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Abstract

The theorem prover developed by our group at The University of Texas is described. Algorithms are
given for its principal routine, IMPLY, and supporting routines.

The prover itself {without man-machine interaclion} is a natural deduction system which uses the
concepts of:  subgouling, reductions {rewrite rules), procedures, controlled definition instantiation,

coptrolled forward chaining, conditional rewriting and conditional procedures, algebraic simplification, and
induction. '

It, or variations of it, have been used to prove theorems in set theory, intermediate analysis, and
topology, theorems arising {romn program verification, and limit theorems of caleulus.

This paper, ATP 17B, is a revison of the first part of ATP 17A, *The UT Interactive Prover®, June
1978, and an earher version, ATP-17, May 1975. Tke most significant change (in the first part of ATP
17A) is in the way in which the IMPLY table is presented -- In ATP 17A two routines, IMPLY and HOA,
are described, whereas in this paper these have been combined into one routine, IMPLY. Also two new
rules, ¥ and 27, have been added, along with a ®smart® backiracking procedure for AND-SPLITS; these
have been part of our implemented program for a number of years; Rule 13-O is a2 recent addition. Also
some of the sections and appendices have been omitted, with appropriate references to the same material

in the literature. And various additional comments and examples have been added, and slight revisions
have been made.
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9 is derived which consists of these replacements. The skolemized formula I is then sent to the prover by .
a call IMPLY(NIL,E).

If H and C are formulas, then IMPLY either returns NI or a substitution 4, such that
(H->C)
is propositionally valid. #Yis a most general such substitution. If no substitution is needed thenm IMPLY

returns *T#. It will return NIL if {H --> C} is not valid or if it cannot find a proof within a prescribed
time limit. It uses supporting routines such as UNIFY to obtain the substitution 6.

The routine IMPLY is described in algorithmie form in Table 2-2. This table gives the basic rules of
IMPLY: some additional details, which are mentioned in footnotes and in the later descriptions, have
been implemented.

The skolemized formula E being proved is initially sent to IMPLY by a call, IMPLY(NIL E}. The rules
are then processed in order, as listed; if none apply, NIL is returned.

{A first reading of the table should be be done ignoring the footnotes, to get a general idea; then a more
careful reading can illuminate the details.}

1Act«uaiiy the formula (APPLY#(H -> C) ) is valid, where APPLY is the function defined in Section 2.2.



Table 2-2:
Rule No. '

ALGORITHM IMPLY (1,C)
IF RETURN
1.C=T or H=FALSE T
2. ANCESTRY
21 = ANCESTOR(C) s NIL G
22 HIGHER-GOAL-FAILURE(C) 5£ NIL NIL
3. AND-SPLIT
C == (A AB)? 0= IMPLY(H A) # NIL,
= APPLY(4,B), \:i= IMPLY{H,B’) 5¢ NIL ~ COMPOSE(0,)\)
4. CASES
H = (A v B), 8= IMPLY(A,C) 54 NIL,
B:= APPLY(,B), M= IMPLY(B’,C) 5 NIL COMPOSE(8,))
5. REDUCE (See Section 5)
H':= REDUCE(H) £ I, or .
C’:= REDUCE(C) # C, IMPLY(H",C)
6. OR-FORK
C = (AVB), C:= AND-OUT(C) ## C IMPLY(H,C")
9:= IMPLY(H A ~B, A)® 5 NIL 0
ELSE IMPLY(H A ~A, B)
7. PROMOTE
C=(A->DB) IMPLY(H A A, B)*
8 C = (A <->B) IMPLY(H, [{A->B) A (B->A)])
g C = (a == b), 0:= UNIFY(a,b) ¢ NIL g
10. FLIP-C
C = (~A)

IMPLY(H 4 A, NIL)

5
“By the expression "C == (A A B)* we mean that C has the form "A A B®,

%In Rule 6 the *~* in {~B) is pushed to the inside ;

e.g., ~

{~P) goes to P, ~(P -> Q) goes to (P ¥ ~Q. If B contains
no ®~*% or *-->* then (B) is omitted and the call is made to IMPLY{H,A). Similarly for the (~A) in IMPLY(H~A, B).
“Actually we call IMPLY(OR-OUT(H A A), AND-OUT(B) ).



Table 2-2: continued
Rule No. I RETURN

11, INEQUALITY?

12. MATCH
H' 15 a conjunct of H,
0:= UNIFY{H',C) 5% NIL 8
13. BACK-CHAIN
{A —> B) is a conjunct of H,
¢:= UNIFY(B,C) 5% NiL, A’:= APPLY{4,A),
A= I‘\ii’L\ H A’} # NIL COMPOSE({6,))
13-O. {A -> B} is a conjunct of H, B’ is a disjuuct of B,

9= UNIFY(B',C) 5% NiL, B":= DELETE(B’,B),
A= IMPLY(l1, APPLY(0,A A ~B") ) 5% NIL COMPOSE(4,)\)

13->.{A-> (B- > D)] is a co n]unct of H,
H':= REPLACE([A -> (B-> D)}, |A A B -> D], H) IMPLY(H’,C)

14. SUBSTITUTION OF EQUALS

a=Db is a conjunct of H, z:= MINUS-ON(a,b} 5£ 0

z is a number T
H':== SUB={(a,b}, H), C":= SUB={{(a,b), C),
¢:= IMPLY(H',C") 7é NIL [
14H. (A -> a= b) is a conjunct of H,
H':= SUB=((a,b), H}, C':== SUB=({a,b), C),
0:= IMPLY(H',C"} &£ ’\"IL, A= APPLY(4,A),
M= IMPLY(H,A’) % N COMPOSE(0,))

15. FLIP-H

~A is a conjunct of H,
H:= DELETE{~A H) IMPLY(H',C v A)

16. DEFINE-C (See Section 5)

C’:= DEFINE(C) £ NIL IMPLY(H,C")
7. ELSE NIL

[

When proving a theorem of the form

®See {7l



H->AADB
IMPLY uses Rule 3 to split it into the two subgoals
H~->AandH->B
which it tries to prove separately. It is {of ccufrse) necessary that the substitution § derived for (H > A)
be applied to B, but not to all of (H --> B) in proving the second subgoal. The reader can sce the
necessity for the particular form of this rule by considering the three examples

o [Pa) A Qfa} -> P(x) A Q(x}],
o {p(a‘) A (é(b) -—> P(X) A Q(Xﬂ
o [P(x) ~> P(a) A P(b)].

2.2. Other algorithms.

e ANCESTRY. Suppose that C7 appears as an ancestor goal of C, on the part of the proof tree
between the root of the proof tree and the current goal. Then ANCESTOR(C)} will return 4 if
C’ unifies with (~ C) with mgu ¢. And HIGHER-GOAL-FAILURE(C) will return T if C is
identical to C, for C is on the part of the proof tree since last something was added to H (as
for example, in Rule 7: promote).

e UNIFY is the standard unification algorithm, except that UNIFY(x,y) returns *T" if x=y ,
and NIL if x and y are not unifiable. (However, it will not return a substitution which is
contained in the list, EXCLUDE. See *Smart® backtracking, Section 4, below.}

e AND-OUT ( OR-OUT )} is an algorithm which puts an expression into conjunctive normal
form (disjunctive normal form), but does not convert implications.

Ex. AND-OUT{ AV [(P->Q)AR]) = [A v (P->Q)| A [A VR
Ex. OR-OUT([AV (P->Q)]A[AVR]) = A v |(P->Q) A R]

e APPLY(6,D) applies the substitution ¢ to the formula D. It returns D if §== *T* and returns

H

the ordinary instance D8 (See P.75 of [7]) if § has no conflict.%] If ¢ has two entries a/x, b/x,
with az£b, then APPLY(6,D) returns the conjunction of the two formulas APPLY(61,D) and
APPLY(02,D}, where 01 = DELETE(a/x, 6), 62 = DELETE(b/x, §).

Ex. If 0= (a/x, b/x, ¢/y), D = P{x,y,2), then APPLY(6,D) = P(a,c,z) AP(b,c,z).
o COMPOSE(6,)) is defined as follows: If = *T*® then ); if X = "T?then 0; else APPEND(4,}\)

Ex. If 0= ( f{y)/x, b/x, ¢/z), \ = ( d/y,e/y,g(u)/z), then COMPOSE{4\) = ( f(y)/x, b/x,
cfz, d)y.efy. glu)/z). :

Thus if neither § nor X is *T*, then COMPOSE(9,\) has the same effect, when applied to a

formula, as does the ordinary composition # o ), unless COMPOSE(4,7) has conflicting
bindings.”

e DELETE(a,A) returns the result of removing the first occurrence of a from A.

e REPLACIY(a,b,A) returns the result of replacing the first occurrence of a in A by b.

®A substitution 6 has a conflict if it has two entries of the form afx and L/x with a;éb. Such substitutions are called
"generalized substitutions®, and are treated more fully in [8

7 .
See footnote 6. .



e MINUS-ON(a,b) returns the result of algebraically simplifying the difference (a - bj.
Ex. MINUS-ON{ x+5, x+y+2) = 3y

e SUD= is a routine for substituting equals. Sub={{a,b},D} is defined as follows:
Put a’:= CHOOSE(a,b), b:= OTHER( {a,b}, 2}, and
2eturn D{a'/b’). (ie, each b’ in D is replaced by a’). CHOOSE is an aigorithm used by
SUB==. When CHOOSE({ab) is called it selects one of {ab} to replace the other. (In a
current implementation, CHOOSE(a,b) returns a if a is a number, or b if b is a number, or b if
b occurs in 2, else a.)

e OTHER( (a,b), 2’} is b il a’=2a , else a.

2.3. Theorem Label

The third argument, TL , of IMPLY is a "theorem label® (or more appropriately a "subgoal label®),
which is 2 sequence of 1's and 2’s that indicate the progress that has been made in proving the theorem.
For example a theorem

(H ~-> AaB)
would have theorem label {1) and its two principal subgoals
(i --> A} and (H-> B)
would have theorem labels (1 1) and (1 2) respectively. And two subgoals of {1 1) would have labels (1 1
1) and {1 1 2). Such theorem labels are exhibited in the left margin for the examples given in this paper.
in addition to these 1's and 2's we also utilize other letters such as H, P, and =, to indicate other actions

of the prover, and sometime use (1), {2}, (3), etc., (i), to indicate that the current subgoal has been
obtained from the last by the use of hypothesis number i.

3. Some Examples of Proofs by IMPLY
Ex. 1. {A-> A}

An initial call is made to
IMPLY({ NIL, A -> A)
which in turn uses Rule 7 to call IMPLY(A A} which returns *T* by Rule 12.
in order to shorien the presentation of this example and those that follow, we will use the notation
{TL) D= C) -

in place of IMPLY{D,C}. Thus the presentation of Ex. 1 becomes

(1) (NIL = {A -> A))
(1} (A = A} 7 (indicating Rule 7)
Returns *T*. 12 ,
Ex. 2. ValV x P(x) -> P(a} |
(1) (NIL=(P(x} -> P(a})) Skolemized
{x is a skolem variable, and aj is a skolem constant.)
(M{xj=Plag)) 7

UNIFY(P{x),P(a,}} returns ay/x 12
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Henceforth we will drop *NIL=" and write *A*® instead of *NIL=2A% Thus Ex. 2 becomes Va[Vx P(x)
-> P(a) ]



(1 (Ptx)=Plag))
Returns 30/x

Ex. 3. Va|P(a)aVx (P(x)-> Qx)) —> Q(a)]

(1) Plaja(P Qlx) J=Q(a)
(1(2)) Pla)ja {’§ Qlx} J= P(a)
{ihﬂw matched Qfa) with Q(x) getting a/x, and
pplied

a/x to P(x} to get the new goal P{a).
T%*e {2} in the theorem label indicates that Hypothesis {2)
was backchained upon, by Rule 13.}

Now it returns *T* for goal (1(2)) and a/x for
goal {1}, because COMPOSE( a/x, *T") = a/x.

Ex. 4. (AVD—> AVB)

{1 (AvB= AvB)

{11} {A= AVYB)
(A-’ti A}
TRUE

{(i2) (B=AvYB)
{B=3 A} Tails
(B= B} TRUE

Ex. 5. {A~>BvC}) (Nota theorem).

(1) (A= Bv ()
(A= B) NIL
(A= C) NIL
Returns NIL (Failure).

Ex. 6. (AA[(~AVB)-—->B)

(1} Ar{~AV¥B}=B
This becomes, by Footnote 4,
(AA~A)V(AAB=B
{11} (AAa~A)=B
A= AVE
A= A TRUE
{12}y AaB=DB TRUE

Ex.7. {~AAB-—> ~ A)
(1) (~AAB= ~A)

(A A~AAB = NIL)
(A4 B= A} TRUE

7
4, CASES
6, Footnote 4
12

6
12

o

10
15,12
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Ex. 7. (B->A)A (C->B)A (~A->C)= A
{1} (B->A) A (C->B) A (~A->C) = A
# = B
# =2 C
# = ~A

It returns T by Ancestry.

Ex. 8. (a=b A P(a) —-> P(b} )

n a=h A Pla)= P(b)
"HOOSE(a,b) =

(1 () a=a A P(a)= P(a)

P{a)= P(a) TRUE

EX. 9. VxP{x) —> P(a)AP(b)

{1 P{x)=r P(a) A P(b)
{11) P(x)=> Pla}) a/x
(12) P(x)= P(b} b/x
So (afx, b/x) is returned for goal (1).

Ex. 9" Qa) A Q(b) -> 3x{(f’(‘f)"> P(a) A P(b)) A Q(x)]
(1) Q(a) A Q(b) = [(P(x) -> P(a) A P(b)) A Q(x)]
(1) o) Qb = (P 2 D) P(D)
Qla) 2 ) AT = Flo) P
(111) Qfa) A Q(b) A P(x) = P(a) afx
{112 Qla) A Qby A P{ ) = P(b) b/x
g = (a/x b/x}i

/x) is returned for {1 1).
Apply (6, Q(x)) = Q(a) A Qfb).

(12) Gla) A Q(b) = Q(a) A Q(b)
(t21) Qfa) A Q(b) = Q(a) TRUE
(122) Q(a) A Q(b) = Q(b) TRUE

{a/x b/x is returned for (1}.
Ex. 10. (AABA(A-> (B-> C)) —> C)

(1) AABAA->(B->C))=C
AABA(AAB->(C)=C

{1(3)) AABA{AAB->C)= AADB
TRUE

Some more examples are given in Sections 4-7, and other more more substantial examples can be found

in [3,1,10.9.7].

RETURN

13
i3
13

2.1

13->
13
3,12,12



4, AND-SPLITS and *"Smart" Backtracking

Instead of the AND-SPLIT rule shown in Rule 3 of Table 2.2, we have implemented a generalization of
it shown helow, which prevents certain kinds of trapping: {A similar procedure is used for Rule 4).

IF RETURN

3. AND-SPLIT C = (A AB) AND-C{C,NIL)

AND-C is a recursive function of two arguments, C and EXCLUDE. C is a conjunction, A A B, and
EXCLUDI is a list of ®illegal® substitutions, which the unification algorithm is forbidden to return. AND-
C uses a function CONFLICT; CONFLICT{Y, >\) returns the set of conflicting substitutions from fand X\,
which are causing the conflict. For example, if 0= { a/x }, X\ = { b/x }, with a5b, then CONFLICT(9,
M) would return { a/x }.

AND-C{C, EXCLUDE] is defined as follows:

IF RETURN

§:= IMPLY(I1,A) £ NIL, B':= APPLY(4,B),

i= IMPLY(H,B') 5 NIL COMPOSE(6, )\)
654 NiL, A = NIL, o := IMPLY({H,B) 5 NIL,

L:=CONFLICT(4, #), EXCLUDE":= EXCLUDE U L AND-C(C, EXCLUDE')
ELSE NIL

Ex. 11. P(a) A P{b) A Q(b) > 3x [P(x) Ao Q(x)]

{We will abbreviate the presentation by just showing C instead of H= C}

(1) P(x) 4 Q(x) 7
AND-C{ P(x) A Q(x), NIL) 3’

(11) Plx) ¥d=afx 12

{1 2) Q(a) X = NIL

(127} Qlx o=Db/x 12

L = CONFLICT{ (2/x), (b/x) ) = (a/x), EXCLUDE’ = ( {2/x) ).
AND-C{P{x) A Q(x), ( {a/x} ))
P{x? b= b/x
{ a/x is rejected by UNIFY because (a/x} is in EXCLUDE)
(12) Q(b) TRUE
So b/x is returned for goal (1).

o
[y
[l
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Ex. 12 Plac) A P(bd) A Plae) A Qife) A Qlae) —>
T S IPly) A Qe )

(1) Plxy) A Qxy)

AND-C( P{x,y) A Q{xy), NIL}
{t1) Pixy) 0= a/x, cfy
{2) Qlac) = NIL
(129 Qlry) o= f[xcfy

AND-C( P{x,y) & Q{x.y), ((a/x.c/y))
(11) Plxy) 0= b/xdfy (la/xc]y 1% rejected by UNIFY)
{12) Qib,d) N = NIL
{12 Qixy) o= f/xe/y

AND-C{ P{x,y) A Q{ ({(a/x,c/y), (b/x,d/¥)))
P(xy) 0=a/xefy

Qlae) x= T

So {a/x,e/y) is returned for goal {1). QED

o
(==Y
oy e

Other examples proved by this implementation are:
Let I = { P(a) A P(b) A P(c) A R(c) A R(d) A R(e) A Q{f.c) A Q(bse} ).
Ex. 13, H--> xy [P(x) A R(y) A Q(xy)]
Ex. 14, H—> 3xy [Q(xy) A P(x) AR{y)]
Ex. 15. H--> 3xy [P(x) A Q(xy) A R{y)]
Ex. 16. 3x| P(x) A Q(a) A Q{b) --> P(a) A P(b) A Q(x)]

Fx. 17, 3x] { (Q{a) A ()) P(x)) A (Q'(c
AQx)AR \) V{x) A R(x) A S{c)

The following is a theorem which is not proved by IMPLY. However, it too can be proved (see below) if
the theorem is first “preprocessed® in a manner shown in Ex. 19’ below.

Ex. 19. {V2]Q(z) -> P(z)] —> Ix[(P{x)-> P(a)) A (Q(x) -> P(b))]}

(1) () -> Pil= (7] > P & (01> PO 7
AND-C( (P(x) -> Pla}} A (Q(x) -> P(b)), NIL)

(E 1) (P{x) -> P(a)) b= a/x 7,12

(1 2) (Qla) > P(b)) = NIL

(12) Ofxj > P(b)
Qfz) -> Pz)] 4 Q(x)= P(b) 7
Succeeds with o = (b/z,b/x)

ol (b
AND-C( (P(x) -> P(a)) A (Q(x) -> P(b)), ((a/x)) )
{11) (P{x) > P(a)) NIL
NIL is returned for goal (1).

However, if Ex. 19 was first "preprocessed® to the form



(1) [Q)-> Pl AP Y Q) = Pla) ;

{111 s P{x) .= Pla} afx 4,12

{112) @ Qla) .. = P{a}

(riz{m # Qla) o= Qfa) afz 13
Returns {a/x,a/z) for {1 1),

{12) * Py Q) .= ?Sb)

{121 * Pix) = P{b} b/x 412

(122) “ Q(b) = Pl

(1220)) . Q(b) .= Q(b) bfe 13
Returns {b/xb/z) for {1 2), and (a/z,b/x,a/z,b/z) for goal (1}.

It is true that many theorems do occur in a form like that of Ex. 19, {See {14, Chap 6]} but we much
prefer not to force each of our theorems into that mode. We would rather have the prover fail to give a
proof on a few weird examples like Ex 19, rather than to force them into 2 form that locks so different
than the original. {Since we here are doing "Natural® deduction.)

5. Definitions and Reductions

5.1. DEFINE

Rule 16 of IMPLY calls DEFINE(C) which expands definitions from a stored list. Table 5-1 gives some
such definitions.

When the defining form introduces quantifiers {e.g., Rule 2 of Table 5-1) it is necessary to eliminate
these quantifiers by skolemization. We skolemize when the definition is expanded using variables
occurring in the unexpanded form in the present theorem as free variables in the skolemization. The
skolemization also depends on whether the formula occupies a positive® or negative position in the
theorem being proved. For example (ACB) is replaced by (x,€A -> X,EB) in

(H-—-> A CB)
whereas it would be replaced by (x€A -> x€B) in
{(ACB-> Cj.

8See Appendix 1.
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Table 5-1:  Some Definitions

Formula Being Defined \Deﬁnirg Form
1. (A=B) (ACBAB C A)
2. (ACB) Vx(x€A > x€D)
Skolem form!®
{x, € A-> x €B}in "Conclusion®
(x€A -> x€B) in *Hypothesis®
3. (AUB) {x: x€A v x€B}
4. (ANB) : {x: xEA A x€B}
5 U Aft) {x: 3t(t€S A xeA(t))}H
tes
6. N Aft) {x: Vt{teS -> xeA(t))}?
tES
7. subsets{A) {x: xCA}
7", sb{A}) subsets{A)
8. range f {v: Ix(y = 1(x))}
9. OcF (Open F A Cover F)

5.2. REDUCE

Rule 5 of IMPLY calls REDUCE(H) and REDUCE(C). If E is a formula then a call to REDUCE(E)
causes the algorithm REDUCE to apply a set of rewrite rules to convert parts of the formula I. See
[2,29-36]. Table 5-2 gives some examples of rewrite rules in use.

REDUCE helps convert expressions into forms which are more easily proved by IMPLY. Also the
rewrite table is a convenient place to store facts that can be conveniently used by the machine as they are
needed.  For example, REDUCE returns *T*(TRUE), when applied to the formulas {Closed(Clsr A}),
{(Open D), (Open(interior A)), (DCA).

“In the prover a different symbol is used for set equality to distinguish it from the arithmetic equality. Here in we mean
sct equality.
1

mW‘nen the defining form introduces quantifiers, two versions of its skolemization may result, depending on the position

of the formula in the theorem. See page 10.
i, .
See previous footnote.

12, .
See previous footnote.
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Table 5-2: REDUCE Rewrite Rules

INPUT OUTPUT
1. {teAa NB) {teEA A LEB)
2. (tEA U B) (tEA v t€B)
3. (el Pl Plt)

4. (t€A)1f A has Definition {x: P(x)} P(t)

5. (€subsets{A)} tCA

6. tCANB {tCA AtCB)
7. (A NA) A

8. (AUA) A

9. (AnP) 0

10. (AU D) A

1. () CA) W

12. A€{B} A=08B

13. {range Zxf(x}) {y: 3x{y = 1(x}}
14. {Choice A € A) A#£D

15. (AV ~A) w

16. (A A ~A) "FALSE®
17. ("T" A A) A

18. (A AT A

19. (A v *T") W

20. (*T* v A) W]

21, (G CC G)? .

20 (G CC Gyt T

miﬁ need not concern the reader here but G is the set of closures of members of G. That is if A is the closure of the set A,

then G = {A: A € G}. And (H C C 1) means that H is a refinement of J, that is, each member of H is a subset of a
member of J.

MSG@ footnote 13.



table B-2: continued

INPUT OuUTPUT
23 (ACA) : wrptw
21 (ACA) R
25. A AFALSE FALSE
26, FALSE A A FALSE
27. A v FALSE A
28. FALSE v A A

etc.

[x 21. VAVB{(ACA UDB)

() (A,CA,UB)

{1j (x, €A —->x €{A U B 16
{1 (x,€ A, -—-> x, EAVX €DB) 5
’ REDUCE Rule 2
{1 (x,€ A= x, €A V¥x €DB) 7
(11) (x,€A=x EA) 6
(1) *T 1

Return *T* for (1}.

Notice how closely this parallels the usual mathematician’s proof, ie.,
ACAUB
(x € A->x€(AUDB)
(xEA->xEAVXEDB)
TRUE.
Ex. 22. VA V B (subsets {A NB) = subsets (A} N subsets (B))

{n subsets(A_ N B} = subsets{A ) N subsets(B)
We will here contract *subsets® to "sb® and drop the subscripts.

(1) sh{A NB) == sh{A} Nsh{B)
{1} [sh(A N BICsb(A) Nsb(B]] A [sb(A) Nsb{B)CTsb(A N B)) 16
’ Definition 1
(11}  [sb{A NB)Csb(A) Nsb(B)] 3
This is an AND-5PLIT
(1 1) [t, € sb{A N B) = t, € (sh{A) N sb(B))] 16
Definition 2
(11) [t, CANB=t €sb(AjAt, € sbB) 5
REDUCE Rules 5,1
(11) o, CAAt, CB=t CAat CB 5
REDUCE Rules 6,5
Return *T* for( 1) 3,12

{12) [sb{A) N sh{B)Tsh{A N B)]
Return *T* for (I 2} {Similarly)
teturn "T* for {1}.



1t should be noted thai the use of Definitions and REDUCE on this example has eliminated the need for
additional hypotheses {or axioms). The required hypotheses must be given by the user but they are given
once and for all in REDUCE and definition tables and never used except when needed in the proof. An
ordinnry resolution proof or Gentzen type proof which did not use such mechanisms would require four
additional axioms aad a lengthy proofl.

L{e=f <> Vt{t € @ <>t € §))

[ 3]

ftEANB <> 1EAALED)
3. {t € subsets A <> tCA)
4.t CANB <->tCAatCB).

Rule 4 of Table 5-2 is a conditional rule. When attempting to convert a formula of the form t € A, the
algorithm REDUCE first checks to see if A has a definition of the form {x: P(x)}, in which case it (in
effect) instantiates that definition and applies Rule 3. For example the expression

X, € Uiegq Alt)
is reduced by Rule 4 of Table 5-2 and Rule 5 of Table 5-1, to
3t{t € Q A x, € A(t))
{or actully to the skolemized form {t € Q A x_ € A{t})).

Bx. 23 (A€ G->AC U geq B}
{1) (A,€G=A CUpeB 7
(1) {AO€ G = (tOE Ag=>1t,€Ugeq B}) 16
Definition 2
{1} (A, e G=(t, €A ~>BE Gat, €B) 5
REDUCE Rule 4, Definition 5
{1} (AOEGMOEAO:#BEGMOGB) 7
{11) (A, e€GAat €A =BEeG) 3
Returns A_/B for {1 1) 12
(12) {(A,€GAL EA ~>t €A
Returns *T7 for {1 2} 12

Returns A_/B for (1)

6. PEEKing and Forward Chaining h

8.1. PEEK

Note that by Rule 16 of IMPLY when all else fails, we expand the definition of the conclusion C. Such is
not the ease for the hypothesis H. However, when proving (1 --> C), the algorithm IMPLY sometimes
specks™ at the definition of H to see if it has the potential of helping with the proof of C, and if so 1t then
(temporarily} expands that definition. This is done after a regular call to IMPLY has failed and the "peek
light* has been turned on.

To facilitate this, the program has a PEEK property list for each of the main predicates. Table 6-1
gives some of its entries. This enables the program to quickly check whether an expansion of the
definition would have a chance of helping with the proof.
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Table 8-1: PEEK Property Lists

1. {Oc [Open Cover})
2. {Reg [Subset Open Clsr])
ete.
Fx. 24. (Reg A Oc F > 3 G (Cover G))
(1) (Reg A Oc F_= Cover Gj 7
When IMPLY fails; the PEEK light is turned ON. )
(1} (Reg A Oc F_= Cover G)
{(11) (Reg= Cover G) NIL
{12) (OcF = Cover G)
{{Open F, A Cover F )= Cover G) 12{PEEK)

Table 6-1, Entry 1.
F_/G is returned for (1 2) and (1).
Notice that it did not expand the definition of Reg in {1 1), ie,,
(11) (Reg= Cover G)
because in Rule 2 of Table 6-1, *Reg* did not have *Cover"”
on its PIEEK property list.

After such a use of PELIS, the expanded definition is not retained. The original form Oc F_ is retained
for any further proofs that may be required. This permits the proofs to proceed at a high level where
possible, resorting to expanded definitions only when necessary. 1t also facilitates human understanding
when operated in man-machine mode.

8.2. Forward Chalning

In IMPLY Rule 7, when a new hypothesis is added to H we try to “forward chain® with it. (If we are
using the forward chaining option.}] Forward chaining is another name for modus ponens: If'P'd = P,
then a hypothesis

P A(P-> Q)
is converted into
P a(P->Q)aQb
Ex. 25. Va(P(a) A Vx{P{x} -> Q{x}} -> Q(a}}

{1} (NIL=> {P(a_} A (P{x) -> Q(x))-> Qfa,)})
(p(ao) A (D X) -> Q(\)) A (2(30) = Q(Ito)) 7
forward chaining

Returns ag/x.

It should be noted that this is Example 3 which was proved earlier using Rule 13 (Back-chaining).
Forward chaining is an option which is available to the user. In some instances he may want to control its
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use. For example, forward chain with Péxo} only when P(xop is a ground formula, or forward chain with
an atom P{x} only when P is a mermber of a predescribed list. Limited forward chaining has been used in
a powerful way by others; see [6, Section 2.6] for references.

5.3. PEEK forward chaining
If P'0 == P§ and A has the definition {P -> Q) ther a hypothesis

P aA
is converted into
PAAAQS
Ex. 26, {(ACBABCC > ACC)
{1} {(ACB A BCC= ACC) 7

We have dropped the subscripts of A , B, and C, 1n this example.
(ACBABCCO= (t, € A->t € C))
Definition 2

(ACBABC Cat €A=t €C) 7
(ACBABC Cat €EAAL EBAL €EC=1t €C) 12
PEEK

forward chaining
Returns ty/t.

In the above, (t, € A} was PEEK forward chained into (ACB) by expanding the definition of (ACB) to
(t€A->tEB) ,
and matching (t € A) to (t, € A) with t_/t, getting (t, € B) as a result. Then (t, € B) was I'EEK forward
chained into (BCC) getting (t, € C). The program has a checking mechanism to prevent an infinite

continuation in adverse cases.
Ex. 27. (AC B A B CC a VD VEQCE -——> DCE) -—> ACO)
@

(1 (A, CB, A B, C C, A (DCE -—> DCE) = A CC)

When Rule 7 is applied, it forward chains {AOQBD) into « to get (AOQBO). A control is used to prevent

repeated use of @ to get, A CB _, ete.

Forward chaining returns A /D, B /E
0 ’ o]

(1) (A,CB AB CC AaAA CB = A CC) 7
s J={t, €A ~->t €C) 16

Definition 2
(A, CEB,ABCC AaaA CB At € A At €EB At €C)
=t €C)

o

In the above application of Rule 7, { A} was forward chained into (A, CB,) to obtain (t € B},

€
C ‘O} to obtain (t-o € CO)

¢
Yo
which in turn was forward chained into (B,
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( 8 A 1,0 - C() =3 tO € C()) LI

Ex. 28. {Oe FAVF 3G {OcF —~> Cover GAG CC F)
> 3H C Ty

(1} (OcF_ A (Oct —-> Cover GIF)AGF) CCF)->HCCF )
{(Oc F A {Oc F--> Cover G{F) A G{F) CTC F) & Cover G(F ) A G(F ) C
=HCCF) 7
Forward chaining

in
-

Returns G(F _}/H, Fy/F.

K

(Oc F A Reg -—> 3HH CC F))

~~
ot
St

(Oc F, A Reg A Cover G(F)) A G(F)) CC F=HCC FY 7

Here Oc I has been PELK forward chained into Reg which has the definition
(VFIG(Oc F --> Cover G AG CC F))
which has skolem form (in this case)
(Oc F > Cover G(F) A G(I') CC F).

As in the previous example G(F_}/H, F/F is returned.

7. Conditional Rewriting and Conditional Procedures

7.1. Conditicnal Rewrite Rules
In section 5 we described the REDUCE feature which causes various formulas {or subformulas) to be
rewritten. For example, the expression
tEANBDB
18 rewritten as

tEAALER.

Sometimes we wish such a conversion to be made only if a certain condition is satisfied. Such rules, are
called *conditional rewrite rules®, and are added to the REDUCE table in the form
(*P A B).
, checks the validity of P before rewriting B for A (with proper
instantiation). If P is not true then A is not rewritten. The ¥ is placed there to distinguish conditional
rules from ordinary REDUCE rules. For example, the entry
{(* A 3£ NULL NODES{A) NODES{LEFT{A}} + NODES(RIGHT(A)))

The program upon detecting the *

-
15%0e footnote 13 on page 13.



means that NODES(A)}'® can be *reduced® to NODES{LEFT(A)) + NODES(RIGHT{A)) if A 5¢ NULL.
The rewrite rule is not valid if A = NULL because LEFT{NULL} and RIGHT(NULL) are not defined,
thus the rewrite rule is applicable only if A 5% NULL is known. Notice also that the result of the rewrite
rule contains forms to which the rewrite rule could be applied. This would result in an infinite expansion
normally but the condition on the rewrite rule precludes this. Generally this rule would be used once and
then it would not be known if LEFT(A} ¢ NULL or if RIGHT(A) 5 NULL so the rule would not be
applied again.

Hewrite rules are expected to be applied quickly or not at all. Their power les in the quickness with
which they can be applied. Accordingly, we avoid long drawn-out procedures for checking the validity of
P. For example, we do not call IMPLY itself to check P; rather we have a *mini® version of IMPLY, for
this purpose, which includes ANDS {See [0, p. 15]}, which we call QK IMPLY.

A similar remark can be made for conditional procedures described below.

7.2. Conditicnal Procedures.

Some procedures are conditional in that they are initiated only when certain conditions are satisfied.
Examples of these are PAIRS described below, INDUCTION described in {2}, and the limit heuristic
described in [3].

7.3. PAIRS

Sometimes in Rule 12 the expressions C and 1T’ will not unily even though the main predicates of C and
I are the same. For example,

(G, CCF=H CC )"

I
!
o)
I

In this case, at Rule 12 of IMPLY the algorithm consults the PAIRS property list of *C C* for advice.
That property list may (or may not) list one or more subgoals that can be proved to establish the given
goal. Table 7-1 gives some such entries.

16I\IODI"JS(’I‘) is one plus the number of nodes in a binary tree T. NODES(NULL) = 1 LEFT(T) is the left-hand son of T.

1’509 footnote 13 on page 13.



Table 7-1: PAIR Property Lists

1. {Cover {(Cover G > Cover FIIG CC F){ )..])

[ R}

(CCH¥(QCCF->HCC)
(ST GAFCC I )))

3. (LAY (LG --> LITYF=G) |

4. {countable {countable A --> countable B}

[31(f is a function A domain fCA A BCrange f)

(BCA)..]
etc.
Ex. 30, (GCCF->GCCH
{1 (('x'O cCC F o= G CcC FO) 7
(GO CcC (io} A (:O ccC O) 12, PAIRS Entry 2
{1 1) ((50 cC GO) 5, Reduce Rule 21
uTn
{12) (FO cC FO) 5,Reduce Rule 22
NTI

Notice that the PAIRS Rule has converted the goal {1} into a subgoal that is easily proved by the
REDUCE rules 21 and 22

REDUCE and PAIRS act a lot alike in that they change one goal into another, the difference being that
REDUCE acts on a "single entry* (i.e., a given formula is rewritten as another), while PAIRS acts on a
double entry. However, that double entry requires that the two input formulas be partially matched (their
main predicates are identical).

Such a pairs concept can be extended to include pairs of predicates that are not identical, but that has
not been done for the present algorithms.

In general, we favor procedures which are triggered by easy-to-check conditions.

Ex. 31. Th.{(g is a function) A countable (domain g
& ACrange g ~—> countable A

j85ee fooinote 13 on page 13.

16 - .. R . . c s
Lf G means that G is locally finite. That is, at any point x, there is an open set A which intersects only a finite number
of members of G.
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(13 (g, is a function) A countable (domain gy’
A A Crange g =+ countable A,
When an attempt is made to match countable (domain g,) with
countable A , a partial match results which triggers Entry
4 of the PAIRS table.
(1 P) (g, is a function) A A Crange g = ((f is a function)
A (domain fCdomain g) A (A Crange ) PAIRS, Entry 4
(1 P 1) (g, is a function) A A Crange g = (f is a function)

g/t
(1 P2 (g, is a function) A A Crange g
= (domain g Cdomain g) A (A, Crange g )
(1 P2 1¢ ¥ )= (domain g,Cdomain g )
wTs REDUCE Rule 23)
(1 P22 (g, is a function) A A Crange g = A Crange [
uTM

So g,/f is returned for (1 P) and for (1).

8. Some Advantages of Natural Deduction Provers

The prover is a "Natural" type system in that it attempts to {ind the proof of a theorem in a way not
unlike that of a human. It is not a refutation system as is Resolution.

We do not see Natural Deduction Provers as replacements for Resolution based systems; at worst, we
would expect that every good prover would have a resolution style prover as a subprogram.

Some advantages of Natural Deduction Provers are:

e The proof development is easier for the human to follow. This is especially important when
used in the interactive mode.

e It is easier for the human to add to the program: effective heuristics, Reducers {rewrite rules),
Algebraic simplifiers, controlled definition instantiation, induction routines, etc.

® Formulas are not "torn apart" by clausing, making processes like induction [2] and higher
order instantiation [10] easier.

@ This mode facilitates the building and using of an "Agenda® mechanism, whereby the program
can be made to pursue a line of attack which seems the most "promising” at the moment,
drop it later for a more promising one, and come back to it later if necessary.

The algorithm IMPLY, and its supporting subroutines, form a natural deduction type system. It is like
a Gentzen system [22], but is more *human lke® in that no attempt is made to force the formula being
proved into a canonical form. In particular the implication symbol, —>, is retained, and we believe that
the proof proceeds in a manner that would be natural to 3 mathematician.

8. Relation to the Work of Others

There is no attempt here to review all the literature on automatic theorem proving. Suffice it to say
that our work is based to a great extent on that of others. The reader is referred to books by Chang and
Lee [13] and Loveland [14] for information and references on resolution type systems, and to the work of
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Alien and Luckham [15], Guard, et al {16}, and Huet [17], on interactive provers. Our prover is in the

spirit of Newell, Simon, Shaw [19], Gelernter |, and has much in common with the work of Gentzen [22],

Nevins, Reiter, Ernst [19], Bibel [20], Brown, Hewitt, MeDermott and Sussman, Wang, Maslov, Rulifson,
et al, Loveland [14, Ch. 6], and Plaisted. See [0] for these references.



I. Appendix I

sholermization - Idhmination of Quantifiers

First we give examples. The formula

is skolemized as

where x is a "skolem variable® which can be replaced by any term during the proof. Similarly,
Q --> 3x P(x) and
Ix (Q -> Px)),
are skolemized as
Q --> P{x) and
(Vx Plx) -> C)
15 skolemized as
(P{x) -> C),
where X is a skolem variable.

On the other hand, the formulas
Vx P{x),
Q> Vx P(x},
vx(Q -> P(x)),
(3x P(x)-> C},
are skolemized as
P(xo) ,
(Q -> P(x,), and
(Plx,) > C),

where x_ is a skolem constant {cannot be replaced).
Finally

(vx 3y P(x)y) -> Ju v Q(u,v))
is skolemized as

(P(x.8(x)) > Q(u,h(u)))

where g and h are skolem functions.

Notice that we do not place the formula being skolemized in prenex form, but skolemize it in place,
leaving each logical symbol except ¥V and 3 in its original position.

We now give the general rules.

. ~ . - 9 oge - —
Given a formula E, we recursively define®® as "positive® or "pegative® the subformulas of E, as follows:

1. E is positive,

N
205ce Wang [21].
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If (A A B) is positive (negative) then so are A and B,
If (A v B) is positive (megative) then so are A and B,

If “A is positive (negative) then A is negative (positive),

gt WO

1f (A --> B) is positive (negative) then
A is negative (positive), and
B is a positive (negative),

6. If (¥x A) is positive (nege tlve) then

4 is positive (negative), a
Y is a positive (negative) qua,ntifier,
7. If (3x A) is positive (megative) then

A is positive (negative), and
3 is = negative {(positive) quantifier.

For exaraple if E is the formula
(H-->{C-> ~D}]|-> |[~Av (B ->TF))

then E, [~A ¥ (B > FJ)|, ~A, (B-~> F), F, H, C and D are positive, while [l --> (C—-> ~DJ], (C
-> ~Dj}, ~D, A, and B are negative.

Given a formula ¥ with no free variables, we eliminate the quantifiers of £ by deleting each quantifier
and each variable immediately after it, and replacing each varible v bound by a positive quantifier with
the skolem expression g(:\'l, xn) where g is a new function symbol {a "skolem function” symbol) and Xy,
., X,, consists of those variables of I which are bound by negative quantifiers whose scope includes
v. The result is called the *skolem form of E*.

For example if E is the formula
Ix ¥y Plx,y)
then I is the negative quantifier, V is a positive quantifier, and
P(x.g(x))

1s the skolem forim of E, whereas the formulas

Vx{P(x} -> 3y Q{x,y}) and

Ix{¥y 3z P(x,y,z) > Vw Qfx,w))
have the skolem forms
(P{x,) > Qfx,y)) and

(P{xy.g(xy)) > Qx.h(x})))

respectively, and the formula
Vx(Vy[3z H{x,y,z} -~

Ju{Clx,u) > ~Vv D{uv}j|>

Yw|~A(x,w) v 3s(3¢ Bls,t) ~-> Vr F{x,r,5,w}))]> has skolem form
(H(xgy,2) > (Clx,,8(y)) => ~D(g(y).hiy )]
—-> [~Alx,,w,) ¥ (B(s,i(s))
”>F(\ l\(S),S,WO))})

It should be noted {by those familiar with Resolution proofs) that the formula E is not first pegated

before the skolem form is derived. This difference reverses the roles of ¥ and 3 in the skolemlzataon
process.
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