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Time Limit.
In all cases the program worker under a time limit determined by the

user. 1f it does not prove the current subgoal within that time limit it

will halt and report

"FATLED TIMELIMIT"

The time limit can be increased (or decreased) by use of the command

(CNT N) (See Table VII).

Pretty-Print.

The command TP causes the machine to print the current theorem (sub-

goal) in a parsed, easy to read form. For example, if the theorem is
> (A (0C (FSDI)) (M (REG) (OCLFR))) (A (CC G)QN (REF G(FSDL))(LF G))))

the command TP will cause to be printed on the scope:

(0C (F))
A
(REG)

(OCLFR)
D
(cc G)
(REF G (F))

(LF G)

Note that the skolem comstant (FSDI) has been printed as (F), though
its complete form is retained by the program.

Now if the command

POT ¢ {C: Closed C}



is used, the conclusion is altered accordingly. The command TPC

issued now will cause

(ce{c: Closed C})

(REF{C: Closed C}(F))

(LF{C: Closed C})

to be printed, whereas TPC G causes

(cc G)

(REF G (F))

(LF &)

to be printed.

if
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ADD~DEFN, ADD-REDUCE, and ADD-PAIRS allows the user to easily add

entries in Tables III, IV and VI.

The command "D A" causes the program to expand the definition of

A through the theorem. For example, if the current subgoal is

(O¢c F—> Cover F)

and the command " (D Oc)" 1is issued by the user, then the subgoal is

changed to

(Open F N Cover F—> Cover F)
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"(DH A)" and ”(DC A)" would cause such changes only in the hypothesis or
the conclusion respectively.
(USE A) simply allows the user to add the additional hypothesis A, where~
as (LEMMA A) requires the prover to prove A first and then add it as a hypothesis,
whereas (SUBGOAL A) calls (LEMMA (H—>A)) where H 1is the current hypothesis.
The commands vA (for "ASSUME") and F (for "FAILY) aré useful for terminating
a long proof or for maneuvering the proof to parts of the theorem that the user is
interested in.

The command (n m —> i j) causes the hypotheses and conclusions to
be reordered with hypothesis number n first, and number mw second, and
with conclusion number i first and number j second, etc.. The command
(DELETE n m...) causes hypotheses numbers n, m,... to be deleted. For

example if the current goal is

(x0 e A)
A (xo e B)
A (t e A—>t e C)
N Open A
—
(xo e C)

A Open B

and the command (4 1 3 -—> 2) 1is issued the goal is changed to
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Open A
A (xO € A)

N (te A—>t € C)

A (x0 € B)

Open B

A (xO e C) ,
and if the command (DELETE 2 4 1) is now issued the goal is changed to

(te A—>t e C)
B —
Open B

A (xo e C)

PUT is one of the most important commands. It allows us to instantiate
a skolem variable with a desired formula. For example, if the prover is

trying to prove the theorem

Vf %x(x ¢ A.———%HB(Open BABCAANZXEB))

——>JF(F COPEN A A = U F)
it will obtain the goal

—
(1) ((e A —>Open B_AB_CA AxecB)

— > F C OPEN A Ao = U F)

At this point the machine may be unable to determine the required family F
of open sets whose union is Ao' If the user decides to help, he can easily
do so by using the command "PUT" to give a value to F. For example the

command (PUT F (OPEN N Subsets Ao)) will cause (1) to be changed to



(1) (o => (OPEN ) Subsets A_) € OPEN A U (OPEN N Subsets A) =A),

which is easily proved, as follows.

(1L 1) (v => (OPEN (1 Subsets AO) < OPEN) 14

(o => (BO ¢ (OPEN (N Subsets Ao) — BO e OPEN)) 113

(e N Open BO A Bo §5A6ﬂ=®‘0pen Bo)’ TRUE 17,5
(1 2) (o =>U (OPEN (N Subsets AO) = AO) 14.2
(121) (x=>U (OPEN N Subsets A) S A) 113, I4

(o => X € U ( ) —> X € AO) 113

(u=> (B_ e (OPEN N Subsets A } A Xx_ e B —>x%x_ € A DY) Is5

o o 0 o o o
(oA OpenB AB CA Ax €B AxX el =>Xx € A
o. o~ o© ) 0 o ° o o
TRUE
Forward Chaining was used in the previous step.

(12 2) (= AO’ < U (OPEN () Subset Ao) I14.2

(o A X, € Acri>0pen BAB SEAO AN B) 113, 7, 5

(xo € AO) is forward chained into g to get

(Open B AB_ <A Ax_eB ). Thus (1 2 2) becomes
0 o — o o o

C y
122 (@ A X, € AO A Open B A Bo -Ao NEj e Bor:>0pen BAB EEAO A X, € B),

which holds for BO/B.“ Thus Bo/B is returned for (1 2 2), (1 2), and (1).

Other examples using PUT and the other interactive commands are given

in [17.
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The DETAIL command is fully explained in Section 2.1 of [1] and is
used in several examples there. It is used to let the machine tell the user

which part of the proof it is having trouble with. If the prover fails on

a goal of the type
(1 2) H=A A B)

the command "DETAIL" will (in essence) ask for information on the proof
of each of the subgoals (H—>A) and #H—>B). Thus the machine might

respond

(L21) (H—A)

PROVED. .
Then after a user commands '"PROCEED", it might respond

(1 2.2) (H—>3B)

FAILED..

In this way the user is told which of the two subgoals the prover is having

trouble with, ahd can direct his help accordingly. A further command |

YDETAIL" would act similarly on subgoals of B (if there are any).
INDUCTION K commands the program to try to prove the current subgoal

using mathematical (finite) induction on K. For example if the current

goal is

P (K)

it will rewrite it as
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PO A PK)—>P(K+1)) ,
also universally quantifying any free variables in P(K). For example,
N
Y, i= N@+1)/2
i=0

is converted by the command INDUCTION N, to

0
(2 i=0(0+1)/2)
i=0
A
N N+1
(Y i=NE+1)/2—> 2 i= N+1)(N+1)+1)/2
i=0 i=0

which can now be proved automatically by the use of a simplification routine
and REDUCE rewrite rules which convert
0

v
i=0

to f(0), and convert
K+1

. E(D)
i=0

to

K
YOf(L) + £®+1)
i=0

In many examples the subgoal itself is not a sufficient induction
hypothesis. Thus it is necessary to ''prove more" in order to get the
desired result. To facilitate this, the command (INDUCTION K Q) can

be used whereby the user supplies the induction hypothesis Q.
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Many other researchers have used induction in their automatic theorem
proving programs [&0,2,43,44,29]. Boyer and Moore {29] have employed an in-
teresting concept called "generalization" which converts the current subgoal

into a more general theorem, but one which then can be proved by induction.

Optional REDUCE.

For some large theorems, for example like those encountered in program
verification (see Part I), it is not desirable to call REDUCE each time
IMPLY is executed, because this can be very time comsuming. Accordingly
the program can be operated in a mode that causes it to stop before executing
Rule 7 of IMPLY, and print 'DO YOU WANT TO REDUCE? TYPE: Y or N, A

"N'  will cause it to proceed without reducing.

User Equals Substitution.

In Rule 9 of HOA the program applys a "substitution of equals". Given
a hypothesis (a=b) it selects either a or b and replaces it by the
other throughout H and C. An optional mode of operation is provided that
allows the human user to override this process. In this mode the program
chooses either a or b and proposes that to the user for him to accept

as proposed, reverse, or reject altogether. The program stops and prints

"a Replaced by b?"

The user then says one of:

Myeg'" (means do the substitution)

"R" (means replace b by a)

"No' (means do.not do any substitution. Proceed)
"Next" If b=c+d (or a=e+f) the program will

find the next possible substitution and print
"¢ Replaced by d-a?"
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and the whole process repeats.

Most of these interactive commands are retractable. If a command has
changed the theorem in any way, the machine displays the changed version
and then asks "OK??7?". The program will then make the change permanent only
if the user types "OK".

All the user commands such as PUT, USE, etc., may be called initially
without arguments. When this happens the program asks the user for the re-
quired arguments. For example the following is a sample dialogue where upr

. . S .
stands for user imput and '"¢" for machine qufries.

c IMPLY STOP

h ADD-REDUCE

c. PATTERN:

h a+ 0

c REWRITE AS:

h a

c CONDITIONAL (YES OR NO)?
h NO

Some More Details.

In Section 1 we said that IMPLY was called with five arguments,
(TYPELIST, H, C, TL, LT), but only the principal ones, H, C, and the
theorem label TL, were discussed in Sections 1-6. TYPELIST 1is discussed
in [27] and LT is a "light" which helps control the man-

machine interaction. This is discussed below.



62.

The routine IMPLY has three major sections -- CNTRL (control), OPTIONS,
and the features described in Sectioms 2-6. CNIRL 1is executed at the entry
to IMPLY and is the only section that uses the light (LT). The purpose
of LT is to differentiate between calls to DETAIL (LT=3), CNT (LT=5),
which are described above, and (LT=B). A DETAIL call stops at OPTIONS

before returning from the top level sub-calls to IMPLY. A CNT call (which
gives a larger time-limit) does not stop at OPTIONS on any sub-call. A
"B" call stops at OPTIONS before any proof is attempted. If the theorem is
(H”-)'C1 N Cz), there are top=-level sub=-calls to IMPLY for (H-—%>C1) and
H-—> CZ)' DETAIL stops at OPTIONS after (H-9-Cl) is attempted and then
after (H-%>C2) is attempted. CNT does mot stop until after the attempt
to prove (Hw~~—>~C1 A Cz) is completed. A "B" call stops before G{~">-Cl)
is attempted. CNIRL does various things according to the value of LT. If
LT=3, CNIRL resets LT to 3 and goes directly down to OPTIONS for
human intervention. If LT=1 or LT > 2, CNIRL recalls IMPLY with

LT one less than its present value. The result of this call ('PROVED",
"FATLED", or "PROVED CONDITIONALLY"' -~ see Section 3 of Part I) is printed
and execution continues at OPTIONS. In most cases control passes down to
OPTIONS directly.

At OPTIONS human intervention is bypassed if LT < 1 or LT=2 and
control is passed on to the IMPLY Rules (See Table I). Otherwise "IM?LY-
STOP" is printed on the screen and the program waits for the user to enter
commands. At present there are about 35 different commands available, in-
cluding those listed in Table VII. As mentioned earlier, some commands cause
information to be printed, some cause special proving methods to be tried
(perhaps with a larger "time" limit or with more human intervention). Some

allow the user to give prover more information, or to arrange the theorem.




8. Some Applications

This prover has been used to prove theorems in the following areas:

(1) Set Theory [2]

(2) Limit Theorems of Calculus [3]
(3) Topology [1, 38, 39]

(4) 1Limit Theorem of Analysis [45]

(5) Program Verification [6, 27].

In [45] the methods of non-standard analysis are used whereby the
theorem in question is converted automatically to a theorem in non-standard
analysis, and then proved in the new setting which seems to be more con-
ductive to automatic proofs. The typing concepts (see Section 1 of [27])

and Reductions (see Section 3) play a major role in handling infinitesimals,

and other typed quantities.
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Appendix 1

Skolemization ~-- Elimination of Quantifiers

First we give examples. The formula
Bx P(x)
is skolemized as
P(x)

where x is a "skolem variable" which can be replaced by any term during

the proof. Similar,

Q—>3x P(x) ,
and

Fx@—PE) ,
are skolemized as
Q—>P(x) ,
and
(Vx P(x)—> C)
is skolemized as
®E)—>C) ,

where x is a skolem variable.
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On the other hand, the formulas

\/ x P(x) ,
Q—>VxP(x) ,
V xQ —=>Px) ,

Hx P —>0) ,

are skolemized as

' P(X()) 3
Q—>P(x))
and

E&)—> 0

where X is a skolem constant (cannot be replaced).

Finally
(Vx gy P(x,y)*?'au Y Qu,v))

is skolemized as

P x,g(x))—>Q,h(u)))

where g and h are skolem functions.

Notice that we do not place the formula being skolemized in prenex form,
but skolemize it in place, leave each logical symbol except.>¥/ and 33 )
in its original position.

We now give the general rules.
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. .2 ‘o
Given a formula FE, we recursively define” as "positive" or "negative"

the subformulas of E, as follows:

1. E 1is positive

2. 1If (A A B) is positive (negative) then so are A and B

3‘ If (A \/ 'B) n 11 " 1" " " " 12 14

4. 1f ~A 1is positive (negative) then A is negative (positive)

5, If (A—>B) 1is positive (ne.gative) then
A 1is negative (positive), and

B is a positive (negative)

6. If (Vx A) is positive (negative) then
A is positive (negative), and

V is a positive (negative) quantifier
7. 1f (ax A) 1is positive (negative) then

A 1is positive (negative), and

3 is a negative (positive) quantifier.
For example if E 1is the formula
([E— (C~> ~D)] > [~A vV B—>F)])

then E, [~A V ®B—>TF)], ~A, (8—>F), F, H, C and D are positive, while

[H—> (C —> ~D) ], (C—> ~D), ~D, A, and B are negative. |
Given a formula E with no free variables, we éliminate the quantifiers

of E by deleting each quantifier and each variable immediately after it, and

replacing each variable v bound by a positive quantifier with the skolem

2See Wang [23] .



expression g(xl,...,xn) where g 1is a new function symbol (a "skolem

function' symbol) and L SPRERTS 30 consists of those variables of E which

are bound by negative quantifiers whose scope includes v. The result is

called the "skolem form of E".

Tor example if E is the formula

? X vy P(x,y)

then 33 is a negative quantifier, k/ is a positive quantifier, and

P(x,8(x))

is the skolem form of E, whereas the formulas

VX(P(X)-—)-S y Q(x,¥)) ,

and

3 X(\?/y 3 z P(X,¥,2)—> Vw Q(x,w))

have the skolem forms

(P(xc)w——fs»Q(xo,yD s

and

Px,v,8(x,v))—Q(x,h(x)))

respectively, and the formula

Vo« (V51T 2 0x,y,2)—> J u(@lx,u) — ~ ¥v D(u,v))]
—_— \vlw{~ A(x,w) vds3t B(s,t)—> Y. F(x,1,8,£))1)
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has skolem form

([H(x ,32) —> (€ (x_, 87— ~ D(2 (), h (N

[ AW ) V(B (s, §(8) —>F(x Kk (8),5,1(5))])

It should be noted (by those familiar with Resolution proofs) that
the formula E 1is not first negated before the skolem form is derived.
This difference reverses the roles of V and 3 in the skolemization

proceéss.
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Appendix 2

Incompleteness of the Prover

As mentioned earlier the prover is incomplete, in that there are
theorems that it cannot prove. Of course, it has the usual incomplete-
ness, that humans and other systems possess, of not being able to prove
really»hafd theorems, like Fermat's last theorem (if it is a theorem).
But our system is incomplete in three other ways which we refer to under
the headings of '"using ANDS in backchaining", "trappingﬁ, and
"multiple copies". We will discuss these and changes we could make to
eliminate this incompleteness, and why it is not desirable to do so.
See also [46].

Using ANDS in Backchaining.

In Rule 7 of HOA 1if the hypothesis B has the form (A—>D)

then we put

(i) 8: = ANDS(D,C)

and then try to prove (H—>A8). A more complete procedure would use
(ii) 0: = IMPLY (D A H, C)

bringing to bear the whole strength of IMPLY instead of the weaker

routine ANDS. The following example, illustrates this inadequacy
Ex. Al. AANBA(A-—B—>C))—>0).

Of course forward chaining would quickly prove this, but let us assume,
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for the sake of the point we are making, that forward chaining is inoperative.

Then we obtain:

(1)

(AABA (A—>B—>C))=C)

(A= C) NIL
(B = C) NIL
((A—> (B —> C)) = C)

ANDS (B —>=C, C) Returns NIL

So NIL is returned for (1).

If in Rule 7 of HOA,

17

H 6

H6

H 6

H7

we had used (ii) instead of (i), (Calling it

Rule 7'), then the proof would proceed to a successful conclusion as follows:

(1)

(10

(1 ¢Cc o)

(1 ¢ H

(1 H)

(AAB A (A—>®B—>C)) =C)

a->c) NIL
@®=c) NIL

A—>B—>C))=C
(B—>C)ANAABA A—>@B—C)) =C)

AN B—>C)ANAANBA (A—>B—>C)) = C)

"TI'

((3——) COANAABA A—>3B—>C))=3B)

IITH

(AABA (A—>(B—>C)) —>A)

HT!I

7

H 6, 112



However we do not use Rule 7' because it causes the procedure to spend
too much time trying to prove the subgoal IMPLY(D A H—>C) 1in cases where
that is impossible, instead of proceeding with other lines of attack. Using
ANDS instead of 1IMPLY prevents this futile attempt at backchaining, allow=

ing it to happen only in cases when D essentially matches C.

Trapping.

In Rule 4 Table I when a conclusion of the form
AANB

is being proved, we first prove A, getting a substitution 6, and then
prove B ©. Sometimes, as in the following example, the value of *]
returned by IMPLY for the proof of A, will not work for B. We call

this "trapping'.

Bx. A2. ®(a) A P(D) A QD) —> T x@ ) A QE)))

(L) (P(a) AP() AQE)=PE) A QX)) 17

11)  (R(a) A P(B) A Q) =B (X)) 14
Returns a|x for (1 1) H6, H2

(12) (B AP®) AQDL) = Q@) | 142

Returns NIL for (1 2)

Returns NIL for (1) ' I 4.3

We could have prevented trapping in this example by trying Q(x)

first and then P(x). So in general, when proving (P(x) A Q(x)) we might
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want to first try (P(x) A Q(x)) and if that fails then try (Q(x) A P(x)).

This could be effected by changing Rules 4.3 and 4.4 of Table I to read

4.3" A = NIL Put ©': = IMPLY (H,B)

4.3.1 8' = NIL . NIL
4.3.2 8' = NIL Put \': = IMPLY(H,AQ')

4.3.2.1 A' = NIL ‘ . ' NIL
4.3.2.2 A # NIL 9" o\?
AWA A # NIL QoA

A similar permutation would have to been provided for in the hypothesis

in order to handle an example like

Ex. A3. (P(a) A Q) A P(e) A Q(e)—> T x®(x) A Q)

because there either P(x) or Q(x) first would produce trapping. So it
would be necessary to permute the hypothesis to (Q(b) A P(c) A P{a) A Q(e))
or one of the other successful configurations. This could be effected by

further changing 4.3.2.1 to

4.3.2.1" A' = NIL
4.3.2.1.1H# (D A E) NIL

4.3.2.1.2H= (D AE) IMPLY(E A D, A A B).

(In this case we would need to set and test a light to prevent Step 4.3.2.1.2

from being repeated indefinitely).
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Unfortunately such changes as these greatly increase the running time
(sometimes by orders of magnitude) for all theorems including those that
need no such permutations. So our present version has neither change. Most
of the examples encountere& so far don't require it. Also in our interactive
system (éee Section 7) such a failure is shown to the human operator who can

permute the conclusions and/or the hypotheses with one simple command and

thereby achieve the desired result.

Nevins [17] has prevented trapping on an AND-SPLIT
(Ax) A B(X))

by obtaining the set SA of all values of x satisfying A(x), and the
set SB of all values of x satisfying B(x), -and then intersecting SA
and SB for the solution of (A(x) A B(x)). See also [47]. In using this
method one must be careful to provide a special mechanism for cases where

r S is infinite.
Sy °F g

Multiple Copies.

In the following example the hypothesis %’x P(x) 1is used twice in

proving the theorem.
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Ex. Ab. (¥x P(x)—>P(a) A B(b))

¢y (P(x) = P(a) A P(b)) 17

(11 (P(x) = P(a)) A a/x 14, H2
(12) @& =>P0)) b/x oy 4.2, H 2

Returns (b/x, a/x) for (1).
There is no problem here, and also we have no difficulty with the
following equivalent version of this example.
Ex. A5. 3 x(®x) —> P(a) A P(b))

1 (P(x)—> P(a) A P(b)) 17

etc. as in the previous example.

However, in the following equivalent version we reach an impass.

Ex. A6. Ax[@E)—>P(@) A (P(x)——%P(b))]‘

(1 (Px)—> P(a)) A PE)—>P(b))

an (P(x) = P(a)) a/x 14, 17, H2
(1 2) (P(a) = P (b)) NIL ' : 14.4, 17

NIL 1is returned for (1).

If the program was able to convert this example to its equivalent form

H x@®x)—>P(a) A P(b))
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then there would be no difficulty. But then a similar theorem such as
Ex. AT, V 2@ —>P () —>Tx[ P x)—>P (@) A @) —>P2®))]

would be very difficult to convert without eliminating the implication

symbol "—>".

There are two possible ways to cope with this type of difficuity.
First we could eliminate all of the implication symbols (using (~ A V B)
for (A—>B)) from the given theorem, and work from there. But this
would change the basic nature of our system, and we do not wish to do it
for reasons which we give later.

Secondly, we could require that the program make "multiple copies”

of existentially quantified disjuncts in the conclusion. For exaﬁple
H—>T x P(x))
would be copied as
(HB—>P(x) vV P(x")) .
(Similarly, universally quantified conjunctions in the hypothesis
(Vx P(x)—>0C)
should be copied as
EEE)ANPEDY—>C) |,

but this is already domne by Rule I 4.2). (More generally, we would copy
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existentially quantified expressions in any "positive" position (see
Appendix 1) of the theorem, and any universally quantified expression
in a '"megative' position.

Thus in Ex. A6, after copying, we get

€N [@@x)—>P(a)) A @E)—>POB)] V [@E')—P(a)) A @(&') P(b))]
~[@EENDY—>P(a)) A &) —>P®B))] = [RE)—>P(a)) A @E)—>P(®))]
H4.2

@EE'YA~P@)V @E)A~PDB))=[E®E)—>P(2)) A (B (x) —> P(b))]

(1 1) (PE')Y A ~P(a) = [@RE)—>P(a)) A @E)—>P(b))] 13
(111) @EEDA~E@= E@E)—P())) 14

(P&) A P(a') A ~P(a) =>P(a)) a/x 17, H2
(112) @&')YA~P(@)=((@—>P(®))) b/x' 17, H2
(1 2) (f(b) A ~P()= [(F(a)—>P(a)) A (B(a) —>P(b))]
(121 @®)A~EB®) = @@ —>P(@E))) "I" | 14, 7, H2
(L22) (@®)A~POD) = @@ —>P(®))) "I 17, H2

So (afx, b/x') is returned for (1).
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A similar attack will succeed for Ex. A7. Of course, we may sometime
need more copiles than two, and in fact, a procedure would need to be
established whereby coples are continually generated, at intervals, until
the theorem is proved. Unfortunately this leads to an infinite regression

on most non-theorems.
To show what copying does to a non-theorem we try

Ex. AS. Q(a) —> Fx[ B x)—>P(a)) A @E)—>P()) A Q)]
NOT A THEOREM.

This example also needs copying

¢S] Q@y—> [ @) —>P(@)) N PE)—>P(®)) N Q)]
vIEE)Y—>P@) AN EE'Y—P®)) AQEDD
Qa) A~ [PE")—>---1=[@®&E)—>P(a))--]

[@Qa) NP(x') A~P(a)) V (Q(a% ANP') A~P(®)) vV Q) A~ Q"))

=5 [T —>P@) A EEH—>P0)) AQG)]
(1 1 (Q(aj APEYDY A~PA))= C
(111 (@@ APE) A~P(@)= B&—>P(a)) a/x
(112 Q@) ANP&E') A~P(a)= Ra)—>P(®)) A Q(a))
1121 @(a) A P(x') A~B(a) = (B(a) —>P()))  b/x'

(1122) @Q(a) A B(®) A~ B(a) =Q(a)) "T"

Returns a/x, b/x' for (1 1)
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a2 [@Qa) AP(') A~P®)) A @Qa) A~Qx")](Db/x") = C(a/x)
(121) (Q(a APB)A~PD)=C(a/x))
(1211) Q@) APB®) A~PD)= (P(a)—>P(a))) e
1212 Q@A PVCb) A~ P(b) = (B(a)—>P (b)) A Q(a))

(12121 @ ARG A~PO)= (Ba)—>Pb))) o

(12122) @) AEBDB)A~EPEO)=>Q() B
(122) @ A~Q®)=>C(a/x))

1221) Q@) A~Qbd)= (F(a)—>P(a)) g

a 2 22) @Q)A~ Q(bi = (P(a)—>P (b)) A Q(a))

(12221) QG A~Q(®d)= (P(a)—>P()))

Q(a) AN P(a)=P(®) VQ®)) , NIL

So ‘NIL is returned for (1 2). It should also return NIL for (1),
since it is false, but it would copy again instead and never return.
Clearly an additional hypothesis Q(b) would mgke (1) valid
in which case "T" would have been returned for (1 2 2 2 1), and

(a/x, b/x') returned for (1).
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Comment .

We object to the inclusion of "copying' rules and rules to permute
hypotheses and conclusions to prevent "trapping" for several reasons.

These rules are not needed on a very large percentage of theorems, and
yet they greatly increase the computing time in nearly all cases, sometimes
by a large order of magnitude. If we ever expect to prove really difficult
theorems in mathematics we must not strangle the mechanism that does it by
making sure that it handles every case. Rather we believe (in the spirit
of information theory) that it should be allowed to fail on a few cases so
that it can succeed on a number of others, especially the hard omes.

vThe difficulties we point out here are faced by all other proviné
systems. Resolution systems pay the price by continuing all proofs of the
theorem (allowed by the particular restriction on resolution). Gentzen
type systems pay it through copying and search. They both remove the im-
plication symbol and work with the result which we feel is very umnatural.

The implication symbbl " —3" or its equivalent plays a crucial role

in mathematics. Much of Mathematics consists of stating and proving theorems

of the form

(H, A H .

A oNH —>C  ANC, AN...ANC )
2 n ™

1 2

Human proof technique, developed over a period of a few thousand years, center
ground using one or more of the H's to imply one of the C's. We have
wanted to keep this sameAspirit in our prover so that we can easily use some
of the powerful heuristics developed by mathematicians, so we can best inter-

act with the prover on a man=-machine basis.
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APPENDLIX 3
SUME PRUOES OF SUUNDNESS

fne theorem prover is designed to prove the vallaity ot tormulas
in tirst order predicate calculus, 1nls appendixXx will show that it
the prover returns a substitution tor some tormula then tnat formulaq
1S Valld.

wnen a closed tormula, £, ls given to the prover, 1t skolemizesA
(see appendix 1) the formula into an open formula, Se it

V sV sees,V are the tree variacles in &, then tne original formula t
1 Z n

is equivalent to
(1) 3Iv IV .3V S,

. 1 2 n
1t some supstitution & exists such that 5 1is qround (contains no
tree variables) ana Se 1s true then (1) is true, Likewise 1t tnere
is sone set ot sukstitutions ® ,8 ,...,9 SucCh tnat

i 2 m

S& vV 58 V s.. V 59
i ) m
is poth grouna and true tnen (1) 1s true,
rve  will show that 1if the prover returns some non=nlL
substitution & then for any supstitution ¥ such that Se¢ is ground

then $8¢ 1S true, From this 1t tolloss tnat (1) and the original

input are true.
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A formula, P, will pe termed groupa=Lrue it tor any substitution

i
¥ such that P¥ 1s grouhd, P¥ 15 true .

we will indlcate that a formule P 15 ground=trye by the notagion

$EP¥.

LemBa.l. PFloperties ot Ground=Truth, 1t P and ¢ are any tormulas

and & and » are any subsfitutions then we KNOw
1,1 yyPy <=> P when b 1s ground.

1.2 $ybPY => vYPeV.

1.3 wybPe => vE(re & PR)¥, i

1.4 wyby => ¥¥(P6 v PRI,
1.5 e (P & ylif <=> ¥¥FYT & ¥¥VY.
1.0 (s¥by v #¥0%) => »ELP V B3 I

| (v¥bPy & ¥E(P => Y)T) => ¥¥0¥.

kememper that to show ground=truth we need only show that P¥ is

true tor aiLl ¥ such that P¥ does not contain tree variavlies.

To snow tnat the prover is sound s«e will show tnat the rules

uysea in the provey are each sound, induction will pbe used where the

prover 1is recursive, ¥FoOst of the ruies used permit straight forwsard

proots., tor instance, kule 13 requires the prooi tnat

(2) WEL(A => C) & (B => C))6¥ => »¥((A v B) => C)et.

| :
fgquivalently, P is dqround=true 1f and Only it ¥V ¥V ceoc®V P 1S
1 2 n
true wheIe V ,V sesse¥ dI€ the free variables 1in v,
i 2 r

] Q)‘ o S L I o n
> 2 /7< /Qgﬁs»é, /% VIR féﬁ' Qyﬁ?ﬁﬁ#,
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The left handg siade is tre ilnauctlion nypothesis, 1.e,, that IMPLY (1],

LA => C) & (p => C)) returns a substitution 8 sucn that ((A => () &

(B => (CJ)® is qground=true, The conclusion ot (2) is what must be
shown: that the returned substitution & must pe such that the

original torm, ((A Vv E) => CJ), 15 groundg=true after ® 1is applied.

Lemma 1.7 and the fact that the two forms 1in (2) are equivalent

proves (2).

1ne rules concerring ARND=SFLLIT, Forward Chaining and back

Chaining are more ditticult to prove. we shall prove (nese by first

proving something more general by describing some changes to tne

rules ana proving the sounadness of the modified system. 1D doing s¢
we will generalize the notion of a substitution, o, allowing symbolic

disjunctions

to be returned from iIMPLY,

Geperalized.Substituliors.

defipitlian. ¢ is a yeneralized substitution it

(1) ¢ 1s an ordinary substitution, or

(11) ® has the torm

(8 v © ) or (& & 8 )
i VA 1 2

where € ana 8 are generalizea substitutions,
1 2 '
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Sohe examples are,

&, € ve, (& vae)auss),
1 1 2 1 2 3

where tne ¥ are ordinary substitutions.

i
Refiplrion. it & is a yeneralizea substitution, tnhen we define &°
by
(i) #°=9 1f @ 1s an orainary substitution,
(ii) (¢ v & )7 = (8° & 8°),
1 2 1 2
(iii) (& &« & )° = (8’ v 8°),
1 ¢ i 2
(rfhis detinition is for tnis appendix onlyj.
Letipirion. A generallized sypbstitution 1s said to be & pure

disjunction (conjuncticon) it it contains no & symbols (v sympbols),

wotice that tnis detinition allows ordinary supstitutions to pe

called pure disjunctions {(and opure conjunctionsi.

Letinirion. 1f A is & formula and & is a4 generalized substitution,

t{hen

A®

is the tormula gotten by applyving € from lett to right, i.e.,

(i) A® 1s the usval result 1f @ 1s an ordinary substitution,

(11 A{® v 8 ) = a8 v A9

(111} A(e & ®

[

H
p =y
&«
&
>
&
®




snenever we have an lteratea generalized substitution sucCh as
o}y

we cap converg it into a generalizea substitution oy applying % to @&,

For example, it & and } are ordinaly substitutions then
i i

(8 & & )(% v %)
1 2 1 2

"

(6 X & ® X )V (8 X &6 %)
11 21 1 2 2 2

(6 X v &% )& (6% VveX)
11 1 2 i1 2 2

X (@ % Vo X)al(er veir).
2 1 1 2 21 2 2

ExnnaxLias_QL_ﬁﬁnezallzen.ﬁunaLiLuLlons.

LEDBA=2., Lt ® and X are generalized substitutions, X 1s a pure

disjunction, and A and b are tormulas then %° 1s a pure conjunction

and
201 ()’ = d
2.2 ~(a®) = “Re’

2.3 (B V bIN = AX Vv EX

2ok (A o BIN®

A%’ & B

2.5 (A => BJA (AX" => BX)
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Broot. .1 and .2 tollow directly from tne definition of €° and the

properties ot 7, «3 and .4 tollow trom the associativity ot v and ot

& oo fthen .5 tollows fronm .3, .2, and .1, as tollows

(A =2 K% (™A v B

8

("ar v 8%)

it

= ("(A%°) v BY)

= (Ak’ - i\k) ®

GeneralizesSuksiiiuiinls in lilLY a00.HUA,

Ine changes we propose in the program apply at those points at

which [wO Suby0als are comnbined to prove 4 qodl. fhese are ithe rules

concerning AmnD=SPL1Is, forward cnalning, and peck chaining (rules 4,
1.1, /.2 ot iMPLY ana 7, Tk of hUA), Two Cnanges ale reguired in

proving an Anb=5PLLIT of the form
(H => A & b) .

(1) ~e must state pow the substitution @ sbich is returned ftor the

tirst supygoal

{H o=> A)

15 applied Lo v, betore calling l#akPLy agalin on tne second sSubUoal.

(23} and e must state how we comrpine @ witnh the sﬁbstitution A
retyrned trom the seconog subyoal,

Taples A=} and &=]1 glve tnese changes {or IMPLY rules 4, Te1, and
T.4 ana niuA rules 7 anag 7k,




4k

e ® A & B
@ 8 wNlbh
v # NLL
8 Nib

N ¥ NLIL

lablb.4xl

ACLLLL

Fut 8 = I14PLY(H,A)

i’dtk = 1MP’14Y(“,E§9’)

(rorward chaining)

A e (P =>0)
4 = Ni.h
o B NIL
Ao NIL

2 B owlb

FPut & := AUS(H,P)
Go to 8
Put N := IMPLY(R & A & U8, b8)

Go to b

BEIUEN

NiL

N1L

8k v %

eh Vv A

86.



TEh

Thal
Teed
TE.3

Te.4

&k

{HacKk=Cchaining)

13

@

Wotice that IMPLY

(h => D)

Nlis

NLL

NiL

Wlbh

LA => A=d)

NLL

N1L

HibL

NlL

ladlbadzll

ACLIUG BEIUkN

Fut & 2= AxLS(L,C)

Go to Tk
Fut ® = [mPLYI(h,A®°)
iL
&% v i
Fut @ := HUACA=B,C)
NIL
Fut % 1= 1vPLI(h,A8°%)
NIL
8% v )

and HUA always return pure disjunctions,

87.



SpuDUNessSe

xe are now in a position Lo prove tne soundness of

88.

our extended

system, wne will a0 50 oniy tor Kule 14, Prootfs for otner rules are

similare.

1t we arekproving
tH => A o B)
and-e is returned tor
(H => A)
and \ is returned tor
(H => ve’)
then ex'v 3 1s returnea for

(H => A & b)

LeLDa.3. it € ana \ are pure disjunctions tnen
3.1 (n => Clen <=2 (HO°Y° => (C8))

3.2 wi(n => Clog =2 ¥yY(HO'Y’ => CeX)Y

3.3 wi(H => Clox => ¥i(ke’)’ => CONT)Y

3.4 ¥4 => Crey => $Y(HA'Y => CoNY
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Broot.
3.1 {(tv => Clor <=2 (he’ => (&)

<=> (8°h® => CeL)

3,2 ¥l => C)6¥F > #¥(u => Cleny

=> #§(HO°X° => CHX)Y¥

3.3 Proot 1s by induction on tne structure ot %,
Case 1. X\ 1s oraoinary.
A=h° S50 .2 applles.
Case 4o X = X V k . we yse tne lndauction nyrotheses:

1 Z

¥V (h => CJl8Y => #¥(H8°LX° => C8X°)Y
i i

2

PY¥(H => C18Y => #y(HE'R® => COL" )¢
y i
S0 we have

$Elr => CJlO¥  => (¥F(HB R’ => COR )Y & BE(HE L’ => COL’)¥)
1 1 2 2

«> $FL{HE°R° => (BR°) & (HE°L® => (8L °)1%
1 i pi 2

=> $¥EL(HBR° & 068°%°) => (Co%° & COR’)]¥
1 7 i 2

=> 3LHE°(N° & X°) => CO(N’ & \°))¥
1 Z 1 2

=> ¥¥(n®°K° => C&p‘)Y¥

3.4 vroot is oy lnouction on the structure ot %,
{ase 1, % 1ls oroinarye.

=%’ 50 .2 <Qpplies.
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Case Zo. 2 = % Vv Xk . we yse tne induction hypotheses:

#E(H => Clet => pe(He’X => Co) )¥ ,
1 1

¥E(H => C)eg => py(he’x  => Cox )E .
2 2
S0 ~€ have

ygld => CIOY  => (¥¥(HO°XY => CHXL )V & ¥¥(HB"X => CO6X )¥)
i 1 £ Z

=> ¥y[(HO'N => CON ) & (HO'X => Cok )]¥
1 1 2 2

=> ¥yl(helh v hox ) => (Cex v Céek )i¥
1 Z 1 2

=> yy(hoO(h v A ) => Co(N Vv X )I¥
i 2 1 2

> ¢ (HE) => C8M)Y

Lenlga4. 1t # and \ are pure disjunctive generalized substitutions

then
yyl(rer’® & Bo*R) => (A & Blerl¥
Broof. troot 1s by induction on the sturcture of \.

Case 1, A 1s ordinarve.

since W=\’ we nreeqa to establish
£3) vyl (2Eh & BB°L) => (A & BI)OA.)¥

inls ls shown by induction on the structure ot ¥,
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Case l.l. 8 is ordinarve.

(hs) & B8°R) = (A8 & BOR) = (A & B)eke

i

case loioe # ¢ v 8 . we will use the induyction nypotheses:

1 ¢

¥EI(A® % & BO°X) => (A& & BH)8 K1Y
i i 1

$EL(A® % & BO'L) => (A & B)® NlE .
Z 2 2

we need Lo sSDhow
(4) ((AGY & BE°R) => (A & I8Nl Y
2
tor all ¥°s such that (4) is ground ., we will show it tor

an arpitrary ¥ satistving tnat condition.

ADRY & HE°RE => Al® v 8 )AY¥ & (8 & 874V

1 y) 1 2
=> (A® K¥ v A6 X¥) & BE°NE & BORY
‘ 1 2 1 Z
=> (A® W¥ & DE'ANY & bO°%E)
1 1 )
y (AB W§ & BO'XY & HBONY)
2 3 2
(%) | => (A8 MY & BO°NE) Vv (A® MY & B8°XE)
1 1 2 2

by induction hypotnesis ((5) 1s ground since (4) is)

> (A & Ble X¥ v (A & 1)@ AWy
i Z

=> (A & B)i® v ® )W¥
1 2

2
lhe supbstitution ¥ car ope presumed to ve an orainary substlitution,
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> (A & B)OIY
50 (4) iIs shosn for an arbitrary ¥.
so (3) 1% established.
Case ¢, X = A V % . we use the 1lnduction oypotneses:

i 2

$YLLABX° & bBH°N ) => (A & b)OX J¥ ,
1 1 1

YEL(A®L & BO'N ) => (A & pB)EN J¥ .
y3 2 2

~ve need to show
(b) [(A6X’ & BB°X) => (A & B)OMY

for all ¥ tor wnicn (o) 1s ¢ground. Ve will show it for an
arpitarary ¥ satisfying that condition,

Aéx'w o DAY => AB(X® & 2Z)¥ & bBe'(XN v X_)i

1 2 1 P
=> ABL'E & ABLN°Y & (B®W°X ¥ v Be'% ¥)
i pA 1 2
«> (ABN'Y & A®X ‘Y & B8N ¥)
1 Z i
v (ABR T & ABLTY & BE'A ¥)
1 Z 2
(73 «> (hOX'¥ & He') ¥) v (ABN‘Y & B8N ¥)
1 i 2 2

sy induction nypothesis ((7) is ground since (&) 1is)

«> (h & )N ¥ v (A & B)SX ¥
1 2
=> (A & B)O(X Vv & )¥
1 2

-~
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= (A & B)ehY

QD

CAnnAne cS. LLeareLhefolobeneralizeg  dul=SBLLL

Ioepren.d. It & ana %\ are pure disjunctive substitutions then
(y) $¥(H => L)Y
(9) ‘ b wY(H => BB’ )M

«> ¥§(H => A & Bllex v R)¥

Rrogt. we neea 1o show

(10) (it =»> A & BIL®X V R)E

for every supbstitutiop ¥ such that (10) 1s ground,

Kewriting this we get

(MO %% & RA°€) => ((A & BleXt v (A & BIXE)

NOow
HE X E & HA'Y => AGY'F & nh'¥ py (8) and Lemma 3.3
> ABL'Y & BB'LE by (9)
=> (A & BIBXY by Lemma 4
=> (A & B)8XY v (A & BIW¥
QEL .

Tne only nonetrivial rules lett are Back Chaining and Forwara

Chaining. 1ne yeneralized soundness theorems {Oor these are
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pacCK UnAainings
¥yyip => Cley
L& w¥Ln =2 A® I Y
> ¥ (st & LA => B)) =2 Cleex v a) ¥
porwarg (nalnlhigs
¥yt => A)wy
s WYL(H & He) => Co)NY
> ¥ (& (A => B)) =2 Cleex v R)Y
Trese requlre the lenmas
vE(H => CIe°\Y = vELiHe’h => CO°N)V
wy(hH => CHe’'r'v => sYlneX’ => CeY )V .
&nundnuss_ncsuLLs_haL-lba.;mulemauLeu_aLaxaL
Ine actual ymE lementation doe€s not incluae generalizeco
suustl(ﬁtluhs. instedq «€ Observe restrictions that allow us to

return an orainary substitution, In oreer Lo Snow nhow we do this, we€

f.il’vS.L neea LO formalize SULSLILUL1ONS,.

uetipirion. 4 supstitution & is 4 sel ta /% .+ 1g1<n} where the
i 1
X °S are vdlplaoples ano the A4 's are terms and a #x and iz27 =>
i i i 1

-
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LELIDLLLAL . it A 15 an expression ard 8 = {a /x s 1£18n}

° is 3
i 1

substitution tnen A® is the expression obtainea by replacing all the

x °s in A& Dy Lhe corresponding a °s.

i i
LeLiniriaon. A composititon, 8k, of two substitutions & = {a /x
i i
1igny and \ = b /vy 2 lgigm} is detiped to pbe the set 9% = {a W/x
, i i i i
2 1gignt u {p /Y e 1gLigm and 1£34n =2 ¥y #EX O}
i1 i 3
A composition 1s clearly a4 substitution, Composition is
assoclative. (a®)h = A(8%)
DegLlonlLial. fne aomain 0f a supstitution 8 = {a /x : 1£ign} 1s tne

i 1

-

set {x : lLisni. 7Tne range ot & is the set {(a : 1gisni, we will
i i

Say a vallaple occurs 1n the range ot 8 it 1t pelongs to the range or

it if occurs in one ot the elements 0t the range.

ueLipitiou. A surstitutlon @ 1s calleu pormal it no element of its

gomain occurs in 1ts range,

if ® 15 normwal tnen &6 = s, It & 18 normal then A& contains no

element in the aomailn ¢t &,

Lefipiiiobn. Two supstitutions e and L are said to contlict it their

domains 4i1e not disjoint,
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LELDZ.LD. It w and % are normal and non=contlicting then &) is

notmal i1f ana only if ro element in the domalin of & ocCcurs in tne

range ot ke

Ergot.  Froot ot =2

Suppose x 1s in the domaln of ® and occurs in p hich occurs in
tne range ot M., but by the agetinition ot composition x is in the
domain ot @\ an@ D occurs in the range ot @&X, So e} is not normal.
Proot ot <=

Suppose ®A is not normal. ‘Ihep there is an x 1n the domain ot
@) tnat occurs in sone € in the range ot 6k, By the deftinition of
composition either x Is ip the domain of # or in the domain ot 1\,
Likewise eitner ¢ is in tne range ot \ or there 1s some & in the
range ot e such that a\ = C,

suppose x is in the domain of k. osince X 1s ﬁormal, it ¢ were
in the range ot ® then x can not occur in c, Likewise x can not
occur in ak. o0 X €an not pe in the domailn of A,

bo'x must vLe in the domain ot &, bince ® is normal, X can not
occur in any a4 1In the range of &, 50 X €an  occur 1n a} only 1if X
occurs in tne range of %, s0 ng matter where ¢ cowmes from, X woula
occur 1in the range ot X,

QED

-
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LELBBbio it e, %, and ek are normal ana & and % do not conflict,

then

18y = 9%,

Brogd s ey and e\ only agitter tor elements in the domain of K.
suppose v 1is some such variable, By the previous lemma, no element
ot tne aomain of ® occurs in the range of k. since vk is in the
range ot A, vi® = Vi, S0 vi8x = vik = v (since k is normal Ak = k).
Since v 1s 1n tnhe QOmain 0ot % and since & and % do not conflict, v is
not in tne domain of #, SO ve = v anu vek = vk, So vek = Vkek., SO
¢k = hol.

COorollary. eE(i8% => EX(OX))Y & &% = 8X(6X) it €,%, and &) are

normal anbu & and X 40 not contlilct,

ipegrened. It © is sorme substitution,

(11 vyl => A)OY
(143 u ¢g(H => be}h¥
(13)‘ & #¥(He) => HYIG)Y
(1&) & vEibexd => EeN)¥

=> 9y(H => A & BIELE

Broot. #e need to shocw that if O’ is some supstitution such that

(H => a4 & )8R0 15 grouna then
(15) : HERO => Askd & Beib.

we will co so for an arvitrary ¢ satisfying tnat condition.

ye bedin by assuming



v ana x 9o not contlict, ihis 1s the norwal case,

-
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klt-‘) ht”k@.
Dy Lhe assumpllols of ¢ we know that (16) 1s ground., Combined with
(11) xe tnen KnDow
(17) ARXO
is grouna ahiad LIue,
Jeanshile we kKknow froiw (13) and tne assumption ot (16)
*i(nr00) ¥,
Compining tnls with (1) ~e Know
fY(boroC) ¥,
Furtner Cowplning thils with (14) «€ yet
(1x) BONU
whicn is volh dround ano true,
JThus vy assuming tle) we derivea votn (17) ana (18), tnerevy
PDIOVING (i2)e
(V) AVN
By to€ previous corollary, 1t c¢an  be seen tnat Lnhe hypotheses
apout & are satistiea ty & = #% «nen ®, X\, and &\ are all normal and
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Ioegrea.d. i &, &, ang 8k are 4dll norwal ana & and %
contlict, tnen
¥¥(h => AjEY
& FY(H => p8)RY

=> F¢(H => A & BjERY¥

LOleSallelbeLliplelanlalion

As we notea earliler, eguation (1) is true it there is
sycn  tnat L& 1s grouno ana'true. Inis means that it tbh
returns A tor labFLY(HIL,5) all that is needed is tor some &
such that oke to be grouna and true, oSpeciiically we do not
Lo Le arounde=true. we nave dJdseq qground=frutn to make the |1
proofs t(ractavie, ltneorem 1 is much easier Lo grasp as
presented than 1t woulo pe it it were stated as

HE*R'T => AGR‘Y
& bR'Y => ne’hy

=> {1 => A & R}ILGX V R,)¥

in tne actual implementation we relax tne requiremnent
substitution returned from LYPLY wvakes the input arounde=tru

18 necessary tor Proving sucn simple treorens as
FxO Px) => vla) o Plb) ),

In this cdase we return the supstitution {a/X, L/X}. In

99.

do not

some
e prover
Lo exist
Luego Sk
nductive

it was

{hat the

€. This

arplying

substitutions we check to see 1i & supstitution tnat nas a conflict
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is appliec to a tormula that has the vVaridple for wnich the contlict
OCCuUrs, it sb, we tail on tnsl suhy0al,

.ixewlSe 1t we rave a supsritutlon {a/x, t(x)/y} {(which s pnot
norfial) #e allos it to Le uses vut pronibit its composition with some

suLsStitutlion such as {t/x) wnile allowlng composition w#ith {(asx}.
Lignples

Laglpdiend . FOx)Y => ( Fla) & P(p) J
INis resdires the generallzea supstitution ({asx} v {op/x}). 1n

the 1nplenentey prover the supstitutlon {a/x, b/x} woula be 1eturnea,

Lisllplend.
Pla,inez) & Yld,b,d,y)

& Kla,v,t) & wl€,C,1)

2> (PUX,¥,2) & Y(d,¥e2,C0) & K(X,Y,2)

Iinhis 1% not a theoref, e proot ot
FAX,¥e2) & Y (3,¥,2,C)

regulres tne cowpositicn ot tne supstiltutions {a/x, L/yF ana (a/sz,

C/Y1oe with Jenerallzeo substitutions we tnen have to prove
K{xX,y,2)({a/%x, o/y, a/2} &v(d/z, c/vt)
whici tranhsiates to
rlad,o,a) a r(x,c,ﬁj.

Inls c4an not pe proved from tne nypotneses,
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tne composition ot tie two substitutions in  the implemented

prover soula ope
‘d/x' U/\/, (3/2' C/y)-

wheih nis Su‘DStltULiOD is dl)tllled tu M(X,y,z) tne prover nrotes that
there 1s a conflict in tne supsfitutlion tor y and that vy appears in

RiX,y,2). Bpecause of tils, tne prover tails the goal,

EXxalildeond.
Fla,n,2) o wla,0,7,y)
& Hiad,Db,0) & Rie,C,d)
=D (PUR,Ve2) & v 8,Y,2,C)) & RKiX,Vs2Z)
inis 1S 51m11ar Lo example 2 tut 1s a4 theorem, «1Llh generalizeq
substitutions 1T woulo ce proved but  the implemented prover would

tail 1t tor Lthe sauwe reasons as velore,

bianpdends (PLEx)) & J(gly)) => ply) & wix)
jnis  tneoren  is  groves uslng  the generalized substitution
(Ltlulydi/Zy,  3iy)/xb v Aaly)/xj ). lne 1urplewented prover returns

simply trtuly)iszy, aly)/ar wnlcn 1s not normal,

135 -1 TV N - Jia,t(r)) =2 (ritix))=>1rittaliariyi)) & UlX,yll

ihe tlIst sten in proviny tnis 1s Lo prove
wila,t ())& PUELR) ) =2 P(t(al)) & Plvie

fnis reuyulles the conulination ot tne substituytions tasxi ano

1Eix)/yte witn aetgrallzed substitutions we tnen neey Lo prove
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tula,tle)) =2 vix,v)) a/x, tiX)/7y} o (L(x)/vf)
whicn necoues
Jla,tilr)) => (Jia,t(x)) » v(x.x(x))i.

in1s 1s Clearly npot true,
jne 1w lenented prover conplnes tne two supstitutions inte {a/x,

t{x)/y} (anich 1S5 not torinall). it then sucCceeds 1n preving
vta,tlnl) =2 wia,tix))

#10N tnpne suwstitutlion {L/7%X}) e rowever «nhen it tries to comiine tnis
supstitution ~1L0 the previous one, Llhe provery recognizes its mistake

and tails Lhe surijodal.

~
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