27.

But this is no restriction at all on J, and hence supg J = 4w,

SUP(J,L) and INF(J,L) always return (quasi-linear) expressions in
L. This is proved in Section 4. 1In case J contains a symbol F which

is not a variable and is not one of the connectives, +, -, *,
max, min, /, then SUP and INF, (last step), return the value +w

or -« for it. Thus all such "foreign objects" are removed from the

expressions returned by SUP(J,L) and INF(J,L).

We also show in Section 4 that SUP(J,NIL) and INF(J,NIL) always

return numbers or +x.

Converting < to <.

If x and y are variables then the expression (x < 3y+5) is auto-
matically converted to (x < 3y+4), because, as variables, x and vy
represent non-negative integers. Since we allow rational number coefficients
in our quasi-linear expressions, these also must be reckoned with. For
example, the expression (-§- x < ét y +5) 1is converted first to (10x < 12y +75)
and then to (10x < 12y + 74). 1In general (A < B) 1is automatically converted
to (gA < gB-1) where g is the greatest common denominator of the (rational)

coefficients in the quasi-linear expressions A and B. Similarly, ~ (A <B)

is automatically converted to (gB < gA-1).

Simplification

SIMP is a simplification routine which drives expressions to a canonical

form. These are well known in the literature [15,5,8,etc.] and will not be

27a.

belabored here. If A 1is a linear expression in the variables L EREETE 39
then SIMP(A) 1is an equivalent expression
1 1]
x, r. + x,r, +...+ & r +r oo
(11 (2 72 (n n n+1)))
where xi,...,x& is a permutation of X;,...,x , and T, T,,...,r ., are

rational numbers. If one of the ri is O then that term is omitted. The

¥

order of the x; is fixed at each call to SIMP in our program, but it

could just as well be fixed once for all such calls.

Does [a,b] Contain an Integer.

In the sup~-inf procedure we must test whether the interval
[INF(xi,NIL), SUP(xi,NIL)] contains an integer. We do this with the
algorithm INT(a,b) defined as follows. Each of a and b 1is either an
integer or +w or -« or a rational numbers (expressed as ("¥'p ("/"q)),

where p and q are integers).

IFr RETURN
a=+o oOr b=ew FALSE
a=-o or a=+w TRUE
b<a FALSE
b>a+1 TRUE
a=b and a 1is an integer TRUE
a#b and Integerpart (a) < Integerpart (b)* TRUE
Else FALSE

*
If x 1is a rational number expressed in the form ("*" p("/"q)), then
Integerpart (x) is gottem in LISP by dividing p by q, DIV p q).

28.

4. Properties of SUP and INF

The algorithms SUP and INF, defined in Section 3, play a crucial
role in the sup-inf procedure. They attempt to compute the values

supg X and infS x as defined on page 9 of Section 2, and must possess

the properties

INF (%, NIL) g.infs X supg X < SUP (x,NIL)

which we prove as Theorem 5 below.

The set S 1is fixed throughout this section (see Sections 2 and 3

definitions).

In the proofs given below we will employ a recursive proof principlel3

which can be stated as follows:

Recursive Proof Principle.

Let % be an algorithm which accepts a vector x as an input and
returns a value f(x) whenever it terminates. If we wish to prove the

theorem

(1) PE)—>QUEX))

3
This is just a special case of Burstall's structural induction [16, p.42],
and of McCarthy's recursive induction [17].

29.

and it is given that ¥ terminates with a value f£(x) for each x for

which P(x) holds, then it suffices to prove (1) wunder the assumption

that

(2) P(y)—>Q(E(y))

holds for each recursive call to ¥ from & in the computation of f(x).

In the proofs that follow the assumption (2) will be referred to as an

"induction hypothesis'", and proofs are said to be done by '"recursive in-

duction'".

When more than one algorithm is involved in such a proof, the prin-

ciple is extended appropriately. For example, in the case of two algorithms

F and ,éi, if we are trying to prove

an EE—>QFE)) A @' —>Q' (I ,
it suffices to prove (1') wunder the assumption that

")) —>QEFEHI))

holds for each recursive call of ¥ from & or from <7 , and that

30.
@ @') —> Q' (Y

holds for each recursive call of vji from F or from _=/. In all cases

termination must be proved separately.

Let V =={x1, xz,...,xn), the variables of S, and let S be a set

of inequalities of the form

where a and b are quasi-linear in V. A number vector x'==(xi,
xé,...,xg) is said to satisfy S if all of its inequalities hold when

the x, are replaced by the corresponding numbers xi.

Let E be a set of such x' which satisfy S. In the following
A,B,C,D, etc., are quasi-linear expressions in V. Let x denote
the vector §==(x1, Kgs o v o5 X Y.

n

Definition. A %-B means that

AX'/X) < B(&x'/x)

for every x' € E. That is, if (xi, xé,...,x;) is in E, and A' is
gotten from A by replacing each X, by the number xi, and similarly

for B', then

31.

We define A = B, and A Z B in an analogous manner

t

The predicates S and

B act very much like < and =. Some

i

of their properties are given in Lemmas 1 -3, and Theorem 4 which are given without
proof.

Lemma 1.
1. (A=B——-—>A§B)

2. (A<B—>ATB)

<

<
3. A B BAB B

C-——>A§-C)

<

ED——-———-—>

4. E%Q}/\A%B/\C

<

A+C 7

B +DA ("max" AC) % ("max" B D)
5' A % B ; ("-"B) % (" _!'A)

6. AE—B/\N>O/\M<O _

(" AN) g_ ("FMBN) A ("' BM) :E:<_ (" AM)

32.

Lemma 2.
1. ("*"40) 50
2. SIMP(A) F A
SIMP is the simplification algorithm described in Sectiom 3.
3. MAX(A,B) z ("max"A B)

The algorithms MAX and MIN are given in Section 3.
4. MIN(A,B) 7 ("'min"A B)

Lemma 3. If (a<J<b) is a member of S and E is the set of x!

satisfying S, then a g— J g— b

Theorem 4. If E is the set of x' satisfying S, and A % B, then
supg A< supg B
and

infq A< infg B

Theorem 5. If V = {xl, xz,...,xn}, JeV, S 1is a set of inequalities

of the form

where a and b are quasi-linear in V , then INF(J,NIL) and SUP(J,NIL)

33.

are numbers, and
INF(J,NIL) < infg J < supg J < SUP(J,NIL)

Proof. Let E be the set of number vectors x' which satisfy S.

By Theorem 6 below

(3) INF (J,NIL) g- J g- SUP (J,NIL)
and also that INF(J,NIL) and SUP(J,NIL) are quasi-linear in NIL,

and therefore are numbers (since NIL is the empty set). infS(INF(J,NIL)) =

INF(J,NIL). Supg (SUP(J,NIL)) = SUP_(J,NTL), and by Theorem 4,
INF(J,NIL) < infg J < supg J < SUP(J,NIL)

Theorem 6. If J is quasi-linear in V and L €V , then

SUP(J,L) and INF(J,L) are quasi=linear in L ,

and

<

= SUP(I,L)

INF(J,L) g J

where E is the set of number vectors x' which satisfy §.

Proof. The proof is by recursive induction. Termination for SUP and

INF is proved in Theorem 9 below.

34,

The proof for INF is similar to that for SUP, which is given

here by examining each step of the algorithm SUP.

The desired conclusion clearly holds for Steps 1,2.1,7.1, and 10.

We now complete the proof for the other Steps of SUP.

Step 2.2. J 1is a variable but J ¢ L.

In this case

) SUP (J,L) = SUPP(J,Z) ,

where Z=SUP(b, LU{J}), b=UPPER(S,J)

Since b 1is quasi-linear in Vv it follows by the induction hypothesis

that

7z 1is quasi=-linear in LU {J}
and

5) b

A

and by Theorem 7 below, that SUPP(J,Z) is quasi-linear in L.

But also

(6) (a<J<b)

35.

is a member of S, (where a=LOWER(S,J)), so that by (6) and Lemma 3,

and hence by (5), J % b % Z, and by Theorem 8 below and (4) we have

(&
A

SUPP (J,Z)

SUP(J,L)
as required.

Step 3. J has the form ("-"A).
In this case SUP(J,L) = ("-"INF(A,L)).
Thus by the induction hypothesis
INF(A,L) 1is quasi-linear in L ,
and
INF (A,1) % A :E<- SUP (A,1)
Hence

("-"INF(A,L)) 1is quasi-linear in L ,

and using Lemma 1.5,

36.
J = ("-"A) i«:<' ("-"INF(A,L)) = SUP(J,L)

Step 4. J has the form ('/"A).

This case does not arise except for positive rational numbers A,

which cases are handled by Step 1.

Step 5. J has the form ("*"A N), where N 1is a number.

If N=0, then by Lemma 2.1
J = ("*"A 0) 5 0 = SUP(J,L)

(Actually this case cannot arise since the simplifier, SIMP, would replace

J by 0).

If N > 0, then using the induction hypothesis and Lemma 1.6,

J - (H*HA N)

A

("*'"'SUP (A,L)N)

]

SuP (J,L)
If N < 0, then by the induction hypothesis

INF (A, J) %A ,

37.

and hence by Lemma 1.6,

J = ("FAN)

(" INF (A, J)N)

A

[

SUP (J,L)

Steps 6 and 7. J has the form "+'AB).

<
E

J! E—SUP(J',L) and B E-SUP(B, LU{A'})=B' and hence by Lemma 1.4,

First by induction hypothesis A % SUP(A,L), B = SUP(B,L),

J - (H+|| AB)

= A

("+'SUP(A,L) SUP(B,L)) ,
and

J= ("+AB) = ("+'SUP(A,L) SUP(B, LU{A'}))

A

Thus using Lemmas 1.4 and 2.2 we obtain

[
A

("+'SUP(A,L) SUP(®, LU {A"}))

("+"'SUP (A,L) SIMP (B, LU{A'})))

=3

= ("+'SUP(A,L)B') = SUP(J,L)
which handles steps 6.1 and 6.2.1; and

J P (“+H AB) % ("+H AB‘)

<

SIMP ("+'AB') = J' =

SUP(J',L) = SUP(J,L)

1]

which handles step 6.2; and

38.

Gt
A

("+'SUP (A,L) SUP (B,L))

SIMP ("+'SUP (A,L) SUP(B,L))

eat]

J' < SUP(J',L) = SUP(J,L)

which handles step 7.

Steps 8 and 9. J has the form ("max"A B) or ("min"A B).

<

T

SUP (J,L)

follows immediately from the induction hypothesis and Lemma 2.3, 2.4.

Theorem 7. If x eV and y is quasi-linear in L, then SUPP(x,y)

is quasi-linear in L and does not contain x.

Proof. The proof is by recursive induction. Termination for SUPP 1is

proved in Theorem 10 below.

The desired conclusion is obvious for all but Steps 4,5,6, and 7.3.
It easily follows for Steps 4,5, and 6 by the induction hypothesis. (In

Step 6, clearly y and y' contain the same members of V).

For Step 7 we have

39.
y=bx+c

where b 1is a number, b < 1, and c¢ does not contain x. Since by

hypothesis, y 1is quasi-linear in 1L, it follows that ng is quasi-

linear in L and does not contain x.

Theorem 8. If xe V, vy is quasi-linear in V , and x % y then

x g— SUPP (x,y)

Proof. The proof is by recursive induction. If y 1is a number, or if
SUPP(x,y) =¥ or if SUPP(x,y) = +x, then the conclusion clearly holds,

so we need only consider Steps 4,5,6,7.3, and 7.5.2 of the SUPP algorithm.

Step 4. y has the form ("max" A B).

By hypothesis we have
X % ("max"” A B) .
In this case we cannot conclude that

) -

A
>

or that

X
VAN
o

40.

However, if we define EA to be the set of those members x' of E

for which (7) holds, (i.e., (7) holds when the numbers xi are sub-

stituted for the X, in x and A), and similarly define E then

B’

we have

IN

A and <x < B

]
=]

And hence by the induction hypothesis we have that

xg- SUPP (x,A) and xg SUPP (x,B)
A B

and hence, since E==EA U EB’

%
B A

("max"' SUPP(x,A) SUPP(x,B))

MAX (SUPP (x,A), SUPP(x,B))

SUPP(x,v)

Step 5. y has the form ("min' A B).

By hypothesis we have

xS Cmin' A)
and hence

< <
X B A and x z B

Thus by the induction hypothesis

and therefore,

x = SUPP (x,A) and
<
x S MIN(SUPP (x,A),

as required.

Step 7.3.

y has the form b x + c,

x §-SUPP(X,B)

SUPP (x,B)) ,

where b 1is a number,

does not contain x, and ¢ 1is quasi-linear in V.

Since

it follows

by hypothesis we have

x—~bx+c

<
E
from Lemma 1.4, 1.6,
<
x(1-b) E
-
E 1-b

as required.

Case 7.5.2.

y has the form =x+c,

Since by hypothesis we have

= SUPP(x,y)

where ¢ < 0.

41.

42,

x + c

22} AN

it follows from Lemma 1.4 that

c <O

= A

in contradiction to Lemma 1.3. This means that the hypothesis of Lemma 1.5,
E#4¢
is false. That is E = ¢ (E is empty) and hence the desired conclusion
x%SUPP(x,y) = -
is (vacuously) true.
Theorem 9. If J 1is quasi-linear in V, and L CV, then a call

SUP(J,L) to the recursive algorithm SUP halts after a finite number

of steps.
Proof. The following informal proof can be made more rigorous by multiple
induction (not recursive induction, which itself would require terminatiomn).

A call, SUP(J,L), vresults in a computation tree, which depends on

the nature of J, L, and the contents of S. The nodes of the tree are

43.

calls to the functions SUP, INF, SUPP, INFF, SIMP, MAX, MIN, and other

non~recursive functions.

When J eV and J ¢ L, the call SUP(J,L) exits through Step 2.2
by recalling SUP(b, LU{J}) where b 1is an entry from S, namely
UPPER(S,J). There can be at most n such calls from Step 2.2 on any branch
of the computation tree, where n is the number of members of V, because
such a call is made only if J ¢ L. and since J 1is then added to L.

Similarly there can be at most n calls to INF from Step 2.2.

Between any two such "Step 2.2 calls", SUP(A,L') and SUP(B,L"),
(of step 2.2 calls in the algorithm INF) there can be at most m calls to
SUP or INF where m is the number of symbols in A, because all other
exits from A, SUP(A',LL) or INF(A',LL) are on formulas A" which have
fewer symbols than does A. (Lemma 11 below) Also the algorithms SIMP, MAX,
and MIN halt after a finite number of steps since they are not recursive, and
so also do SUPP and INFF by Theorem 10. Thus any branch of the tree is
finite and hence the computation for SUP(J,NIL) terminates in a finite number
of steps.
Theorem 10. The algorithms SUPP and INFF each terminate after a finite

number of steps.

Proof. We give a proof for SUPP only, the one for INFF is similar.
Note that only Steps 4,5, and 6 have recursive calls and they only to SUPP
itself. Steps 4 and 5 eliminate a symbol (either "max" or "min") from the

first argument, and Step 6 pulls only existing "max''s and "min"'s to the

44,

front to be eliminated by Steps 4 and 5. Thus if there are k "max'''s
and '"min"'s in y, then there can be at most 2k+1 mnested calls

to SUPP before termination.

Lemma 11. If J is quasi-linear in V, and L €V, and the computation
of SUP(J,L) does not involve a call to Step 2.2 in the algorithm SUP

or Step 2.2 in the algorithm INF, then

.1 SUP(J,L) =J or +o, and

.2 each subcall SUP(D,LL) or INF(D,LL) is on a formula D having
fewer symbols than does J.

Proof. Part .1 follows from the fact that only Steps 2.2 and 10 changes
the formula J. The other steps either return J itself or break it down

into its component parts. A formal proof of this can be made using induction

on the number of symbols in J.

For the proof of .2, we note that in all but Steps 2.2, 6.2.2, and 7.2
the subcalls to SUP and INF are on formulas D with fewer symbols than
J. For example, in Step 3 the subcall is to INF(A,L) and A has one fewer
symbol than does ("-"A). Similarly, in Step 6.2.1 the two subcalls are to
SUP(®B, LU{A'}), and SUP(A,L); and each of B and A have fewer symbols

than does ("+'AB).

Since by hypothesis the computation of SUP(J,L) does not involve a
call to Step 2.2, it follows from .1 that B'=B in Step 6 and J¥=J in

Step 7, and hence Steps 6.2.2 and 7.2 cannot arise.

45.

Remarks.

Our procedure for proving Presburger formulas with only universal
quantification, which is described in Section 2, utilizes the algorithms

SUP and INF to compute sup, and inf_. Since by Theorem 5
S S ?

(8) INF (J,NIL) < inf T, supg J < SUP(J,NIL)

it follows that this procedure is sound.

It can be shown by example that we may not have equality in (8).

For example, if
S={0<k<NOCI<CLIOLCLL J+ @G-k} ,

the algorithm SUP gives

SUP (k, NIL)

+

whereas, J<L<J+4-k, 0<é4-k, k<

A
&~

Sup. k=4 .

However, if S 1is in "natural form" (see definition below) we conjecture

that

(9) INF(J,NIL) = infg J , SUP (J,NIL) = supg J

46.

If this conjecture is true then our procedure is a decision procedure
for Presburger formulas with only universal quantification, because our

procedure automatically constructs S in a natural form.

Definition. A formula S 1is said to be in "natural form" if it is a dis-

junction

S =8, VS, V...VSs

where each of the Si is a conjunction

and where, for each j, aij and bij are quasi-linear in Xl""’xj-l’

Xj+l""’xn’ and each Si has the redundant property defined as follows.

Each variable in Si is represented by a conjunct (a < x < b) in
Si and this contains all the information about x that Si has. For

example, if
a<x<b and £f(x) <y<d
are conjuncts of Si and "max" and "min" do not appear in f(x), then

the information in (£(x) < y) 1is already contained in (a<x<b). It

might be in the form

*Robert Shostak (Private Communication) has recently shown that if S is in natural
form and J is a variable, then the equalities hold in formulas (8), and hence that
this is indeed a decision procedure.

47.

or

a < x< (min f-l(y) <)

etc. Similarly if £(x) has the form (max g(x) c¢) then f(x) <y

is equivalent to (g(x) <y A c<y), and again in this case we require

that the information =x < g-l(y) to already be contained in a < x < b.

General Presburger formulas.

As mentioned earlier, it is not at all clear whether this procedure
can be extended to handle general Presburger formulas with both existential
and universal quantification. ZLuckily, the exampleiwe have so far encountered

in program validation [10] have all had only universal quantification.

A Presburger formula with only existential quantification can be equally
well handled (assuming that our conjecture (9) is true) but there has been

as yet not use for that in our applications.

48.

5. Examples

We will show some examples where the sup-inf procedure is used to
prove some theorems and non-theorems in Presburger arithmetic. We also

show some examples where only the SUP and INF algorithms are exercised.

The first few examples are given in great detail but later ones omit

some or all of the intermediate steps.

Here we use the notation {x: a b} to denote a <x<b. In the ex-
amples we sometimes indicate in the right hand margin the rule number (Step

No.) of SUP, INF, SUPP, or INFF being employed.

-

1. Example (from page 1). Th. (x < 1-» x < 2).

~th., x<1A2<<x)
x<O0A2<x)
(2 <x<0)

s = ({x: 2 0})

Rule no.
a) SUP(x,NIL) =0 2.2
SUP(0,{x}) = O 1
SUPP(x,0) = 0O 1
b) INF(x,NIL) = 2 2.2

INF (2, {X})

i}
N
ot

INFF (%, 2)

f
N
-t

Since O < 2, the theorem is true.

49.

2. Example (from Page 2) Th. (Gx < 1l-»7x< 16)

~ th. 6x < 11 A 16 < 7x)
(Gx < 10 A 16 < 7x)

(ng/\-l-égx)

7
s = ({x: -1779 2})
16
SUP (x,NIL) = 2 < => = INF(x,NIL).

So the Theorem is true.
3. Example. th(?). (Gx < 16 -» 7x < 16)

~ th. (5% < 16 A 16 < 7x)

(5% < 15 A 16 < 7x)

s = ((x: 2 3D

1
Thus SUP(x,NIL) = 3, INF(x,NIL) = —:]é- .

Since [INF(x,NIL), SUP(x,NIL)] = [%é , 3] contains an integer, the supposed

theorem is false.

4., Example (Formula (3), Page 4, with x,y,z for Xys Ko x3).

Th. @Qy+3<5zANz<x=-yA 352y <3)

From formula (8'), Page 4, we get

S = ({x: z+y =
- S
{y: 2 m:m(zz > X z))

{z: -;—y + = x-v})

a) SUP(x,NIL) =

wlwn

sup G, (x)) = 3

SUPP (x,2) = 3

3

b) INF(x,NIL) = -137—
17
INF(Z+Y3[X}) = "5'"

B' = INF(y,{xz}) =

S

i
N

INF(Z’{XY z})

INFF (y,2) = 2

JV = (z+2)
INF(z +2,(x}) = % + 92 = lsl
B' = INF(2,{xz}) = 2
INF(z,{x}) =g—
INF(%'Y +-§’—, (xz}) = _f-_:-+§= %
B' = @, (xyz)) = 2

=

ey, (xz)) =2
INF(Ya{XZ}) = 2

INF(2,{xyz)) =

]

INFF(y,2) = 2

7 7

INFF (z,5) = &
17

INFF (X,}gz‘ = ——5—

Rule no.

2.2

1

2.

2

50.

51.

Thus as stated on Page 5

1
SUP (x,NIL) = T < _SZ_ = INF(x,NIL) ,

wiw

and the theorem is true.

5. Example. S = ({j: 0 k}{k: 0 j+L}{L: O 2-3})

Clearly supg k=2, and also SUP(k,NIL)=2. But if we ignore Rule 6

of the algorithm SUP, we get +o as follows, which is incorrect.

Rule no.
SUP (k,NIL) = o« 2.2
SUP(j+L,{k}) =k+2 7

SUP(j, (k}) =k 2.2
SUP(k (jk}) =k 2.1
SUPP(j,k) = k 7.1

SUP (L, (k}) = 2 2.2

SUP (2-3, {kL})

i
)
-+
O

1l
]

~

SUP(2,{kL}) = 2 1

SUP(-j,{kL}) =0 3
INF(j,(kL}) =0 2.2

INF(0,{jkL}) = O 1

INFF (j,0) = O 1

SUPP (L,2) = 2 1

SUPP (k,k +2) = o 7.5.3

52.

6. Example. S = ({j: 0L} {k: j j} {L: 0(2j-3k)})

Rule no.
a) SUP(j,NIL) =0
b) INF(j,NIL) = O
c) SUP(k,NIL) = +o 2.2
SUP(j,{k}) = +o 2.2
SUP(L,{jk}) = 2j=-3k 2.2
SUP(2j -3k, {jkL}) = 2 -3k 6,3,5.1,2.1,6.1,5.1,2.1
SUPP(L,2j -3k) = 2j -3k 7.1
SUPP(],2]j = 3k) = +o 7.4
SUPP (k,+x) = +oo 1
d) 1INF(k,NIL) = O
e) SUP(L,NIL) = O
f) INF(L,NIL) = O

Actually, for this example,

SUPpg j= supg k = supg L=0 ,

m%]=1ﬁsk m%L

il
o
v

whereas the SUP algorithm gave

SUP (k,NIL) = +

53.

As was stated in Section 4 we only expect equality between sup and SUP

when S 1s in natural form.

We now naturalize S, and again compute these quantities (in Example

7 below)
7. Example.
- s, L 3 .
S = ({j: max(max(0,k), > + 5 k)min(k,L)}
, .. 2. L
{k: 3 mln(_],gj - 3‘}
(L: 3 2j = 3k})
Rule no.
a) SUP(j,NIL) = O
b) INF(j,NIL) = O

Rule mno.

¢) SUP(k,NIL) = O 2.2
SUP(min(j,-ZB—j - Ig‘),{k}) = min(k,—;-k) 9
SUP(j, (k} = k 2.2
SUP (min(k,L),{ik}) = min(k,23-3k) 9
SUP(k,{jk}) =k 2.1
SUP(L,{jk}) = 23-3k 2.2
SUP(2§-3k, {jkL}) = 2j-3k 6,3,5,2.1
SUPP (L, 2j-3k) = 2j-3k 7.1
SUPP (j,min(k,2j-3k)) = k 5
SUPP (j,k) = k 7.1
SUPP (j,2j-3k) = « 7.5.3
SUP(%I] - %-, {x}) = %k 6
B - SUP(- 5{3K) = -1 3
INF(I—B’-,{jk})' = % 5.1
INF@,{jk}) =] 2.2
INF(§,{ikL}) =] 2.2
INFF(L, §) = 3 o ' 1
J'=SIMP(‘§'J' -)=%j 6.2.2

W Wi

SUP(-]:-;-j ,{k}) = k (as before)

SUPP(k,min(k,!é-k)) = 0 5
SUPP(k,k) = +w 7.5.3
SUPP(k,%k) = 0 7.3

55.

d) INF(k,NIL) = O
e) SUP(L,NIL) = O
f) INF(L,NIL) = O

Thus they are all now O as desired.

8. Example. S = ({k: 0 j} {j: © 1} {L: 0 j-k+4}).

S is not in natural form.
SupS k = 4, but SUP(k,NIL) = +wx.
If we nmaturalize S, getting
s = ({k: 0 min(j,j+4)]}
{j: max(k,L+k-4) L}
{L: 3] j=k+4})
then

SUP (k,NIL) = &4

as desired.

56.

9. Example. S = ({j: 0 k+L} {k: 0 5} {L: 0 k})

Rule no.
a) SUP(j,NIL) = 10 2.2
SUP(k +L,{j}) = 10 6
B' = SUP(L,{jk}) =k 2.2
SUP(k,{jkL}) = k 2.1
SUPP(L,k) = k 7.1
JV = k+k = 2k 6.2.2
SUP (2k, {j}) =10 5.1
SUP(k,{3j}) = 5 2.2
SUP(5,(jk)) =5 1
SUPP (k,5) = 5 1
SUPP(j,10) = 10 1
b) INF(j,NIL) =0
c) SUP(k,NIL) = 5
d) INF(k,NIL) = O
e) SUP(L,NIL) =5
£) INF(,NIL) = O

Acknowledgements. I am indebted to Mabry Tyson, Michael Ballantyne and Mark
Moriconi for their help om this paper.

10.

57.

References

Cooper, D.C. Programs for mechanical program verificationm.
Mach. Intell. 6. American Elsevier, New York, 1971. 43-59.

Davis, M. A program for Presburger's algorithm. Summer
Inst. for Symbolic Logic, Cormell U., 1957. 215-233.

Presburger, M. Uber die Vollstandigkeit eines genissen
Systems der Arithmetik ganzer Zahlen, in Welchem die Addition
als einzige Operation hervortritt, Sprawozdanie z I Kongresu
Matematykow Krajow Slowcanskich Warszawa, 1929, pp. 92-101.

Wang, Hao. Toward Mechanical Mathematics, IBM J. Res. Dev. 4,
2-22.

Bledsoe, W.W., Boyer, R.S. and Henneman, W.H. Computer proofs
of limit theorems. Artif. Intell. 3, 1972. 27-60.

King, J. A program verifier. Ph.D. thesis, Carnegie-Mellon
Univ., Pittsburgh, 1969.

Deutch, L.P. An Interactive Program Verifier, Ph.D. Thesis,
University of California, Berkeley, 1973.

Waldinger, R.J. and Levitt, K.N. Reasoning about Programs,
Artif. Jour. 5(1974), 235-316.

Igarashi, S., London, R.L., and Luckham, D.C. Automatic program
verification 1: a logical basis and its implementation. Stanford
AI Memo 200, May 1973 and USC Information Sciences Institute Report

IST/RR-73-11, May 1973.

Good, D.I., London, R.L., Bledsoe, W.W. An interactive Verification

System. Proceedings of the 1975 International Conf. on Reliable
Software, Los Angeles, April 1975.

€3

11.

12.

13.

14.

15.

16.

17.

58.

Suzuki, N. Automatic Program Verification II: Verifying programs
by algebraic and logical reduction. Stanford AI Memo ATM-255, Dec.
1974.

Bledsoe, W.W. Program Correctness, The University of Texas at Austin
Mathematics Department Memo ATP 14 Jan. 1974.

Bledsoe, W.W. and Tyson, M. Typing and proofs by cases in program
verification (working title), The University of Texas at Austin
Mathematics Department Memo ATP 15 (forthcoming).

Bledsoe, W.W. and Bruell, P. A Man-Machine theorem-proving System.
Artif. Intell. 5(1974), 51-72.

Hearn, A.C. Reduce 2: A system and language for algebraic manipulation,
Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation,

ACM, 1971, 128-133.

Burstall, R.M. Proving properties of programs by structural inductiom.
Computer J. 12, 1 (Feb. 1969), 41-48.

McCarthy, John. A basis for mathematical theory of computation. In
Computer programming and formal systems, P. Brafford and D. Hirshberg
(Eds.) North-Holland Publ. Co., Amsterdam, 1963, 33-70.

