SEMIAUTOMATIC SYNTHESIS OF
INDUCTIVE PREDICATES

by
Mark Moriconi

June 1974 ATP-16

Semiautomatic Synthesis of Inductive Predicates
. <%
Mark Moriconi

The University of Texas at Austin

1. Introduction.

The assertion approach for verifying programs was formalized by Floyd
[9] and Naur [18]. Previous work in the field has indicated various practical
limitations. It has been pointed out by King [13], Elspas, et al. [8], and
Elspas, Levitt, and Waldinger [7] among others that one of the single most
important factors limiting these efforts at program verification is the
difficulty of inventing Floyd assertions. The difficulty appears to be not
so much a problem of syntax or the assertion language, but one of correctly
understanding the program.

Previous attempts at semiautomatic generation of inductive assertions
exhibit essentially two approaches. The first is basically heuristic and
has been suggested by Cooper [5], Katz and Manna [12], Wegbreit [22], and
others. The second attempts to be somewhat more formal having as its basis
a suggestion by Green [10] that the problem can be viewed as that of finding
the solution to simultaneous sets of difference equations.

Our approach for finding a practical solution to the problem is signifi-
cantly different from most others. We begin by formally developing a new
representation of a program (We assume the program has an input assertion
specified a priori.) which turns out to be an extremely useful tool in
clarifying what a program (or part of a program) computes. This represen-—

tation is called a case description and is not totally unlike the informal

ideas presented by Pratt in [19,20]. A case description is a functional

#This work is based in part on the author's Ph.D. Thesis {17]. The work was
supported by NSF Grant GJ-32269.

representation of a program consisting of a set of descriptors which are

composed of control and kernel sets. The kernel set of a descriptor specifies

the outputs which are computed when the control set is satisfied for a given

input assignment. The functional equivalence of a program schemata and its

corresponding case description for a given interpretation and initial assign-
ment is proved in Section 5. As a result we view the abstract program and
its associated case description as simply different representations of the
same (partial) function.

We then proceed to develop various heuristics which when used in concert
with a (partial) case description for a particular program generally yield
consistent loop invariants without much difficulty. Examples of this are

presented in Section 7.

2. Mathematical Background.

In this section we present a simple formulation of the first-order
predicate calculus and develop concepts and notation to be used throughout.

For further discussion see Church [4], Mendelson [16], and Schoenfield [21].

The basic alphabet consists of commas; parentheses; the logical symbols

i

N, A,~; individual variables K.y Koy esey X 5 «.o; individual constants
1 2 n

cl, CZ’ vees cn, ...} function letters fi, fi, e fi, ...; and predicate
2
letters pi, pl, ey pi, The superscript of a function or predicate

letter represents the number of arguments, whereas the subscript is simply an
index number to distinguish different function or predicate letters with the
same number of arguments.

Terms are generated as follows:

1. Variables and individual constants are terms.

2. If tys ---» t = are terms, then f;(tl’ cees tn) is a term.

Atomic formulas are formed by applying predicate letters to terms, i.e.

. n .
if tl’ ey tn are terms, then pi(tl’ coes tn) is an atomic formula.

Well-formed formulas (wffs) are defined as follows:

1. An atomic formula is a wif.

2. 1If 8 and 7 are wifs, and X, is a variable, then &&8), 8~ F),
and (07&1)6) are wifs.

Parentheses are omitted whenever their omission causes no confusion.
The scope of a quantifier occurring in a wff is defined to be the wff
to which the quantifier applies. An occurrence of a variable in a wif is

bound iff this occurrence is within the scope of a quantifier employing this

variable, or is the occurrence in that quantifier. Otherwise, an occurrence

of a variable is said to be free. Clearly a variable can be both free and

£

bound in the same wff. A wff is said to be quantifier-free if it contains no

quantifiers.

.1 .
An interpretation” & consists of a non-empty set Qf, called the domain

. . n .
of ¢ , and an assignment to each predicate letter p; an n-ary relation

n . n n
R, im D, to each function letter fi an n-ary total function Ei from
n . o ixos .
D into D, and to each individual constant ¢ some fixed element dC
i
of D.

We now define the intuitive notions of satisfiability and truth. Given
an interpretation & with domain D, let 7. be the set of denumerable
sequences of elements of D. We define what it means for a sequence
s = (al, 2y, ...) in 2 to satisfy a wff & wunder a given interpretation ¢.

As a preliminary step we define a function p of one argument having
terms as arguments and values in 2.2 An assignment is determined by the

function p depending on 5, denoted as p -, in the following manner:

s

1. g (xi) =a,.
2. Dg (Ci)= dC..
n : 1 n
3- p-é (fi(tl, AR) tn)) = _P_‘_i (D§(tl), 2 ey pg(tn))'

We define inductively what it means for a sequence § in 7. to satisfy
a wif as follows:
- . . : n .
1. § satisfies the atomic formula pi(tl’ cens tn) iff (pé(tl)’ ..o

n
og(t D) e R;.

B
n

satisfies ~& iff s does not satisfy &.

W
n

satisfies 8AF iff § satisfies & and s satisfies g.

TIndividual capital letters which are underscored represent block letters.

1. 1In Shoenfield [3] what we refer to as an interpretation is called a
structure. We use this terminology to be consistent with subsequent
definitions.

2. The , function is used extensively in Section 3.3 and Section 5.

4. 8 satisfies (b&i)é iff every sequence of ; differing from

wl

in at most the i-th component satisfies &.

8 is said to be satisfiable iff there is an interpretation ¥ for
which & is satisfied by at least one sequence in 7.

S is said to be true iff every sequence in 7. satisfies &8.

To say that a wff & 1is logically valid means that & is true for

every interpretation ¥.

3. We could alternatively (by G8del's Completeness Theorem) have singled
out the logically valid wffs by specifying axioms and rules of
inference.

3. Definitions of Abstract Programs and Related Concepts.

In this section we present a simple abstract model of a computer program
(called a program or abstract schemata) and then consider a particular com-—
putation (execution sequence) resulring from a specific interpretation and
assignment. Models similar to ours have been studied by many authors, e. g.,

Kaplan [11], Luckam, Park, and Paterson [14], and Manna [15].

3.1 Abstract Programs. An abstract program AP consists of

i

1. (a) A finite set of individual input variables X

}

{xl, ceey X

n
with n > 0, and

(b) a finite set of individual program variables y = {yl, oo yn}

with n > 1.
2. A finite, directed, labeled graph which we define by the triple
(N,A,2) with a finite set of nodes N = N UBH s.t. there is

(a) a unique entry node called START with START e X', and

(b) a set H composed of at least one exit node called HALT

with HNN'= ¢.

2
3. A:.N'+'N(J‘xiﬁ defines the flow of control for AP,
i= -

4., £:N'>@UBgives a labeling for the nodes of AP with statements
from the sets @ and % of assignment and branch statements,

respectively, which are defined as follows:

(a) An assignment statement is an expression of the form o <« 1(X,y) where

t(%,¥) 1is a term with no variables other than X, and Y5 and o is

a variable. In addition START is considered to be in . &

node n € ¥' is an assignment node iff ¥n e N', £(n) e @&=> A(n) e N.

(b) A branch statement is a quantifier-free wff B(¥,y) with no

variables other than X, and Y- A node n e N' 1is a branch
node iff vn e N', £(n) ¢ B<=>A(n) € Nz.

3.2 Programs. Let 2& and 2§ be non-empty domains for x and vy,

respectively, such that 2§ € D_. For convenience (although it is not

necessary) we begin the schemata (first node after START) with an initial

assignment statement which establishes initial values for all program

variables. We denote the initial assignment statement by ¥ <« 1(X) which
represents a sequence of assignments vy * Tl(i), cees YT (x) where
rj(§), 1<j< 4, isatemm whose only variables are X - In addition we
require that a program schemata have at least one input variable or at least
one constant.

Given an abstract program with the above characteristics, an interpreta-
tion ¥ for AP specifies the following:

1. For each n-ary function symbol f? appearing in AP we assign a

, n .,
total function from 2§ into D_.

8]

For each n-ary predicate symbol p? appearing in AP corresponds

n .
an n-ary relation Bi in 2§.
3. TFor each constant we assign a fixed element of Q§.

An abstract program AP together with an interpretation ¢ forms what is

called a program and is demoted by (B,%).

We now extend AP by adding an input predicate (or input assertion),

denoted m(i), which is a wff with no free individual variables other than

% and denote it as (ég,w). @(X) wusually specifies the domains of the input
variables and any constraints on the joint occurrence of values of input
variables. (AP, @) together with an interpretation ¥ forms (P,¥,¢) where

¢(¥) is interpreted in the usual manner over D-

3.3 Interpreted Programs. Let (P, %,0) be a program and E € Pi be an input

assignment for X. This defines the interpreted program (g,&,Q,E). An

interpreted program can be executed defining what is called an execution
sequence which may be finite or infinite. Before defining this concept we

make the following notational conveniences to be used throughout.

Notation. Let (d) denote the vector4 of constants (dl,...,dn)
and (t) the vector of terms (tl,...,tn).

Definition 1. We define ¢ inductively by

&(1) = (<t1>: gls nl)

when
t satisfies o(X),
where
n, = A(START),
€ = {e(®1,
and

t, = x , v fixed,
if there are input variables, or

1 v? v fixed,

if there are no input variables.
Henceforth, when it causes no confusion we omit references to X

as its value remains constant under p_. We also refer to t(%,¥) as

g
simply 7.

Given &(k) = ((tk), €. nk+l)’
If i(nk) # HALT we define
e(kctl) = ((tyy1)s Gypn» D)

where for arbitrary p and Vg in y either

4, {d) can be viewed as simply an element (ag ,...,ag) of) from Section Z.
1 n

¢9) i(nk) e @, say Yp ¥ T then

Pipr = Ay,
€1 = o
and
s when p # q,
Prer1 = s
T{tk/ya} s when p = q,
or

(11) £(m) e B, say B,(X,¥), then

for A(nk) = (y,z) we have

v, when E satisfies B)\(:—z,'}?){tk/ya}(),
P+l T
z otherwise,
?ku {BA(X’Y){tk/ya}}’ when LR

gk‘*‘l
Wk U {ﬂﬁk(x,y){tk/ya}} otherwise,

and

The function & defines an execution sequence

(E_J s ’E>

5. 1t /y) (B Gt /y }) means each y in T (8 (5¥)) is to be
replaced by the corresponding t of t, i.e., {tllyl""’tn/yn}'

6. It is true that £ either satisfies or does not satisfy B’)\(;’;){tk/yu»}'

for

(P,%,0,t)

with the value of the computation, denoted

equal to

where

when &

is finite (di.e.

is undefined.

We remark that p_

g

Val((P,%,0,t)),

D__(t),
E Q

2 = max(domain(&)),
the program terminates); otherwise

Val({P,%,¢,t))

applied to tQ yvields a specific vector of constants,

o_(ty) = (d).
3

10

11

4. Case Descriptions and Related Concepts.

In the next two sections we extend and formalize some ideas discussed
by Pratt in [19,20] in the direction of developing a formal yet practical

basis for generating assertions for programs.

4.1 Descriptors. For the abstract program (AP,0) let Si represent
a possible sequence of nodes, i.e. a path, o, nL o, ee, M from

1 2 n
(AP,9) having the following properties:

1. 8,(1) = A(START).

2. Given Gi(k):

(a) 1If i(éi(k)) € @ then Gi(k+l) A(éi(k)).

(y,z) then

(b) 1If £(éi(k)) € 3 and A(éi(k))
6i(k+l) =y or Gi(k+l) = 2z,

3. There is a maximum n s.t. Si(n) = HALT,

This defines a path Gi.e {61, 62, e e dn’ ...}, the set of all possible

sequences of nodes (paths) through (ég,qb.

For each éi we record in sequence ¢(X) followed by

i(ni‘), j=1l,0.0,M-
N

1f éi contains an

f(nij) € B

with A(n,)y = {y,z), we record

ki
Z(n;) or ~vn,)
J 3
depending on whether or not
n =y or n, =z,
41 *i+1

respectively. We call this an abstract or unreduced descriptor for (AP,¢).

Definition 2. We define D(di) inductively as follows:

i
D6, (1) = ((ty), €, 6,(1)),

where

€ = {o(®},

and

tl = xv,
if there are input variables, or
tl = cv,
if there are no input variables.
Given
i

(5, = ((£), €, 8;().

For i(si(k)) # HALT we have

i
where for arbitrary yp and yq in § either

(i) i(éi(k)) = yp <« 1. In this case we have

1 1
€1 = €
and
te
Crr1 T
T{tk/ya},
or

(i1) If £(s;(K))= ’37\(;"5')’ then

N

AY

when

when

fixed,

fixed,

p#F q,

p

q,

12

for A(éi(k)) = (y,z) we have

€ U0 &I /y 1, when 6 (k+l) =y,

else Wi U {%BA(§,§){tk/ya}},

and

For each 61, D(éi) produces what is called a reduced descriptor or

simply descriptor, denoted as

(P_a(P) 5. °
i
with control set
e
[y
and kernel set ¥ which is
(£}

where
w = max{domain D(éi)).

The main differences between the original path 61 and its corresponding
descriptor is that the descriptor contains no local variables or extraneous
sequencing information. A descriptor specifies the sequence of operations
only where necessary, i.e. in function composition and variables in argument
expressions. This means that we now have a representation for a program path
which will in many cases exhibit quite clearly the information necessary to
understand what a program (or part of a program) computes if that particular

path is followed.

13

14

4,2 Case Descriptions. We define an abstract case description, denoted

(AC,9), to be fgl (Q,¢)6 , 1.e. we generate a descriptor for each (finite)
— i
path 61 in (AP,¢). Of course (AC,9) is countably infinite unless

(AP,p) contains no loops.

(ég,w) together with an interpretation & forms a case description

€,%,9).

An interpreted case description is a case description with an assign-

ment £ € Qi and is written as (ij,m,g).

The control sets of the descriptors in the interpreted case description
are composed of ground instances of their predicates which can now be
evaluated in the usual manner. To find the unique descriptor corresponding
to a particular execution sequence we simply search the list of descriptors
for the descriptor all of whose control set predicates are satisfied. This
descriptor's kernel set specifies the values computed for that execution
sequence. However, from a well-known undecidability result we know that it
is impossible in general to determine whether an arbitrary program terminates
for all inputs. Therefore, we may never find a descriptor in the interpreted
case description having all predicates in its control set satisfied, thus
continuing to test indefinitely. We formalize this intuitive notion of

functional equivalence in the Section 5.

4,3 FExamples of Case Descriptions. We now add to our program an output

predicate (or output assertion), denoted ¢ (X,¥) which is a wff with no

free individual variables other than X and §. ¢(X,y) wusually specifies
the desired relation between the input and output variables. When convenient

in an example we add a set of individual output variables Z = {zl, ey zn}

to distinguishfor the reader exactly which variables are being assigned values

15

by the program. This slight addition makes the output assertion w(i,i).7
We henceforth refer to the output assertion as simply ¢ as its arguments
will be obvious from context.

The following examples illustrate the derivation of case descriptions
and their simplistic representation of a program. In addition we show a
possible use of case descriptions for either forming a particular ¢ or
"checking' one that was given a priori. If an inaccurate ¢ is provided
serious difficulties can arise in an attempt to prove partial correctness
(for discussion see [8]). In addition if an inaccurate ¢ dis used in the
partial or total derivation of an inductive assertion, as in Wegbreit [22]
and Katz and Manna [12], it is highly unlikely that the loop invariants will

ever be found.

7. The theorems presented in this work still hold if this addition is made
throughout.

In Figure 1 we see a simple factorial program with range 0 to 50.
Table 1 contains descriptors of its case description for some of the shorter

paths. Each descriptor is shown in its unreduced, reduced, and interpreted

(and simplified) form. Note that the number of unreduced and reduced descrip-

tors is countably infinite due to the loop in the abstract program. However,
by viewing the interpreted schemata we see that only a finite number of
descriptors are possible. Paths which cannot be followed irrespective of the
initial assignment yield a contradiction in the control set (denoted by O) as
shown by interpreted descriptor 52. The importance of this will become mag-
nified in more complex programs.

In obtaining the interpreted descriptor we can employ a limited theory
of types and specialized routines for algebraic simplification and solving
linear inequalities. Since in the control set, with possibly the exception

of ¢(x), we are dealing only with skolem constants we expect very efficient

analysis. Some of the specific techniques we will use are discussed by
Bledsoe et al. in [2].
Looking again at Table 1, by viewing only a few descriptors we can

easily see that ¢ is {2Z=N!},

Notation. Let 6(11, cees in) denote a path (or subpath) through the
flowchart over arcs il’ cees in. We henceforth omit from our tables the un-
reduced descriptor adding instead the statement Gj = é(il,...,in) to the
descriptor.

Figure 2 (taken from [8]) computes the fractional quotient P/Q to
within tolerance E.8 In Table 2 we see the (partial) case description for
Figure 2. It's easy to see from the interpreted descriptors that V¥ is

{p/Q - E < Z < P/Q}.

&. In this example the domain is the reals.

16

In Figure 3 (taken from [13]) we have a program which multiplies two
numbers, accepts signed inputs, and all additive operations are restricted
to incrementing and decrementing by one. From Table 3 it is easily seen
that ¢ dis {Y = DA * B}. As in Table 1 we again uncovered a path which
cannot be followed, viz. 64. However, we note that in this instance it
was not entirely obvious that 64 could not be executed. The knowledge that
a particular path cannot be followed, even if ¢(x) is satisfied, will in
many cases prove to be quite valuable information to other components of the

verification system.

17

¢ ¢ = {0<N<50)}

—p Z * FACT
i .-

ey
i
§
i
i

—®/saL1

I+ I+1
FACT <« FACT * 1 |

i
[— e

FIGURE 1. TFACTORIAL PROGRAM,

19

Interpreted
Unreduced Descriptor Descriptor Descriptor

1 (0<N<50); FACT<1l; I<0; % = {0<N<50; 0=N} = {N=0}
(I=N); Z<FACT * = {z+«1} g = {z+1}

2 (0<N<50); FACT<+1; I+0; € = {0<N<50, “v(0=N), € = {N=1}
n(I=N); I<I+1l; FACT<FACT*I; 0+1=N} * = {z<1}
(I = N); Z<FACT x = {z7+1%(0+1)}

3 (0<N<50); FACT<«1l; I<0; € = {0<N<50, “(0=N), € = {N=2}
n(I=N); I«I+1; FACT<FACT*I; V(0+1=N), (0+1) * = {z+2}
Vv(I=N); I«I+1l; FACT<FACT*I; + 1=N}

(I=N); Z~<FACT ® = Z <« (1¥(0+1))*
((0+1) + 1)}
52 (0<N<50): FACT+1; I<0; ¢ = {0<N<50, v (N=0), O

[~(1=N); I+I+1; FACT*FACT*I]Sl;
(I=N); Z+*FACT

., (N=50), N=51}
= ~Z€1%1%2%,, %51}

Table 1: Case Description of Factorial Program in Figure 1.

0 ¢= {(0<P<Q) A (O<E)}

9 P
D<E X~ B 2% 7”’ ®/HALT \

Figure 2. Wensley's Quotient Algorithm.

Interpreted
Descriptor Descriptor
8§, = §(0,1,2,5,6,7,9,10) € = {P/Q-E<0<P/Q<1/2}
¢ = {0<P<Q, O<E, P<0+Q/2, * = {z<0}
1/2<E}
x = {2«0}
52 = (0,...,7,9,10) € = {P/Q-E<1/2<P/Q<1
€ = {0<P<Q, O<E, ~(P<0HQ/2), * = {z<1/2}
1/2<E}
* = {Z«(0+1/2)}
8, = (0,1,2,5,6,7,8,2,5,6,7,9,10) € = {P/Q-E<0<P/Q<1/4
€ = {0<P<Q, O<E, P<0+Q/2, x = {z2<0}
~(1/2<E), P<0+(Q/2)/2,
(1/2)/2<E}
x = {z<0}

Table 2: (Partial) Case Description for Wensley
Quotient Algorithm,

21

11
A ~~~~~~~~ PR SR
Y<Y -1 ?
XB < XB +1
10
B

22

26

FIGURE 3.

24

Y Y+ 1
XB<XB + 1

MULTIPLICATION PROGRAM.

Interprete&'ﬁ"k
Descriptor Descriptor
8§, = 8§(0,...,6,12,13,14,2,15,16) € = {B=0, DA=1}
€ = {DA#0, DA>0, ~(B#0), v(DA-1#0)} x = {20}
x = {2«0}
8, = 8(0,...,8,11,6,12,13,14,2,15,16) € = {B=1, DA=1}
¢ = {DA#0, DA>0, B#0, B>0, “(B-1#0), x = {z«1}
~(DA-1#0) }
x = {2«(0+1)}
85 = 8(0,...,3,17,...,21,24,19,25,26, € = {B=1, DA=-1}
14,2,15,16) x = {Z+1}
¢ = {DA#0, ~(DA>0), B#0, B>0, " (B-1#0)
v (DA+1#0) }
x = {z+(0-1)}
s, = 8(,...,8,11,6,7,9,10,11,6,12,13,]
14,2,15,16)
% = {DA#0, DA>0, B#0, B>0, B-1#0,
v(B-1>0), Vv((B-1)+1#0),
~(DA-1#0) }
x = {2+ ((0+1)-1)}
55 = 6(0,...,8,11,6,7,8,11,6,12,13,14,2, ¢ = {B=2, DA=1}
15,16) x = {2«2}
% = {DA#0, DA>0, B#0, B>0, B-1#0
V((B-1)-1#0), “(DA-1#0)}
x = {z«(0+1)+1}

Table 3. (Partial) Case Description for Multiplication

Program in Figure 3.

23

Definition 4.

(AC,p) 1is said to be consistent if and only if for
every g.e 2% there is at most one descriptor
@,
8
in
(C,%,9,8)

such that all of its control set predicates are satisfied by E&.
Definition 5.

1f (ég,w) is consistent then the value of
written

(Q_,g,(p,g) s

Val((C,%,0,£)),
is determined as follows:

1. Let (_}_)_,@)6 be the unique descriptor in (ég,w) having all of
i
its control set predicates satisfied by ¢ and g: In this case

Val((C,%,9,8)) = #((D,®) s),

i
(2’¢)6 under & and £.

the kernel set of

1

2. If no such (Q,@)é exists then
i

Val((C,¥,0,8))
is undefined.

We are now ready to prove

Lemma 1. (Consistency Lemma)

description then

If (AC,®)

is an abstract case
(ég,w) is consistent.
Proof. Suppose ¥ and E’ satisfy (AC,¢)
distinct descriptors

such that there are two

(D, s
i

5. TFunctional Equivalence of Interpreted Programs and Case Descriptions.

We begin by making the following definitions.

Definition 3. & and E.e 2& satisfies (ég,@) means that there is

a descriptor

0,9 5 € (AC,9)
i

such that & and § satisfy

where

w = max {domain D(Si)}.

24

26

and

(Q,w)CS
j

with ﬁz and ﬁi , respectively, satisfied by ¥ and g. Let

w = min{y[s, (v) # 6,0}

Therefore
§,(u-1) = Sj(u-l)-
Now consider the case when
8, (u=1)

is an assignment node. From the definition of path we have

6,(w) = A8, (u-1)) = A(éj(u—l)) = 6j(u)
which cannot be the case. Thus 6i(u—l) must be a branch node.
Since 5i(u—l) is a branch node and
5, # 8.,
:]

without loss of generality we may assume that

§,(1) =y
and
éj(u) =z
for A(Si(u-l)) = (y,z). Thus
€, 22(5, G-Il i /y) (1)
and
@i 2~2 (8, =1l /y Y. (2)
But now
@iS@i

H max (domain D))
i

27

and

i J
@u < @max(domain D(éj)),

and since
i

Qmax(domaini}(éi))

and

gj
max(domain.D(éj))

are satisfied by & and E. by assumption, it follows that ¥ and ¢

B

satisfy @i and @i which contradicts (1) and (2). Q.E.D.

Lemma 2. ¥ and E satisfy

(AC,9)
if and only if
(,9,0,8)
is defined.

Proof. If ¢ and ¢ satisfy

(AC, @)
it follows from Lemma 1 that there is a unique descriptor

D,9)5 € (AC,)
i

, i . . e
such that its control set € is satisfied. We recall that
w

®(F) € €
w
and is thus satisfied by assumption. It can be shown by induction that €, = @;
for i=1,...,0. We also have w = Q. Thus
(B,%,0,¢)

must follow Gi which means that it is defined.

Suppose

(P,7,0,E)

is defined. Since there is some finite path di followed by

(P,%,0,8),

it follows directly that there is a

(P-’(‘D)G € (é_(},(P)
i

with its control set satisfied. Q.E.D.
We now have
Corollary 1. ¥ and E do not satisfy
(AC,9)
if and only if
(P,7,0,8)
is undefined.

We are now in a position to prove the main results.

Theorem 1. If ¥ and ¢ satisfy

(AC,9)

then

V&ll((_(_:__s»¢ P ag)) = Val((g?‘; s ’g))'

Proof. By hypothesis and the Consistency Lemma we know that there is

a unique descriptor
D,9)s € (AC,9)
i

such that its control set @i is satisfied by & and ¢. From Lemma 2
(P,¥,9,6)

is defined and furthermore must follow 6i' Since it can easily be shown

28

29

that

[}

(e,

AY
<tQ/ 3
we must have

o_(t,) = p_(tg).
3

Therefore
Val((C.%,0,6)) = Val ((R.#,0,6)). Q.E.D.

By a similar argument we get

Theorem 2. If

(_E_J »P :g_>
is defined then

Val((C,#,0,8)) = Val((P,#,9,5)).

As a result of Corollary 1, Theorem 1, and Theorem 2 we have now
established the functional equivalence of an interpreted program and its

corresponding interpreted case description.

30

6. Heuristics for Generating Inductive Assertions.

We now turn our attention to the development of heuristics which in some
cases suffice by themselves to generate inductive assertions; but more often,
for non-trivial programs, are used in concert with a (partial) case description.
Many of our heuristic techniques are similar in content to those of Wegbreit [22]
énd Katz and Manna [12]. A significant difference, however, is that we develop
only a few heuristic rules, of which normally only one applies, such that when
they are employed (possibly in conjunction with a (partial) case description)

a consistent assertion is usually formed on the first try. Hence, we generally
avoid fruitless attempts at generating and trying to prove verification con-
ditions for inconsistent predicates.

For simplicity in the statement of the heuristic rules, we view an exit

from a loop to be of the form

where the cutpoint for the loop immediately preceeds the exit test and is marked
by 1(§;§) representing the inductive assertion for the loop, P(X,§) is
the exit test, and wi(i,?) is some conjunct of a predicate ¢'(X,¥) known
to be true when P(x,y) is satisfied. We observe that ¢ (X,¥) is usually
different from y(X,§J). However, in the simplest case ¢'(X,§) is merely
y(x,y¥), i.e. there are no statements between V¥ (X,§) and the branch state-
ment under consideration.

We now consider the following heuristics which are applied in the specified
order to the formulas in their "natural" form.

1. Convert y'(X,§) to conjunctive form, i.e. y'(X,§) = wi(x,y) Ao

wé(i,?), and consider each w;(i,§) separately with the goal being to form

31

for each wi(i,y) an appropriate 1k(§,?) where 1(X,y) = 11(?,?) Ao A
1l(i’§)'

2. (Transitivity) If wi(i,?) is of the form thlt2 and P(X,y) is
of the form t3R2t4, where tl’tZ’tB’ta are terms and Rl’RZ are inequality
relations, then find the appropriate 1k(§,§) s.t. 1k(§,§):¢.(P(§,§);¢
w£(§,§)). To do this we normally employ the usual transitive closure properties
with the domain being the integers unless otherwise specified. 1If w;(i,y)
contains quantification we apply a tramsitivity axiom directly to P(X,¥) >
¢£(§,§) and if necessary make the appropriate subscript changes when arrays
occur within the quantified expression. (See the second example in Section 7.)
If no transitive rule applies to R1 and R2 we simply choose 1k(;,§)==wi(§,§)_

3. (Equality) This rule is generally used only in conjunction with a
case description. The reason for this is to avoid making an erroneous assertion
which in this case happens quite easily. We make this description definitive
by viewing a few specific cases.

(a) If P(%,§) is an equality branch with P(x,y) # w;(i,?) and
P(%,y) is of the form t, =0, then temporarily let 1k(§,§) = wi(§,§) and
compute a (partial) case description for the loop. We use this (partial) case
description to determine where the t. occurs in 1k(§,§). For example,
suppose we have A = 0=X =Y * Z. There are numerous plausible 1k(i,§)
such as X +A=Y*Z, X% C4+A=Y%*Z, X* (C*A) =Y*Z,X*C+HAS=
Yy %7 % C 4+ A and so on where C 1is a constant. We avoid this proliferation
of possible inductive assertions by generating a (partial) case description
which in many cases similar to this produce a consisten£ inductive assertion
without human intervention. (See the third example in Section 7.)
() If P(X,§) is an equality branch with P(X,%) # w;(ﬁ,?) and

3 = ! T = WH{K.T
is of the form t, tj where t, # tj # 0, we first try 1k(x,?) wi(x,y)

32

where w;(i,?) is obtained from y'(X,¥) by replacing all occurences of

ty by tj’ and then if that fails, try replacing tj by ¢t

i This appears
to be sufficient for many applications, but if it is not we again revert to
a (partial) case description to guide further substitutions.

4. If P(x,¥) # ¥ (R,5), let LE&E5 = b X, 9.

5. Let 1k(§:,§) be P(i,?)@wi(}—{,?).
Rules 4 and 5 will normally be considered as yielding trial inductive assertions
for which we will generate a (partial) case description to verify the correctness
of 1k(;,§) before generating any verification conditions.

We reiterate at this point that these rules simply exhibit the general

flavor of the approach rather than a detailed analysis of all heuristic

rules which are employed.

33

7. Generation of Inductive Assertions via Case Descriptions and Heuristic
Rules.

We simply modify our method for generating a (partial) case description
so that we may now direct our attention only at specific parts of a program,
viz. loops in the program requiring inductive assertions. We now want a
descriptor to reflect only what is computed for a particular path in the loop
under consideration and not for a path through the entire program as in
Section 4. To do this we locate the "nearest" assertion which is on a path
into the loop and begin generating descriptors in the usual fashion beginning
at this point. Essentially we are simply viewing this presumably valid wff
(with D being either specifically or vacuously supplied by (X)) as a
new ¢. When appropriate equality predicates in this new ¢ which contain
individual program variables can be deleted from ¢. and viewed as assignment
statements. We now view as individual output variables the local variables
of the loop which occur on the left side of a statement of the form y; vt
Rather than terminating the case description at the HALT node, we terminate
immediately after exiting the loop.

Notation. We assume that by now the reader is familiar with the
derivation of a case description. As a result we henceforth present only
the interpreted (and simplified) descriptor in the tables.

Looking at Figure 4 (taken from [13]) we see a simple exchange sort
program with ¢ =VM(2<M<N =>AM-1) < A(M). By taking ¢ backwards over
path §8(3,10,12) we get I > N = (J=0 SYM(2sM<N > A(M-1) < AQM))). Applying
the rewrite rules of IMPLY [3], which is a natural-deduction-type system which
processes formulas in their '"natural” form, immediately yilelds 1 > NAJ = 0
= VM(2<M<N = AM-1) < A(M)). Using Rule 2 we get J = 0 =>¥YM(2<M<I - »

AM-1) < A(M)). In practice we would probably verify this choice of 1 by

34

producing a (partial) case description which computes exactly this trial 1.
This choice turns out to be a consistent inductive assegtion for the program
in Figure 4.

For the Wensley Division Algorithm of Figure 2 we try to find an appro-
priate 1 at arc 5. We begin by applying Rule 1 to the ¢ we found in
Section 3 thus obtaining ¢, = P/Q-E<Z and ¥, =2 < P/Q. Dragging
wl backwards to arc 5 we get D < E=P/Q - E < Y. Rule 2 now gives
11 =P/Q-D < Y. For wz we get D < E=Y i'P/Q and since no transitive
property applies by Rule 2 we get i, = Y jsP/Q. We now observe local
variables A and B which are not in v, or lye We thus form a (partial)
case description for the loop to establish loop invariants containing A and
B. TFrom Table 4 we can easily see that A =Q *Y and B = (Q*D)/2. We now
have the loop invariant 11 = ll_A 1, A 13 AN which yields valid verification
conditions.

In Figure 3 we saw a fairly complex multiplication program. We now find
the inductive assertions 12’16’ and 119 to be positioned at arcs 2,6 and 19.
Backing up ¥ over 6(2,15,16) we get A = 0= Y = B * DA. Rule 3 picks
iZ = {Y=B*DA} and we then generate Table 5. From this Table we have a
technique which immediately yields 1, = {Y=B*(DA-A)}. We now try to find
e by first bgcking up 1, over path 6(6,12,13,14) giving XB = 0=>

Y = B % (DA-A+1). Again Rule 3 picks 1 = {y=B* (DA-A+1)} and generates

Table 6 which directly gives 1 = {Y=B* (DA-A)+(B-XB)}. It turns out that

119 also follows easily yielding 119 = {Y=B* (DA-A)-(B-XB) }.

2 ' N
0 | 11

3 {

Co0 ey 12
e C L) I,
4

KA[I -1] > 5[1} S

< ——— o s

T 5

X‘ « Al1-1]

CA[I-1] « A[1]

FIGURE 4.

AlI] « X < 7
J <« 1

SIMPLE EXCHANGE SORT.

35

Interpreted Descriptor

§(0,1,2,5,6,7,9)
{0<P<Q, E>1/2}
{A<Q, B<«Q/4, D«1/2, ¥«0}

§(0,...,4,6,7,9)
{Q/2<P<Q, E>1/2}
{A<Q/2, B«Q/4, D+1/2, Y<1/2}

§(0,1,2,5,6,7,8,2,5,6,7,9)
{0<P<Q/2, 1/4<E<1/2}
{A<0, B<Q/8, D<1/4, Y<0}

il

H

§(0,1,2,5,...,8,3,4,6,7,9)
(Q/4<P<Q/2, 1/4<E<1/2}
{A<Q/4, B«Q/8, D«1/4, Y <1/4}

Table 4. (Partial) Case Description for Loop in

Wensley Algorithm of Figure 2.

36

Interpreted Descriptor

5. = §(0,...,8,11,6,12,13,14,2,15)
€ = {DA=1, B=1}
w = {Y¥<l, B<l, A<DA-1}

s, = &§(0,...,8,11,6,7,8,11,6,12,13,14,2,15)
% = {DA=1, B=2}
w = {Y<«2, B«2, A<DA-1}

Table 5.

Interpreted Descriptor

§. = 6(2,...,8,11,6,12)
{A>1, B=-1}
= {Y<B*(DA~A)+1, XB<«B-1}

(=
I

5. = 8(2,...,7,9,10,11,6,12)
{A>1, B=-1}
w = {Y<B*(DA~A)-1, XB<B+1}

& ro
i

Table 6.

Tables 5 and 6 are from the Multiplication Program of Figure 3.

37

38

8. Conclusion.

The techniques described in this paper are presently being implemented
by the author on a CDC 6600/6400 computer system via the U. T. time-sharing
system SATURN.

At present we expect to develop an interactive system allowing the
human to recognize "patterns'" in the descriptors. This human intervention
would normally occur only when our heuristic rules don't apply or when the
appropriate assertion becomes obvious to the user thus making it expeditious
to terminate the generation process. It is clear, however, that more and
better heuristic rules are needed. We anticipate new rules which interface
smoothly with (partial) case descriptions to surface as we gain experience
with the system.

The theorem-proving required is within the scope of some present
automatic theorem proving systems which are adept at simplification and
proving verification conditions (see e.g. Bledsoe [1] or Deutsch [6]).

We emphasize that we do not foresee the proposed techniques bringing
to fruition the practical verification of large, complex programs which now
exist and were written in an arbitrary fashion. However, we do feel that
the ideas developed here will carry over into an environment in which the
programmer writes hierarchically well-structured programs creating the Floyd
assertions along with the program rather than ex post facto. We anticipate
that in this case our tools will provide a practical basis for the verification

of large, complicated programs.

Acknowledgements. I am deeply indebted to my supervisor Professor W. W.

Bledsoe and to Drs. Dallas Lankford and Terrence W. Pratt.

39

10.

11.

12.

13.

15.

40

REFERENCES

Bledsoe, W. W., "Program correctness."

Memo, Austin, January, 1974.

University of Texas Departmental

Bledsoe, W. W.; R. S. Boyer; and W. H. Henneman, "Computer proofs of
limit thoerems.”" Artificial Intelligence 3 (1972), 27-60.

Bledsoe, W. W.; and Peter Bruell, "A man-machine theorem proving system."
1JCAI-3 (August 1973), 56-65.

Church, A., Introduction to mathematical logic. Vol. 1, Princeton
University Press, Princeton, N.J., 1956.

Cooper, D. C., " Programs for mechanical program verification."

Intelligence 6, American Elsevier (1971), 43-59.

Machine

Deutsch, L. P., "An interactive program verifier." Ph.D. Dissertation,
University of California, Berkeley, California, June 1973.

Elspas, B.; K. N. Levitt; and R. J. Waldinger, "An interactive system
for the verification of computer programs.' SRI Project 1891, Stanford
Research Institute, Menlo Park, California, Sept. 1973.

Elspas, B.; K. Levitt; R. Waldinger; and A. Waksman, "An assessment

of techniques for proving program correctness.” Computing Surveys,
vol. 4,2 (June 1972), 97-147.

Floyd, R. W., "Assigning meanings to programs.’ Mathematical Aspects
of Computer Science, J. T. Schwartz, ed., vol. 19 (American Mathematical
Society, Providence, R. I. (1967)).

Green, M. W., "The use of difference equations as an aid to specifying
assertions." '"Research in interactive program proving techniques.”

SRI Report 8398-II, Stanford Research Institute, Menlo Park, California,
May 1972.

Kaplan, D. M., "Regular expressions and the equivalence of programs."
J. Comp. and Sys. Sciences 3, 4 (Nov. 1969), 361-386.

Katz, Shmuel M.; and Zohar Manna, "A heuristic approach to program
verification.'" IJCAI-3 (Aug. 1973), 500-512.

King, J. C., "A program verifier."
University, Pittsburgh, Pa., 1969.

Ph.D. Dissertation, Carnegie-Mellon

Luckham, D. C.; D. M. R. Park; and M. S. Patterson, "On formalized
computer programs.' J. Comp. and Sys. Sciences 4, 3 (June 1970), 220-249.

Manna, Zohar, '"Properties of programs and the first-order predicate
calculus."” J. ACM 16, 2 (April 1970), 244-255.

41

REFERENCES (cont'd)

16.

17.

18.

19.

20.

21.

22.

Mendelson, E., Introduction to mathematical logic. Van Nostrand Co.,
Princeton University Press, Princeton, N.J., 1964.

Moriconi, Mark, "An interactive program verification system." (tentative
title), Ph.D. Dissertation, Computer Science Dept., University of Texas,
Austin (under preparation).

Naur, P., "Proof of algorithms by general snapshots.”" BIT 6, 4 (1966),
310-316.

Pratt, Terrence W., "Kernel equivalence of programs and proving kernel
equivalence and correctness by test cases." IJCAI-2 (Jan. 1971), 474-480.

Pratt, Terrence W., 'Case descriptions of programs: an informal intro-
duction." University of Texas C. S. Report TSN-32, Austin, Oct. 1972.

Shoenfield, J., Mathematical logic. Addison-Wesley Publishing Co., Inc.,
1967.

Wegbreit, Ben, "The synthesis of loop predicates." Comm, ACM 17, 2
(Feb. 1974), 102-112.

