Table of Contents

Page
1. Introduction 3
2. IMPLY and HOA 5
3. Definitions and Reduction 21
4. PEEKing and Forward Chaining 30
5. Conditional rewriting and conditional procedures 37
6. Complete Sets of Reductions 43
7. 1Interactive System 45
8. Some Applications 63

Appendix 1. Skolemization -~ Elimination of quantifiers
Appendix 2. Incompleteness of the Prover

Appendix 3. Some Proofs of Soundness

The UT Interactive Prover

W.W. Bledsoe and Mabry Tyson

1. 1Introduction

The prover we describe in this paper is a ﬁ;Eural deduction type system
that proves theorems in first order logic, and some extensions of that by
subgoaling, splitting, matching, and rewriting, simplification, and other
such procedures. It has been partially described in [1-6] but there remains
some uncertainty as to exactly what it does. We will attempt to explain it
in a precise manner, but the ultimate explanation is in the LISP program
itself, which is available upon request.

There is no attempt here to review all the literature on automatic
theorem proving. Suffice it to say that our work is based to a great extent
on that of others. The reader is referred to Chang and Lee [7], and Loveland
[8] for information and references on resolution type‘systems, and to the work
of Allen and lucKham [9], Guard, et al [10], and Huet [11], on interactive
provers. Our prover is in the spirit of Newell, Simon, and Shaw riz2y,
Gelerntner [13], and has much in common with the work of Gentzen [14], Nevins
[15-17], Reiter [18], Ernst [19], Bibel [20], Hewitt [21], McDermott and
Sussman [22], Wang [23], Maslov [48], and Rulifson, et al [24]. See also
Nilsson's Review [26].

In using the interactive prover, the theorem (and subsequent subgoals)
are shown on the user terminal's screen in a natural, easy to read form, and

the user is provided with several interactive commands (see Section 7) for

communicating with the prover. The prover is based upon natural deduction

(or is a Gentzen type system [14-17,25,20,49]), as opposed to a "less natural"
system such as resolution. When‘the human user desired to inﬁeract directly
with the prover, the dialogue is expressed in terms that are (hopefully)
natural and convenient for him. The intent is that the computer will act as

a support to the user in the proof of a theorem; although, the machine-only

system is a powerful prover in its own right.

The interactive policy of the prover is based on the premise that if
the prover can construct a proof it will do so fairly quickly. For each
theorem or subgoal, a time limit is set; if a proof has not been comstructed
in that time, the prover stops and waits for interactive direction. The
user then has available a number of commands for displaying the theorem and
the details of what the prover has dome so far. Using these commands the
user isolates the difficulty and then can allocate more time, direct the
prover into a new line of reasoning, supply additional information (hypotheses,
lemmas, definitions) about the whole thing, or simply assume that the current
subgoal is true and go on to another part of the proof. Often proofs of sub-
goals will fail initially because not enough information has been provided.

(Failure may well, of course, be due to attempting to prove a non~-theorem),

A very useful feature of the prover is that these additional hypotheses need
not be stated initially, but rather can be supplied at the point in the
proof when it is realized that they are necessary. This prevents the
objectionable activity of the user having to prove the theorem himself be-
fore he asks the prover to do so, in order to determine what additional hy-

potheses and definitions will be needed.

This system was developed by Bledsoe's group at The University of Texas.
While it is a general theorem prover, earlier versions were mainly exercised
on theorems in set theory [2], limit theorems [3,45] and topology [1], and a

current version is working on theorems arising from program verification [6].

It has been extended [5,27] to handle these program verification theorems;

Larry Fagan and Peter Bruell at Information Sciences Institute, USC, have

helped considerably in this extension.

2. TMPLY and HOA

The central routines of PROVER are IMPLY and HOA which are des-

cribed below. They attempt to establish the validity of an expression of
the form

(H—>C)

H

(H and C are arguments of IMPLY), by applying a set of (sound) rules

(see Tables I and II). These routines are recursive, they call each other

and themselves, but the initial call is to IMPLY.

These two algorithms, and their supporting subroutines, form a natural

deduction type system. It is like a Gentzen system [14,25], but is more

"human like" in that no attempt is made to force the formula being proved

into a canonical form. In particular the implication symbol, —>> , 1s

retained, and we believe that the proof proceeds in a manner that would

be natural to a mathematician.

IMPLY has five arguments (TYPELIST,H,C,TL,LT) but we will deal with
only two of them, H and C at this time. TL and LT are discussed later
but TYPELIST 1is not discussed in this paper. See [27]. HOA has three

arguments (B,C,HL) and we will deal with only two of them, B and C, at

this time.

When we make a call IMPLY(H,C), the algorithm IMPLY tries to establish
the validity of the formula (H—> () by applying a set of (sound) rules.

Similarly a call to HOA(B,C) causes the algorithm HOA to try to establish
the validity of (B—>0C).

Actually, neither algorithmis completel, but they call upon each other

to perform various tasks. IMPLY performs AND-SPLITS, as when the con-

clusion is a conjunction (Rule 4) or the hypothesis is a d153unctlon (Rule 3):

and HOA handles OR=-SPLITS, as when-the conclusion is a disjunction (Rule 4)
or the hypothesis is a conjunction (Rule 6) or an implication (Rule 7, Back~-
Chaining). Additionally 1IMPLY handles various manipulations of»the con-
clusion C, while HOA handles those for the hypothesis B.

A theorem being proved is first sent to IMPLY which calls HOA and it~
self as needed. Before a formula E is initially sent to IMPLY, it is first
converted to quantifier free form (but without converting it to prenex form)
by skolemization (see Appendix 1). This (usually) produces skolem variables
in E which are replaced by terms during the proof. A substitution 6 is
derived which consists of these replacements.

If H and C are formulas, then IMPLY either returns NIL or a sub-

stitution 6, such that 9
(He —» CO)

lEven the combination of both of them working together is not complete, in that
there are valid formulas which PROVER cannot prove. See Appendix 2.

Sometimes when multiple substitutions are necessary the implication
(H8—>CB) is not valid, even though (H—>C) 1is. See Appendix 3.

ighéalid (usﬁéilfha theorem in propositional logic). énwi; usuélly the most
general such substitution. If no substitution is needed them . IMPLY returns
"TV. It will return "NIL" if (H—>C) is not valid or if it cannot find
a proof in the prescribed time limit.

Similarly HOA and many of the supporting routines such as UNIFY return
substitutions 8.

The routines IMPLY and HOA are described in algorithmic form in Tables
I and II. These tables give only the basic rules of IMPLY and HOA. Some
additional details are mentioned in footnotes and in the later descriptions.

A formula E ' is initially sent to IMPLY by a call IMPLY (NIL,E).

e

3

By the expression

C = "T" or H = "FALSE"

TYPELIST

= (AV B)3

(AND-SPLIT) C= (AAB)

@ = NIL

8 # NIL

A = NIL

N # NIL

(REDUCE)

C ="T" or H = "FALSE"

H= (AV B)
C = (AN B)
ELSE

“See [277.

4 and 3 are called

4

If © has two entries,
computed,

one for each case,

"H= (AVB)"
"AND-SPLIT's".

Table
AL GQORITHM

IMPLY (H, C)

I

ACTION RETURN

HTH

IMPLY (NIL,
(A—>C) A (B—>C))

Put 6:= IMPLY (H,A)

See [2] and [19].

a/x, b/x with _a#b, /then
and 7\

NIL
Put A: = TMPLY (H,B0)"
NIL
90N>
Put H: = REDUCE(H)
Put C: = REDUCE (C)
Go to 1
Go to 3
Go to 4
Go to 6
we mean that H has the form "AVB". Rules

md_ f‘ ()/
gt()/’5\ p e:nd 7)\ are

°7\ is returned for 7\

/é/ﬁ =1

SThis is just (APPEND OA).If 0 has an entry a/x and A has an entry b/x

where a#b,

A= (c/x d/z)

thenm QoA

then leave both values in 0 oA,
(a/x bly c/x d/z).

For example, if 0= (a/x b/y),

IMPLY (H,C) Cont'd

IF
6. C= (AVB)

7. (PROMOTE) C = (A—>B)
7.1 Forward Chaining

7.2 PEEK forward chaining
8 C = (A«—>3B)

9 C = (A =3B)

9.1 0 # NIL

9.2 0 = NIL
10. C= (~A)
11. INEQUALITY

12. (call HOA)

12.1 0 # NIL

12.2 (PEEK) 0 = NIL

12.3 8 # NIL

12.4 0 = NIL

6Actually we call TMPLY(OR-OUT(HAA), AND-OUT(B)).

7See p.30.

The PEEK Light is turned off at the entry to

ACTION

Put @: = UNIFY(A,B)

Go To 10

Put ©: = HOA(H,C)

Put PEEK’ light "ON"
Put 9: = HOA(H,C)

Go To 13

(A—>B) A

See p. 17.

IMPLY .

RETURN

HOA (H, C)

IMPLY (HA A, B)°

IMPLY (H,
(B —>4)

IMPLY (HA A, NIL)

13.

13

13

14,

15.

.1

.2

IMPLY (H,C) Cont'd

IF

(Define C)
Cc' = NIL

C' # NIL

(See Section 2 of [27])

ELSE

ACTION

Put C': = DEFINE(C)

Go To 14

10.

TMPLY (H,C")

NIL

11.

Table TII

ALGORITHM

HOA!BICZ

IF ACTION RETURN
1. Time limit Exceeded NIL
2. * (MATCH) Put 0: = UNIFY (B, C)
2.1 6 # NIL e
2.2 PEEK (See Section 4) HOA (B, C)
3. PAIRS (See Section 4)
4, (OR-SPLIT) C=(A V D) Put C': = AND-OUT(C)
4.1 C'# ¢ A IMPLY (H, C')
4.2 c'=¢ Put 0: = HOA(B/\~D,A)8
4.3 0 # NIL 0
8

4.4 9 = NIL HOA(BA~A,D)
5.1 C = (A—>D) IMPLY (B, C)
5.2 C= (AAD) MPLY (B,C)
6. B = (AAND) Put ©: = HOA(A,C)
6.1 8 # NIL e
6.2 9 = NIL HOA (D, C)

BIn Step 4.2, the "~" in (~D) is pushed to the inside; e.g., ~(~P) goes to P,

and ~(P—>Q) goes to PA~Q. If D contains no "~'" or "—>" then (~D) is
omitted and the call is made HOA(B,A). Similarly in Step 4.4.

HOA (B, C)

Cont'd

7. (Back-chaining)
B=(A—>D)

7.1 0 = NIL

7.2 8 # NIL

7.3 A = NIL

7.4 A # NIL

7E. B = (A—>a=Db)

7E.1 8 = NIL

7E.2 8 # NIL

7E.3 A = NIL

TE .4 A # NIL

8. B = (A«—>D)

9. B = (a=b)

9.1 Z2=0

9.2 Z is a number

9.3 Z is not a number

10. B = (AvV D

11. B = ~A

12. ELSE

wANDS is explained on p.15.

8Actually we use AND-PURGE (H,~A)

ACTION
Put 0: = ANDS (D,C)

Go To 7E

Put A: = TMPLY (H,AQ)"

Go To 8

Put 6:=HOA(a=b,C)

Put A: = IMPLY (H,AQ)4
Go To 8
Put Z: = MINUS-ON{(a,b)

Put a': = CHOOSE(a,b),

12.

RETURN

NIL

QoA

HOA((A—>D) A
(D—>4),C)

NIL

b':=0THER(a,b) (see p.20)

Put H':=H(a'/b'"),
C':=c(a'/b")

instead of H, which removes

IMPLY (H',C')

IMPLY (B, C)
8
IMPLY (H,AV C)

NIL

~A from H.

13.

When proving a theorem of the form
(H—>A A B)
IMPLY wuses Rule 4 to split it into the two subgoals

(H—>A)

and

(H—>3B)

which it tries to prove separately. It is (of course) necessary that the
substitution © derived for (H—>A) be applied to B (but not to H)
in proving the second subgoal, (H'~%>BQ).9

The fourth argument, TL, of IMPLY is a "theorem label" (or more
appropriately, a "subgoal label"), which is a sequence of 1l's and 2's that

indicate the progress that has been made in proving the theorem. For example,

a theorem

(H—>C

\ 1/ Gy

would have theorem label (1) and its two principal subgoals
(H—> Cl) and (H-—%rcz)

would have theorem labels (1 1) and (1 2). Such theorem labels are exhibited
in the left margin for the examples given in this paper. 1In addition to 1's
and 2's we also utilize other letters such as H, P, and =, to indicate other

actions of the prover.

9The reader can see the necessity of this rule by considering the three examples
®(a) A Qa)—>P(x) A Q(x)), (P(a) A Q(B)—>P(x) A Q(x)),

and (P(x)—>»P(a) A P(b)), where x 1is a skolem variable, and a and b are
constants.

14,

Some Examples

Ex. 1. (A—>A)

A call is made to
IMPLY (NIL, A—>A)
which in turn uses Rule 7 to call
IMPLY (A, A)
which uses Rule 11 to call
HOA (A, A)

which returns "T" by HOA Rule 2.

In order to shorten the presentation of this example and those that

follow, we will use the notation
(TL) (D =>C)
in place of IMPLY(D,C) and HOA(D,C).

Thus Ex. 1 becomes

(1) (NIL = (A—>A))
&Y (A= A) 17
Returns ''T" I11, H2

The theorem label, which is (1) in this case, will be exhibited in the
left margin, and some rule numbers from Tables I and II will be given in the

right margin, with the prefix I for Table I and the Prefix H for Table II.

Ex. 2. Va(l ¥x P&x)—>P(a)).

(L) (NIL = (P(x) —-—-*P(ao))) Skolemized
(1) ®) @P(ao)) 17
UNIFY (P (x), P (ao))} returns ao/x H?2

Henceforth we will drop "NIL =!' and write "A" instead of "NIL=A".

Thus Ex. 2 becomes

(1) (®E)—>P(a)

(L ®x) =>P(ao)) 17
Returns ao/x H2

ANDS .

In the following example we use the algorithm ANDS. It is a mini versiomn

of 1IMPLY which handles only theorems of the form

(Hl/\H N /\Hn)]

2

where (HiQ = C8) for some ©O. (In which case € is returned).

Ex. 3.

(1)

(1)

(1 H)

Ex. 3'.

(D

(1 1)

(1 2)

Va@(a) » Vx@x)—>Qx))—>Q(a)).

(P(a) A (BG)—>Qx)—>Q(a))

(Ba) A (PG)—>QG)) = Q(a))
(P(a)) = Qa))

Returns NIL

(&) —>Q&)) =Q(a)))
ANDS (Q(x), Q(a,))

Returns a_ /x

(®a) A (RG)—>Q() = P(a))

Returns '"T"

Returns ao/x for (1)

(AV B—>A VvV B)
(A B= AV B)

(A=>A VvV B)
(A = A)

HTH

(B=A VvV B)

HTI'

16.

17

H6

H6.1
H7

Back~chaining

H7.2

H6,H2

H7.2.2.2

17

13,4,7
H4.2, Footnote 5

H2

14,2

H&4.2, H2

17.

Ex. 3". (A —>B v 0) (Not a theorem)

In this ekample if we applied HOA Step 4.2 without the footnote we

would obtain an indefinite repetition as follows:

L (A=B vV C)

17
(AKX ~C=>B) . H4.1
(A= B) NIL | H6
(~C=3B) H6.2
(A=3B VvV 0 H1ll
Repeat

But by preventing the addition of ~C to the hypothesis, unless it is

fundamentally changed, we eliminate this problem.

(1) (A=3B V C) 17
(A= B) NTIL H6
(A= 0C) NTL H6.2

NIL is returned for (1).

AND-QUT is an algorithm which puts expressions in conjunctive form

(but does not convert implications).

For example

AND-OUT(A V (B A C)) returns ((AV B) A (AV C)),

AND-QUT(A VvV (D—>»B A C)) returns AV O—>B A C)).

Similarly OR-OUT puts expressions in disjunctive form.

. y

Ex. 3M. B—>AX (~A V3B) /’

This éagaxnple shows the utility of "AND-CUT" in Rule H4 . For without

it we would g\a\:
N

\

(1) (B = Av‘;ds_‘ (~A V B)) 17

If we don't use AND-OUT of H4 /
1L (B = A) Returns "NIL

(12 (B=~AXB) : Returns NIL

Returns NIL for (1)

Since we do use AND-OUT -in H4, we get

(1) (B= AV (~AAB)) 17
(1) (B= (AV ~A) A (AV B)) H4
(1) (B =»AV B) ‘ 14
REDUCE Rules 15, 17
(1 D B = A) Returns NIL
12 ®=B3) S H4L

Returns "T" for (1 2) and (1) as desired ‘\HZ, H4. 4

Ex. 3'"",

would get

(D

an

(1 2)

(L2 1)

(1

¢9)

1D

(12)

AN (~AV B)Y—>»B)

Similarly OR-OUT is required in I7.

(AN (~AV B) =B)

(A=B) Returns

(~AV B=13B)

(~A= B) Returns
Returns NIL for

(1 2) and (1)

But since we use OR-0UT in

(AA (~AV B)=—>B)

(OR-OUT(A A (~A V B)) = B)

((AN ~A) v (AANB)=B)

(AN ~A) =B)
(FALSE = B)

"T"

(AN B=B)
e
e

Returns for (1) as desired

19.

Because without it we

7

NIL H6

NIL 13

I7 we get

Original

17

I4
I5

I1

14.2
H6.2,H2

I14.4

20.

Substituting Equals

HOA Rule 9 gives the prover an ability to substitute eqﬁals. When an
equality unit (a=b) is in the hypothesis, the program uses the algorithm
CHOOSE(a,b) to select either a or b, and replaces it by the other in
H and C. CHOOSE selects neither if neither a or b occurs in H or
C. It selects a if b is a number, and vice versa. It will not choose
a if b occurs in a, and vice versa. In the interactive mode the user

can enter this decision process (see Section 7).

21.

3. Definitions and Reduction

Definitions.

Rule 12 of IMPLY calls DEFINE(C) which expands definitions from
a stored list. Table III gives some such definitions. -

When the defining form introduces quantifiers (e.g., Rule 2 of Table
III) it is necessary to eliminate these quantifiers by skolemization. We
have done this by pre-skolemizing the formula in the table, but it is
necessary to store two such skolemizations because the correct one will
depend on whether the formula occupies a positivelo or negative position

in the theorem being proved. For example, (A ©B) is replaced by

(x e A>»x € B) in
o o
(H—>A < B)
whereas it would be replaced by (x e A> x e B) in

(A € B—>C) .

10See [23, 3] and Appendix 1.

22.

Table IIT
SOME DEFINITIONS

Formula Being Defined Defining Form
1. (Ar-B)11 (ASBABCA)
2. (AcCB) Vixe A—>x ¢ B)

Skolem form12

(xO e A > X, € B) in "Conclusion"

(x e A> x e B) in "Hypothesis"

3. (AU B) {x: xe AVxeB}

4. (A N B) {x: xe AN x e B} -

5. U A) (x: Je(tesnxeaent?
teS

6. N A (x:Vtes»teaEn?
teS

7. subsets(A) © {x: x € A}

7'. sb(a) subsets (A)

8. range f {y: E? x(y=£(x)))

9. Oc F (Open F A Cover F)

11A different symbol is used for set equality to distinguish it from the

arithmetic equality. Here in Entry 1 we mean set equality.
2 . e . . .
! When the defining form introduces quantifiers, two versions of its skolemi-
zation are needed. See page 21,

23.

REDUCE

Rule 5 of TIMPLY calls REDUCE(H) and REDUCE(C). If E 4is a

formula then a call to REDUCE(E) causes the algorithm REDUCE to apply

a set of rewrite rules to convert parts of the formula E. See [2,29-36].

Table IV gives some examples of rewrite rules in use.

REDUCE helps convert expressions into forms which are more easily

proved by IMPLY. Also the rewrite table is a convenient place to store

facts that can be conveniently used by the machine as they are needed.

For example, REDUCE returns "T"(TRUE), when applied to the formulas

(Closed (Clsr A)), (Open @), (Open(interior A)), (¢ < A).

24,

Table IV
REDUCE Rewrite Rules

10.

11.

12.

13.

14.

15.

16.

17.

18.

INPUT QUTPUT
(te ANB) (t e ANt e B)
(t e AUB) (t e AV t e B)

(t e {x: P(x)}) P(t)

(t € A) If A has Definition P(t)
{x: P(x)}

t € subsets(d) t CA

tcANB (t S ANt B)
(A N A) A

(AU A) A

(A N@ ¢

Aau@ A

@ < 4) e

A e {B) A=38

(range A x f (%))

{y: E x(y=£(x)}

(Choice A e A) A+ ¢
(A v ~A) npn
(AN ~A) YFALSE"
MT" A A) A

Aa A" A

Table IV

INPUT OUTPUT
19. (A v "T") v
20. ('T" vV A) e
21. ccc o g
22. (ccc 6)13 npn
23. (A CA) i
24. (A S A) ot
25. A A FALSE FALSE
26. TFALSE A A FALSE
27. AV FALSE A
28. TFALSE V A A
etec.
13

need not concern_the reader here but G is the set of closures of members
of G. That is if A is the closure of the set A, then G={A: A e G}. And

(H << J) means that H is a refinement of J, that is, each member of I
is a subset of a member of J.

26.

Ex. 4. Va VB (acaus)
|

(1 (A, S A UB))
(L) (xo e Aoﬁ% X € (Ao U BO)) ‘ I 12
D) (x e A==2x ¢ A VX ¢ 3B) 15

o o o o) o)

REDUCE Rule 2

(1) (x e A =2%x e A VX €B) , 17

0 0 o) o o o
(1D (xo € Ao:>Xo € Ao) H 4.1
(1D e H 2

Return "T" for (1).
Notice how closely this parallels

the usual mathematician's proof, i.e.,

AcCcAUB
(xe A—>x e (AUB))
(x e A—x e AV x € B)

TRUE.

Ex. 5.

(1)

(1)

(1

a1

1D

11

(1 1)

(1 2)

27.

Ya Ve (subsets (A NB) = subseté (A) N subsets (B))

subsets(AO F\BO) = subsets(AO) N subsets(BO)

We will here contract "subsets" to "sb" and

drop the subscripts.
sb(A N B) = sb(A) N sb(B)

[sb(ANB) € sb(A) Nsb®B)] A [sb(A) N sb(B) < sb(A NB)] I 12

Definition 1

[sb(A N B) < sb(A) N sb(B)] 14
This is an AND-SPLIT

i

[t € sb(A F\B)===>to e (sb(A) N sb(B))] I 12

Definition 2

[t EEA.F\B*=%>tO € sb(A) A to € sb(®B)] I5
REDUCE Rules 5, 1

[t EA/\tOEB:}tOEA/\tOEB} 15, 17
REDUCE Rules 6, 5

Return "T" for (1 1) : I 4, H6, H 2

[sb(A) N sb(B) < sb(A N B)]
Return "T" for (1 2) (Similarly)
Return "TI" for (1) .

28.

It should be noted that the use of Definitions and REDUCE on this
example has eliminated the need for additional hypotheses (or \axioms). The
requifed hypotheses must be given by the user but they are given once and
for all in REDUCE and definition tables and never used except when needed in
the proof. An ordinary resolution proof or Gentzen type proof which did not

use such mechanisms would require four additional axioms and a lengthy proof.

1. (=3 «—> Vt(t e a€e>t e B))
2. (te ANB~<«>te AN teB)
3. (t e subsets A<>t C A)

4. (tSANB<>t T ANt CB)

Rule 4 of Table IV is a conditional rule. When attempting to convert
a formula of the form t e A, the algorithm REDUCE first checks to see
if A has a definition of the form {x: P(x)}, in which case it (in effect)

instantiates that definition and applies Rule 3. For example the expression

X, € U A
teQ

is reduced by Rule 4 of Table IV and Rule 5 of Table III, to
et e QA x e A))

(or actually to the skolemized form (t e Q A X, € A(E))).

Ex. 6.

(1

M

M

(1)

a1

(1 2)

Ae G—o>AC U B)
BeG

(A0 € G*—‘#AO < U B)
BeG

(A e C=(t e A —>t e UB))
0O o] (o] 8]
BeG

(A e G=(t e A—>B e GA t_ e B)
o o o

(A e GANt e A =Be GALt_ eB)
o o o)

(A e GANt e A =B e ()
o o o

Returns Ao/B for (1 1)

(A e GANLt € A —>t e A)
o o) o))

Returns "T" for (1 2)
Returns Ao/B for (1)

29.

7

I 12

Definition 2

15"
REDUCE Rule 4,

Definition 5

17

14

H6.1, H2

I14.2

H 6.2, H?2
1 4.4

30.

4. PEEKing and Forward Chaining

PEEK.

We saw on page 21 that when all else fails, we expand the definition
of the conclusion C. Such is not the case for the hypothesis H. However,
when proving (B—>C), the algorithm HOA sometimes '"peeks" at the
definition of B to see if it has the potential of helping with the proof
of C, and if so it then (temporarily) expands that definition. This is

done after a regular call to HOA has failed and the 'peek light" has

been turned on.

To facilitate this, the program has a PEEK property list for each
of the main predicates. Table V gives some of its entries. This enables
the program to quickly check whether an expansion of the definition of B

would have a chance of helping with the proof.

Table V
PEEK Property Lists

1. (Oc [Open Cover])

2. (Reg [Subset Open Clsr])

etc.

(1)

D

11

(1 2)

an

(Reg N Oc E“—%>j?G(Cover G))

(Reg A Oc F0=$>Cover G)

HOA 1is called at Step 12 of IMPLY and fails:

then the PEEK 1light is turn ON.

(Reg N Oc FO = Cover G)

(Reg = Cover G)

(©c Fo => Cover G)

NIL

((Open Fo A Cover Fo)=$ Cover G)

(Reg => Cover G)

have

Fd/G is returned for (1 2) and (1).

Notice that it did not expand the

definition of Reg in (1 1), i.e.,

because in Rule 2 of Table V, 'Reg"

"Cover"

on its

PEEK property list,

did

not

31.

7

I11.2
H 6
H 6.2

H 2.2 (PEEK)
Table V, Entry 1.

32,

After such a use of PEEK, the expanded definition is not retained

the original form Oc Fo is retained for any further proofs that may be

required. This permits the proofs to proceed at a high level where

possible, and resorting to expanded definitions only when necessary. It

also facilitates human understanding when operated in a man-machine mode.

Forward Chaining.

In IMPLY Rule 7, when a new hypothesis is added to H we try to

"forward chain" with it. Forward chaining is another name for modus

ponens: If P'@ = PO, then a hypothesis
P' A (P—>Q)
is converted into

P'A (P—>Q) A QO

Ex. 8. Va®(a) A VX(P(X)'—% Q(x))—>Q(a))

(1) (NIL = (P (a) A (P (x) —>=Q (x))—> Q(ao)))

®@INEE—Qx)) AQa) =Q()))

Returns "T".

17, 7.1

forward chaining

It should be noted that this is Example 3 which was proved earlier using

Rule H 7 (Back-Chaining). Forward chaining is an option which is available

33.

to the user. In some instances he may want to control its use. For example,
forward chain with P(xo) only when P(xo) is a ground formula, or forward
chain with an atom P(x) only when P is a membef of a predescribed list.
Limited forward chaining has been used in a powerful way by Bundy [37],
Ballantyne and Bennett [38,39], Nevins [17], Reiter [18], Siklossy et al [36],
and others.

PEEK forward chaining.

If P'@=PO, A has the definition (P—>Q) then a hypothesis

P' A A
is converted into
P'AAANQO
Ex. 9. ASCBABCC—>ACO)
@) ACBABCSCC=ACC) _ 7

We have dropped the subscripts of

A, B and C in this example.
o’ “o)

(AgB/\Bg:_C:é(toeA—»toec)) T 12
Definition 2
(AEB/\BEC/\toeA:#tOeC) 17
(ACBABCCALt eANEt eBALEt e C=t e C) 17.2
- - o o o) 0
PEEK forward
chaining

Returns '"'TV

34.

In the above, (tO € A) was PEEK forward chained into (A ©B) by

expanding the definition of (A C B) to

(t e A—>t e B)

and matching (t e A) to (to e A) with to/t, getting (tO € B) as a
result. Then (tO € B) was PEEK forward chained into (B C C) getting

(to € C). The program has a checking mechanism to prevent an infinite con-

tinuation in adverse cases.

Ex.

oY)

(1

into

into

35.

hcBABcch VDVE@ cE—>DcB—>ico)

(A CB

AB C¢C
o] o] o -

When Rule I 7 is applied it forward chains (A0 EEBO)

into o to get (K; E§§;>' A control is used to prevent

repeated use of o to get, Ko E}Eo, etc.

(A, SB_AB SC AaAA B

(

A <cC) 17
o~ 0 o - 0 (e} o -

=
o]
" N
=>(toe AO-——‘-M:Oe co)) I 12,

Definition 2

(A, SB AB SC AaAA SB At eh At eB At eC

In the

=

c
G

(o] o] o} (8} 0 o] o} O

above application of Rule I 7, (tO € Kg) was forward chained
E;> to obtain (t0 € EQ), which is turn was forward chained

CO) to obtain (to € CO)

" At eC —>t e€C) N 1
o o] (o} o]

36.

Ex. 9A. ©cFAYF J60cF—>Cover 6A Tcc)
—> FJu@ccrnt?

(1) (0c Fo A (0c F—>Cover G(F) A G(F) SCF)—>HCCF)

(0c F_ A (0c F—>Cover G(F) A G(F) SC F) A Cover GE)AGEF)) SCF,

=HCCF) 7
Forward chaining

Returns G (FO Y/H.

Ex. 9B. (0c F A Reg—> JH(H c C F))
D) (Oc FO N Reg A Cover G(Fo) A G(FO) cc FO =HCCc FO) 17

Here Oc FO has been PEEK Forward Chéined into

Reg which has the definition
\7/F | G(0c F——%Covef G A Egg F)
which has skolem form (in this case)
(0c F—>Cover G(F) A G(F) € C F).

As in the previous example G(FO)/H is returned.

37.

5. Conditional Rewriting and

Conditional Procedures

Conditional Rewrite Rules.

In Section 3 we described the REDUCE feature which causes various

formulas (or subformulas) to be rewritten. TFor example, the expression
te ANB

is rewritten as
(te ANt eB).

Sometimes we wish such a conversion to be made only if a certain condition
is satisfied. Such rules, are called "conditional rewrite rules", and are

added to the REDUCE table in the form
(*P A B) .

The program upon detecting the *, checks the validity of P before re-
writing B for A (with proper instantiation). If P 1is not true then
A 1is not rewritten. The * 1is placed there to distinguish conditional

rules from ordinary REDUCE rules. For example, the entry
(* A # NULL NODES (A) NODES (LEFT(A)) + NODES (RIGHT (A)))

means that NODES(A)T can be "reduced" to NODES(LEFT(A)) + NODES (RIGHT (A))
if A # NULL. The rewrite rule is not wvalid if A = NULL because LEFT (NULL)

and RIGHT (NULL) are not defined, thus the rewrite rule is applicable only

TNODES(T) is one plus the number of nodes in a binary tree T. NODES(NULL) =1
LEFT(T) is the left-hand son of T.

38.

only ifth ¥‘NUiLM is known. Notice alsﬁ that the result of the rewrité rule
contains forms to which the rewrite rule could be applied. This would result
in an infinite expansion normally but the condition on the rewrite rule pre-
cludes this. Generally this rule would be used once and then it would not be
known if LEFT(A) # NULL or if RIGHT(A) # NULL so the rule would not be
applied again.

Rewrite rules are expected to be applied quickly or not at all. Their
power lies in the quickness with which they can be applied. Accordingly we
avoid long drawn=-out procedures for checking the validity of P. TFor example
we do not call TIMPLY itself to check P. Rather we have a "mini" version
of IMPLY, for this purpose, which includes ANDS (See p. 15), which we call

QK -mMPLY.

A similar remark can be made for conditional procedures described below.

Conditional Procedures.

Some procedures are conditional in that they are initiated only when
certain conditions are satisfied. Examples of these are PAIRS described
below, INDUCTION described on page 58 below and in [2], and the limit

heuristic described in [3]. See also [40,29].

PAIRS.

Sometimes in HOA the expressions € and B will not unify even

though the main predicates of C and B are the same. For example,

(G ccF =H CCJ)13.
o - 0 o — = 0

39.

In this case, at Step 3 of HOA, the algorithm consults the PAIRS prop~

erty list of " <" for advice. That property list may (or may not)

list one or more subgoals that can be proved to establish the given goal.

Table VI gives some such entries.

40.

Table VI
PAIR Property Lists

1.. (Cover (Cover G —>Cover F)[(GCS C F) (YeooD)

3. @i (Lf ¢ —>LEf F)[(F = O) 1

4. (countable (countable A —> countable B)
[3 f‘(f is a function A domain £ € A A B C range f)

(B c4)---]

etc.

laLf G means that G is locally finite. That is, at any point x, there

is an open set A which intersects only a finite number of members of G.

41.

Ex. 10. (GCSCTF—>GCCF)
(1) (G, SCF =G SCF) 17
,E'
(GOEC_:_GO)/\ (chg‘o) H 2.3
PAIRS Entry 2
11 (G0 cc Go)
HTH I 5
Reduce Rule 21
(1 2) (F, SCSF)
HTH I 5

Reduce Rule 22

Notice that the PAIRS Rule H 3 has converted the goal (1) into

a subgoal that is easily proved by the REDUCE rules 21 and 22.

REDUCE and PAIRS act a lot alike in that they change one goal into
another, the difference being that REDUCE acts on a "single entry" (i.e.,
a given formula is rewritten as another), while PAIRS acts on a double
entry. However, that double entry requires that the two input formulas
be partially matched (their main predicates are identical).

Such a pairs concept can be extended to include pairs of predicates
that are not identical, but that has not been done for the present algorithms.

In general we favor procedure which are triggered by easy to check conditions.

42,

Ex. 11. Th. (g is a function) A countable (domain g)

A A.E range g —> countable A

(1) (go is a function) A countable (domain go) '
AN A C range g = countable A 7
o — o o
countable (domain go) = countable A0 H 6.2
(1 P) (go is a function) A Ao € range g=> ((f is a function)
A (domain f C domain go) A (Ao C range f)) PAIRS

Entry 4

(1P (g. 1is a function) A AO C range g0=$ (f is a function)

go/f

(L P 2) (g is a function) A AO C range g,

= (domain g, < domain go) A (AO C range go)

" .
(1 P2 1) () = (domain g < domain g)

"T'" by REDUCE Rule 23

(1 P2 2) (g0 is a function) A AO C range 8= A0 C range g,

"TH

So go/f is returned for (1 P) and for (1).

43.

6. Complete Sets of Reductions

The use of rewrite rules as in our REDUCE procedure is a very
powerful device., It is extremely mo&e efficient than ordinary sub-
stitution of equals as is used in Paramodulation or in HOA Rules 9
and 7E, because the latter allows substitution both ways. Thus it is
highly desirable to get as many entries as possible in the REDUCE
table and to remove the corresponding equality units from the hypotheses.

The questions that naturally arise are: How far can you go with
rewrite rules? Can such a system be made complete in some sense? How do
we choose the entries for the REDUCE table? Can we generate all needed
REDUCE table entries from a few key ones?

Very general, although incomplete, answers to these questions are given by a
beautiful paper of Lankford [30] which is based on pioneering work of Knuth and
Bendix [31] and some earlier work of Slagle [32].

The reader is referred to [30] for details‘but the géneral idea is that
some theories, such as group theory, allow a "complete set of feductions." For
example, there exists a set of entries for a REDUCE table which handles all
equality substitutions for the equational axioms of group theory. A very power-
ful algorithm is given which often generates a complete set of reductions from
the axioms of a given equational theory. One problem with the concept of the re-
write rule currently in vogue is that it does not allow commutative axioms to be
included in a REDUCE table since, for example, the rewrite rule Xy —P YV X
when applied to a-b produces the infinite sequence of rewrites a-b, b-a, a-b,

bra,... . However, Lankford [30] has shown how commutative theories, sucH as

44,

commutative, groups, rings, Boolean algebras, and modules over rings, which allow
no complete sets of reductions, can nevertheless be treated efficiently and in a
complete way with most of the equality units in a REDUCE table. Earlier, Bledsoe,
et al [3] used such a decision procedure for ring theory as the basis of a heuristic

approximation of an unavailable decision procedure for field theory with encouraging

results.

Table IV shows only a few of the REDUCE rules used by our prover, and
many others can be easily added (see for example, ADD-REDUCE in Section 6).
The largeness of the table does not impede the speed of its use because hésh
code techniques can be employed.

As pointed out earlier, the REDUCE table is a convenient place to
store facts that may be needed at some point in a proof but which will never
be accessed until actually needed. If these same facts were made part of

the hypothesis they would greatly clutter up and slow down the operation of

the prover.

