The Sup~Inf Method in Presburger Arithmetic

by

W. W. Bledsoe

December 1974 ATP-18

* This work was supported by NSF Grant #DCR74-12866.

The Sup-Inf Method in Presburger Arithmetic

by

W.W. Bledsoe

ABSTRACT

This paper describes a new method for deternining the validity of certain
formulas from Presburger Arithmetic, namely those with only universally quanti-
fied variables. To do this the notion of a Presburger formula, is generalized

slightly to that of a quasi-linear formula.

This so called "sup-inf" method seems particularly suited for proving
certain verification conditions that arise from program validationm,
especially those in which '"proof by cases" is required. It also eliminates
the need for proof by enumeration, inherent in some methods described
earlier in the literature, which sometimes require a search through a large

number of consecutive integers.

This method has been programmed and used extensively as a part of an

automatic theorem proving system.

The Sup~Inf Method in Presburger Arithemtic

by

W.W. Bledsoe

1. TIntroduction

Presburger Arithmetic.

An expression is said to be a formula in Presburger arithmetic if
it is a (well) formed algebraic expression, allowing only variables, in-
teger constants, addition and subtraction, the arithmetic relations <
and =, the propositional calculus logical connectives, and quantifi-
cation (either universal or existential). Constant multiplication is
also allowed. See [3], Davis [2], and Cooper [1].

The Presburger algorithm is a decision procedure for Presburger
arithmetic: Given a formula in Presburger arithmetic decide whether it

is true or false. Two main steps are utilized in this process:

(i) Elimination of quantifiers (and replacement of

variables by constants)

(ii) Evaluation of the resulting formula (which has

no variables) to determine its validity.

Cooper's method

Cooper [1] utilizes such a proceedure. For example his method would

convert the theorem

VX(X<1~>v x < 2)

successively to

~3xx<lAl<x) ,

1
~ VI[l+j<iAnl<i+i]l o,
j=1

~[2<1Al<c2] ,

which is easily verified as true.

Apparently Cooper's method can result in a search through a list
of consecutive integers when the coefficients of x are not unity. For

example, the theorem

¥ x(5x < 11— 7x < 16)

is converted successively to

~ 1 xGx < 11 A 15 < 7x)
~ 4 x(35%x < 77 A 75 < 35%)

~Hdx(x <77 AN75< A x=0(mod 35))

35
~ V(75 <75+3ANT75+35<77 AN75+3 = O(mod 35))
=1
which requires testing the expression for each of the integers, j=1,2,...,35.

In fairness to Cooper it should be stated here that such adverse examples

2a.

apparently do not arise often in the applications he considers in [1].

Our method, which is described below, handles the case of Presburger
formulas with only universally quantified variables. But it avoids the need
for long searches through consecutive integers, and facilitates certain types
of "proof by cases."

It is not clear whether our methods can be extended to handle all Pres-

burger formulas, with both universal and existential quantification.

Presburger arithmetic has many applications in the field of proving
assertions about computer programs {1,6,7,8,9,10,11]. There a theorem
about the program, is required to be proved. Such theorems are often
not originally stated as formulas in Presburger Arithmetic but are reduced
to such as the proof proceeds. For example for an array A, we might be

given the theorem:

V(3 < b A Vi < 5—> Akl < Alk+1])
(D
—> A[j] < Alj+1]]

2b.

Backchaing on the second hypothesis generates the subgoal
2) G<b-—>3<5

which is a formula in Presburger Arithmetic. Notice that j is a uni-
versally quantified variable or free variable and hence must be treated
as a skolem constant1 in the proof of (2). Many applications result in
Presburger formulas with only universally quantified variables. In this
paper we describe a procedure, the sup~inf method, for deciding the va-
1idity of such formulas. It is not clear whether the methods of this
paper can be extended to the general case where both universal and
existential quantifiers are‘present.

First let us note that formula (2) 1is easily verified by adding

the negation of the conclusion to the hypothesis
(G3<&A6<D)

and combining to get the contradiction
6<3i<®

Our proceedure does essentially the same thing on this example. We now
describe Section 2 our procedure for deteymining the validity of uni-

versally quantified Presburger formulas.

1The skolemization process will not be discussed here. These universally

quantified variables (or skolem constants) can be thought of as "arbitrary
but fixed", whereas the existentially quantified variables (or "skolem
variables") are not fixed but can be replaced by other expressioms. See [4]
and [5, p.37, footnote 12]. Since we will only be working with universally
quantified variables in this paper we will call them "variables'.

In Section 3 we define the pivotal algorithms SUP and INF and prove

in Section 4 that they terminate with desirable outputs when applied to

quasi-linear formulas.

Several examples are given in Section 5.

2. The Sup-Inf Procedure

An Example using the procedure.

We begin with an example and then outline the general procedure.

Let F be the theorem

3) (2x2'+3 < 5x, A xy <%y =X

A A 3%, < 5= 2x

2 1 <3

1 2

Notice that F has 3 (universally quantified) variables Xys Ky, X

2 737
We will negate F and convert it to the expression (8') below, which
gives a range for each of these three xi's. (Expressions (5%),(7'), and

(8') correspond to expressions (5),(7), and (8) given later in our general

procedure).

We first obtain

2
1] - -
G"Y (2x2-+3 §_5x3 A g <% -% A 3X1 <5A3 §_2x2 1)
as the negation of F, and then convert it to
(%, +x, < x, <o) A 0<x, < 29
3 "2-=-"1 ="1-=3
5 3
1 — - — - il
a"y) A (0 < Xy <5 Xy 2) N (O < %y <%y x3) N (2 < %, <)
2 3
£ + = - -
/\(SX2 5§x3<)/\(Og_x3§x1 Xz) s
and finally to
(x, + 2, < x, < 2)
3 2~="1-3
5 3
1 d S — -
8" N (2 < %, S.mln(z Xy =5 5 X x3))
2 3
A (5 %, + 5 S'XB S‘Xl"xz)

2How 3 §_2x2 -1 1is derived from 2x2 4 3 1is explained in Section 3.

To show the invalidity of (8') we calculate a lower bound Xx

=1
for Xy and an upper bound ;i, and check that the interval [§1,§1]
contains mo integer. For this example, % = %; and El = %, and

since %-< %;- we are finished. X and ;1 are computed by the

algorithms INF and SUP given in Section 3 (See Example 4, Section 5).

Quasi-Linear Formulas.

The reader will observe that expression (8') 1is not a Presburger

. . . 5 5 3
formula because it contains non-integer constants (53 CHEL etc.), and
the symbol '"min". We now relax the condition on the integer constants
to allow any rational number as well as « and -~ . However, the

variables (such as X5 X,y X in the above example) will represent

2> 73
only non-negative integers. We also allow the symbols 'max" and "min".

Such an extended Presburger formula will be called quasi-linear. It will

be called '"quasi-linear in L" 1if each of its variables is a
member of the set L. Of course Presburger formulas with only universally
quantified variables are special cases of quasi-linear formulas.
We now describe our general procedure for determining the validity
of such quasi-linear formulas.

Let F be a quasi-linear formula in the variables

We first want to convert 3+ F to the disjunctive form

3
(F1 vV F

g VooV Fp)

where each of the Fi is a conjunction of the form

(a1 S'Xl S~bl) A (a2 S-Xz §'b2) VARV (an S'Xn S'bn) .
and each aj, bj are quasi-linear expressions in the other X
not in xj).

This is done as follows:

The Sup-Inf Procedure.

First, place < F in disjunctive normal form

G1 A% G2 V...V Gp

where each Gi is a disjunct of the form

m

AN (A, <B.ANC,=0D,)

. i="1i i i

i=1
and the Ai’ Bi’ Ci’ Di are quasi-linear expressioms in Xys KpseorsX o
31n our example above we had only one F,. This has been the case in

most examples we have tried so far.

(but

We

eliminate the equalities in (4) by converting each (Ci==Di) into

(€, <D, AD, < C.)4 so that each G, has the form
i="1i i— i i
m
) A Gy<B

Now each (Ai S_Bi) is converted into a set of exactly mn inequalities

by "solving for"5 each of the Xj occuring in Ai and Bi in terms of
the other X - Thus the aij and bij appearing in (6) are expressions
in the other X (but not x.,). If x, does not occur in A, or B,
3 3 i i
then we put a,,=0, b, 6 =ow.
1] 1]
So (5) 1is converted to

m m m
3] é (all < Xy <b 1) A é (a 5 < %y S-biz) FAPRRIVAN .é (ai < x < bin
i=1 i=1 i=1

and finally (7) 1is converted to

(8) (a1 < x g_bl) A (a2 < x

1

ngz) FAPRIVAN (ang_xngbn) s

In practice we do not always convert the equalities to inequalities, but rather
use a "substitution of equals" technique to gain efficiency. See [13,14].

5In solving for X, in an expression like sup(xl-+2, xl) s-XB’ we obtain two

answers: instead of one, as indicated in formula (6).

x1 S.XB-Z and Xl g'x3

However, this presents no difficulty in proceeding to (7) and (8).

where, for k=1,n,

(max a

~

1k %2k

b, = (min blk b2k coe By

Thus, by this whole process we convert ~ F to a disjunct

Fl A F2 V...V FL Voeao Fp

where each FL has the form

&2 () <xp <bp)AA (& <% <b)

and the b are quasi-linear expressions in the x, .
4k’ Lk 4 P i

Now we determine that F is valid by showing that each FL is
false,
Since the and b are usually expressions in the oth
e A 5 Lk y expressi er x,
(as was the case in our example) it is not immediately obvious how one

can test for the invalidity of (9). Our method (the "sup-inf" method)

for doing this is simply to test whether the interval

[inf, %, sup, xk] s

contains no integer,

6The function MAX (SeeSect. 3) is applied to the a, . If the maximum is not
immediately attainable then the symbol 'max" is ¥ employed. Similarly

for MIN. See for example, (7') and (8') above.

for some Kk, k==1,2,.;

DEFINITIONS.

If S

real numbers, then (xi, xé,...,x;)

in S becomes true when each symbol X

If A

are real numbers then

.,0, where supg X and 1nfs xk

is a set of inequalities of the form

is a quasi-linear expression in X X

are defined as follows:

(9

1 I H
and Kys KgyorooX

are
2° n

is said to satisfy S if each inequality

is replaced by the number xé.

L. X and x!, =x! Lox!
b n’ 13 s

20" 20 2%y

A(xi/xl,...,xg/xn)

denotes the number gotten from A by replacing each symbol X by the number xﬂ.

If A 1is a quasi-linear expression in Xps X

X

PTRERTE N then SUpg A is

defined to be the least upper bound of all numbers

where (xi, xé,...,x&)

Similarly, infs A is

will arise we omit the

Thus the validity

1nfS X0 where S is

A(xi/xl,...,x;/xn) .

is a sequence of non-negative integers satisfying S.

the greatest lower bound of such numbers. When no confusion

subscript S and write sup A and inf A,

of F has been reduced to determining and

SUpS Xk

the set of conjuncts of We compute SUpg X

(9.

and

infS X by the algorithms SUP and INF given in Section 3.

In Section 4 we prove that if S

here we assume only that the ., b . are quasi-linear in %X, ,...
whe y ai* "Li ! * 1’° 2 X0

outputs SUP(xk, NIL)

is any set of inequalities of the form (9)
then the

and INF(xk, NIL) have the property

10.
INF (kaNIL) < inf X sup X < SUP (xk}NIL)
Furthermore, we conjecture there that if the set S 1is in "natural form",

in that it has been derived from a theorem F by the procedure described

above, then equality hold in the above formula, i.e.,

INF(xk_‘NIL) = inf X s sup ¥ = SUP(xk?NIL)

Thus to show the validity of F we need only show that the interval

[INF (x, ,NIL), SUP (x,,NIL)]

contains no integer for some k, k=1,2,...,n.

Some Discussion of the Procedure.

This procedure for deciding the validity of a quasi-linear formula
(and hence for a universally quantified Presburger formula) is called the

sup-inf method. Of course it serves much the same purpose as the methods

of Cooper in [1] and King in [6]. However, we feel that the sup-inf
method has some advantages, especially for proving theorems arising from

program validation.

One such advantage is that a hypothesis, such as

(2x2+3§5x3/\ x3<_:x -%,. A 3X1 < 5)

1 2

11.

from our earlier example (3), can be stored in the concise form

5
(x3+x2 < % < 3)
) 3
(10) N © < x < mln(2 Xy =5 s X -x3))
2 3
A (5 X, + 5 < Xy < X - XZ) ,

to be used to establish various conclusions as required. Thus if we
desire to establish (2x2 < 3) we need only update (10) with its
negation (3 §.2x2~1) to get (8') and then show that (8') 1in invalid.
Also, using this same hypothesis (10) we might (later) be required to

prove another conclusion, which itself has a hypothesis, such as

(1) (x3 < sz-—% g < 8)

In this case (x3 < 5x2) is used to update (8') getting

5
(x3 + X, < x1 5.5)
*3 5 3
N (max (2, ?;0 < Xy < mln(i x3-§-, xl-x3))
2 3 .
N (g x2 + g) < x3 < mln(xl-xz) . 5x2)) s

which is used to prove Xg < 8.

Also as mentioned earlier it avoids proof by searches through long

lists of integers.

While these arguments have merit, they are not our main reason for

prefering the sup-inf method, which is our desire to efficiently handle

certain "proof by cases". This is best illustrated by an example taken

12.

from [12]). Suppose we are to prove the theorem

(12) K<3—>K<1l V 2<K<3)

where K 1is a variable. The negation of (12) is converted
successively to
®K<3 AN KLL A (2 £K V K<£3)) ,
K<3 A 2<K AN K<LV ®K<3 A 2<K A 4<K)

2

2<K<l) V 4 <K<3) ,

for which a contradiction is easily reached.

However, suppose (12) was presented in an equivalent form

(13) K<3A(K<1—>C)A (2<K<3=>C)—>C)

which is not a formula in Presburger arithmetic. TIf we back chain off

of the second hypothesis, we obtain the subgoal

K<3—>K<D)

which is false. Similarly, if we backchain off of the third hypothesis

we fail again.

13.

It is difficult to imagine how an automatic procedure would start on
(13). It could of course, be made to backchain on both the second and
third hypothesis and thereby set up the subgoal (12), but this would be
an unnatural preliminary activity. What is more, formula (13) is an
abstraction from formula (14) below, which is part of a verification

condition which appeared in the proof of a sort program (see King [6]).

@ <M
AN “fim(Zg_N/\ l<mAm<1—>Am] < A[2])
(14) A Tk +1<NA2<k—>Ak] < A[k+11)

—> KK + 1 < NA 1< K—>AK] < A[K+1]))

It is even less clear how an automatic procedure would proceed to set up

a solvable Presburger problem from (14).
The procedure we employ to prove theorems like (13) (and similarly
for (14)), stores the hypothesis K < 3 as
(15) (0O <K< 3)
and proceeds to prove

(16) (K< 1—>C) A (2 <K< 3—>C)—>C)

By backchaining off of the first hypothesis of (16) it obtains the subgoal

14.
a7 K<)

which is supposed to be proved from (15) but which cannot be done.

‘s

However in trying to prove (17) from (15), i.e

(18) (0O <KL3)—>K <)

2

it updates (15) with the negation of (17) getting

O<K<3HAKLD

or

(15") 2<k<3)

Now (15') does not represent a contradiction and hence we have not
established (17) from (15). However we have shown that except for

the case (2 <k < 3) we have proved (17). That is to say, only the

case (2 < k € 3) needs to be further ansidered in establishing our original

goal (16). So we take (15') as an additiomal new hypothesis, and try

again to prove (16).

Now backchaining off of the second hypothesis of (16) we obtain
the subgoal (2 < k < 3) which follows immediately from (15'), and the
proof is complete.

This technique forced the prover to consider the two cases (K < 1)
and (2 < K < 3). Once these cases were treated separately the proof

went easily.

15.

Notice that in this example we did not immediately put theorem (13)
in disjunctive normal form. But rather did so in (18) after we had
obtained a Presburger formula.

The program which carries out this procedure is part of the inter-
active prover described in [13]. In that program the set S of inequalities
from (9) are carried in a special hypothesis called TYPELIST. TYPELIST

is simply a set of triples

((xy: apy by dxy: o, Brole-elx s ag, B D)

Each X is said to be "typed': it has type, non-negative integer, and,

furthermore, its interval restriction

is thought of as "interval typing". All such interval information (in

the hypothesis) is carried in TYPELIST. When and if TYPELIST obtains

a contradiction the proof is complete. Also whenever the prover is trying
to prove another inequality, its negation is updated to TYPELIST and
either

(1) a contradiction is found terminating the proof
or

(2) this updated TYPELIST is passed back as

“"cases' information.

The reader can consult [13] for details of this process.

16.

3. Algorithms

Here we describe the pivotol algorithms SUP and INF, and a few

others that support them.

If A and B are quasi-linear expressions in L (see definition
in Section 1), then so also are (A+B), max(A,B), min(A,B), and 1 *A,
where r 1is a rational number. We can also divide a quasi-linear expression

A by a non-zero rational number r by multiplying by its inverse, i.e.,

Lia.
r

Let S be a set of inequalities of the form

where a and b are quasi-linear in Xy - "Xj—l’ Xj+1""’xn' Recall

the definitions of supg Xj and infs Xj given in Section 2. We now give
algorithms for computing sup xj and inf Xj for a given S. S will be

assumed to be fixed throughout the remainder of this section, and in Sectiom 4.

Before we give the algorithms we list some preliminary conventions and

definitions.

Convention. By x is a number we will mean (here) that =x 1is a rational

number or © or =cw. (We will assume that =~o < x <« for all numbers x).

17.

Definition.

y if x <y

MAX (x,y) = x if y<x

("max" xy) if x and y 7
are not both numbers.

/"‘““'Nw” S ”“\

Similarly for MIN(x,y).

Let V=={xl, xz,...,xn} be the set of all variables (universally

quantified variables, see Section 2) occurring in the given set S of

inequalities.

1f J is in V then S contains one (and only one) inequality of

the form

which represents knowledge about J. If a=0 and b=+« then nothing

is stated about J except that it represents a non-negative integer.

The notation LOWER(S,J) and UPPER(S,J) 1is used to denote these

In case x and y are not both numbers we want the result to be the triple
whose first member is the symbol '"max" and whose second and third members
are x and y. Thus MAX(2,5) is 5, whereas MAX(2,Z+1) is ("max" "2"
"Z+1"). The symbols '"min", "+", "-", etc., are handled similarly.

18.

lower and upper bounds on J. For example, if (2 < j < 3-K) 1is in 8§,

then LOWER(S,J) is 2, and UPPER(S,J) is 3-K.

SIMP 1is an algorithm that puts expressions in canonical form. See
end of this section for more details on it. All outputs from the algorithms
sup, Supp, INF, INFF, are automatically simplified by applying the algorithms

SIMP to them,

SUP and INF.

SUP and INF are each called with two arguments, J and L. J is
an expression and L is a list. SUP(INF) attempts to find the largest
(smallest) value that J can have consistent with the inequalities in S.
(See definitions of supg ¥ and infS X in Section 2). L 1s a set of
variables (i.e., a subset of V). The first call to SUP (or to
INF) is usually given with NIL for L; members of V are then sometimes

added to 1 by recursive calls to SUP and INF.

19.

ALGORITHM SUP(J,L)

IF ACTION RETURN

1. J 1is a number J

2. J 1is a variable

2.1 Jel J
2.2 Jé1L Put b: = UPPER(S,J)°
Put Z: = SUP(b, LU ({J}) SUPP (J,Z)
5. 3= (-a)° ("-"INF (A, L))
4., J= ("/"A) (" /"INF(A,L))
5. J = ("*"AN), where N is a number
N>O0 ("*"'SUP (A,L)N))
N < (" INF (A, L)N))
N=20 0
6. J = ("+'A B),10 where A has the form ("*"r A'), where r 1is a number
and A' is a variable
Put B': =SUP(B, LU{A'])
6.1 B' =B ("' SUP(A,L)B')
6.2 B' # B Put J': = SIMP("+' A B')
6.2.1 J' = ("+" AB") ("+" SUP(A,L)B")
6.2.2 J' # ("' ABY) SUP (J',L)

8As explained earlier, if (a < J <b) is in S, then UPPER(S,J) returns
b, and LOWER(S,J) returns a.

9If J is an expression whose first member is the symbol "-'", and secoﬁd

member is a formula A, then the algorithm returns ("-"J') where J' is

the result of a call to INF(A,L). "." is the minus operator and "/" is the

inverse operator.

Step 6 could be omitted and we would still retain the desired property J S-SUP(J,L)
(See Theorem 2). However if Step 6 is omitted SUP(J,NIL) does not always give
the best bound, supg J. See example 5, Section 5.

20.

7. J=(("+"AB) Put J': = SIMP ("+'SUP (A,L)SUP(B,L))

7.1 J' =1J + o

7.2 J' 43 SUP(J',L)

8. J= ("max"AB)11 MAX (SUP(A,L),SUP(B,L))
9. J = ("min"AB) MIN(SUP(A,L),SUP(B,L))
10. Otherwise +

11We mean here that y is a triple whose first term is the symbol '"max" and
whose second and third terms are formulas which we will call A and B.

ALGORITHM INF (J,L)

IF ACTION
1. J is a number
2. J is a variable
2.1 J el
2.0 Jé1L Put a: = LOWER(S,J)°
Put Z: = INF(a,LU{J})
3 J = (n_nA)
4. J = ("/"A)
5 J = (H*HAN)
N>20
N<O
N=20
6. J = ("+'AB), where A has the form ("¥'r A'),
where r is a number and A'
Put B': = INF(B, LU{A'})
6.1 B' =3B
6.2 B' # B Put J': = SIMP("+'A BY)
6.2.1 J' = ("+'ABY)
6.2.2 J'# ("+"'AB")
7. J= ("+'AB) Put J': = SIMP ("+"INF(A,L)INF(3,L))
J' = J
7.2 J' #4737
8 J = ("max"A B)
9., J = ("min"A B)

10. Otherwise

21.

RETURN

INFF(J,Z)

("-"SUP(A,L))

(

(

(
0

" /MSUP (A,L))

A INF (A, L)N)
"%NGUP (A, L)N)

is a variable.

("+INF(A,L)B)

(|!+IIINF (A,L)B])
INF(J',L)

- 00

INF(J',L)
MAX (INF(A,L), INF (B,L))
MIN (INF (A,L), INF(B,L))

- OO

22.

SUPP and INFF.

SUPP and INFF are called with arguments x and y. x 1is a vari-
able (a member of V) and y 1is an expression. SUPP is called by
SUP when J eV and J ¢ L. Similarly INFF is called by INF. SUPP
is designed to handle the case when SUP(J,L) returns an answer which

contains J itself. Further explanation and examples are given immediately

after the statement of the algorithms.

ALGORITHM SUPP(x%,y).

23.

IF ACTION RETURN

1. y is a number v
2. x=y + oo
3. x¢V + o
4. y = ("max"A B)]'1 MAX (SUPP (x,A),SUPP (x,B))
5. y= ("min"AB) MIN(™ , n)
6. “min" or "max" occurs in y

Pull "min" or 'max" SUPP (x,¥")

to front of ylz,

getting y'

7. Otherwise Express y as b x +c, where x does not occur in b or

7.1 b=20
7.2 b mnot a number
7.3 b<l1

7.4 1<b
7.5 b=1

7.5.1 ¢ 1is not a number
7.5.2 ¢<O
7.5.3 ¢>0

12For example, Y1 + ("max"yzyB)

y
+ o0

C

1-b
+ o0

“+ 0o

+ o

is converted to {("max" (y1 + yz) (y1 + }?3)).

ALGORITHM INFF (x,7) .

IF ACTION

1. y is a number

, getting y'

24,

RETURN

y

0

- 00

MAX (INFF (X,A), INFF (x,B))

MIN(" .)

INFF (x,v")

b x + ¢, where =x does not occur in b or c.

2. x=y
3. x¢V
4. y = ("max"AB)
5. y = ("min"AB)
6. "min" or "max" occurs in y
Pull "min" or “'max"
to front of ylz
7. Otherwise Express y as
7.1 b=20
7.2 b not a number
7.3 b<1

7.4 1<b

7.5 b=1

7.5.1 c¢ is not a number
7.5.2 ¢ >0
7.5.3 ¢<O

oo

1-b

+ oo

25.

The action of SUP can be viewed as putting together a string of

inequalities. For example, if S consist of the inequalities

O0<JI<k) 0O<k<3)

then SUP(J,NIL) will determine

and return 3 as the correct value. However, if § consists of

©<JI<k) (0<k<6-T)

then it gets

2J

IN
o
I

IN
w

and again return the correct value 3. This type of "golving" is done
by the algorithm SUPP. That is SUPP (and analogously INFF) handles

the cases when SUP(J,L) might return an expression containing J itself.

For instance, in the above example, where S consists of

26.

0O<J<k) O<k<b6-T) ,
since J 1is a variable and J ¢ NIL, the algorithm SUP (Step 2.2) finds
the member (0 < J < k) of § with J as its middle term, and then puts

Z: = (SUP k {J}). Since SUP(k,{J}) (eventually) returns the value

(6-J), a call is made to SUPP(J, (6-J)) which returns the correct value 3.
In evaluating SUPP(J, (6-J)), SUPP expresses (6-J) in the form b J+c,

with b=-1, c¢=6, and returns the value

On the other hand if S had consisted of

©O<JI<k) O<k<b6+T)

2

then SUPP would have been called with arguments J and (6+J) which
would lead to b=1, c¢c=6, and result in the correct value +«o for
SUP(J,NIL). That this is the correct answer can be seen as follows: From

S we get

J<k<6+7 ,

which implies

