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W.W. Bledsoe and Mabry Tyson

ABSTRACT

The interactive theorem prover developed by Bledsoe's group at The

University of Texas is described. Algorithms are given for its principle
routines IMPLY and HOA, and its set of interactive commands are tabu-

lated.

The prover itself (without interaction) is a matural deduction system
which uses the concepts of: subgoaling, reductions (rewrite rules),
procedures, controlled definition instantiation, controlled forward chaining,
conditional rewriting and conditional procedures, algebraic simplification,
and induction.

It, or variations of it, have been used to prove theorems in set

theory and topology, theorems arising from program verification, and limit

theorems of calculus and analysis.
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The UT Interactive Prover

W.W. Bledsoe and Mabry Tyson

1. 1Introduction

The prover we describe in this paper is a ﬁ;Eural deduction type system
that proves theorems in first order logic, and some extensions of that by
subgoaling, splitting, matching, and rewriting, simplification, and other
such procedures. It has been partially described in [1-6] but there remains
some uncertainty as to exactly what it does. We will attempt to explain it
in a precise manner, but the ultimate explanation is in the LISP program
itself, which is available upon request.

There is no attempt here to review all the literature on automatic
theorem proving. Suffice it to say that our work is based to a great extent
on that of others. The reader is referred to Chang and Lee [7], and Loveland
[8] for information and references on resolution type‘systems, and to the work
of Allen and lucKham [9], Guard, et al [10], and Huet [11], on interactive
provers. Our prover is in the spirit of Newell, Simon, and Shaw riz2y,
Gelerntner [13], and has much in common with the work of Gentzen [14], Nevins
[15-17], Reiter [18], Ernst [19], Bibel [20], Hewitt [21], McDermott and
Sussman [22], Wang [23], Maslov [48], and Rulifson, et al [24]. See also
Nilsson's Review [26].

In using the interactive prover, the theorem (and subsequent subgoals)
are shown on the user terminal's screen in a natural, easy to read form, and

the user is provided with several interactive commands (see Section 7) for



communicating with the prover. The prover is based upon natural deduction

(or is a Gentzen type system [14-17,25,20,49]), as opposed to a "less natural"
system such as resolution. When‘the human user desired to inﬁeract directly
with the prover, the dialogue is expressed in terms that are (hopefully)
natural and convenient for him. The intent is that the computer will act as

a support to the user in the proof of a theorem; although, the machine-only

system is a powerful prover in its own right.

The interactive policy of the prover is based on the premise that if
the prover can construct a proof it will do so fairly quickly. For each
theorem or subgoal, a time limit is set; if a proof has not been comstructed
in that time, the prover stops and waits for interactive direction. The
user then has available a number of commands for displaying the theorem and
the details of what the prover has dome so far. Using these commands the
user isolates the difficulty and then can allocate more time, direct the
prover into a new line of reasoning, supply additional information (hypotheses,
lemmas, definitions) about the whole thing, or simply assume that the current
subgoal is true and go on to another part of the proof. Often proofs of sub-
goals will fail initially because not enough information has been provided.

(Failure may well, of course, be due to attempting to prove a non~-theorem),

A very useful feature of the prover is that these additional hypotheses need
not be stated initially, but rather can be supplied at the point in the
proof when it is realized that they are necessary. This prevents the
objectionable activity of the user having to prove the theorem himself be-
fore he asks the prover to do so, in order to determine what additional hy-

potheses and definitions will be needed.



This system was developed by Bledsoe's group at The University of Texas.
While it is a general theorem prover, earlier versions were mainly exercised
on theorems in set theory [2], limit theorems [3,45] and topology [1], and a

current version is working on theorems arising from program verification [6].

It has been extended [5,27] to handle these program verification theorems;

Larry Fagan and Peter Bruell at Information Sciences Institute, USC, have

helped considerably in this extension.

2. TMPLY and HOA

The central routines of PROVER are IMPLY and HOA which are des-

cribed below. They attempt to establish the validity of an expression of
the form

(H—>C)

H

(H and C are arguments of IMPLY), by applying a set of (sound) rules

(see Tables I and II). These routines are recursive, they call each other

and themselves, but the initial call is to IMPLY.

These two algorithms, and their supporting subroutines, form a natural

deduction type system. It is like a Gentzen system [14,25], but is more

"human like" in that no attempt is made to force the formula being proved

into a canonical form. In particular the implication symbol, —>> , 1s

retained, and we believe that the proof proceeds in a manner that would

be natural to a mathematician.



IMPLY has five arguments (TYPELIST,H,C,TL,LT) but we will deal with
only two of them, H and C at this time. TL and LT are discussed later
but TYPELIST 1is not discussed in this paper. See [27]. HOA has three

arguments (B,C,HL) and we will deal with only two of them, B and C, at

this time.

When we make a call IMPLY(H,C), the algorithm IMPLY tries to establish
the validity of the formula (H—> () by applying a set of (sound) rules.

Similarly a call to HOA(B,C) causes the algorithm HOA to try to establish
the validity of (B—>0C).

Actually, neither algorithmis completel, but they call upon each other

to perform various tasks. IMPLY performs AND-SPLITS, as when the con-

clusion is a conjunction (Rule 4) or the hypothesis is a d153unctlon (Rule 3):

and HOA handles OR=-SPLITS, as when-the conclusion is a disjunction (Rule 4)
or the hypothesis is a conjunction (Rule 6) or an implication (Rule 7, Back~-
Chaining). Additionally 1IMPLY handles various manipulations of»the con-
clusion C, while HOA handles those for the hypothesis B.

A theorem being proved is first sent to IMPLY which calls HOA and it~
self as needed. Before a formula E is initially sent to IMPLY, it is first
converted to quantifier free form (but without converting it to prenex form)
by skolemization (see Appendix 1). This (usually) produces skolem variables
in E which are replaced by terms during the proof. A substitution 6 is
derived which consists of these replacements.

If H and C are formulas, then IMPLY either returns NIL or a sub-

stitution 6, such that 9
(He —» CO)

lEven the combination of both of them working together is not complete, in that
there are valid formulas which PROVER cannot prove. See Appendix 2.

Sometimes when multiple substitutions are necessary the implication
(H8—>CB) is not valid, even though (H—>C) 1is. See Appendix 3.



ighéalid (usﬁéilfha theorem in propositional logic). énwi; usuélly the most
general such substitution. If no substitution is needed them . IMPLY returns
"TV. It will return "NIL" if (H—>C) is not valid or if it cannot find
a proof in the prescribed time limit.

Similarly HOA and many of the supporting routines such as UNIFY return
substitutions 8.

The routines IMPLY and HOA are described in algorithmic form in Tables
I and II. These tables give only the basic rules of IMPLY and HOA. Some
additional details are mentioned in footnotes and in the later descriptions.

A formula E ' is initially sent to IMPLY by a call IMPLY (NIL,E).



e

3

By the expression

C = "T" or H = "FALSE"

TYPELIST

= (AV B)3

(AND-SPLIT) C= (AAB)

@ = NIL

8 # NIL

A = NIL

N # NIL

(REDUCE)

C ="T" or H = "FALSE"

H= (AV B)
C = (AN B)
ELSE

“See [277.

4 and 3 are called

4

If © has two entries,
computed,

one for each case,

"H= (AVB)"
"AND-SPLIT's".

Table
AL GQORITHM

IMPLY (H, C)

I

ACTION RETURN

HTH

IMPLY (NIL,
(A—>C) A (B—>C))

Put 6:= IMPLY (H,A)

See [2] and [19].

a/x, b/x with _a#b, /then
and 7\

NIL
Put A: = TMPLY (H,B0)"
NIL
90N>
Put H: = REDUCE(H)
Put C: = REDUCE (C)
Go to 1
Go to 3
Go to 4
Go to 6
we mean that H has the form "AVB". Rules

md_ f‘ ()/
gt( )/’5\ p e:nd 7)\ are

°7\ is returned for 7\

/é/ﬁ =1

SThis is just (APPEND OA).If 0 has an entry a/x and A has an entry b/x

where a#b,

A= (c/x d/z)

thenm QoA

then leave both values in 0 oA,
(a/x bly c/x d/z).

For example, if 0= (a/x b/y),



IMPLY (H,C) Cont'd

IF
6. C= (AVB)

7. (PROMOTE) C = (A—>B)
7.1 Forward Chaining

7.2 PEEK forward chaining
8 C = (A«—>3B)

9 C = (A =3B)

9.1 0 # NIL

9.2 0 = NIL
10. C= (~A)
11. INEQUALITY

12. (call HOA)

12.1 0 # NIL

12.2 (PEEK) 0 = NIL

12.3 8 # NIL

12.4 0 = NIL

6Actually we call TMPLY(OR-OUT(HAA), AND-OUT(B)).

7See p.30.

The PEEK Light is turned off at the entry to

ACTION

Put @: = UNIFY(A,B)

Go To 10

Put ©: = HOA(H,C)

Put PEEK’ light "ON"
Put 9: = HOA(H,C)

Go To 13

(A—>B) A

See p. 17.

IMPLY .

RETURN

HOA (H, C)

IMPLY (HA A, B)°

IMPLY (H,
(B —>4)

IMPLY (HA A, NIL)



13.

13

13

14,

15.

.1

.2

IMPLY (H,C) Cont'd

IF

(Define C)
Cc' = NIL

C' # NIL

(See Section 2 of [27])

ELSE

ACTION

Put C': = DEFINE(C)

Go To 14

10.

TMPLY (H,C")

NIL
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Table TII

ALGORITHM

HOA!BICZ

IF ACTION RETURN
1. Time limit Exceeded NIL
2. * (MATCH) Put 0: = UNIFY (B, C)
2.1 6 # NIL e
2.2 PEEK (See Section 4) HOA (B, C)
3. PAIRS (See Section 4)
4, (OR-SPLIT) C=(A V D) Put C': = AND-OUT(C)
4.1 C'# ¢ A IMPLY (H, C')
4.2 c'=¢ Put 0: = HOA(B/\~D,A)8
4.3 0 # NIL 0
8

4.4 9 = NIL HOA(BA~A,D)
5.1 C = (A—>D) IMPLY (B, C)
5.2 C= (AAD) MPLY (B,C)
6. B = (AAND) Put ©: = HOA(A,C)
6.1 8 # NIL e
6.2 9 = NIL HOA (D, C)

BIn Step 4.2, the "~" in (~D) is pushed to the inside; e.g., ~(~P) goes to P,

and ~(P—>Q) goes to PA~Q. If D contains no "~'" or "—>" then (~D) is
omitted and the call is made HOA(B,A). Similarly in Step 4.4.



HOA (B, C)

Cont'd

7. (Back-chaining)
B=(A—>D)

7.1 0 = NIL

7.2 8 # NIL

7.3 A = NIL

7.4 A # NIL

7E. B = (A—>a=Db)

7E.1 8 = NIL

7E.2 8 # NIL

7E.3 A = NIL

TE .4 A # NIL

8. B = (A«—>D)

9. B = (a=b)

9.1 Z2=0

9.2 Z is a number

9.3 Z is not a number

10. B = (AvV D

11. B = ~A

12. ELSE

wANDS is explained on p.15.

8Actually we use AND-PURGE (H,~A)

ACTION
Put 0: = ANDS (D,C)

Go To 7E

Put A: = TMPLY (H,AQ)"

Go To 8

Put 6:=HOA(a=b,C)

Put A: = IMPLY (H,AQ)4
Go To 8
Put Z: = MINUS-ON{(a,b)

Put a': = CHOOSE(a,b),

12.

RETURN

NIL

QoA

HOA((A—>D) A
(D—>4),C)

NIL

b':=0THER(a,b) (see p.20)

Put H':=H(a'/b'"),
C':=c(a'/b")

instead of H, which removes

IMPLY (H',C')

IMPLY (B, C)
8
IMPLY (H,AV C)

NIL

~A  from H.
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When proving a theorem of the form
(H—>A A B)
IMPLY wuses Rule 4 to split it into the two subgoals

(H—>A)

and

(H—>3B)

which it tries to prove separately. It is (of course) necessary that the
substitution © derived for (H—>A) be applied to B (but not to H)
in proving the second subgoal, (H'~%>BQ).9

The fourth argument, TL, of IMPLY is a "theorem label" (or more
appropriately, a "subgoal label"), which is a sequence of 1l's and 2's that

indicate the progress that has been made in proving the theorem. For example,

a theorem

(H—>C

\ 1/ Gy

would have theorem label (1) and its two principal subgoals
(H—> Cl) and (H-—%rcz)

would have theorem labels (1 1) and (1 2). Such theorem labels are exhibited
in the left margin for the examples given in this paper. 1In addition to 1's
and 2's we also utilize other letters such as H, P, and =, to indicate other

actions of the prover.

9The reader can see the necessity of this rule by considering the three examples
®(a) A Qa)—>P(x) A Q(x)), (P(a) A Q(B)—>P(x) A Q(x)),

and (P(x)—>»P(a) A P(b)), where x 1is a skolem variable, and a and b are
constants.
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Some Examples

Ex. 1. (A—>A)

A call is made to
IMPLY (NIL, A—>A)
which in turn uses Rule 7 to call
IMPLY (A, A)
which uses Rule 11 to call
HOA (A, A)

which returns "T" by HOA Rule 2.

In order to shorten the presentation of this example and those that

follow, we will use the notation
(TL) (D =>C)
in place of IMPLY(D,C) and HOA(D,C).

Thus Ex. 1 becomes

(1) (NIL = (A—>A))
&Y (A= A) 17
Returns ''T" I11, H2

The theorem label, which is (1) in this case, will be exhibited in the
left margin, and some rule numbers from Tables I and II will be given in the

right margin, with the prefix I for Table I and the Prefix H for Table II.



Ex. 2. Va(l ¥x P&x)—>P(a)).

(L) (NIL = (P(x) —-—-*P(ao))) Skolemized
(1) ® ) @P(ao)) 17
UNIFY (P (x), P (ao) )} returns ao/x H?2

Henceforth we will drop "NIL =!' and write "A" instead of "NIL=A".

Thus Ex. 2 becomes

(1) (®E)—>P(a )

(L ®x) =>P(ao)) 17
Returns ao/x H2

ANDS .

In the following example we use the algorithm ANDS. It is a mini versiomn

of 1IMPLY which handles only theorems of the form

(Hl/\H N /\Hn )]

2

where (HiQ = C8) for some ©O. (In which case € is returned).



Ex. 3.

(1)

(1)

(1 H)

Ex. 3'.

(D

(1 1)

(1 2)

Va@(a) » Vx@x)—>Qx))—>Q(a)).

(P(a) A (BG)—>Qx)—>Q(a))

(Ba) A (PG)—>QG)) = Q(a))
(P(a)) = Qa))

Returns NIL

(&) —>Q&)) =Q(a)))
ANDS (Q(x), Q(a,))

Returns a_ /x

(®a) A (RG)—>Q() = P(a))

Returns '"T"

Returns ao/x for (1)

(AV B—>A VvV B)
(A B= AV B)

(A=>A VvV B)
(A = A)

HTH

(B=A VvV B)

HTI'

16.

17

H6

H6.1
H7

Back~chaining

H7.2

H6,H2

H7.2.2.2

17

13,4,7
H4.2, Footnote 5

H2

14,2

H&4.2, H2
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Ex. 3". (A —>B v 0) (Not a theorem)

In this ekample if we applied HOA Step 4.2 without the footnote we

would obtain an indefinite repetition as follows:

L (A=B vV C)

17
(AKX ~C=>B) . H4.1
(A= B) NIL | H6
(~C=3B) H6.2
(A=3B VvV 0 H1ll
Repeat

But by preventing the addition of ~C to the hypothesis, unless it is

fundamentally changed, we eliminate this problem.

(1) (A=3B V C) 17
(A= B) NTIL H6
(A= 0C) NTL H6.2

NIL is returned for (1).

AND-QUT is an algorithm which puts expressions in conjunctive form

(but does not convert implications).

For example

AND-OUT(A V (B A C)) returns ((AV B) A (AV C)),

AND-QUT(A VvV (D—>»B A C)) returns AV O—>B A C)).

Similarly OR-OUT puts expressions in disjunctive form.



. y

Ex. 3M. B—>AX (~A V3B) /’

This éagaxnple shows the utility of "AND-CUT" in Rule H4 . For without

it we would g\a\:
N

\

(1) (B = Av‘;ds_‘ (~A V B)) 17

If we don't use AND-OUT of H4 /
1L (B = A) Returns "NIL

(12 (B=~AXB) : Returns NIL

Returns NIL for (1)

Since we do use AND-OUT -in H4, we get

(1) (B= AV (~AAB)) 17
(1) (B= (AV ~A) A (AV B)) H4
(1) (B =»AV B) ‘ 14
REDUCE Rules 15, 17
(1 D B = A) Returns NIL
12  ®=B3) S H4L

Returns "T" for (1 2) and (1) as desired ‘\HZ, H4. 4



Ex. 3'"",

would get

(D

an

(1 2)

(L2 1)

(1

¢9)

1D

(12)

AN (~AV B)Y—>»B)

Similarly OR-OUT is required in I7.

(AN (~AV B) =B)

(A=B) Returns

(~AV B=13B)

(~A= B) Returns
Returns NIL for

(1 2) and (1)

But since we use OR-0UT in

(AA (~AV B)=—>B)

(OR-OUT(A A (~A V B)) = B)

((AN ~A) v (AANB)=B)

(AN ~A) =B)
(FALSE = B)

"T"

(AN B=B)
e
e

Returns for (1) as desired

19.

Because without it we

7

NIL H6

NIL 13

I7 we get

Original

17

I4
I5

I1

14.2
H6.2,H2

I14.4
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Substituting Equals

HOA Rule 9 gives the prover an ability to substitute eqﬁals. When an
equality unit (a=b) is in the hypothesis, the program uses the algorithm
CHOOSE(a,b) to select either a or b, and replaces it by the other in
H and C. CHOOSE selects neither if neither a or b occurs in H or
C. It selects a if b is a number, and vice versa. It will not choose
a if b occurs in a, and vice versa. In the interactive mode the user

can enter this decision process (see Section 7).
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3. Definitions and Reduction

Definitions.

Rule 12 of IMPLY calls DEFINE(C) which expands definitions from
a stored list. Table III gives some such definitions. -

When the defining form introduces quantifiers (e.g., Rule 2 of Table
III) it is necessary to eliminate these quantifiers by skolemization. We
have done this by pre-skolemizing the formula in the table, but it is
necessary to store two such skolemizations because the correct one will
depend on whether the formula occupies a positivelo or negative position

in the theorem being proved. For example, (A ©B) is replaced by

(x e A>»x € B) in
o o
(H—>A < B)
whereas it would be replaced by (x e A> x e B) in

(A € B—>C) .

10See [23, 3] and Appendix 1.
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Table IIT
SOME DEFINITIONS

Formula Being Defined Defining Form
1. (Ar-B)11 (ASBABCA)
2.  (AcCB) Vixe A—>x ¢ B)

Skolem form12

(xO e A > X, € B) in "Conclusion"

(x e A> x e B) in "Hypothesis"

3. (AU B) {x: xe AVxeB}

4. (A N B) {x: xe AN x e B} -

5. U A) (x: Je(tesnxeaent?
teS

6. N A (x:Vtes»teaEn?
teS

7. subsets(A) © {x: x € A}

7'. sb(a) subsets (A)

8. range f {y: E? x(y=£(x)))

9. Oc F (Open F A Cover F)

11A different symbol is used for set equality to distinguish it from the

arithmetic equality. Here in Entry 1 we mean set equality.
2 . e . . .
! When the defining form introduces quantifiers, two versions of its skolemi-
zation are needed. See page 21,
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REDUCE

Rule 5 of TIMPLY calls REDUCE(H) and REDUCE(C). If E 4is a

formula then a call to REDUCE(E) causes the algorithm REDUCE to apply

a set of rewrite rules to convert parts of the formula E. See [2,29-36].

Table IV gives some examples of rewrite rules in use.

REDUCE helps convert expressions into forms which are more easily

proved by IMPLY. Also the rewrite table is a convenient place to store

facts that can be conveniently used by the machine as they are needed.

For example, REDUCE returns "T"(TRUE), when applied to the formulas

(Closed (Clsr A)), (Open @), (Open(interior A)), (¢ < A).
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Table IV
REDUCE Rewrite Rules

10.

11.

12.

13.

14.

15.

16.

17.

18.

INPUT QUTPUT
(te ANB) (t e ANt e B)
(t e AUB) (t e AV t e B)

(t e {x: P(x)}) P(t)

(t € A) If A has Definition P(t)
{x: P(x)}

t € subsets(d) t CA

tcANB (t S ANt B)
(A N A) A

(AU A) A

(A N@ ¢

Aau@ A

@ < 4) e

A e {B) A=38

(range A x f (%))

{y: E x(y=£(x)}

(Choice A e A) A+ ¢
(A v ~A) npn
(AN ~A) YFALSE"
MT" A A) A

Aa A" A



Table IV

INPUT OUTPUT
19. (A v "T") v
20.  ('T" vV A) e
21. ccc o g
22. (ccc 6)13 npn
23. (A CA) i
24. (A S A) ot
25. A A FALSE FALSE
26. TFALSE A A FALSE
27. AV FALSE A
28. TFALSE V A A
etec.
13

need not concern_the reader here but G is the set of closures of members
of G. That is if A is the closure of the set A, then G={A: A e G}. And

(H << J) means that H is a refinement of J, that is, each member of I
is a subset of a member of J.
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Ex. 4. Va VB (acaus)
|

(1 (A, S A UB))
(L) (xo e Aoﬁ% X € (Ao U BO)) ‘ I 12
D) (x e A==2x ¢ A VX ¢ 3B) 15

o o o o ) o)

REDUCE Rule 2

(1) (x e A =2%x e A VX €B) , 17

0 0 o) o o o
(1D (xo € Ao:>Xo € Ao) H 4.1
(1D e H 2

Return "T" for (1).
Notice how closely this parallels

the usual mathematician's proof, i.e.,

AcCcAUB
(xe A—>x e (AUB))
(x e A—x e AV x € B)

TRUE.



Ex. 5.

(1)

(1)

(1

a1

1D

11

(1 1)

(1 2)

27.

Ya Ve (subsets (A NB) = subseté (A) N subsets (B))

subsets(AO F\BO) = subsets(AO) N subsets(BO)

We will here contract "subsets" to "sb" and

drop the subscripts.
sb(A N B) = sb(A) N sb(B)

[sb(ANB) € sb(A) Nsb®B)] A [sb(A) N sb(B) < sb(A NB)] I 12

Definition 1

[sb(A N B) < sb(A) N sb(B)] 14
This is an AND-SPLIT

i

[t € sb(A F\B)===>to e (sb(A) N sb(B))] I 12

Definition 2

[t EEA.F\B*=%>tO € sb(A) A to € sb(®B)] I5
REDUCE Rules 5, 1

[t EA/\tOEB:}tOEA/\tOEB} 15, 17
REDUCE Rules 6, 5

Return "T" for (1 1) : I 4, H6, H 2

[sb(A) N sb(B) < sb(A N B)]
Return "T" for (1 2) (Similarly)
Return "TI" for (1) .
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It should be noted that the use of Definitions and REDUCE on this
example has eliminated the need for additional hypotheses (or \axioms). The
requifed hypotheses must be given by the user but they are given once and
for all in REDUCE and definition tables and never used except when needed in
the proof. An ordinary resolution proof or Gentzen type proof which did not

use such mechanisms would require four additional axioms and a lengthy proof.

1. (=3 «—> Vt(t e a€e>t e B))
2. (te ANB~<«>te AN teB)
3. (t e subsets A<>t C A)

4. (tSANB<>t T ANt CB)

Rule 4 of Table IV is a conditional rule. When attempting to convert
a formula of the form t e A, the algorithm REDUCE first checks to see
if A has a definition of the form {x: P(x)}, in which case it (in effect)

instantiates that definition and applies Rule 3. For example the expression

X, € U A
teQ

is reduced by Rule 4 of Table IV and Rule 5 of Table III, to
et e QA x e A))

(or actually to the skolemized form (t e Q A X, € A(E))).



Ex. 6.

(1

M

M

(1)

a1

(1 2)

Ae G—o>AC U B)
BeG

(A0 € G*—‘#AO < U B)
BeG

(A e C=(t e A —>t e UB))
0O o] (o] 8]
BeG

(A e G=(t e A—>B e GA t_ e B)
o o o

(A e GANt e A =Be GALt_ eB)
o o o)

(A e GANt e A =B e ()
o o o

Returns Ao/B for (1 1)

(A e GANLt € A —>t e A)
o o) o ) )

Returns "T" for (1 2)
Returns Ao/B for (1)

29.

7

I 12

Definition 2

15"
REDUCE Rule 4,

Definition 5

17

14

H6.1, H2

I14.2

H 6.2, H?2
1 4.4
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4. PEEKing and Forward Chaining

PEEK.

We saw on page 21 that when all else fails, we expand the definition
of the conclusion C. Such is not the case for the hypothesis H. However,
when proving (B—>C), the algorithm HOA sometimes '"peeks" at the
definition of B to see if it has the potential of helping with the proof
of C, and if so it then (temporarily) expands that definition. This is

done after a regular call to HOA has failed and the 'peek light" has

been turned on.

To facilitate this, the program has a PEEK property list for each
of the main predicates. Table V gives some of its entries. This enables
the program to quickly check whether an expansion of the definition of B

would have a chance of helping with the proof.

Table V
PEEK Property Lists

1. (Oc [Open Cover])

2. (Reg [Subset Open Clsr])

etc.



(1)

D

11

(1 2)

an

(Reg N Oc E“—%>j?G(Cover G))

(Reg A Oc F0=$>Cover G)

HOA 1is called at Step 12 of IMPLY and fails:

then the PEEK 1light is turn ON.

(Reg N Oc FO = Cover G)

(Reg = Cover G)

(©c Fo => Cover G)

NIL

((Open Fo A Cover Fo)=$ Cover G)

(Reg => Cover G)

have

Fd/G is returned for (1 2) and (1).

Notice that it did not expand the

definition of Reg in (1 1), i.e.,

because in Rule 2 of Table V, 'Reg"

"Cover"

on its

PEEK property list,

did

not

31.

7

I11.2
H 6
H 6.2

H 2.2 (PEEK)
Table V, Entry 1.
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After such a use of PEEK, the expanded definition is not retained

the original form Oc Fo is retained for any further proofs that may be

required. This permits the proofs to proceed at a high level where

possible, and resorting to expanded definitions only when necessary. It

also facilitates human understanding when operated in a man-machine mode.

Forward Chaining.

In IMPLY Rule 7, when a new hypothesis is added to H we try to

"forward chain" with it. Forward chaining is another name for modus

ponens: If P'@ = PO, then a hypothesis
P' A (P—>Q)
is converted into

P'A (P—>Q) A QO

Ex. 8. Va®(a) A VX(P(X)'—% Q(x))—>Q(a))

(1) (NIL = (P (a ) A (P (x) —>=Q (x))—> Q(ao)))

®@INEE—Qx)) AQa) =Q()))

Returns "T".

17, 7.1

forward chaining

It should be noted that this is Example 3 which was proved earlier using

Rule H 7 (Back-Chaining). Forward chaining is an option which is available
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to the user. In some instances he may want to control its use. For example,
forward chain with P(xo) only when P(xo) is a ground formula, or forward
chain with an atom P(x) only when P is a membef of a predescribed list.
Limited forward chaining has been used in a powerful way by Bundy [37],
Ballantyne and Bennett [38,39], Nevins [17], Reiter [18], Siklossy et al [36],
and others.

PEEK forward chaining.

If P'@=PO, A has the definition (P—>Q) then a hypothesis

P' A A
is converted into
P'AAANQO
Ex. 9. ASCBABCC—>ACO)
@) ACBABCSCC=ACC) _ 7

We have dropped the subscripts of

A, B and C in this example.
o’ “o )

(AgB/\Bg:_C:é(toeA—»toec)) T 12
Definition 2
(AEB/\BEC/\toeA:#tOeC) 17
(ACBABCCALt eANEt eBALEt e C=t e C) 17.2
- - o o o) 0
PEEK forward
chaining

Returns '"'TV



34.

In the above, (tO € A) was PEEK forward chained into (A ©B) by

expanding the definition of (A C B) to

(t e A—>t e B)

and matching (t e A) to (to e A) with to/t, getting (tO € B) as a
result. Then (tO € B) was PEEK forward chained into (B C C) getting

(to € C). The program has a checking mechanism to prevent an infinite con-

tinuation in adverse cases.



Ex.

oY)

(1

into

into

35.

hcBABcch VDVE@ cE—>DcB—>ico)

(A CB

AB C¢C
o] o] o -

When Rule I 7 is applied it forward chains (A0 EEBO)

into o to get (K; E§§;>' A control is used to prevent

repeated use of o to get, Ko E}Eo, etc.

(A, SB_AB SC AaAA B

(

A <cC) 17
o~ 0 o - 0 (e} o -

=
o]
" N
=>(toe AO-——‘-M:Oe co)) I 12,

Definition 2

(A, SB AB SC AaAA SB At eh At eB At eC

In the

=

c
G

(o] o] o} (8} 0 o] o} O

above application of Rule I 7, (tO € Kg) was forward chained
E;> to obtain (t0 € EQ), which is turn was forward chained

CO) to obtain (to € CO)

" At eC —>t e€C) N 1
o o] (o} o]
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Ex. 9A. ©cFAYF J60cF—>Cover 6A Tcc)
—> FJu@ccrnt?

(1) (0c Fo A (0c F—>Cover G(F) A G(F) SCF)—>HCCF )

(0c F_ A (0c F—>Cover G(F) A G(F) SC F) A Cover GE)AGEF)) SCF,

=HCCF) 7
Forward chaining

Returns G (FO Y/H.

Ex. 9B. (0c F A Reg—> JH(H c C F))
D) (Oc FO N Reg A Cover G(Fo) A G(FO) cc FO =HCCc FO) 17

Here Oc FO has been PEEK Forward Chéined into

Reg which has the definition
\7/F | G(0c F——%Covef G A Egg F)
which has skolem form (in this case)
(0c F—>Cover G(F) A G(F) € C F).

As in the previous example G(FO)/H is returned.
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5. Conditional Rewriting and

Conditional Procedures

Conditional Rewrite Rules.

In Section 3 we described the REDUCE feature which causes various

formulas (or subformulas) to be rewritten. TFor example, the expression
te ANB

is rewritten as
(te ANt eB).

Sometimes we wish such a conversion to be made only if a certain condition
is satisfied. Such rules, are called "conditional rewrite rules", and are

added to the REDUCE table in the form
(*P A B) .

The program upon detecting the *, checks the validity of P before re-
writing B for A (with proper instantiation). If P 1is not true then
A 1is not rewritten. The * 1is placed there to distinguish conditional

rules from ordinary REDUCE rules. For example, the entry
(* A # NULL NODES (A) NODES (LEFT(A)) + NODES (RIGHT (A)))

means that NODES(A)T can be "reduced" to NODES(LEFT(A)) + NODES (RIGHT (A))
if A # NULL. The rewrite rule is not wvalid if A = NULL because LEFT (NULL)

and RIGHT (NULL) are not defined, thus the rewrite rule is applicable only

TNODES(T) is one plus the number of nodes in a binary tree T. NODES(NULL) =1
LEFT(T) is the left-hand son of T.
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only ifth ¥‘NUiLM is known. Notice alsﬁ that the result of the rewrité rule
contains forms to which the rewrite rule could be applied. This would result
in an infinite expansion normally but the condition on the rewrite rule pre-
cludes this. Generally this rule would be used once and then it would not be
known if LEFT(A) # NULL or if RIGHT(A) # NULL so the rule would not be
applied again.

Rewrite rules are expected to be applied quickly or not at all. Their
power lies in the quickness with which they can be applied. Accordingly we
avoid long drawn=-out procedures for checking the validity of P. TFor example
we do not call TIMPLY itself to check P. Rather we have a "mini" version
of IMPLY, for this purpose, which includes ANDS (See p. 15), which we call

QK -mMPLY.

A similar remark can be made for conditional procedures described below.

Conditional Procedures.

Some procedures are conditional in that they are initiated only when
certain conditions are satisfied. Examples of these are PAIRS described
below, INDUCTION described on page 58 below and in [2], and the limit

heuristic described in [3]. See also [40,29].

PAIRS.

Sometimes in HOA the expressions € and B will not unify even

though the main predicates of C and B are the same. For example,

(G ccF =H CCJ)13.
o - 0 o — = 0
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In this case, at Step 3 of HOA, the algorithm consults the PAIRS prop~

erty list of " <" for advice. That property list may (or may not)

list one or more subgoals that can be proved to establish the given goal.

Table VI gives some such entries.
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Table VI
PAIR Property Lists

1.. (Cover (Cover G —>Cover F)[(GCS C F) ( YeooD)

3. @i (Lf ¢ —>LEf F)[(F = O) 1

4. (countable (countable A —> countable B)
[3 f‘(f is a function A domain £ € A A B C range f)

(B c4)---]

etc.

laLf G means that G is locally finite. That is, at any point x, there

is an open set A which intersects only a finite number of members of G.
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Ex. 10. (GCSCTF—>GCCF)
(1) (G, SCF =G SCF) 17
,E'
(GOEC_:_GO)/\ (chg‘o) H 2.3
PAIRS Entry 2
11 (G0 cc Go)
HTH I 5
Reduce Rule 21
(1 2) (F, SCSF)
HTH I 5

Reduce Rule 22

Notice that the PAIRS Rule H 3 has converted the goal (1) into

a subgoal that is easily proved by the REDUCE rules 21 and 22.

REDUCE and PAIRS act a lot alike in that they change one goal into
another, the difference being that REDUCE acts on a "single entry" (i.e.,
a given formula is rewritten as another), while PAIRS acts on a double
entry. However, that double entry requires that the two input formulas
be partially matched (their main predicates are identical).

Such a pairs concept can be extended to include pairs of predicates
that are not identical, but that has not been done for the present algorithms.

In general we favor procedure which are triggered by easy to check conditions.
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Ex. 11. Th. (g is a function) A countable (domain g)

A A.E range g —> countable A

(1) (go is a function) A countable (domain go) '
AN A C range g = countable A 7
o — o o
countable (domain go) = countable A0 H 6.2
(1 P) (go is a function) A Ao € range g=> ((f is a function)
A (domain f C domain go) A (Ao C range f)) PAIRS

Entry 4

(1P (g. 1is a function) A AO C range g0=$ (f is a function)

go/f

(L P 2) (g is a function) A AO C range g,

= (domain g, < domain go) A (AO C range go)

" .
(1 P2 1) ( ) = (domain g < domain g )

"T'" by REDUCE Rule 23

(1 P2 2) (g0 is a function) A AO C range 8= A0 C range g,

"TH

So go/f is returned for (1 P) and for (1).
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6. Complete Sets of Reductions

The use of rewrite rules as in our REDUCE procedure is a very
powerful device., It is extremely mo&e efficient than ordinary sub-
stitution of equals as is used in Paramodulation or in HOA Rules 9
and 7E, because the latter allows substitution both ways. Thus it is
highly desirable to get as many entries as possible in the REDUCE
table and to remove the corresponding equality units from the hypotheses.

The questions that naturally arise are: How far can you go with
rewrite rules? Can such a system be made complete in some sense? How do
we choose the entries for the REDUCE table? Can we generate all needed
REDUCE table entries from a few key ones?

Very general, although incomplete, answers to these questions are given by a
beautiful paper of Lankford [30] which is based on pioneering work of Knuth and
Bendix [31] and some earlier work of Slagle [32].

The reader is referred to [30] for details‘but the géneral idea is that
some theories, such as group theory, allow a "complete set of feductions." For
example, there exists a set of entries for a REDUCE table which handles all
equality substitutions for the equational axioms of group theory. A very power-
ful algorithm is given which often generates a complete set of reductions from
the axioms of a given equational theory. One problem with the concept of the re-
write rule currently in vogue is that it does not allow commutative axioms to be
included in a REDUCE table since, for example, the rewrite rule Xy —P YV X
when applied to a-b produces the infinite sequence of rewrites a-b, b-a, a-b,

bra,... . However, Lankford [30] has shown how commutative theories, sucH as
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commutative, groups, rings, Boolean algebras, and modules over rings, which allow
no complete sets of reductions, can nevertheless be treated efficiently and in a
complete way with most of the equality units in a REDUCE table. Earlier, Bledsoe,
et al [3] used such a decision procedure for ring theory as the basis of a heuristic

approximation of an unavailable decision procedure for field theory with encouraging

results.

Table IV shows only a few of the REDUCE rules used by our prover, and
many others can be easily added (see for example, ADD-REDUCE in Section 6).
The largeness of the table does not impede the speed of its use because hésh
code techniques can be employed.

As pointed out earlier, the REDUCE table is a convenient place to
store facts that may be needed at some point in a proof but which will never
be accessed until actually needed. If these same facts were made part of

the hypothesis they would greatly clutter up and slow down the operation of

the prover.
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7. 1Interactive System

Large Data base problem,

One of the irksome things about most automatic theorem proving systems,

is that the human user has to prove the theorem before he asks the computer

to do so.

THEOREM

In this figure we depict a theorem to be proved, along with the "Axioms"
or reference theorems needed for the proof. If we don't list enough reference
theorems then the automatic prover cannot succeed; on the other hand, if we
list too many, the prover again cannot succeed because it will be overwhelmed
with too much data. So we cannot just list "all known theorems" as hypothesis
and expect success, because most provers will then hang up on computing many

useless inferences (lemmas) which have nothing to do with the objective at

hand.15

155 few recent programs have attacked the large data base problem [18, 41, 42]
with some success.
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Thus in order to determine exactly the correct reference theorems needed,
the human user is forced to prove the theorem first.

We have partially eliminated this problem by storing information in
the form of definitions, rewrite (REDUCE) tables, and procedures, which

are used only as needed and in no way clutter up the system (see Section 3).

Enter as needed

Rewrite Rules

(REDUCE)
- Definitions
Procedures
Conditional Rewrite
Rules and
/ /// Procedures
/' ; (PAIRS, INDUCTION)

THEOREM

The remainder of the difficulty is eliminated by having the human user

insert references theorems only as they are needed, during the actual proof.

Of course he will have to know when to do this, and what to insert.

Hard Theorems.

Equally irksome is the fact that present programs cannot prove very hard

theorems. So they don't get involved with very interesting mathematics, and

don't come to grips with some of the problems that the computer will have to

face if we are to have acceptable computer mathematics.
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Man-Machine.
For these reasons, and others, we have decided to include the theorem

prover described in Sections 1-6 above, as part of a man-machine interactive,

prover.

The System.

The system consists of one or more interactive computer terminals connected
to a large digital computer. At present we are using the CDC 6600 and PDP-~10
computers at The University of Texas, and the UT time sharing system. A version

of the program is also running on the DEC 10 computer at the Information Sciences
Instlitute, USC, Los Angeles.
The system was developéd at UT, MIT,w;;Ewggg:ubéméhé authors, and Bob Boyer,
Robert Anderson, Peter Bruell, Mike Ballantyne, Bill Bennett and Larry Fagan.
This system has much in common with earlier programs of Guard, et al [10],

Allen and Luckham [9] (especially with recent additions [33]), and Huet [11],

but is quite different, (e.g., in its use of DETAIL, PUT, etc., defined below

and does not use Resolution).

User Requirements.

We believe that such a system must be built for the convenience of the
user and not the programmer. For otherwise, the system will not be used.
As long as the pain in using the system exceeds the help obtained, the

potential user will stay away.

In order to interact effectively, the user must be able to
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(1) Read and easily comprehend the scope

(2) Follow the proof

(3) Help the computer only when needed

(4) Use convenient commands

The UT interactive Prover.

In our system the formulas which are being proved appear on the terminal
screen in an infix notation. TFor example, the formula whose internal repre-

sentation is (> (A A B) P) would appear on the screen as

A
A
B
—
C

Larry Fagan has recently developed a package for the DEC 10 at ISI to

allow a formula to remain stationary on the scope while other material is
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scrolled up in a normal fashion. He and Mabry Tyson have adopted it to
also operate on the CDC 6600 at UT. Having the theorem (or current sub=-
goal) remain stationary on the scope during the proof is a great help to
the user in understanding and following the proof.

The user has at his disposal a set of options which give (interactive)
commands to the program. Some of these cause information to be displayed
on the terminal screen, while others affect the course of the proof.

Table VII gives a listing of some of the interactive commands being
used. A few of these are further explained below. In the following, the
work ''theorem” is used to represent the current subgoal being proved.

Most of the human input (i.e., the use of the interactive commands)
takes place at '"IMPLY STOP", a point in the routine IMPLY, near its
beginning. The program is a slave to the user, working on tasks assigned
it by the user. It halts at TIMPLY STOP and reports after such a cal=-

culation. It may report

"PROVED"

or

"FAILED"

or other things described below.
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Table VII

Some Interactive Commands

Name of
command User types The machine's response
PRETTY-PRINT TP It prints the theorem on the scope
in an easily readable form (see
example below).

TP F If PUT F= ( ) has been used earlier,
it prints the theorem on the scope
with each occurrence of ( ) replaced
by the symbol F.

TP F G ... Similarly for F, G, etc.

TPC F Similarly for conclusion only.

TPH F Similarly for hypothesis only.

TL It prints the theorem label.

TY It pretty~-prints TYPELIST.

TPR It pretty-prints the REDUCE table.

ADD-DEFN ADD-DEFN A () () is added to the definition table
as the definition of the expression A.

ADD-REDUCE ADD-REDUCE ( ) ( ) is (permanently) added to the
REDUCE table.

ADD-PATIRS ADD-PAIRS () () is (permanently) added to the
PATIRS table.

DEFN DA ‘ It replaces all occurrences of A
by its (stored) definition.

DC It defines the conclusion of the
the current goal.

USE USE N It fetches theorem number N from

memory and adds it to the hypothesis
of the current theorem.

USE () It adds ( ) to the hypothesis.
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Name of \
command User types The machine's response

LEMMA LEMMA () It first proves ( ) and then calls
USE ().

SUBGOAL SUBGOAL A It calls (Lemma (H—>A)) where H
is the current hypothesis.

PROCEED CONTINUE It proceeds with the proof with no
changes by the user.

GO Exit current subgoal with "PROVED"
or "FAILED" as was determined by
the program.

TIMELIMIT CNT N It increases the timelimit on the
current subgoal by a factor N.

ASSUME A It assumes the current subgoal to
be proved and proceeds.

FAIL F It fails the current subgoal (i.e.,
returns NIL).

BACKUP BACK It backs up to the previous preset
back~-up point.

B Create a backup point.

REORDER N—>M) It reorders the goal, placing hypothesis
number N first and conclusion number M
first.

(N1 N2 . —>C) It reorders the goal placing hypothesis

number N1 N2 ... first in that order.

(H—>»M1 M2 ...) Similarly for conclusions M1 M2

(N1 N2 ...—>»>M1L M2 ...) Similarly for both.
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Name of ‘

command User types The machine's response
DELETE DELETE N M ... It deletes hypotheses number N, M, ...
PUT PUT X () The machine replaces each occurrence

of x in theorem being proved, by ( ).
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Time Limit.

In all cases the program worker under a time limit determined by the

user. If it does not prove the current subgoal within that time limit it

" will halt and report

"FAILED TIMELIMIT"

The time limit can be increased (or decreased) by use of the command

(CNT N) (See Table VII).

Pretty-Print.

The command TP causes the machine to print the current theorem (sub-

goal) in a parsed, easy to read form. For example, if the theorem is

(—> (A (OC (FSDI)) (A (REG) (OCLFR))) (A (CC G) (A (REF G(FSDI))(LF G))))
the command TP will cause to be printed on the écope:

(oc ()
(REG)
(OCLFR)

—

(CC G)

(REF G (F))

(LF G)

Note that the skolem comstant (FSDI) has been printed as (F), though
its complete form is retained by the program.

Now if the command

PUT ¢ {C: Closed C}
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is used, the conclusion is altered accordingly. The command TPC if

issued now will cause

(cc{C: Closed C})
(REF{C: Closed C}(F))
(LF{C: Closed C})
to be printed, whereas TPC G causes
(cc G)
(REF G (F))
A

(LF G)

to be printed.

ADD-DEFN, ADD-REDUCE, and ADD-PAIRS allows the user to easily add

entries in Tables TIII, IV and VI.
The command "D A" causes the program to expand the definition of

A through the theorem. For example, if the current subgoal is

{Oc F—> Cover F)

and the command " (D Oc)" 1is issued by the user, then the subgoal is

changed to

(Open ¥ A Cover F—> Cover F)
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"(DH A)" and " (DC A)" would cause such changes only in the hypothesis or

the conclusion respectively.

(USE A) Wéim§1y4ailows the user to add<£he additional hypotﬁesis A;“yWhere—,
as (LEMMA A) requires the prover to prove A first and then add it as a hypothesis,
whereas (SUBGOAL A) calls (LEMMA (H—>A)) where H is the current hypothesis.

The commands A (for "ASSUME") ‘and F (for "FAIL") are useful for terminating

a long proof or for maneuvering the proof to parts of the theorem that the user is
interested in.
The command (n m—>1 j) causes the hypotheses and conclusions to
be reordered with hypothesis number n first, and number m second, and
with conclusion number i first and number j second, etc.. The command

(DELETE n m...) causes hypotheses numbers n, m,... to be deleted. For

example 1f the current goal is

(xo € A)
A (x, e B)
A (te A—>t e C)
A Open A
—_—
(xo e C)

A Open B

and the command (4 1 3 ~——> 2) 1is issued the goal is changed to
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Open A
A (xo e A)
A (te A—>t e C)

A (xo € B)

Open B

A (xo e C) ,
and if the command (DELETE 2 4 1) is now issued the goal is changed to

(te A—>te Q)
.__.__2>,
Open B

A (xo € C)

PUT 1is one of the most important commands. It allows us to instantiate
a skolem variable with a desired formula. For example, if the prover is

trying to prove the theorem

Vf x(x € A-—4£3B(Open BABCAA X e B))

— >3FF coPEN A A =U F)

it will obtain.the goal

—>
(L) (x e Ao Open BO A B0 c A0 A X e B)

—> FCOPENAA =TUF)

At this point the machine may be unable to determine the required family F
of open sets whose union is Ao' If the user decides to help, he can easily
do so by using the command "PUT" to give a value to F. For example the

command (PUT F (OPEN /N Subsets AO)) will cause (1) to be changed to
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b

(1) (@ = (OPEN () Subsets A ) < OPEN A U (OPEN N Subsets A = A)

which is easily proved, as follows.

(1 1) (e = (OPEN N Subsets A )  OPEN) 14

(o = (Bo e (OPEN N Subsets Ao)———%'B0 € OPEN)) 113

(o A Open Bo A BO c Ao‘-"~‘—‘> Open Bo), 'ItRUE 17, 5
(1 2) (oo =1 (OPEN N Subsets Ao) = AO) 14.2
121 (=>1 (OPEN N Subsets Ao) c Ao) 113, 14

| )
(ou=>xoeL,( )~—-——-—>xoer) 113
(aw=> (B e (OPEN N Subsets A ) Ax € B —>x e A)) 15
o o o) o o o

(@ANOpenB AB CA Ax €B AX € A=>x e A)
0 o— "o ) ) ) ) o o
TRUE

Forward Chaining was used in the previous step.

(12 2) (o = Ao < U (OPEN N Subset AO) I 4.2
(@ Nx € A =0penBABCA AX € B) 113, 7, 5
o o - "0 o) ‘
(xo € Ao) is forward chained into g to get

(Open B ANB CA Ax e€B ). Thus (1 2 2) becomes
o o~ "o o 0 .

< -
(12 2) (ou/\xoeAO/\OpenBo/\BO__AO/\erBO=>OpenB/\B_AO/\xoeB),

which holds for Bo/B' Thus BO/B is returmed for (1 2°2), (1 2), and (1).

Other examples using PUT and the other interactive commands are given

in {1].
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The DETAIL command is fully explained in Section 2.1 of [1] and is
used in several examples there. It is used to let the machine tell the user
which part of the proof it is having trouble with. If the prover fails on

a goal of the type
(1 2) H=A A B)

the command "DETAIL" will (in essence) ask for information on the proof
of each of the subgoals (H—>A) and (H—>B). Thus the machine might

respond

(L2 1) (H—>A)

PROVED..
Then after a user commands 'PROCEED", it might respond

(12 2) | (@ —>B)

FATILED..

In this way the user is told which of the two subgoals the prover is having
trouble with, and can direct his help according}y. A further command
"DETAIL" would act similarly on subgoals of B (if there are any).
INDUCTION K commands the program to try to prove the current subgoal
using mathematical (finite) induction on XK. For example if the current

goal is
P (K)

it will rewrite it as



PO AN PK)—>PK+1)) ,

also universally quantifying any free variables in P(K).

Yoi= NE+1)/2
i=0

is converted by the command INDUCTION N, to

0
(2 1i=0(0+1)/2)
i=0
AN
N N+1
(Y i=
=0 i=0
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For example,

N@N+1)/2—> 7 i= (N+1)((N+1)+1)/2

which can now be proved automatically by the use of a simplification routine

and REDUCE rewrite rules which convert

0
YOf(L)
i=0
to 0, and convert
K+1
YOf(L)
i=0
to
K
Y@ + f£(R+1)
i=0

In many examples the subgoal itself is not a sufficient induction

hypothesis. Thus it is necessary to "prove more" in order to get the

desired result. To facilitate this, the command (INDUCTION K Q) can

be used whereby the user supplies the induction hypothesis

Q.
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Many other researchers have used induction in their automatic theorem
proving programs [40,2,43,44,29]. Boyer and Moore [29] have employed an in-
teresting concept called "generalization' which converts the current subgoal

into a more general theorem, but one which then can be proved by induction.

Optional REDUCE.

For some large theorems, for example like those encountered in program
verification (see Part I), it is not desirable to call REDUCE each time
IMPLY 1is executed, because this can be very time consuming. Accordingly
the program can be operated in a mode that causes it to stop before executing
Rule 7 of IMPLY, and print '"DO YOU WANT TO REDUCE? TYPE: Y or N'. A

"N" will cause it to proceed without reducing.

User Equals Substitution.

In Rule 9 of HOA the program applys a "substitution of equals". Given
a hypothesis (a=Db) it selects elither a or b and replaces it by the
other throughout H ’and C. An optional mode of operation is provided that
allows the human user to override this process. In this mode the program
chooses either a or b and proposes that to the user for him to accept

as proposed, reverse, or reject altogether. The program stops and prints

"a Replaced by b?"

The user then says one of:

"Yes" (means do the substitution)

"RY (means replace b by a)

"No" (means do not do any substitution. Proceed)
"Next" If b=c+d (or a=e+f) the program will

find the next possible substitution and print
"¢ Replaced by d=-a?"
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and the whole process repeats.

Most of these interactive commands are retractable. If a command has
changed the theorem in any way, the machine displays the changed version
and then asks "OK???". The program will then make the change permanent only
if the user types "OK". |

All the user commands such as PUT, USE, etc., may be called initially
without arguments. When this happens the program asks the user for the re-
quired arguments. For example the following is a sample dialogue where ''h"

stands for user input and "c¢" for machine quiries.

c IMPLY STOP

h ADD-REDUCE

c PATTERN:

h a+ o0

c REWRITE AS:

h | a

c CONDITIONAL (YES OR NO)?
h NO

Some More Details.

In Section 1 we said that IMPLY was called with five arguments,
(TYPELIST, H, C, TL, LT), but only the principal ones, H, C, and the
theorem label TL, were discussed in Sections 1-6. TYPELIST is discussed
in [27] and LT 1is a "light" which helps control the man-

machine interaction. This is discussed below.
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The routine IMPLY has three major-;ections -~ CNTRL (control), OPTIONS,

and the features described in Sections 2-6., CNTRL is executed at the entry

to IMPLY and is the only section that uses the light (LT). The purpose

of LT 1is to differentiate between calls to DETAIL (LT=3), CNT (LT =5),
which are described above, and (LT=3B). A DETAIL call stops at OPTIONS
before returning from the top level sub-calls to IMPLY. A CNT call (which
gives a larger time-limit) does not stop at OPTIONS on any sub-call. A

"B'" call stops at OPTIONS before any proof is attempted. If the theorem is
H— C1 A C2), there are top=-level sub~-calls to IMPLY for (H—> Cl) and
(H > Cz). DETAIL stops at OPTIONS after (H-—> Cl) is attempted and then
after H—> CZ) is attempted. CNT does not stop until after the attempt

to prove (H—> C1 I Cz) is completed. A '"B" call stops before (H—--—?»Cl)
is attempted. CNIRL does various things according to the value of LT. If
LT=3, CNIRL resets LT tck)"“; and goes ’directly’ do@ to | OP;IIONS for
human intervention. If LT=1 or LT > 2, CNIRL recalls IMPLY with

LT one less than its present value. The result of this call ("PROVED',
"FAILED", or "PROVED CONDITIONALLY" -- see Section 3 of Part I) is printed
and execution continues at OPTIONS. 1In most cases conti‘ol passes down to
OPTIONS directly.

At OPTIONS human intervention is bypassed if LT < 1 or LT=2 and
control is passed on to the IMPLY Rules (See Table I). Otherwise "IMPLY-
STOP" 1is printed on the screen and the program waits for the user to enter
commands. At present there are about 35 different commands available, in-
cluding those listed in Table VII. As mentioned earlier, some commands cause
information to be printed, some cause special proving methods to be tried

(perhaps with a larger "time'" limit or with more human intervention). Some

allow the user to give prover more information, or to arrange the theorem.
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8. Some Applicatiomns

This prover has been used to prove theorems in the following areas:

(1)
(2)
(3)
(4)
(5)

Set Theory [2]

Limit Theorems of Calculus [3]
Topology [1, 38, 39]

Limit Theorem of Analysis [45]

Program Verification [6, 27].

In [45] the methods of non-standard analysis are used whereby the

theorem in question is converted automatically to a theorem in non-standard

analysis, and then proved in the new setting which seems to be more con-

ductive to automatic proofs.

and Reductions (see Section 3) play a major role in handling infinitesimals,

The typing concepts (see Section 1 of [27])

and other typed quantities.
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Appendix 1

Skolemization ~- Elimination of Quantifiers
First we give examples. The formula
3 x P(x)
is skolemized as
P(x)

where x is a "skolem variable'" which can be replaced by any term during

the proof. Similar,

Q—>3dx P(x) ,
and

FxQ—>2 ) ,
are skolemized as
Q—>P&) ,
and
(VX P (x) —> C)
is skolemized as
P &)—>C) ,

where x 1is a skolem variable.
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On the other hand, the formulas"

\/ x P(x) ,
e—>YxPrix) ,
V xQ—>rw),

(Hx P(x) —>0C)

are skolemized as

P (XO) ’
Q—>P(x))

and

(P(xo)—4> C)

>

where X is a skolem constant (cannot be replaced).

Finally

VMx Ty pe,y)—>Tu Vv Qu,v)

is skolemized as

®x,gx))—>Qu,h(u)))

where g and h are skolem functioms.

Notice that we do not place the formula being skolemized in prenex form,
but skolemize it in place, leave each logical symbol except V and 3 »
in its original position.

We now give the general rules.
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Given a formula E, we recursively define” as "positive'" or '"megative"

the subformulas of E, as follows:

1. E 1is positive

2, If (AANB) 1is positive (negative) then so are A and B

3. 1f (A V. B) 1] " " 1" " 1" " i 1"

4. If ~A 1is positive (megative) then A is negative (positive)

5. If (A—>B) 1is positive (negative) then
A 1is negative (positive), and

B is a positive (negative)

6. If (Vx A) 1is positive (negative) then
A 1is positive (negative), and

V is a positive (negative) quantifier
7. If (3}{ A) 1is positive (negative) then

is positive (negative), and

A i
3 is a negative (positive) quantifier.
For example if E 1is the formula
([H—=> (C—> ~D)]—=> [~A V B—>F)])

then E, [~A V B—>F)], ~A, (B—>F), F, H,‘C and D are positive, while
[H—> (C —> ~D) ], (C—>~~D), ~D, A, and B are negative.

Given a formula E with no free variables, we eliminate the quantifiers
of E by deleting each quantifier and each variable immediately after it, and

replacing each variable v bound by a positive quantifier with the skolem

2See Wang [23].
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expression g(xl,...,xn) where g 1is a new function symbol (a "skolem
function'" symbol) and L STRERPE S consists of those variables of E which

are bound by negative quantifiers whose scope includes wv. The result is

called the "skolem form of E".

For example if E is the formula

3 X Vy P(X,Y)

then 3 is a negative quantifier, V is a positive quantifier, and

P(x,8(x))

is the skolem form of E, whereas the formulas

Ve >3y emy) ,

and

3 X(Vy 3 Z P(X:Ys zZ) —> VW Q(X’W))

have the skolem forms

@) —>Qx_, 7)) ,

and

(P(X’Y3 g(X,Y))'—'}Q(X,h(X)))

respectively, and the formula

\/x(Vy[g z Hx,v,z) —> a u(Cx,u) — ~ Vv D(u,v))]
—_ Vw[~ A(x,w) v s(Jt B(s,t)—>» Y F(x,r,s,t))])
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has skolem form

([H( ,y2) —> (C(x_,8(y)}—> ~ D(g(¥),h(y)))]

——> [~ AGx W) V(B (s, 5(8) —>F(x ,k(s),5,3(s))])

It should be noted (by those familiar with Resolution proofs) that
the formula E is not first negated before the skolem form is derived.
This difference reverses the roles of V and 3 in the skolemization

process.
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Appendix 2

Incompleteness of the -Prover

As mentioned earlier the prover is incomplete, in that there are
theorems that it cannot prove. Of course, it has the usual incomplete-
ness, that humans and othef systems possess, of not being able to prove
really hard theorems, like Fermat's last theorem (if it is a theorem).
But our system is incomplete in three other ways which we refer to under
the headings of "using ANDS in backchaining", "trapping', and
"multiple copies". We will discuss these and changes we could make to
eliminate this incompleteness, and why it is not desirable to do so.
See also [46].

Using ANDS in Backchaining,

In Rule 7 of HOA if the hypothesis B has the form (A—3>D)

then we put

(1) 8: = ANDS(D,C)

and then try to prove (H—>A8). A more complete procedure would use
(ii) @: = IMPLY(D A H, C)

bringing to bear the whole strength of IMPLY instead of the weaker

routine ANDS. The following example, illustrates this inadequacy

Ex. Al. (AABA (A—> (B —>C))—>C).

Of course forward chaining would quickly prove this, but let us assume,
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for the sake of the point we are making, that forward chaining is inoperative.

Then we obtain:

(L

AANB AN A—>E—=>0C)=0)

(A=>0C) NIL
(B = C) NIL
((A—> (B —>C)) => C)

ANDS (B—>C, C) Returns NIL

So NIL is returned for (1).

I7

H 6

H6

H7

If in Rule 7 of HOA, we had used (ii) instead of (i), (Calling it

Rule 7'), then the proof would proceed to a successful conclusion as follows:

(1

(10

(1 ¢Cc o)

(1 C H)

(1 H)

(AANBA A—>@B~—>C))=0C)

(A= C) NIL
B =C) NIL

(A—> B—>C))=C
(B—>C) AAABA (A—>B—>C)) = C)

CA B=—>C)AAAB A (A=>B—>C)) = C)

HTH

(B—>C)ANAABAN A—>@B~-—>C)) =1RB)

"TN

(AANB A (A—> B—>C))—>A)

HTH

H 6, 112



71.

However we do not use Rule 7' because it causes the procedure to spend
too much time trying to prove the subgoal IMPLY(D A H—>C) in cases where
that is impossible, instead of proceeding with other lines of attack. Using
ANDS instead of IMPLY prevents this futile attempt at backchaining, allow=

ing it to happen only in cases when D essentially matches C.

Trapping.

In Rule 4 Table I when a conclusion of the form
AAB

is being proved, we first prove A, getting a substitution ©, and then
prove B 0. Sometimes, as in the following example, the value of 6
returned by IMPLY for the proof of A, will not work for B. We call

this "trapping".

Ex. A2. ®(a) A P®) A QD) —>T x@ &) A Qx)))

(L (P(a) AP(D) AQ()=P(x) A Q%)) | 17

(1 1) (P(a) A P(b) /1 Q(b) = P(x)) | 14
Returns alx for (1 1) H6, H2

(1 2) (P(a) A P(b) A Q(b) = Q(a)) I 4.2

Returns NIL for (1 2)

Returns NIL for (1) I 4.3

We could have prevented trapping in this example by trying Q(x)

first and then P(x). So in general, when proving (P(x) A Q(x)) we might



72.

want to first try (P(x) A Q(x)) and if that fails then try (@Q(x) A P(x)).

This could be effected by changing Rules 4.3 and 4.4 of Table I to read

4.3 \ = NIL Put Q': = IMPLY (H,B)

4.,3.1 ' = NTIL NTL
4.3.2 6' = NIL Put A': = IMPLY(H,AQ')

4.3.2.1 1A' = NIL | NTL
4.3.2.2 A' # NIL ' @' o'
A N # NIL 8o

A similar permutation would have to been provided for in the hypothesis

in order to handle an example like

Ex. A3. (P(a) AQ®) AP(e) A Q(c)—%ax(P(x) A Q(x)))

because there either P(x) or Q(x) first would produce trapping. So it
would be necessary to permute the hypothesis to (Q(b) A P(c) A P(a) N Q(c))
or one of the other successful configurations. This could be effected by

further changing 4.3.2.1 to

4.3.2.1' A' = NIL
4.3.2.1.1 H# O AE) NIL

4.3.2.1.2 H= (D A E) IMPLY(E A D, A A B).

(In this case we would need to set and test a light to prevent Step 4.3.2.1.2

from being repeated indefinitely).
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Unfortunately such changes as these greatiy increase the running time
(sometimes by orders of magnitude) for all theorems including those that
need no such permutations. 'So our present version has neither change. Most
of the examples encountered so far don't require it. Also in our interactive
system (see Section 7) such a failure is shown to the human operator who can
permute the conclusions and/or the hypothéses with one simple command and
thereby achieve the desired result.

Nevins [17] has prevented trapping on an AND-SPLIT
(A(x) A B(x))

bj obtaining the set SA of all values of x satisfying A(x), and the
set SB of all values of x satisfying B(x), and then intersecting SA
and SB for the solution of (A(x) A B(x)). See also [47]. In using this
method one must be careful to provide a special mechanism for cases where

S or S is infinite.

A B

Multiple Copies.

In the following example the hypothesis V’x P(x) is used twice in

proving the theorem.
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Ex. Ab. (Yx P(x)—>P(a) A P(b))

) (P (x) = P(a) A P(b)) I 7

11 @G =P() a/x L4, 12
12) (P& =PO)) b/ I 4.2, H 2

Returns (b/x, a/x) for (1).
There is no problem here, and also we have no difficulty with the
following equivalent version of this example.
Ex. A5. 3 x@x)—>P(a) A P(b))

¢9) (P(x)—>P(a) A P(b)) 17

etc. as in the previous example.

However, in the following equivalent version we reach an impass.

Ex. A6, Ax @& —>P(a) A ®E—>POb))]

(1) (PG)—>P(a)) A BE)—>P (1))

(1 1) (P (x) = P(a)) a/x T4, 17, H2
(1 2) (P(a) = P (b)) NIL I 4.4, T7

NIL is returned for (1).
If the program was able to convert this example to its equivalent form

H x@x)—>P(a) A P())
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then there would be no difficulty. But then a similar theorem such as
Ex. A7. V 2Qz)—>p(2)) —>3 x[@E)—P(a)) A (Q(x)—>=P(b))]

would be very difficult to convert without eliminating the implication

symbol " v,

There are two possible ways to cope with this type of difficulty.
First we could eliminate all of the implication symbols (using (~ A V B)
for (A-—>B)) from the given theorem, and work from there. But this
would change the basic nature of our system, and we do not wish to do it
for reasons which we give later.

Secondly, we could require that the program make "multiple copies”

of exigtentially quantified disjuncts in the conclusion. For exaﬁple
H—>3x P(x))
would be copied as
(H—>P(x) Vv P(x")) .
(Similarly, universally quantified conjunctions in the hypothesis
Vx Px)—>0)
should be copied as
@) ANP(E")—>C) ,

but this is already done by Rule I 4.2). (More generally, we would copy




existentially quantified expressions in any 'positive'' position (see

Appendix 1) of the theorem, and any universally quantified expression

in a "negative' position.

(1)

(1

(1

(1

(1

(1

Thus in Ex. A6, after copying, we get

76.

[PE)—>P(a) A CE)—>P0B)] V [@E)—P (@) A RKE') P(b))]

~[@EENY—>P@) A CEY—>P0)] = [EE)—>P(a)) A ®E)—>P(b))]

D

11)

12)

2)

21)

2 2)

So

H4.2

PE'"YA~P@)V EE)A~EDL)=[CEE—>P(@) A (&) P(b))]

@EEYA~P@@=[CE)—>P(@@) A &) —>P(b))]

(®(x") A~ P(a) = (P(x)—>P(a)))

(P&E) ANP(a') A ~P(a) =>P(a)) a/x
(PE'Y A ~P(a)= (P(a)—>P(b))) Db/x'
®P®) A ~P®)=[(®(a)—>P(a)) A (P(a)—>P(b))]
(®P@®) A ~P(()= (F(a)—>P(a))) "I"
(®®) A ~P(()= (P(a)—>P())) "T"

(a/x, b/x') is returned for (1).

I3

L4

17, H2

I7, H2

14, 7, H2

17, H?2
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A similar attack will succeed for Ex. A7. Of course, we may sometime
need more copies than two, and in fact, a procedure would need to be
established whereby copies are continually generated, at intervals, until

the theorem is proved. Unfortunately this leads to an infinite regression

on most non-theorems.
To show what copying does to a non-theorem we try

Ex. A8. Q(a)—> Tx[ B x)—>P(a)) A @E)—>P (b)) A Q(x)]
NOT A THEOREM.

This example also needs copying

(1 Q@ —[ @) —>P(a)) A PE)—>P((®)) A Q)]
| VIE@GED—>P() A R&')—>P®)) A Q)]
Q@ A~ [CE)—>-1=[@E—>P(a)) -]
[QG@) ANP(&') A~P(a)) Vv (Q(a% APE') A~P()) V Q) A~Q("))

- en N
= [EFE) —>P (@) A PE)—>P((®)) A Q)]

(1 1) Q(a) A P(x') A~ P(a)) = c

(111) (Qa) AP(x') A~P(a) = (P(x)—>P(a)) ‘a/x
112) @Q@APE)A~P@E)= P)—>P®)) AQ(a))
1121) Q) AP(') A ~P(a) = (P(a)—>P(b))) b/x'

(112 2) Q(a) A P() A~ P(a) = Q(a)) "I

Returns a/x, b/x' for (1 1)
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(12) [@Qa) A P& A~PB)) A Q) A~QEx")]B/x") = C(al/x)
(121) Q) APO)A~P(D)=C(a/x))
(1211) Qa APRO)A~PO)= (P(a)—>P(a))) T
(1212 Q@ APG)A~PD)= (P@—P((B)) A Qa))
12121) Q@) APOB)A~PO)= (P(a)—>P(b))) T
(L2122 (Qa) ANP(D) A ~P()=>Q(a)) "
(122) Q) A~Q)=C(alx))
1221) QG A~Qb)= (®(a)—>P(a)) "
(1222) Q) A~Q@)= (P(a)—>P(d)) A Q(a))
(12221) Q) A~Q()= (P(a)—>P(b)))

Qa) A P(a) =P(d) V Q) ' NIL

So NIL is returned for (1 2). It should also return WNIL for (1),
since it is false, but it would copy again instezld and never return.
Clearly an additional hypothesis Q(b) would make (1) valid
in which case "T" would have been returned for (1 2 2 2 1), and

(a/x, b/x') returned for (1).
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Comment.

We object to the inclusion of "copying” rules and rules to permute
hypotheses and conclusions to prevent "trapping" for several reasons.

These rules are not needed on a very large percentage of theorems, and
yet they greatly increase the computing time in nearly all cases, sometimes
by a large order of magnitude. If we ever expect to prove really difficult
theorems in mathematics ﬁe must not strangle the mechanism that does it by
making sure that it handles every case. Rather we believe (in the spirit
of information theory) that it should be allowed to fail on a few cases so
that it can succeed on a number of others, especially the hard ones.

The difficulties we point out here are faced by all other proving
systems. Resolution systems pay the price by continuing all proofs of the
theorem (allowed by the particular restriction on resolution). Gentzen
type systems pay it through copying and search. They both remove the im-
plication symbol and work with the result which we feel is very unnatural.

The implication symbol " —>" or its equivalent piays’; crucial role
in mathemafics. Much of Mathematics consists of stating and proving theorems

of the form

(Hl N H, ALLA Hnw—%>C ANC, No..ANC

2 1 2 m) ‘

Human proof technique, developed over a period of a few thousand &ears, center
around using one or more of the H's to imply one of the C's. We have
wanted to keep this same spirit in our prover so that we canbeasily use some
of the powerful heuristics developed by mathematicians, so we can best inter-

act with the prover on a man-machine basis.
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Some Proofs of Soundness

In Section 2 we stated that a call to IMPLY(H,C) would return NIL

or a substitution © such that
(1) (He > C8)

is valid. Indeed this is the case if © has mo conflicting entries (entries
of the form a/x and b/x, a#b, or g(y)/x and £f(x)/y). We wish now to
describe a slight change that could be made to TMPLY which would allow it to
handle such conflicting entries, and which would permit us to prove a soundness
result of the form (1). 1In doing so we will generalize the notion of a sub=-

stitution, O, allowing symbolic disjunctions

8 = (91 vV 92)
to be returned from IMPLY. In this new setting the formula
(2) (H>C)6

will be shown to be wvalid.

Before considering these generalized substitutions let us firm up our
position for ordimary substitutions. Conflicts (of the form mentioned above)
are not introduced when two formulas are unified. Indeed the classical uni-
fication algorithm prevents that. But conflicts may be introduced at AND-

SPLIT's like Rule I4, where a goal of the form
3 (H=A A B)

is being proved. If 8 is returned for H=A), and A is returned for



(H=>B8), then Rule I4.4 returns o=06oXA for (3). (It would be easy to
prevent any such conflict by requiring the subgoal (HO > BE) instead of

(H » BO), but this would greatly weaken the prover, preventiﬁg the proof

of such simple theorems as Example A4, Appendix 2.) If a conflict is intro-
duced into ¢ it in no way implies the invalidity of formula (3). (We
confirm this in ThepremAl below.) It is just that such a ¢ with a conflict
cannot be substituted (in the usual way) into other formulas. We overcome

this difficulty by generalized substitutions.

Theorem 1. If © and A are ordinary substitutions, each without conflict,

then
(4) (H> A AN (H>BOA > (H>» AAB)

Proof. What are we trying to prove here? We must show that there are ordinary

substitutions o5 © o for which

LR
(5) (H+AA B)Gl VooV (H> AN B)Gn

is a valid consequence of the hypothesis

(6) (HE > A®) A (HA > BEGMA).

We will show (5) for =0, o,=\.

0'1 2

The proof is by contradiction. Suppose that
(7) H>AANB)OV (H+AABA

is false. Then we have

(8) HO A ~(AG A BB) A HAN A ~(AN A BO) ,



from which we infer by (6), that

(AB A BON) A ~(AO A BO)

i

~[A® A B —>A8 N BEA]

1f

~(TRUE),

a contradiction. Thus our assumption (8) is false and (7)

is True. E.D.

It should be noted that in our new notation below, the substitution

(8 VA) 1is returned for (3).

When we do have a conflict, according to Footnote 4, Section 2, we must

consider two cases separately and combine the results from these into a re=-

sultant substitution.

We now propose instead of this another way of handling conflicting entries.

The soundness of this new method is easier to prove, and its soundness implies

the soundness of our present system.

Generalized Substitutions.

Definition. @8 1is a generalized substitution if

(1) 6 1is an ordinary substitution, or

(ii) 0 has the form

(Q1 \% 92) or‘ (Q1 A 92)

where Gl and 92 are generalized substitutions.

Some examples are,

0 8, V @

where the Qi are ordinary substitutions.



Definition. If @ 1is a generalized substitution, then we define ' by

(i) 0'=0 if O 1is an ordinary substitution
s | B 1 1
(ii) (91 \Y, 02) = (91 A 92) s
s 000 ) S ] 1
(iii) (91 A 92) = (91 \% 92)

(This definition is for this Appendix only).

Definition. A generalized substitution is said to be a pure disjunction
(conjunction) if it contains no A symbols (V symbols).

Notice that this definition allows ordinary substitutions to be called

pure disjunctions (and pure conjunctions).

Definition. If A 1is a formula and @ is a generalized substitution, then
A8

is the formula gotten by applying 6 from left to right, i.e.,

(i) A@ is the usual result if © 1is an ordinary substitution,
(ii) A(Q1 vV 92) = AG1 \ A92
(iii) A(Q1 N 92) = AQl A AQZ‘

Definition. For ordinary substitutions © and A, the iteration 6\ is

defined to be the symbolic disjunction
8V A

if 8 and A have conflicting entries (i.e., there are entries a/x in

@ and b/x in A, with a#b, or g(y)/x and f(x)/y), and QoA

otherwise.

Whenever we have an iterated generalized substitution such as



oA

we can convert it into a generalized substitution by applying A to 9.

For example, if Qi and ?\i are ordinary substitutions then

((E)1 A 92) O\l Y 7\2)

(917\l A 927\1) Y (917\2 A 927\2)

[

(917\l Y 917\2) A ((§)17\1 Y 927\2)

(87 V 8N A QA V 8N

where each of the terms Oi')\j is converted into Qi °7\j or Qi vV 7\j.

Properties of generalized substitutions.

Lemma 1. If & and A are generalized substitutions, A is a pure disjunction,

and A and B are formulas then A' is a pure conjunction and

.1 @")'

4]

2 ~(AD)

I

~Bo '
.3 (AVB)N = ANV BA

4 (ANBYN'" = AN' A BN

.5 (A > BYN = (AN' > BA)
Proof. .1 and .2 follow directly from the definition of &' and the properties
of ~. .3 and .4 follow from the associativity of V and of A. Then .5 follows

from .3, .2, and .1, as follows

(A > BYA

i

(~A V B)A

]

(~AN V BA)

i

(~(A\') V BN

[

(AN' > BA)



Generalized substitutions in IMPLY and HOA.

The change we propose in the program applies only at AND-SPLITS (Rules
3 and 4 of IMPLY, Rules 7 and 7E of HOA). Two changes are required in

proving an AND-SPLIT of the form

(H=A A B)

(1) We must state how the substitution © which is returned for the first

subgoal
(H=>A)
is applied to B, before calling IMPLY again on the second subgoal.

(2) And we must state how we combine © with the substitution A refurned

from the second subgoal.

Table A-I gives these changes for IMPLY Rule 4. A similar change is needed

for IMPLY Rule 3, and HOA Rules 7 and 7E.



Table A-T
IF ACTION RETURN
4 C=AAB Put ©: = IMPLY (H,A)
4.1 © = NIL NIL
4.2 0 # NIL Put AN: = IMPLY(H,B8') where
8'=0, if 6 is an ordinary sub-
stitution, (Q1 \% 92)' = Qi A 8L,
and (Ql A 92)' = (Qi Y% Qé).
4.3 A = NIL NIL
4.4 N # NIL COMBINE (0,2)
COMBINE (8,)\)
IF ACTION RETURN
A= (Al y 7\2) (COMBINE (0,7\1),
COMBINE (9,7\2))
0 = (Gl \Y 92) ‘ (COMBINE(G.L,?\),
COMBINE (6,,7) )
@ and A have a conflict (8 V)
ELSE 8 oA

Notice that if © and A are pure disjunctions (which may be ordinary

substitutions) then so also is COMBINE (6,A).



It should be noted that if @ and A are ordinary substitutions which
do not have conflicting entries then 8 oA 1is returned as before. If they
do have conflicting entries, then (8 V A), the symbolic disjunction of the

two, is returned. If 6 (or A) is already such a disjunction
8 = (01 v 02) s

then N 1is combined to Ql and 92 separately. If ‘A has no conflict with

91 and 92 then the reéult is
(Glo% vV 920%)
If A has a conflict with 91 the result could be

((91 V7\) \/ 92 O?\) 3

etc., In this way a pure disjunction is always returned.

The reader should note that by Rule A-I 4.2, when proving
(H= A A B)
if (9l vV QZ) is returned for
(H=A)
thenkthe second subgoal is
(H:>B(Ql A 92))

This requires both BG1 and BQ2 to be proved, and is consistent with our
Footnote 4, in Section 2, which states that if two conflicting values are

returned from the first subgoal, then two cases must be handled.



We could have omitted 8°¢A altogether even when 6 and A have no

conflicts, and always use © V A, but this would be less efficient for most

proofs.

Soundness.

We are now in a position to prove the soundness of our extended system.
We will do so only for Rule I4. The proof for the other rules is similar.

If we are proving
H=>AAB),
and © 1is returned for
(H= A)
and A 1is returned for
(H=>3B8")
then it will return COMBINE(O,A\) for
(H=>A A B)
We show that this is a valid way of proceeding by proving Theorem 4 below.
Lemma 2. If A is a pure disjunction then
(D > D\)
Proof. The proof is by induction on the structure of .

Case 1. If A is a ordinary substitution them DA is an instance of D

and the result is immediate.
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Case 2. (Induction step). If )w=%l Y %2, and we assume the induction hypothesis

(D > D7\1)
and

(D > D?\z)
then we have
D +~D%1 AN D%z = DO\1 V'kz) = DA,
as required.
Lemma 3. If 8 1is a pure disjunction, then
Mbe A (D > E)8' > EQ)
Proof. The proof is by induction on the structure of 8.

Case 1. If O 1is an ordinary substitution them 8'=6, and the result follows

by modus ponens.

Case 2. (Inductiom step). If @= 91 Y 92, and we assume the induction hypothesis,

A\
DQl N (D +»E)Ql > EGl s
and
1
DGZ A (D +~E)92 > EGZ R

then we have

De A (D > E)O'

il

D(Q1 \% 92) A (D ?-E)(Qi A Qé)

1 1
(DO, V DO,) A (D > E)6I A (D > E)6)
——> E0, VE6,
= T

as required. Q.E.D.
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Comment . Lemma 2 is not surprising, but Lemma 3 is a curious form of modus
ponens, which seems false at first glance. One should ggg'make the mistake
of putting (D > E)@' equal to (D@ » E@'). But even if he did the result
would still not follow by modus ponens. Lemma 3 is crucial in the proof of

Theorem 2 below.

Theorem 2. If 6 and A are pure disjunctions, then

(1) @H > A)®
(2) A (H>BO"HA

(3) —3>H>AANBYBAN).

Proof. The proof is by contradiction. Suppose that the hypotheses (1) and

(2) hold and the conclusion (3) is false.

Thus using Lemma 1.5 we have

(4) (HO' > A)
and
(5) (HN' > BO"N) ,
‘and
(6) ~[(H > AABGOAN]
which, using Lemmas 1.5 and 1.2, is equivalent to
~[H® VA '—>(A A B)(O V)]
= ~[H@' A N)—>(A A B) (O V)]
= HO'AHA'A ~(AAB)YOVA)
= HO' A HA' A (~AV ~B)B' A (~A V ~B)A

(7)= HO'" A HAN'" A (A » ~B)8' A (A > ~B)N!

It follows from (7) and (4) and (5) (using Modus ponens) that
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(8) A9,
(9) Be'"A,
and from (8), (7) and Lemma 3 that

(10) ~BO = ~[BO']

But (10) is in contradiction of (9) by Lemﬁa 2, and hence our assumption
(6) is false and the theorem is true. Q.E.D.

Theorem 2 shows that we can dispense altogether wish © oA using always in-
stead & © V A. However, as mentioned earlier, this would be much less
efficient when © and A have no conflict.

A weaker version of Theorem 2 would have sufficed in the proof of Theorem 4.

Theorem 3. If © and ‘A are ordinary substitutions with no mutual conflicts

and H is a formula, then
(HA » HEA)

Proof. We will sketch the proof only for the case where H has only two
variables x and vy. We write H=G6(x,y).

Since @ and A have no conflict within themselves then they can take

only the following possible forms:

0: a/x. bly, g¥/x, f&)/y,

a/x bly, al/x £(x)/y, gl)/x bly ,

N: c/x, dly, i(y)/x, h&x)/y ,

c/x dly, c/x h(x)/y, i()/xdly,

where a,b,c,d are constants.

Since 6 and A have no mutual conflicts, many combinations such as:



0 = a/x A= c/x

2

©
il

g(y)/x A

]

f&x)/y ,

are conflicting and need not be considered. Others such as

0 = a/x A

ff

h(X)/y ’

d/y s

< »]
il

gly)/x A

[

are not conflicting, and for these cases the desired conclusion holds.

example if © = a/x, A = h(x)/y, then
HOA = G(aﬁh(x>)y HA = G(Xsh(x)) >
and

(HA > HON)

becomes

G(x,h(x)) > G(a,h(x))

‘which is valid (put a for x).
Theorem 4. TIf @ and A are pure disjunctions, then.

(H—> A)0
A (H—> BO'HA

——> (H—>A A B) COMBINE (6,))

Proof. We will abbreviate COMBINE(E,A\) as C(O,A) in this proof.

The proof is by induction of the structures of A and 6.

Case 1. A 1is an ordinary substitution.

13.

For
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Case 1.1. 8 1is an ordinary substitution.
Case 1.1.1. A and @ have no mutual conflict.

In this case C(O,\) = 8o}, and the desired result follows from Theorem 3.

Case 1.1.2. A and @ have a conflict.

it

In this case C(0,\) °] V'%,‘ and the desired conclusion follows as a

special case of Theorem 2.

Case 1.2. Q = Ql \Y 92.

In this case C(Q,\) = C(Ol,%) Y C(Oz,%), and the induction hypotheses are

¢H) (H > A)Q1 A (H > BQi)?\ > (H>AA B)C(91,7\) s :

(2) H > A)Gz AN (H > BQé)% > H>AA B)C(Gz,%) .

Thus

(H>AA (1>B"A

1 1
[@H > A)@1 vV (H > A)Qz] A (H > BGl A B92)7\

[(H > A)Q1 vV (H > A)QZ] A (H BGi)% A (H +~BG§)%

since A 1is an ordinary substitution
—— (0> A A B)C(Ql,%) vV (H>AA B)C(Qz,%)

by (1) and (2)

il

(H~> AN B)[C(Ql,%) Y C(OZ,K)]

i

(H > AN B)C(,N)
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Case 2. A= %1 \Y% %2.
In this case, C(8,\) = C(Q,%l) Y C(Q,%z) and the induction hypotheses are

(3) (B> A)6 A (H> B, —> (H>AABICON) ,

&) (H>A)B A # +~BQ')%2-—4>(h > AN B)C(Q,%z) .
Thus

(H> Ao A (H~>BO"A
= (H>AMOA [(H>BE)N V (H> BO'IN,]

—> (H > AN B)C(Q,Kl) V H>AA B)C(Q,%z)

by (3) and (4)

(H>AA B)[C(G,?\l) V C(6,7,)]

= (H>AABX(B,N) . Q.E.D.
Example.
@) A Q) —>Tx[ @) —>P(2) A B()) A Q) ])
@ @Qa) A Q(b) = (P(x)—>P(a) A B(®)) A Q(x))
(1 1) @(a) A Q(b) = (2(x) —>P(a) A B(D)))
(111) (Q(a) A Q(b) A P(x) = P(a)) alx
(11 2) @(a) A Q(b) A P(x) = P(b)) b/x

Returns (a/x VvV b/x) for (1 1).

(1 2) (Qa) A Q(b) = Q(x)(a/x VvV b/x)")
QCa) A Q) =>Q(a) A Q(b)) TRUE

Returns (a/xV b/x) for (1).
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