®

The UT Interactive Prover

by
W. W. Bledsoe and Mabry Tyson

June 1978 ATP 17A

* The work reported here was supported by NSF Grant #DCR74-12886.

x

The UT ‘Interactive Prover

W.W. Bledsoe and Mabry Tyson

ABSTRACT

The interactive theorem prover developed by Bledsoe's group at The
University of Texas is described. Algorithms are given for its principle

routines TIMPLY and HOA, and its set of interactive commands are tabu=-

lated.

The prover itself (without interaction) is a natural deduction system
which uses the concepts of: subgdaling, reductions (rewrite rules),
procedures, controlled definition instantiation, controlled forward chaining,
conditional rewriting and conditional procedures, algebraic simplification,
and induction.

1t, or variatioms of it, have been used to prove theorems in set

theory and topology, theorems arising from program verification, and limit

theorems of calculus and analysis.

P

Table of Contents

Page
1. Introduction 3
2. IMPLY and HOA g
3. Definitions and Reduction 21
4, PEEKing and Forward Chaining 30
5. Conditional rewriting and conditional procedures 37
6. Complete Sets of Reductions 43
7. 1Interactive System 45
8. Some Applications 63

Appendix 1. Skolemization -~ Elimination of quantifiers
Appendix 2. Incompleteness of the Prover

Appendix 3. Some Proofs of Soundness

The UT Interactive Prover

W.W. Bledsoe and Mabry Tyson

1. Introduction

The prover we describe in this paper is a natural aédﬁction type system
that proves theorems in first order logic, and some extensions of that by
subgoaling, splitting, matching, and rewriting, simplification, and other
such procedures. ‘It has been partially described in [1-6] but there remains
some uncertainty as to exactly what it does. We will attempt to explain it
in a precise manmer, but the ultimate explanation is in the LISP program
itself, which is available upon request.

There is no attempt here to review all the literature on automatic
theorem proving. Suffice it to say that our Work-is based to a great extent
on that of others. The reader is referred to Chang and Lee [7], and Loveland
[8] for information and references on resolution type systems, and to the work
of Allen and lucKham [9], Guard, et al [10], and Huet [11], on interactive
provers. Our prover is in the spirit of Newell, Simon, and Shaw [12],
Gelerntner [13], and has much in common with the work of Gentzen [14], Nevins
{15-17], Rei;er (18], Ernst [19], Bibel [20], Hewitt [21], McDermott and
Sussman [22], Wang [23], Maslov [48], and Rulifson, et al [24]. See also
Nilsson's Review [26].

In using the interactive prover, the theorem (and subsequent subgoals)
are shown on the user terminal’s screen in a natural, easy to read form, and

the user is provided with several interactive commands (see Sectiomn 7) for

4‘\.

communicating with the prover. The prover is based upon natural deduction

(or is a Gentzen type system [14-17,25,20,49]), as opposed to a "less natural"
system such as resolution. When the human user desired to interact directly
with the prover, the dialogue is expressed in terms that are (hopefully)
natural and convenient for him. The intent is that the computer will act as

a support to the user in the proof of a theorem; although, the machine-only

system is a powerful prover in its own right.

The interactive policy of the prover is based on the premise that if
the prover can construct a proof it will do so fairly quickly. For each
theorem or subgoal, a time limit is set; if a proof has not been comstructed
in that time, the prover stops and waits for interactive direction. The
user then has available a number of commands for displaying the theorem and
the details of what the prover has done so far. Using these commands the
user isolates the difficulty and then can allocate more time, direct the
prover into a new line of reasoning, supply additional information (hypotheses,
lemmas, definitions) about the whole thing, or simply assume that the current
subgoal is true and go on to another part of the proof. Often proofs of sub-
goals will fail initially because not enough information has been provided.
(Failure may well, of course, be due to attempting to prove a non-theorem).
A very useful feature of the prover is that these additional hypotheses need
not be stated initially, but rather can be supplied at the point in the
proof whén it is realized that they are necessary. This prevents the
objectionable activity of the user having to prové the theorem himself be-
fore he asks the prover to do so, in order to determine what additional hy-

potheses and definitions will be needed.

ot

This system was developed by Bledsoe's group at The University of Texas.
While it is a general theorem prover, earlier versions were mainly exercised
on theorems in set theory [2], limit theorems [3,45] and topology [1], and a

current version is working on theorems arising from program verification [6].

Tt has been extended [5,27] to handle these program verification theorems;

Larry Fagan and Peter Bruell at Information Sciences Institute, USC, have

helped considerably in this extension.

2. TMPLY and HOA

The central routines of PROVER are IMPLY and HOA which are des-

cribed below. They attempt to establish the validity of an expression of

the form

(H—>C)

3

(H and C are arguments of IMPLY), by applying a set of (sound) rules
(see Tables I and II). These routines are recursive, they call each other

and themselves, but the initial call is to MPLY .

These two algorithms, and their supporting subroutines, form a natural

deduction type system. It is like a Gentzen system [14,25}, but is more

"human like" in that no attempt is made to force the formula being proved

into a canonical form. 1In particular the implication symbol, ——» , is
retained, and we believe that the proof proceeds in a manner that would

be natural to a mathematician.

IMPLY has five avrguments (TYPELIST,H,C,TL,LT) but we will deal with
only two of them, H and C at this time. TL and LT are discussed later
but TYPFLIST is not discussed in this paper. See [27]. HOA has three
arguments (B,C,HL) and we will deal with only two of them, B and C, at

this time.

When we make a call IMPLY(H,C), the algorithm IMPLY tries to establish
the validity of the formula (H—>C) by applying a set of (sound) rules.
Similarly a call to HOA(B,C) causes the algorithm HOA to try to establish
the validity of (B—>().

Actually, neither algorithmis completel, but they call upon each other
to perform various tasks. IMPLY performs AND-SPLITS, as when the con-

clusion is a conjunction (Rule 4) or the hypothesis is a disjunction (Rule 3):

and HOA handles OR-SPLITS, as when the conclusion is a disjunction (Rule 4)
or the hypothesis is a conjunction (Rule 6) or an implication (Rule 7, Back-
Chaining). Addifionally IMPLY handles various manipulations of the coﬁ—
clusion C, while HQA handles those for the hypothesis B,

A theorem being proved is first sent to IMPLY which calls HOA and it-
self as needed. ‘Before a formula E is initially sent to IMPLY, it is first
converted to quantifier free form (but without comverting it to prenex form)
by skolemization (see Appendix 1). This (usually) produces skolem variables
in E which are replaced by terms during the proof. A substitution 0 is
derived which consists of these replacements.

If H and C are formulas, them IMPLY either returns NI, or a sub-

stitution 8, such that 9
: (HO —>» C8)

1Even the combination of both of them working together is not complete, in that
there are valid formulas which PROVER cannot prove. See Appendix 2.

2Sometimes the implication (H@ +» C8) is not valid, even though (H > C) is.
See Appendix 3. :

'Y

is valid (usually a theorem in propositional logic). © is uéually a most
general such substitution. If no substitution is needed them IMPLY returns
w1t will return YNILY if (H—>»C) 1is not valid or if it cannot find
a proof in the prescribed time limit.

Similarly HOA and many of the supporting routines such as UNIFY return
substitutions 6.

The routines IMPLY and HOA are described in algorithmic form in Tables
I and 11I. These tables give only the basic rules of IMPLY and HOA. Some .
additional details are mentioned in footnotes and iﬁ the later descriptions.

A formula E 1is initially sent to IMPLY by a call TMPLY(NIL,E).

iy

Table 1
ALCORITHEM
EMPLYgEQC}
iF ACTION RETURN
1. C = "I or H = "FALSE" s
2. TYPELIST
3. H= (AvVB) IMPLY (NIL,
(A—>C) A (B—>C))

4. (AND-SPLIT) C = (AAB) Put ©: = IMPLY (H,A)
4.1 6 = NIL NIL
4.2 6 # NIL Put A: = TMPLY (H,B6)"
4.3 A = NIL ‘ NTL
b4 A # NIL g o’
5. ‘ {REDUCE) Put H: = REDUCE{()

Put C: = REDUCE (C)
5.1 C = "T" or H = "FALSEY Go to 1
5.2 H= (AvV B) Go to 3
5.3 C = (&N B) Go to &
5.4 ELSE Go to 6
*

See [277.

38y the expression "H= (AVB)" we mean that H has the form "AVBY. Rules

4 and 3 are called VAND-SPLIT's". See [2Z] and [19].

4If @ has two entries, a/x, b/x with a#b, and x occurs in B then

NIL is returned for A. See Appendix 3.

This is similar to, but nmot the same as normal composition of substitutions.
See Appendix 3.

IMPLY (H,C) Cont'd

IF ACTION RETURN
6. cC = (AVB) HOA(H,C)
7. (PROMOTE) C = (A—>B) IMPLY (H/\A,B)6
7.1 Forward Chaining
7.2 PEEK forward chaining
8 C = (A<—>B) IMPLY (H,
(A=—>B) A (B-—>A)
9, C = (A=38) Put 8: = UNIFY(A,B)
9.1 0 # NIL o
9.2 @ = NIL Go To 10
10. C= (~A) IMPLY (H A A, NIL)
11. INEQUALITY
12. {call HOA) Put @: = HOA(H,C)
12.1 6 # NIL o
12.2 (PEEK) € = NIL Put PEEK7 light "OoN
Put 9: = HOA(H,C)
12.3 @ # NIL 8
12.4 e = NIL Go To 13

6Actually we call IMPLY(OR-OUT(HAA), AND-OUT(B)). See p. 17.

7See p.30. The PEEK Light is turned off at the entry to IMPLY.

13.

i3

13.

14,

15.

.1

2

IMPLY (H,C) Cont'd

IF

(Define C)
c' = NIL

Cc' # NIL
(See Section 2 of [27])

ELSE

ACTION

Put C': = DEFINE(C)

Go To 14

La

RETURN

IMPLY (H,C")

NIiL

11.

Table 1II
ALGORITHM
HOA(B,C)
IF ACTION RETURN
Time limit Exceeded NIL
(MATCH) Put 6: = UNIFY (B, C)
.1 @ #£ NIL e
.2 PEEK (See Section 4) HOA (B, C)
PAIRS (See Section &)
(OR-SPLIT) C=(A V D) Put C': = AND-OUT(C)
.1 c' #£¢C : IMPLY (H, C")
.2 c' =¢C Put 9: = HOA(B/\~D,A)8
.3 6 # NIL 8
A @ = NIL HOA(BA~A,D)8
i ¢ = (A—>D) IMPLY (B, C)
2 c=(AAD) IMPLY (B, C)
B = (AAD) Put 8: = HOA(A,C)
.1 e # NIL ; 9
.2 0 = NIL HOA (D, C)

81n Step 4.2, the "~" in (~D) is pushed to the inside; e.g., ~(~P) goes to P,
and ~(P-=>Q) goes to PA~Q. If D contains no "~ or "—=" then (~D) is
omitted and the call is made HOA(B,A). Similarly in Step 4.4.

=
5]
o

10,

11.

1z.

kY

SActually we use AND=-PURGE (H,~A)

ANDS

(Back~chaining)
B=(A—%D)

g = NIL

6 # NIL

>
il

NIL

A # NIL

B = (A—>»a=b)

©
it

NIL
9 # NIL
A = NIL

N # NIL

B = (Ae=->D)

7Z is a number

7 is not a number

B = (AV D
B = ~A
ELSE

is explained on p.15.

HOA(B,C) Comni'd

ACTION

3.

Put 6: = ANDS (D,C)

Go To 7E
Put h: = IMPLY (i, A8)"

Go To 8

Put @:=H0A(a=15b,C)

&
Put A: = IMPLY (H,A8) "

Go To 8

Put Z: = MINUS-ON(a,b)

Put a': = CHOOSE(a,b),
bf: =0THER(a,b) (see p.20)
Put H':=H(a'/b'),
C':=cC(a'/b?)

instead of H, which removes

12.

RETURN

NIL

907\5

HOA ((A—>D) A
(D —> A),C)

NIL

IMPLY (H',C")

IMPLY (B, C)
. 8
IMPLY (H,AV C)

NIL

~A from H.

ot

13.

When proving a theorem of the form
(H—=A A B)
IMPLY wuses Rule 4 to split it into the two subgoals

(H—>A)
and

(H—>B)

which it tries to prove separately. It is (of course) necessary that the
substitution @ derived for (H—>A) be applied to B (but not to H)
in proving the second subgoal, (H—~%PBG).9

The fourth argument, TL, of IMPLY is a ''theorem label" (or more
appropriately, a "subgoal label"), which is a sequence of 1's and 2's that
indicate the progress that has been made in proving the theorem. For example,

a theorem .

(H—>C, A Cy)

would have theorem label (1) and its two principal subgoals

(H-*é-Cl) and (H-—%>C2)

would have theorem labels (1L 1) and (1 2). Such theorem labels are exhibited
in the left margin for the examples given in this paper. 1In addition to 1's
and 2's we also utilize other letters such as H; P, and =, to indicate other

actions of the prover.

9The reader can see the necessity of this rule by considering the three exampl
(P(a) A Qa)—>P(x) A Q(x)), (B(a) A QD) —>P(x) A Q(x)),

and (PE)—>P(a) N ¥(b)), where x 1is a skolem variable, and a and b
constants.

es

are

14,

Some Examples

Ex. 1. (A—>4A)

A call is made to
IMPLY (NIL, A—>A)
which in turn uses Rule 7 to call
TMPLY (A, A)
which uses Rule 11 to call
HOA (A, A)

which returns "T" by HOA Rule 2.

In order to shorten the presentation of this example and those that

follow, we will use the notation
(TL) (b= C)
in place of IMPLY(D,C) and HOA(D,C).

Thus Ex. 1 becomes

1) (NIL = (A—3>A4))
(1) (A= 4) 17
Returns "T¢ 111, H2

The theorem label, which is (1) in this case, will be exhibited in the
left margin, and some vule pumbers from Tables T and IT will be given in the

right margin, with the prefix I for Table I and the Prefix H for Table II.

i

15.

Ex. 2. Va(¥x P&E)—P(a))-

¢ (NIL = (P (x)—-—-‘»P(ao))) Skolemized
¢H) P) :>P(ao)> 17
UNIFY (P(x), P (ao)) returns ao/x H2

Henceforth we will drop "NIL =" and write "A" instead of "NIL=>A".

Thus Ex. 2 becomes

8 (PA(X)“‘%P(%))
(H @) :>P(ao)) 17
Returns a /x H2
o .
ANDS .

in the following example we use the algorithm ANDS. It is a mini version

of IMPLY which handles only theorems of the form

(H; A Hy Ao..A H —>C)

2

where (HiQ = CO) for some ©. (In which case © 1is returned).

16.

Ex. 3. Va@) A VxEE—Qx))—>Q(a)).

(1 (P(a0> A {P<x)-%Q(x))~——->Q(a0)>

(1) ®(a) A RE—> Q) = Q) 17
(P(a)) = Q(a)) H6

Returns NIL

(EE)—QE) = Qa)) . H6.2
ANDS (Q(x), Q(a)) H7
Returns aO/x Back=chaining
(1 1) (P(30> AN @E)—>Qx)) = ?(30)) H7.2
Returns TV H6,H2
Returns ao/x for (1) H7 .4
Ex. 3'. {(AV B—>Av B}
(1) (A B=AVvV B) 17
(1 1) (A= AV B) 13,4,7
(A= A) H4.2, Footnote 8
HTH H 2
(1 2) B=AV B)) 14.2

Hpt H4.2,H2

17.

Ex. 3V, (A —>B Vv C) (Not a theorem)

In this example if we applied HOA Step 4.2 without the footnote we

would obtain an indefinite repetition as follows:

¢y (A=>B Vv C) 17
(A N ~C=B) H4.1
(A=B8) NIL H6
(~C=B) H6.2
(A=B Vv C) H11
Repeat

But by preventing the addition of ~C to the hypothesis, unless it is

fundamentally changed, we eliminate this problem.

(1 (A=>B Vv C) 17
- (A=>B) NIL H6
(A= C) NIL H6.2

NIL is returned for (1).
AND-QUT is an algorithm which puts expressions in conjunctive form
(but does not convert implications).

For example

AND-OUT(A V (B A C)) returne ((AV B)Y A AV C)),

AND-OUT(A vV (D—>»3B A C)) returns (@A vV (D—>B A C)).

Similarly OR-OUT puts expressions in disjunctive form.

EX 3“"

would get
(D

11

(1 2)

(1 21)

¢y

1)

(1 1)

1 2)

(AN (~AV B)—>»B)

Similarly OR-OUT 1is required in I7.

(AN (~AV B)=>B8)

(A:?B) Returns
(~AV B=B)

(~A= B) Returns

Returns NIIL. for
(L 2) and (1)

But since we use OR~OUT in
(AN (~AV B)—=B)

(OR-OUT(A A (~A V B)) =>B)

(AN ~4) v (AANB)=B)

(AN ~A) = B)
(FALSE = B)

HTH

(AN B=B)
!IT”

Returns "T" for (1) as desired

NIL

NIL

7

i9.

Because without it we

we get

17

H6

H6.2

I3

Original

7

I4
I5

I1

14.2

H6.2,H2

14.4

20.

Substituting Eguals

HOA Rule 9 gives the prover an ability to substitute equals. When an
equality unit (a=b) 1is in the hypothesis, the program uses the algorithm
CHOOSE(a,b) to select either a or b, and replaces it by the other in
H and C. CHOOSE selects neither if neither a or b occurs im H or

C. It selects a if b is a number, and vice versa. It will not choose

a if b occurs in a, and vice versa. In the interactive mode the user

can enter this decision process (see Section 7).

21.

3. Definitions and Reduction

Definitions.

Rule 12 of IMPLY calls DEFINE(C) which expands definitions from
a stored list. Table III gives some such definitioms.

When the defining form introduces quantifiers (e.g., Rule 2 of Table
III) it is necessary to eliminate these quantifiers by‘skolemization. We
skolemize when the definitiom is expanded.using variables occurring in the
Qnexpanded form in the present theorem as free variables in the skolemization.
The skolemization also depends on whether the formula occupies a positive10
or negative position in the theorem being proved. For example, (A cB) is

replaced by (XO e A>»x_e B) in

0
(H—>A < B)

whereas it would be replaced by (xe¢ A+» x e B) in

(A € B—>C)

10See [23, 3] and Appendix 1.

]
o~

Table III
SOME DEFINITIONS

Formula Being Defined Defining Form

1. @a=ptt (ACBABCA
2. (A ©B) VX(XE A—3>%.€ B)

Skolem formlz
(XO e A > X € B)Y in "Conclusion'

(x e A>x e B) in "Hypothesis"

3. (A U B) {%: x e AV ¥ e B}

4. &4 N B) {x: xe AN e B}

5. U A (x: Je(te s nxean
teS

6. N A(t) (x: Vet es>rteaen?
teS

7. subsets (A) {x: x C A}

7. sb{A) subsets (A)

8. range f {y: E? X(Y’ff(x))}

9. Oc ¥ {Open F A Cover F)

11

A different symbol is used for set equality to distinguish it from the
avithmetic equality. Here in Entry 1 we mean set equality.

12 - ; e . PR .
When the defining form introduces quantifiers, two versions of its skolemi-

zation may result, depending on the position of the formula in the theorem.
See page 21.

23.

REDUCE

Rule 5 of TIMPLY calls REDUCE(H) and REDUCE(C). If E 1is a

formula then a call to REDUCE(E) causes the algorithm REDUCE to apply
a set of rewrite rules to convert parts of the formula E. See [2,29-36].

Table IV gives some examples of rewrite rules in use.

REDUCE helps convert expressions into forms which are more easily

proved by IMPLY. Also the rewrite table is a convenient place to store

facts that can be conveniently used by the machine as they are needed.

For example, REDUCE returns T (TRUE), when applied to the formulas

{(Closed(Clsr A)), (Open @), (Open(interior A)), (@ < A).

10.

11,

13.

14.

15.

16.

i7.

18.

INPUT

(t e ANB)

{(t e AUB)

(t e {x: P(x)})

Table IV
REDUCE Rewrite Rules

(t € AY If A Thas Definition

t ¢ subsets(A)
tCTANB

(A N A)

(AU A)

A nag

(AU @)

@ <8

A e {B}

(range A x £(x))
(Choice A e A)
(A Vv ~A)

(A A ~A)

(T A A)

(A A WTH>

{x: P(x)]

24,

OUTPUT

(t ¢ AN t e B)
{t e AV teB)
P(t)

B{r)

£ CA

(t CAAECSB)
A

A

¢

A

??rj’_‘-ﬂ

(v: 3 x(y=£(x))
A4 g

g

"FALSE"

A

A

)

»

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

13

of
(H
is

Table IV (Con't)

INPUT

(A \/ "T“)
("T" \/ A)

ccc G)13

(G cc _(5) 13
(& < A)

(Ao € A)

A A FALSE
FALSE A A
A Vv FALSE

FALSE V A

etc.

need not concern the reader here but

[
G. That is if A 1is the closure of the set A, then G={A: A e G}.

25.

OUTPUT

nepts
e
stepn
eph
peps
e
FALSE

FALSE

is the set of closures of members

And

C < J) means that H is a refinement of J, that is, each member of H

a subset of a member of J.

Ex. 4.

€Y

(1

D

(1)

a1

(1 1)

*y

Va Ve (acausm

(AO < AO‘U BO)

(xo € Aowéb X € (Ac U BO)) 112

(x ¢ A==2%x ¢ A VX_€eB) s
o o I o o

REDUCE Rule 2

(x e A =>%x e A Vx_ €3B) 17
O O [¢] [o] o] o

(x € A =x € A) H&.2
o] O O (o]

HTH A HZ

Return "IV for (1).
Notice how closely this parallels

the usual mathematician's proof, i.e.,

AcCAUB
(xe A—>x ¢ (A UB))
(x e A—>»%x € AV x € B)

TRUE.

Ex. 5.

(1)

(L)

W

11

11

a1

11

(1 2)

[t CAANE CB=t CAACL
: o - o - o - O

27.

Va Vs (subsets (A N B) = subsets (A) N subsets (B))

subsets(A0 n Bo) = subsets(Ao) N subsets(Bo)

We will here contract "subsets'" to "sb" and

drop the subscripts.

sb(A N B) = sb(A) N sb(B)

[sb(A NB) € sb(A) Nsb(®B)] A [sb(A) N sb(B) < sb(A NB)] I 12

[sb(A N B) < sb(A) N sb(B)]
This is an AND-SPLIT

[to e shb(A F\B)==#>t0 e (sb(A) Nsb(@B))]

[t0 C A F\B==%>t0 e sb(aA) A t0 e sb@®)]

in
o

Return "T" for (1 1)

[sb(A) N sb(B) € sb(A NB)]
Return "T" for (1 2) (Similarly)
Return "I" for (1) .

Definition 1

I4

112
Definition 2

I5
REDUCE Rules 5, 1

15, 17
REDUCE Rules 6, 5

L4, H6, H2

28.

It should be noted that the use of Definitions and REDUCE on this
example has eliminated the need for additiomal hypotheses (or axioms). The
required hypotheses must be given by the user but they are given once and
for all in REDUCE and definition tables and never used except when needed in
the proof. An ordinary resolution proof or Gentzen type proof which did not

use such mechanisms would require four additional axioms and a lengthy proof.

1. (a=p <> Vt(t e ae>t e B))
2. (t e ANB=>t e AAN L e B)
3. (t e subsets A<>t C A)

4., (tcANB=>t CTAALCB)

Rule 4 of Table IV is a conditional rule. When attempting to comvert
a formula of the form t ¢ A, the algorithm REDUCE first checks to see
if A has a definition of the form {x: P(x)}, in which case it (in effect)

instantiates that definition and applies Rule 3. TFor example the expression

X € U A
teQ

is reduced by Rule 4 of Table IV and Rule 5 of Table III, to
Et{t e QA X € A(E))

(or actually to the skolemized form (t e Q A %€ A(L)Y).

Ex. 6.

(1)

¢

M

(1)

(1 1)

(1 2)

Ae G—>AC U B)
BeG

(A € G:>AO§ U B)
BeG

(A e G= (tO € Ao--‘>t0 e UB))
BeG

(A e G=>(t_ e A—>»Be GA t_e B)
0 o o

(A e GANt e A =Be GAt_e€ B)
o o o

(A e GANt_ e A =B e G)
O [¢}

Returns AO/B for (1 1)

(A e GANELt € A —>t e A)
o 0 o o o

Returns wT for (1 02)
Returns AO/B for (1)

29.

17

112

Definition 2

15
REDUCE Rule 4,
Definition 5

7

14

H6.1, H2

14,2

H 6.2, H?2
I4.4

30.

4. PEEKing and Forward Chaining

PEEK.

We saw on page 21 that when all else fails, we expand the definition
of the conclusion C. Such is not the case for the hypothesis H. However,
when proving (B-—>»C), the algorithm HOA sometimes "peeks" at the
definition of B to see if it has the potential of helping with the proof
of C, and if so it then (temporarily) expands that definition. This is
done after a regular call to HOA has failed and the 'peek light" has
been turned on.

To facilitate this, the program has a PEEK preperty list for each
of the main predicates. Table V gives some of its entries. This enables
the prograﬁ to quickly check whether an expansion of the definition of B

would have a chance of helping with the proof.

Table V
PEEK Property Lists

1. (Oc [Open Cover])

2. (Reg [Subset Open Clsr])

etc.

&Y

(1)

1

1 2)

an

(Reg N Oc Fo:$>Cover G)

(Reg N Oc Fo=$»Cover G)

(Reg => Cover G)

(Reg A Oc F—~>;§G(Cover G))

HOA 1is called at Step 12 of TMPLY and fails;
then the PEEK 1light is turn ON.

Oc Fo =» Cover G)

NIL

{((Open F0 AN Cover Fo):$>Cover G)

{(Reg => Cover G)

have

FOIG is returned for (1 2) and (1).

Notice that it did not expand the

definition of Reg in (1 1), i.e.,

because in Rule 2 of Table V, "Reg" did

YCover"

on its

PEEK property list.

E{)t

31.

17

I12.2

H 6

H 6.2

H 2.2 (PEEK)
Table V, Entry 1.

(o
]

After such a use of PEEK, the expanded definition is not retained.
The original form Oc FO is retained for any further proofs that may be
required. This permits the proofs to proceed at a high level where
possible, resorting to expanded definitions only when necessary. It

also facilitates human understanding when operated in a man-machine mode.

Forward Chaining.

In IMPLY Rule 7, when a new hypothesis is added to H we try to
“forward chain' with it. Forward chaining is another name for modus

ponens: If P'6 = PO, then a hypothesis
P'AP—>Q)
is converted into

P'A (P—>» Q) A QB

Ex. 8. Va@(a) A Vx@&) — Qx)) —>Q(a))
(1) (NIL = (P (a_) A (B (x) —=Q(x)—>Q(a)))
(®(a)) A (B()—>QG)) A Qla)) =Q(a) 17, 7.1

forward chaining

Returns &Gfx,

Tt should be noted that this is Example 3 which was proved earliervusing

Rule H 7 (Back-Chaining). Forward chaining is an optionm which is available

33.

to the user. In some instances he may want to control its use. TFor example,
forward chain with P(xo) only when P(xo) is a ground formula, or forward
chain with an atom P(x) only when P 1is a member of a predescribed list.
Limited forward chaining has been used in a powerful way by Bundy [371,
Ballantyne and Bennett [38,39], Nevins 1171, Reiter [18], siklossy et al [36],
and others.

PEEK forward chaining.

1f P'@ = PO, A has the definition (F—>Q) then a hypothesis

P' AA
is converted into
P' A AANQS
Ex. 9. (AEB/\BEC-—#AEC)
&) ‘(AC_I_B/\BEC:%AEC) 17

We have dropped the subscripts of

A,B ad C_ in this example.
o’ o 0

(AgB/\BECﬁ(toeA——é-toeC)) 112
‘ Definition 2

(AgB/\BCC/\tOeA@tOeC) 7

(ACBABCCATL e ANt e BAL e C=t e C) 17.2
O L8] o] 8]

PEEK forward
chaining

Returns tolt.

In the above, (tO e A) was PEEK forward chained into (A C B) by

expanding the definition of (A € B) to

(t € A—>t ¢ B)

and matching (t e A) to (to € A) with tO/t, getting (to € B) as a
result. Then (t0 € B) was PEEK forward chained into (B S C) getting

(to € C). The program has a checking mechanism to prevent an infinite con-

tinuation in adverse cases.

35.

Ex. 9. (AEB/\EC_I_C/\VDVE(DEE——)BEE)@XCC)

(1) G

o}

< B

o]

AB <C
o S

o)

e

o/N @ SE—>DCEy—>A cC))

O

When Rule I 7 is applied it forward chains (A < B)
o— o

into o to get (Ao o BO). A control is used to prevent
repeated use of o to get, Eo c3B s etc.
-0

(1) A

In the

into (A C

in

into (@
o

above application of Rule I 7,

Co)

Forward

chaining returns AO/D, BO/E

cC Ao AA CB =
o o - (o]
=

(

cC ANaAA CB At
O o — O

to obtain (£ € C)
o o

11

At €6 C —»t € C)
o o o o

t

0

o]

€

A <C) 17
0 S

[o]
ceA —>t e C)) I12,
o] o] o]
Definition 2

A At eB At _eC
[o] O O O (o]

— t e C)
o o

(‘t0 € Ko) was forward chained

-go) to obtain (tO € ﬁo), which is turn was forward chained

"T"

36.

Ex. 9A. (Oc F A VF 3 G(Oc F—> Cover G A Eg:_g_:_ F)
—> Jumcc

1y (Oc F_ A (0c F—> Cover G(F) A GF) ccF)—>HCC F)

(Oc F_ A (0c F—> Cover G(F) A G(F) €< F) A Cover CE)AGEF) SCF,

=HCC FO) 17
Forward chaining
Returns E(W‘PT:)/H, FO/F.
Ex. 9B. (Oc F A Reg—> ZJH(H S C F))
(1) (Oc F_ A Reg A Cover G(F) A G(F)) SSF =HCCF) 17

o]

Here Oc FO has been PEEK Forward Chained into
Reg which has the definition

V' F I c©c F—>Cover GA GCCF)
which has skolem form (in this case)
(0Oc F—>Cover G(F) A G(F) € < F).

As in the previous example G(F;}/H, FO/F is returned.

37.

5. Conditional Rewriting and

Conditional Procedures

Conditional Rewrite Rules.

In Section 3 we described the REDUCE feature which causes wvarious

formulas (or subformulas) to be rewritten. For example, the expression
te ANB

is rewritten as

(t e ANt eB)

Sometimes we wish such a conversion to be made only if a certain condition
is satisfied. Such rules, are called '"conditional rewrite rules", and are

added to the REDUCE table in the form
(* P A B)

The program upon detecting the *, checks the validity of P Dbefore re-
writing B for A (with proper instantiation). If P 1is not true then
A is not rewritten. The * 1is placed there to distinguish conditional

rules from ordinary REDUCE rules. For example, the entry
(* A # NULL WODES (A) NODES (LEFT(A)) -+ NODES(RIGHT (4)))

means that NODES(A)T can be "reduced” to NODES (LEFT (A)) -+ NODES (RIGHT (A))

if A # NULL. The rewrite rule is not valid if A = NULL because LEFT(NULL)

and RIGHT (NULL) are not defined, thus the rewrite rule is applicable only

T .
NODES (T) 1is one plus the number of nodes in a binary tree T. NODES(NULL) =1
LEFT(T) is the left-hand son of T.

38.

only if A # NULL is known. Notice also that the result of the rewrite rule
contains forms to which the rewrite rule could be applied. This would result
in an infinite expansion normally but the condition on the rewrite rule pre-
cludes this. Generally this rule would be used once and then it would not be
known if LEFT(A) # NULL or if RIGHT(A) # NULL so the rule would not be
applied again.

Rewrite rules are expected to be applied quickly or mot at all. Their
power lies in the quickness with which they can be applied. Accordingly we
avoid long drawn-out procedures for checking the validity of P. For example
we do not call TIMPLY itself to check P. Rather we have a "mini" version
of 1IMPLY, for this purpose, which includes ANDS (See p. 15), which we call

QK -IMPLY.

A similar remark can be made for conditional procedures described below.

Conditional Procedures.

Some procedures are conditional in that they are initiated only when
certain conditions are satisfied. Examples of these are PAIRS described
below, INDUCTION described on page 58 below and in [2], and the limit

heuristic described in {3]. See also [40,29].

PAIRS.

Sometimes in HOA the expressions C and B will not unify even

though the main predicates of C and B are the same. For example,

G, ccF

0

=H CccCJ)13,
o})

39.

In this case, at Step 3 of HOA, the algorithm consults the PAIRS prop-

erty list of "C <" for advice. That property list may (or may not)

list one or more subgoals that can be proved to establish the given goal.

Table VI gives some such entries.

40.

Table VI
PAIR Property Lists

1. (Cover (Cover G —>Cover F)[(G S < F) (Yoo

2, (56_13(6(_:_52_}5‘—-—)1—155.])

[MSCGAFSSDHC -]

3. WL Lf G —>LEf) E = 0) D

_‘.\

(countable (countable A —> countable B)
[:7 f(f is a function A domain £ € A A B C range f)

(B EA)...]

etc.

14Lf G means that G is locally finite. That is, at any point x, there
is an open set A which intersects only a finite number of members of G.

41,

Ex. 10. (GSCF—>GCCCF)
(1) (G, ccF = G S CSF) 17
(Goc_:c_:_Go)/\ (Foc_:_c_:_Fo) H 2.3
PAIRS Entry 2
(r 1) (6, =< G,)
I!TH I S
Reduce Rule 21
(1 2) F, =< F)
llTH I 5

Reduce Rule 22

Notice that the PAIRS Rule H 3 has converted the goal (1) into

a subgoal that is easily proved by the REDUCE rules 21 and 22.

REDUCE and PAIRS act a lot alike in that they change omne goal into
another, the difference being that REDUCE acts omn a single entry" (i.e.,
a given formula is rewritten as another), while PAIRS acts on a double
entry. However, that double entry requires that the two input formulas
be partially matched (their main predicates are identical).

Such a pairs concept can be extended to include pairs of predicates
that are not identical, but that has not been done for the present algorithms.

In general we favor procedure which are triggered by easy to check conditions.

42.

Ex. 11. '_I‘__}l (g 1is a function) A countable (domain g)

(1

(1p)

1P LD

(1P 2)

(1 P2 1)

(1 P2 2)

A A € range g—> countable A

(go is a function) A countable {domain go)

AN A T range g _=> countable A : 17
o — o] o

countable (domain go) => countable Ao H 6.2

(go is a function) A A0 C range g= ((f 1is a function)

A (domain f < domain go) A (Ao C range f)) PAIRS
Entry 4
(g is a function) A AO C range g = (f 1is a function)
go/f
is a function) A A0 C range g,

=> (domain g, < domain go) A (A0 C range go)

Y} = (domain 8, & domain go)

"T" by REDUCE Rule 23

i i < o .
(go is a function) A Ao C range g~ AO C range g,

HTH

So gO/’f is returned for (1 P) and for (1).

43.

6. Complete Sets of Reductioms

The use of rewrite rules as in our REDUCE procedure is a very
powerful device. It is extremely mﬁre efficient than ordinary sub-
stitution of equals as is used in Paramodulation or in HOA Rules 9
and 7E, because the latter allows substitution both ways. Thus it is
highly desirable to get as many entries as possible in the REDUCE
table and to remove the corresponding equality units from the hypotheses.

The questions that naturally arise are: How far can you go with
rewrite rules? Can such a system be made complete in some sense? How do
we choose the entries for the REDUCE table? Can we generate all needed
REDUCE table entries from a few key ones?

Very general, although incomplete, answers to these questions are given by a
beautiful paper of Lankford [30] which is based on pioneering work of Knuth and
Bendix [31] and some earlier work of Slagle [32].

The reader is referred to [30] for details but the general idea is that
some theories, such as group theory, allow a "complete set of reductions."” For
example, there exists a set of entries for a REDUCE table which handles all
equality substitutions for the equational axioms of group theory. A very power-
ful algorithm is given which often generates a complete set of reductions from
the ‘axioms of a given equational theory. One problem with the concept of the re-
write rule currently in vogue is that it does not allow commutative axioms to be
included in a REDUCE table since, for example, the rewrite rule xX'y—»y-x

when applied to a-b produces the infinite sequence of rewrites a+b, b-a, a-b,

bea,... . However, Lankford [30] has shown how commutative theories, such as

44,

commutative, groups, rings, Boolean algebras, and modules over rings, which allow

no compiete sets of reductions, can nevertheless be treated efficiently and in &
complete way with most of the equality units in a REDUCE table. Earlier, Bledsoe,
et al [3] used such a decision procedure for ring theory as the basis of a heuristic
approximation of an unavailable decision procedure for field theory with encouraging

results.

Table IV shows only a few of the REDUCE rules used by our prover, and
many others can be easily added (see for example, ADD-REDUCE in Section 6).
The largeness of the table does not impede the speed of its use because hash
code techniques caﬁ be employed.

As pointed out earlier, the REDUCE table is a éonvenient place to
store>facts that may be needed at some point in a proof but whicﬁ will never
be accessed until actually needed. If these same facts were made part of

the hypothesis they would greatly clutter up and slow down the operation of

the prover.

45.

7. Interactive System

Large Data base problem.

One of the irksome things about most automatic theorem proving systems,
is that the human user has to prove the theorem before he asks the computer

to do so.

THEOREM

In this figure we depict a theorem to be proved, along with the "Axidms”
or reference theorems needed for the proof. If we don't list enough reference
theorems then the automatic prover cannot succeed; on the other hand, 1f we
list too many, the prover again cannot succeed because it will be overwhelmed
with too much data. So we cannot just list "all known theorems" as hypothesis
and expect success, because most provers will then hang up on computing many
useléss inferences (lemmas) which have nothing to do with the objective at

hand. ¥

15A few recent programs have attacked the large data base problem [18, 41, 42]
with some success.

et

46.

Thus in order to determine exactly the correct reference theorems needed,
the human user is forced to prove the theorem first.

We have partially eliminated this problem by storing information in
the form of definitions, rewrite (REDUCE) tables, and procedures, which

are used only as needed and in no way clutter up the system (see Section 3).

Enter as needed

Rewrite Rules .
(REDUCE)

Definitions

Procedures

Conditional Rewrite
Rules and
Procedures
(PAIRS, INDUCTION)

THEOREM

The remainder of the difficulty is eliminated by having the human user

insert references theorems only as they are needed, during the actual proof.

Of course he will have to know when to do this, and what to imsert.

Hard Theorems.

Equally irksome is the fact that present programs cannot prove very hard

theorems. So they don't get involved with very interesting mathematics, and
don't come to grips with some of the problems that the computer will have to

face if we are to have acceptable computer mathematics.

47,

Man-Machine.

For these reasons, and others, we have decided to include the theorem

prover described in Sectioms 1-6 above, as part of a man-machine interactive,

prover.

The System.

The system consists of one or more interactive computer terminals connected
to a large digital computer. At present we are using the CDC 6600 and PDP-10
computers at The University of Texas, and the UT time sharing system. A versiom
of the program is also running on the DEC 10 computer at the Information Sciences
Institute, Usc; Los Angeles.

The system was developed at UT, MIT, and ISI, by the authors, and Bob Boyer,
Robert Anderson, Peter Bruell, Mike Ballantyne, Bill Bennett and Larry Fagan.

This system has much in common with earlier programs of Guard, et al [10],
Allen and Luckham [9] (especially with recent additions [331), and-Huet {1171,

but is quite different, (e.g., in its use of DETAIL, PUT, etc., defined below

and does not use Resolution).

User Requirements.
We believe that such a system must be built for the convenience of the
user and not the programmer. For otherwise, the system will not be used.

As long as the pain in using the system exceeds the help obtained, the

potential user will stay away.

In order to interact effectively, the user must be able to

48,

(1) Read and easily comprehend the scope
(2) TFollow the proof
(3) Help the computer only when needed

(4) Use convenient commands

The UT interactive Prover.

In our system the formulas which are being proved appear on the terminal
screen in an infix notation. TFor example, the formula whose internal repre-

sentation is > (A A B) P) would appear on the screen as

A
A
B
—
C

Larry Fagan has recently developed a package for the DEC 10 at ISI to

allow a formula to remain stationary on the scope while other material is

-

49,

scrolled up in a normal fashion. He and Mabry Tyson have adopted it to
also operate on the CDC 6600 at UT. Having the theorem (or current sub-
goal) remain stationary on the scope during the proof is a great help to
the usef in understanding and following the proof.

The user has at his dispdsal a set of optioms which give (interactive)
commands to the program. Some of these cause information to be displayed
on the terminal screen, while others affect the course of the proof.

Table VII gives a listing of some of the interactive commands being
used. A few of these are further explained below. In the following, the
work "theorem" is used to represent the current subgoal being proved.

Most of the human input (i.e., the use of the interactive commands)
takes place at "IMPLY STOP", a point in the routine IMPLY, near its
beginning. The program is a slave to the user, working on tasks assigned
it by the user. It halts at TIMPLY STOP and reports after such a cal=-

culation. It may report

YPROVEDY

or

YFATLED"

or other things described below.

50.

Table VII

Some Interactive Commands

Name of
command User types The machine's response
PRETTY -PRINT TP It prints the theorem on the scope
in an easily readable form (see
example below).
TP F If PUT F= () has been used earlier,
- it prints the theorem on the scope
with each occurrence of () replaced
by the symbol F.
TP F G ... Similarly for F, G, etc.
TPC F Similarly for conclusion only.
TPH F Similarly for hypothesis only.
TL It prints the theorem label.
TY It pretty-prints TYPELIST.
TPR It pretty-prints the REDUCE table.
ADD~-DEFN ADD-DEFN A () . () is added to the definition table
as the definition of the expression A.
ADD=REDUCE ADD-REDUCE () () is {(permanently) added to the
REDUCE table.
ADD-PAIRS ADD-PAIRS () () is (permanently) added to the
PAIRS table.
DEFN DA It replaces all occurrences of A
by its (stored) definition.
DC It defines the conclusion of the
the current goal.
USE USE N It fetches theorem number N from

memory and adds it to the hypothesis
of the current theorem.

USE () It adds () to the hypothesis.

-

5L1.

Name of
command User types The machine's response

LEMMA LEMMA () It first proves () and them calls
USE ().

SUBGOAL SUBGOAL A It calls (Lemma (H——3A)) where H
is the current hypothesis.

PROCEED ‘CONTINUE It proceeds with the proof with no
changes by the user.

GO Exit current subgoal with "PROVED"
or "FAILED" as was determined by
the program.

TIMELIMIT CNT N It increases the timelimit on the
current subgoal by a factor N.

ASSUME A It assumes the current subgoal to
be proved and proceeds.

FAIL ¥ 1t fails the current subgoal (i.e.,
returns NIL).

BACKUP BACK It backs up to the previous preset
back-up point.

B Create a backup point.

REQORDER N —> M) It reorders the goal, placing hypothesis
number N first and conclusion number M
first. '

N1 N2 ...—>C) It reorders the goal placing hypothesis

number N1 N2 first in that order.

(H—>M1 M2 ...) Similarly for conclusions M1 M2

(N1 N2 ...—>» M1 M2 ...) Similarly for both.

52.

Name of

command User types The machine's response
DELETE DELETE N M ... 1t deletes hypotheses number N, M, ...
PUT PUT X () The machine replaces each occurrence

of x in theorem being proved, by ().

