-N,VCGEN, ASSUME,
END, DEFER, SWITCH, STATUS, RED {(UCE)}
>$PROCEEDING
VERIFICATION CONDITION MAINAZ

SIMPLIFICATION
>>> ENTERING RPV WITH

M<N

AND ATMI LE X
AND X < AINI
AND SORTED(A)
AND ERROR=FALSE

AND M+1 < N
ImpP X < AL(M+N) DIV 2]
IMP (M < (M+N) DIV 2) AND (AIM] LE X)

AND X < AL(M+N) DIV 2]
AND SORTED (A)
AND ERROR=FALSE

SUBING ERROR:=FALSE
>>> ENTERING RPROVER WITH

SORTED (A)
AND M+2 LE N
AND M<N.
AND X < AIN]
AND X < ALIN+M) DIV 2]
AND A[M] LE X
IMP SORTED (A)
AND M < (N+M1) DIV 2
AND X < ALIN+M) DIV 2]
AND AIM] LE X

HCMATCH MATCHED SORTED (A)
MATCHED X < AL(N+M) DIV 2]
MATCHED AIMI LE X

HCMATCH GIVES

SORTED (A)
AND M+2 LE N
AND M<N
AND X < AIN]
AND X < AL(N+M) DIV 2]
AND AIM] LE X
IMP M < (N+M) DIV 2
INSUB LEPRV IMPPRV LOGSUB SAVESTATE MPHYP EXPQ CHECKSTATE
<<< LEAVING RPROVER WITH
SORTED (A)
AND M+2 LE N
AND M<N
AND X < AIN]
AND X < AL(N+M) DIV 2]
AND A[M] LE X
IMP M < (N+1) DIV 2

VC WAS MAINH2 SAVE AS?
>$MAINHS2

TRYING TO PROVE MAIN#SZ
CHOICE: P(ROCEED) (8),+/-N, VCGEN, ASSUNME

9

END, DEFER, SWITCH, STATUS, RED (UCE)
>DEFER

TRYING TO SIMPLIFY MAIN#H3
CHOICE: P{ROCEED) ($),+/-N,VCGEN, ASSUME,
END, DEFER, SWITCH, STATUS, RED (UCE)
>2 ‘

VERIFICATION CONDITION TMAIN#S

SIMPLIFICATION
>>> ENTERING RPV WITH

M<N
AND AIMI LE X
AND X < AINI]
AND SORTED(A)
AND ERROR=FALSE
AND NOT (M+1 < N)
IMP AIMI NE X IMP NOTFOUND(X, 1, P)

SUBING ERROR:=FALSE
“>>> ENTERING RPROVER WITH

SORTED (A)
AND M<N
AND X < A[N]
AND N LE M+l
AND AIMI LE X
AND NOT (X = AIMI)
IMP NOTFOUND (X, 1, P)

HCMATCH INSUB LEPRV IMPPRV LOGSUB SAVESTATE MPHYP EXPQ
NEW EQUALITY M+l =N

FROM: M<N
AND: N LE M+l
EXPQ GIVES
SORTED (A)
AND M<N
AND X < AIN]
AND N LE M+1

AND AIMI LE X
AND NOT (X = AIMI)
AND M+l = N
IMP NOTFOUND(X, 1, P)
CHECKSTATE INSUB
suUB: TYPE Y(ES), N(0), ? FOR MNEMONICS, HELP FOR COMMAND SUMMARY
M:=N-1
LARNING! !V LEFT SIDE NOF PROPNSED SUBST DOES NOT APPEAR IN ANY CONCS.
>5S
1} Me=N-1
2) N:=M+1

TYPE NUMBER BETWEEN 1 AND 2
>2

SuB: TYPE Y(ES), N(O), ? FOR MNEMONICS, HELP FOR CONNAND SUTHIARY
N:=M+1 ’
WARNING!!! LEFT SIDE OF PROPOSED SUBST DOES NOT APPEAR IN ANY CONCS.
sY

SUB USED: N:=M+l

INSUB GIVES

SORTED (A)
AND X < AIM+1]
AND AIMI LE X
AND NOT (X = AIMI)
IMP NOTFOUND(X, 1, P)
LEPRV IMPPRY ,
<<< LEAVING RPROVER WITH
SORTED (A)
AND X < AM+1]
AND AIMl LE X
AND NOT (X = A[M])
IMP NOTFOUND(X, 1, P)

VC WAS MAINAS SAVE AS?
>YMATN#SS

TRYING TO PROVE MAINASS
CHOICE: P (ROCEED) (8),+/~N,VCGEN, ASSUME,
END, DEFER, SWITCH, STATUS, RED (UCE)
>STATUS
MATIN#L Se5erePROVEDvevese
MAINH2 HAS BEEN SIMPLIFIED TO
MAIN#SZ (DEFFERED) TO BE PROVED
MAIN#3 HAS BEEN SIMPLIFIED 70O
MAIN#S3 (DEFFERED) TO BE PROVED
MAINAL 3o PROVED veess
MAIN#S HAS BEEN SIMPLIFIED TO
MAINHSS TO BE PROVED
MAIN#S HAS BEEN GENERATED
MAIN#7 HAS BEEN GENERATED
MAIN#8 HAS BEEN GENERATED

TRYING TO PROVE MAINHSS
CHOICE: P(ROCEED) ($),+/-N,VCGEN, ASSUME,
END, DEFER, SWITCH, STATUS, RED {(UCE)

>END

PROVE: NO($),UN(DEFERRED),OR DEF (ERRED) (VC’'S)

>$

DUMP: DMP($), PRE, VC, VCS, NO, CLEAR {STRUCTURE)
>NO

NIL

>PROVEIT VCNMS; A

- VERIFICATION CONDITION VCMS Aol 4

(THEOREM TO BE PROVED)

NIL
SORTED (M, MIN(N+1, 2), N)
AND 2 LE N
AND A(M, 2, MININ, 1))
AND IP1LARGEST (MIN(N, 1}, ™)

OR 8 = MIN(-N + 1, 8}
IMP SORTEDMM, 1, N)
{(BACKUP POINT)
W>$PROCEEDING
(BACKUP POINT)
(P->)
W>TP

N IN [2..INFINITY]
AND SORTED (M, MIN(N+1, 2}, N)
AND A(M, 2, MININ, 1))
AND IPILARGEST (MININ, 13, ™M)
OR 8 = MIN(-N + 1, 8)
IMP SORTED(M, 1, N)
W>8$PROCEEDING
...... (P-> ORH)
(P-> ORH 1)
{BACKURP POINT)
(P-> ORH 1 P->)
W>TP

N IN [2..INFINITY]
AND SORTED (M, MIN(N+1, 2}, N)
AND A(M, 2, MININ, 1))
AND IP1LARGEST (MIN(N, 1), M)
IMP SORTED(M, 1, N)
W>$PROCEEDING ‘
...... RAN OUT OF TRICKS

LEMMA:

>SORTED (M, 1+1,N) AND (M{I1 LE M{I+11) IMP SORTED(M,I,N);
==> (1)

SORTED (M, 1+1, N)
AND MII1 LE MII+11
IMP SORTED(M, I, N)
<== (1)

SORTED (M, I+1, Nj
AND MIIT LE M{I+1]
- IMP SORTED(MM, I, N)
(LEMMA USED SAVED IN L248)

SORTED(M, I+1, N)
AND MII) LE MIIT+1]
IMP SORTED(M, I, N)
0K??2?
>YES
{USE) m==cosesmzzcsesssmessassssnsns
(P-> ORH 1 P-> U) '
W>$PROCEEDING
.(P-> ORH 1 P-> U H)
(P-> ORH 1 P-> UH 1)
...... RAN QUT OF TRICKS

N IN [2..INFINITY]
AND SORTED (M, MIN(N+1, 2}, N)
AND A(M, 2, MIN(N, 1))
AND IP1LARGEST(MIN(N, 1), ™)
IMP SORTED(M, 2, N)
W>R H

N IN [2..INFINITY]
AND SORTED(M, 2, N)
AND A(M, 2, 1)
AND IP1LARGEST(1, ™)
0K??7?
>YES
W>TP

N IN [2..INFINITY]
AND SORTED(M, 2, Nj
AND A(M, 2, 1)
AND IP1LARCEST (1, ™)
IMP SORTED(M, 2, N).
W>$PROCEEDING
ve.{P-> ORH 1 P-> UH 1)

SORTED (M, 2, N)

PROVED

W>$PROCEEDING

{(P-> DRH 1 P-> U H 2)

MORE TIME ? (TYPE NUMBER OR NO)
>NO

M{1]1 LE M{Z]
FAILED TIME LIMIT
W>TP

SORTED (M, 2, N)
AND N IN (2. INFINITYI
AND SORTED (M, MIN(N+1, 2), N)
AND A(M, 2, MININ, 1))
AND IP1LARGEST(MIN(N, 13, M)
IMP MI[1] LE MI[2]

W>R H

SORTED (M, 2, N)
AND N IN [2..INFINITY]
AND SORTED(M, 2, N)
AND A(M, 2, 1}
AND 1P1LARGEST(1, M)

0K???

>0K

W>$PROCEEDING ‘
........ RAN QUT OF TRICKS
W>TP

SORTED(M, 2, N)
AND N IN [2..INFINITY]
AND SORTED(M, 2, N}
ANO A(M, 2, 1)
AND IPILARGEST(1, M)
IMP MI11 LE MI2]
W>USE
LEMMA:
>IP1LARGEST(1,M) IMP (M1l LE MI21});
==> (1)

IP1LARGEST (1, M)
IMP MI1) LE M2
<== (1)

IP1LARGEST (1, M)
IMP MI1] LE M2
(LEMMA USED SAVED IN L241)

IP1LARGEST (1, M)

IMP M1} LE MI(2]
OK?7??
>YES

(USE) mes=mmssssz=ssssxssnsamsssmsss
{(P~> ORH 1 P-> U H 2 U)
W>8PROCEEDING

.(P-> ORH 1 P->UH 2 UH)

...... (P-> ORH 1 P-> UH2UH)

IP1LARGEST (1, ™M)
PROVED

W>$PROCEEDING

(P-> ORH 1 P-> U H 2)

M1l LE MI2]
PROVED
W>$PROCEEDING

(P=> ORH 1 P-> U H)

SORTED (M, 2, N)
AND MI[1]1 LE MI2]

PROVED
W>$PROCEEDING
(P-> ORH 1)

N IN [2..INFINITY]
AND SORTED (M, MIN{N+1, 23, N)
AND A(M, 2, MINWN, 1))
AND [PI1LARGESTMIN(N, 13, ™
IMP SORTEDM, 1, N)
PROVED
W>8$PROCEEDING
(P-> ORH 2)
(BACKUP POINT)
(P-> ORH 2 P->)
W>TP

N IN [2..INFINITY]
-AND SORTED (M, MIN{N+1, 23, N}
AND A(M, 2, MIN(N, 1))
AND 8 = MIN{-N + 1, 8]
IMP SORTED(M, 1, N)
W>A
ASSUMED

(P-> ORH 2)

N IN [2..INFINITY]

AND SORTED (M, MIN(N+1, 2), N)
AND A(M, 2, MIN(N, 1))
AND 8 = MIN(-N + 1, 8}

IMP SORTED(M, 1, N)

PROVED

W>$PROCEEDING

(P-> ORH)

N IN [2..INFINITY]
AND SORTED (M, MIN(N+1, 2}, N}
AND A(M, 2, MIN(N, 1))
AND IP1LARGEST (MIN(N, 1), ™)
IMP SORTED(M, 1, N)
AND N IN [2..INFINITY]
AND SORTED (M, MIN(N+1, 23, N)
AND A(M, 2, MIN(N, 1))
AND 8 = MIN(-N + 1, @)
IMP SORTED(M, 1, N)
PROVED
W>8PROCEEDING
(P->)

SORTED (M, 1, N)
PROVED
W>$PROCEEDING
NIL

May 6, 1975

Unsolicited remarks of a user

who had just proved a theorem on the interactive system:

"I really had no idea what the theorem was saying, but armed with the
relevant lemmas, I just let the machine do the work.

The conclusion of the theorem looked very much like the conclusion of
one of the lemmas I had. So naturally I tried to use it, but soon
realized that it was a back-chaining trap. That was no real problem,
I simply backed up and tried another lemma which seemed to fit. When
I back-chained and tried to prove the hypotheses of that lemma it soon
became apparent that another lemma was needed. And so it went until
I noticed that an equality chain could possibly be built. I wasn't
sure one existed but it didn't hurt to try. You know what happened
then - it actually discovered a chain and reduced my problem to prov-
ing the hypotheses of that chain. I still didn't know what I was
proving, but the only remaining problem was to find values for the
two variables A and B in C, which it did quickly. "

10.

11.

12.

13.

14.

References
W.W. Bledsoe and Mabry Tyson. The U.T. Interactive Prover. Univ. of
Texas at Austin, Math. Dept. Memo. ATP-17, May 1975.

Alan Bundy. Doing Arithmetic with diagrams. Third Int. Joint Conf.
Artif. Intell., 1973, pp. 130-138.

J.F. Rulifson, J.A. Derksen, and R.J. Waldinger. "QA4: A procedural
calculus for intuitive reasoning. Stanford Res. Inst. Artif.
Intell. Center, Stanford, Calif., Tech. Note 13, Nov. 1972.

R.J. Waldinger and K.N. Levitt. Reasoning about programs. Artif.
Intell., vol. 5, no. 3, pp. 235-316, Fall 1974; also in Conf.
Rec. Ass. Comput. Mach. Symp. Principles of Programming
Languages, 1973, pp. 169-182.

W.W. Bledsoe, R.S. Boyer and W.H. Henneman. Computer proofs of limit
theorems. Artif. Intell., vol. 3, mo. 1, pp. 27-60, Spring 1972.

W.W. Bledsoe, Program Correctness. Univ. of Texas at Austin, Math.
Dept. Memo ATP-14, January 1974. (out of print)

W.W. Bledsoe. The Sup-Inf method in Presburger Arithmetic. Univ.
of Texas at Austin Math. Dept. Memo. ATP-18, December 1974.
Essentially the same as: A new method for proving certain Pres-
burger formulas. Fourth IJCAI, Tblisi, USSR, September 3-8,
1975.

D.C. Cooper. Programs for mechanical program verification. Mach.
Intell. 6. American Elsevier, New York, 1971. 43-59.

D.I. Good, R.L. London and W.W. Bledsoe. An interactive verification
system. Proceedings of the 1975 International Conf. on Reliable
Software, Los Angeles, April 1975, pp. 482-492, and IEEE Trans.
on Software Engineering 1(1975), pp. 59-67.

A.C. Hearn. Reduce 2: A system and language for algebraic manipu-
lation. 1In Proc. Ass. Comput. Mach. 2nd Symp. Symbolic and
Algebraic Manipulation, 1971, pp. 128-133; also Reduce 2 User's
Manual, 2nd ed., Univ. Utah, Salt Lake City, UCP-19, 1974.

Mabry Tyson. An algebraic simplifier. Univ. of Texas at Austin,
Math. Dept. Memo. ATP-26, 1975.

7ohar Manna, S. Ness and J. Vuillemin. Inductive method for proving
properties of programs. Comm. ACM, Aug. 1973.

R.M. Burstall. Proving properties of programs by structural induction.
Computer J. 12, 1(Feb. 1969), pp. 41-48.

Joel Moses. Symbolic-Integration. MIT-AL Memo 97, June 1966.

