TOWARDS THE INTERACTIVE SYNTHESIS
OF ASSERTIONS*

by

Mark S. Moriconl

October 1974 ATP-20

S

The work reported herein is a revision and extension of an earlier
report by the author [17].

W
TOWARDS THE INTERACTIVE SYNTHESIS OF ASSERTIONS
Mark S. Moriconi

The University of Texas at Austin

ABSTRACT. A new technique 1is presented for the semiautomatic derivation
of inductive assertions. The method combines information'ébtained from
known assertions with knowledge extracted directly from the prcgrém body.
A program is transformed into a structure that allows the automatic
generation of inductive assertions to occur without having to generalize
program statements to n iterations. Heuristics are discussed that in
some cases suffice by themselves to generate inductive assertions; but
more often, for non-trivial programs, are interfaced with the alternate
program representation to jmmediately yield the desired assertion. When
the mechanical derivation fails, inherenﬁ in the approach is an inter-

active capability which can be easily exploited by the human.

i*:%r
This work was supported in part by NSF Grant DCR 74-12886.

1. INTRODUCTION

Much recent attention has been directed toward developing techniques
for proving the correctness of programs. The assertion approach for verifying
programs, which wés formalized by Floyd [8] and Naur [18], has been the
focus of many efforts in the field. However, previdus work has indicated
various practical limitations. It has been pointed out by King [13] and
Elspas, et al. [6,7] among others that one of the single most important factors
1imiting these efforts at program verification is the difficulty of inventing
Floyd assertions. The difficulty appears to be not so much a problem of syntax
or the assertion language, but one of corrgctly understanding the program.
Therefore, we initially concern ourselves with the development of a medium to
facilitate greater program understanding and then use it for the semiautomatic

generation of assertions.

Previous attempts at finding inductive assertions for programs exhibit

essentially two approaches. The first is basically heuristic using the output
assertion and test predicate in trying to form a particular inductive assertion.
This approach is demonstrated by Wegbreit [21] and the top-down method of Katz
and Manna [12]. The second attempts to be somewhat more formal and tries to
extract information directly from the body of the program. The basis for this
approach is a suggestion by Green [9] that the problem can be viewed as that

of finding the solution to simultaneous sets of difference equations. The
bottom-up method of Katz and Manna [12] 1s similar. Greif and Waldinger [10]

describe a techmique which uses the output assertion, the test predicate, and

the body of the loop at the same time. They observe, however, that their method

breaks down in complex situations.

Qur approach for finding a practical solution to the problem is signifi-

cantly different from most others. The method we present has the ability to

combine in a new fashion information obtained by the heuristic manipulation

of known assertions and test predicates with the knowledge we extract from

the actual program body. To do this we develop an alternate representation

of a program wh%ch eliminates all local program varilables and non-essential
sequencing information resulting in a purely functional representation of a

program. Extracting invariants from this alternate representation is often

quite easy and is dome without generalizing the program statements to =n

iterations as done in several other techniques. As a result the simplifi-

cations, substitutions, and so on that we require seem to be much less com-

plicated than those for most other methods. Another novel feature is that

when the mechanical derivation of an inductive assertion fails, the human

5

is provided with a representation of the computation performed within the

loop under comsideration that in many cases has eliminated the possible

obscurity existing in the original program. The human is thus allowed to

utilize his ingenuity to great benefit in forming totally umspecified

assertions or completing partially specified ones.

The representation of a program we employ, known as a case description,

was informally introduced by Pratt [19]. Sectioms 2-5 give a falrly lengthy

formalization of his notion of a case description, extending 1t to the domain

of asserted programs, and ultimately establishing the functional equivalence

of a program and its associlated case description. This development is

egsential in order for us to view both as simply different representations

of the same (partial) function. The method we use for synmthesizing in-
ductive assertions is predicated upon this assumption. We point out, how-
ever, that a cursory reading of the formal analysis in Sections 2-5 is

sufficient for proceeding to Sections 6 and 7 which deal directly with

assertion synthesis.

Having established the necessary formal results, Section 6 describes

the general heuristics of the method.

the use of the heuristics and details the specifics of the technique. A

comparison to some other possible approaches is given.

2. PRELIMINARIES

In this section we begin the formal development of this paper by pre-
senting a simple formulation of the first-order predicate calculus. We
consider in detail only the concepts which might possibly be confused

with other standard usages and also specify notation to be used throughout.

For further discussion see Church [4], Mendelson [16], and Shoenfield [20].

The basic alphsbet comsists of commas; parentheses; the logical symbols

: individual constants

v, A, ~; dindividual variables Rys KosyeeesX pooe]
. function letters £, f- . and predi

c.s cZ""’Cn""’ function letiers 17 T ccealpecers and predicate
1 2 £ , - . .

The superscript of a function or predicate

letter represents the number of arguments, whereas the subscript is simply

an index number to distinguish different function or predicate letters with

the same number of arguments.

Section 7 presents examples illustrating

Terms, atomic formulas, and wifs are formed in the usual manner.

. 1 .
An interpretation” ¢ consists of a non-empty set D, called the

; , . n
domain of &, and an assignment to each predicate letter p; 4an m-ary

n o, : n .
relation Ri in D, to each function letter fi an n-ary total function

n

no, . . .
F, from D into D, and to each individual constant cy some fixed

element dc of D.

i

Given an interpretation & with domain D, let 7. be the set of

~

denumerable sequences of elements of 'D. Let o= (al,az, ...y be a sequence

in Y. We define a function p of one argument having terms as arguments

and values in D. An assignment is determined by the function p depending

on 5:, denoted as p_, in the following manner:
o

1. p_(xi) = ai.
e} -

2. p__(ci) = dc .
: o i

T
3. p__{ti(‘f:

ke
15"‘stn>) = Fi(pg(t«i)g"'ap’g("n>>'

The intuitive notions of satisfiability, truth, and validity can now

be defined inductively via the function p_.
o

12& Shoenfield [20] what we refer to as an interpretation is called a

structure. We use this terminology to be consistent with subsequent

definitions.

2 funetion is used extensively in Section 3.3 and Section 5.

The o

3. ARSTRACT PROGRAMS AND RELATED CONCEFPTS

In this section we present a typical abstract model of a computer
program (called a flowchart or abstract schemata) and then comsider a
particular (unique) computation (execution sequence) resul;ing from a
specific interpretation and assignment. Models similar to ours have been

studied by many authors, e.g., Kaplan [11], Luckham, Park, and Paterson

(141, and Manna [15].

3.1. Abstract Programs. An abstract program AP consists of:

1. (a) A finite set of individual input variables

x={x ,.,xn} with n >0, and

1’

(b) a finite set of individual program variables

y={yps---y,) with n>1.

2. A finite, directed, labeled graph which we define by the
riple (¥,4,£) with a finite set of nodes N=x"UH such that there is
(a) a unique entry EE%E named and labeled START with
START ¢ &', and
{b) a set H composed of at least one exit node named and labeled
WLT with # NN = ¢.

2
3., AL N >N U %X N defines the flow of control for AP.

i=1

L. @ and ® are sets composed of assignment and branch

statements, respectively, which are defined as follows:

.
the form

s
o]
g
N
o
)
jak}
n
w0
i
)
=
w0
o
[ad
o0
(w3
jak]
rt
[
£
®
s}
T
b
&
m
o
e
v}
1
W
v
i
Hc
o
el
o]
h

i
v and o is a program variable. In addition START is considered to

(b) A branch statement is a quanti

with no variables other than =, and v

5, £: N'>@UB gives a labeling for the nodes of AP from

sets @ and B. This labeling is restricted such that for all n e X',

Pl
-t
Mot

£(n) e @<= A(n) e N

2
£n) e & aln) e ¥ (23

To AP we add an input predicate (or input assertion), denoted

o(x), which is a wff with no free individual variables other than X.

o(zx) usually specifies +he domains of the input variables and any con-

straints on the joint occurrence of values of imput variables. We cenote
en abstract program with an input assertion as (AP, 0).
We require that (AP,9) begin (first node after START) with a sequence
of assignment statements ¥, @-T1<£}$eeqsya %-?Eég)g where ?j{;} with
1< i<t is a term whose only variables are X, . We make this require-

ment becsuse it is an easy way to imsure taat each program variable used

[

on the right side of an assignment statement has been previously inltialized
and if it is not used within the program but designated as an outputl

4=

<}
€5
I
R,\ A
&5
[ws
g«mh
®
-
1M]
o]
=
o
]
[
G
Ca
[431

assignment fo it must occur for us to define the value

of an execution sequence in Section 3.3. In order to make this initiali-
zation we require that the abstract program contain at least omne imput
variable or constant.

3.2. Programs. Let D_ and D_ be non-empty domains for x and ;,

x y
respectively, such that D_ < D_. Given an abstract program with the

x ¥y

characteristics just discussed, an interpretation & for (AP,9) can
be defined over the appropriate domains as shown in Section 2.
The abstract program (AP,¢@) together with an interpretation ¢

forms what is called a program and is denoted by (2,%,9¢).

3.3. Interpreted Programs. Let (P,¥,9) be a program and E e D Dbe
X

an input assignment for X. This defines the interpreted program (P,§,¢,E).
An interpreted program can be executed defining what is called an execution
sequence that may be finite or infinite. Before defining this concept we

make the following motaticnal conveniences to be used throughout.

. , . 3 R
Notation. Let <di> denote the vector™ of constants <é1’ e.sda>

and (t?} = (e:lz, ...,t:)» such that t? denotes the i-th term of the k-th

sequence. We also refer to T(§,§) and B(;;§§ ag simply v and f,

respectively.

3<di> cen be viewed azs simply an element {&G ,.e.,as Yy of 2 from
1 0

Section 2.

Definition 1. We define & inductively by

1
&) = ((£]),€,m))

when
E satisfies m(g) .
where
n, = ASTART) , € = o))
and
tz ='xv or ti =, v fixzed

if there are or are not input variables, respectively.

S

; , . 1 i
The initialization of t is necessary in order to define the next

i

step in the sequence, viz. Ek+1).
k
Given &(k) = (<ti> s € nk>

1f f(nk) # HALT, we define

B k+1
SUk+1) = (£]),y Gy Ty

demending upon two cases, L.e., whether
P P s s

2

10,

A(m) e ¥ or Alm) e w

Case (i): 1f A(nk) ¢ & then let i(nk) be yp & 7, Thus

S A(nk) R by (1)
Ce1 = % ’
and
tlf . ifp
k+1 1
ti =
k k 4 .
éT{tl’lyl""’tn/yn} P L=p .

Case (ii): If A(nk) € ﬁz then let i(nk) be B. Since (2)

gives A(nk) = (y,z), we have

S

- k k 5
y , when ¢ satisfiles B{tl/yl""’tn/yn}

M1
z othervwise ,
€ U (BlES/y . nti/y)}, if =y
k ARSI R LR PRl
@ =
k41

k k .
€. U {~ﬁ{tliy1"'°’tn/yn}} otherwise ,

and

Qf{tifyls,..,tz/yn} means that each Yy in r is to be replaced by the
1

k . .k k
corresponding t? of {ti}e Similarly for ﬁiti;yi""’tn/yn}‘

“{t is true that £ either satisfies or does not satisfy B{t?/yl,,ee,ti/yn},

The function & defines an execution sequence

<?9§9 {‘99 g)

for (P,¥,9,&) with the value of the computation dencted

Val({P,%,9,8))

equal to

(e_(e)
:

where
0 = max(domain{®)) ,

when & is finite (i.e., the program terminates); otherwise

- ; , Ry "z s
We remark that op applied to z} vields a specific vector of

congtants, i.e.,

11.

12.

4. ABSTRACT CASE DESCRIPTIONS AND RELATED CONCEPTS

In the next two sections we extend and formalize some ideas discussed
by Pratt in [19] in the direction of developing a formal yet practical basis

for generating assertions for programs.

4,1. Descriptors. TFor the abstract program (AP,¢) let 63. represent

a possible sequence of nodes, i.e., a path, nj s nj ,,..,nj from
1 2z 7
(AP,9) Thaving the following properties:

1. Sj(l} = A(START).
2. Given 63.(1{):
{(a) 1If :ﬁ(‘éj(k)) e @ then 6j(k+1) = A(Bj(k)),

(b) If £<§j<k>> e B and /_\.(Sj(k))=(y,z) then

6%(k+1)=y or Bj(k+l)=z.

3., There is a maximum 1 such that Bj(n} = HALT

This defines a path Sj € {51,62, ceesdos ...}, the set of all possible

sequences of nodes (paths) through (AP,@).

For each 6j we record in sequence q){;;) followed by
L(n,), @=Ly esesn o
o
If ©, contains an’ 1 such that
3 Iy
L(n,) e B
J

13.

with A(nj y = {y,z), we record

@

£(ni Y or ~£{n,)
Ja 3&

depending on whether

respectively. We call this an abstract or unreduced descriptor for

(AP, @) .

We now make a definition which is very similar to that of an execution
sequence in Section 3.3, but we do not assume an input assigmment and thus
follow an arbitrary path through the program. This algorithm turns out to

be the basis for our assertion generation procedure shown in Sections 6 and 7.

=3

Definition 2. We define 6(63) inductively as follows:

, ol i
a{aj><1> = < 6 6j<1>>)

where
¢) = (o@) ,
and if there are or are not input variables we have
t; =x or t,=c_ , v fixed

respectively.

14,

Given

2

1,,
0eE Y (k) = ({5 J
DM = (£, €, 5,0

For ﬁ(Sj(k)) # HALT we have

@<aj><k+1>=<<tk+1‘ @ , B Gt D)

i/ Tkt
yhere either
(i) £(6j(k)) = yp « 7, in which case we have

i L gl
“oern T %

and
k .
£ s idp
4
Jot
k k .
T{tliff}«:"*stn!yn}) L=p
or
(11> i(%i(k)) = 3, then for A(Sj(k)}=<y,z> set
el U €ﬁ{fckz’y ey) 1f 85, (k+1)=y
. k IR *n’n : j
@ . =
kel 3 K K
else € U (~B({t /[y ..ot /vy 1}
and

15.

Tor each 63, 9(63) produces what 1s called a reduced descriptor or

simply descriptor, denoted as

<Ds(§))6' 9

L

with control set and kernel set & equal to

@l anda (&,
oW

respectively, where
w = max{domain 9(63}} . (3)

We observe that the main difference between the original path 63

el

and its corresponding descriptor is that the descriptor contains no local

rariables or extraneous sequencing information. A descriptor specifies

¥ da

-

the sequence of operations only where necessary, il.e., in functilionm come-

position and variebles in argument expressions. This means that we now

have a representation for a program path which will in many cases exhibit

uite clearly the information necessar o understand what & program {or
q

program) computes if that particular path (or subpath) is

o

pari oI a

foliowed.

4.2, Case Descriptions. We define an abstract case descrintion, denoted

(AC,0), to be

=
O

loops.

(6C,») together with an interpretation ¥ forms the case description

(C,7,9) -

An interpreted case description Is a case description with an assign-

ment £ € D and is written as (C,%,9,E).

The control sets of the descriptors in the interpreted case description
are composed of ground instances of their predicates which can now be
evaluated in the usual manner. To find the unique descriptor corresponding

to a particular execution sequence we simply search the list of descriptors

rh

for the descriptor all of whose control set predicates are satisfied. “This

descriptor's kernel set specifies the values computed for that execution

sequence. However, ITOm & welleknown undecidability result we know that it

to determine whether an arbitrary program terninates

et

is impossible in genera
for all imputs. Therefore, we may never find a descriptor in the interpreted
case description having all predicates in its control set satisfied, thus
continuing to test indefinitely. We formalize this intuitive notion of

ralence in the Section 5.

ot
-
O
o)
o
r...z
o
Na)
£
e
<A

™ b o
H

A Ty ey = f - L amam s s
4.3, Examples. In the domain of program correctness an cutput predicate (or

[say]

output assertion) 1s attached to the program under consideration. We design

e

this predicate as V. It usually specifies the desired relation between

Hy

P

ace

17.

the input and output variables. To distinguish for the reader which

variables are assigned values by the program we add a set of individual

output variables z = {Zl"B'szn} when convenient.

The following examples illustrate the derivation of case descriptions
forming the descriptors as specified in Definition 2. Im addition we show
a possible use of case descriptions for either forming a particular V¥ or
"checking'' one that was given a priori. If.an inaccurate V¥ 1is provided
serious difficulties can arise in an attempt to prove parital correctness
(for discussion see [7]). 1In addition if an inaccurate ¥ iz used in the
partial or total derivation of an inductive assertion, as in Wegbreit [21]
and Katz and Manna {12}s it is highly unlikely that the loop invariants

will ever be found.

Tn Figure 1 we see a simple factorial program with range O to 5¢
as specified by the input assertion ¢. Table 1 contains descriptors of
its case description for some of the shorter paths. Each descriptor is

shown in its unreduced, reduced, and interpreted (and simplified) form.

Note that the number of unreduced and reduced descriptors 1s countably
infinite due to the loop in the abstract program. However, by viewing
the interpreted schemata we see that only a finite number of descriptors
are possible. Paths which cannot be followed irrespective of the initial
essignment yield a contradiction in the control set (denoted by 1y as
shown by interpreted descriptor 52. The importance of this will become

magnified in more complex programs.

To simplify the interpreted descriptor we can employ a limited theory

18.

of types and specialized routines for algebraic simplification and solving
linear inequalities. Since in the control set, with possible the exception

of o¢(x), we are dealing only with skolem constants we expect very efficient

analysis. Some of the specific techniques we will use are discussed by
Bledsoe, et al. in [1,21.

Looking again at Table 1, by viewing only a few descriptors we can
casily see that V¥ is {(z=N').

At this point we are merely trying to show how to form (partial) case
descriptions. However, we must mention that the technique we develop in
Ssections 6 and 7 for generating inductive assertions can, with minor modi-

fications, be used in many cases o derive V¥ mechanically as well.

Notation. Let S(ji,,g.gjq) denote a path (or subpath) through the

flowchart over arcs jlg.,,,j . Ve henceforth omit the unreduced descriptor
i
i

....3) to the descriptor.
2 @.}h

:i“ H

adding instead the statement §j==5(j
Figure 2 (taken from [7]) computes the fractional quotient P/Q to
e et - 6 e . e . N
within tolerance L. In Table 2 we see the (partial) case description
Figure 2. It is easy to see from the interpreted descriptors that v
is (P/Q-E < Z < P/Q}.
The flowchart of Figure 3 (taken from [13]) multiplies two numbers,
ccepts signed inputs, and all additive operatioms are restricted to in-

lecrement

[

le 3 it is

ke

aslly seen that

F

ng by one. From Tal

jn}

.
2 ~
crementing and

2

As in Table 1 we again uncovered a path which canmnot

f—

¥ is {Y=DA*B

Tn this example the domain is the reals.

be followed, viz. 54.' However, we note that in this instance it was not
entirely obvious that 5@ could not be executed. The knowledge that a
particular path cannot be followed, even if @<§> is satisfied, will
often prove to be quite valuable information in many areas of program
analysis, especially in program verification. We also pciaf out that in
this example the variables A,Y, and XB have been eliminated.

We have hopefully demonstrated the conceptual advantage in separating
a program inﬁe its control and kernel sets. Let us now continue our

formal development.

5. TUNCTIONAL EQUIVALENCE

We begin by making the following definitions.

Definition 3. & and £ ¢ D catisfies (AC,¢) means that there

@,0); € (45,9
3

such that & and g satisfy

g%

i
=
w
&

ig defined by (3).

20.

Definition 4. (AC,¢) is said to be comsistent if and only if for

every interpretation & and input assignment E'e D_ there is at most

, pe
one descriptor

(Ds(p)é e (AC,9)
3

such that all of its control set predicates are satisfied.

Definition 5. If (AC,¢) 1s consistent then the value of ‘(c,yg@,§>,

written

Val((C,%,9,£))

is determined as follows:

El

1. Let (D,qs)6 be the unique descriptor in (AC,9) having

J ——
all of its control set predicates satisfied by & and ¢. In this case

Val((C,%,9,£)) = X ((@,0)5)
3

3

the kernel set of (D,qz)6 under & and E.

3

2. 1If no such (D,@)é exists then Val((C,%,0,t)) 1is un-

J
defined.

Tt is crucial in our development to know that if there is a descriptor
in the abatract cano dencriptlon whoso control sot iIs aatisfied by #F and

T then it is unique. We are now in a position to establish this by provin
§ P g

21.

Lemma 1. (Consistency Lemma) If (AC,¢) is an abstract case

description then (AC,¢) 1is consistent.

Proof. Suppose ¥ and E satisfy (AC,¢) such that there are two

distinct descriptors

®,9), and @0

i 3
with control sets ﬁi and @i, respectively, satisfied by & and E.
Let
b= min{y[s; (48,0} - W
Therefore
B, (u-1) = 8,(u-1) - 5)

Now coneider the case when

6i(u-i) e @ . (6)

From the definition of path and (5) we have

5, (1) = 06, (1-1)) = 86, G-1)) = 5,

O BT S—

vhich by (4) cannot be the case. Thus (6) does not hold and 6i(ﬂ-1)

must be a branch node.

Since
,%i(u~l) e B
as is the right side of (5) and
without loss of generality we may assume that

8, (W) =y and Sj(u) =z

for 6
A(ﬁi(u“1>) = Aiﬁéiﬁsl)) = (y,2z)
Thus
f(%i(;wl}}{ti‘l,’yls Ty e @
and

Lo n=1 p-1]
~£ (B, (u IE] Ty eeesty Iy} e €

(7

(8)

22.

23.

But now

¢* c @ and € e . (9)
wow o= w
Moreover since
‘81 and @J
w w

are satisfied by & and -é- by assumption, it now follows from (9

that ¢ and E satisfy
?9:{" and @’
B B

which contradicts (7) and (8). , Q.E.D.
Lemma 2. & and ¢ satisfy (AC,9) 1f and only if (P,%,0,E) is
defined.
We omit the proof of this result as the necessary part follows directly
from Lemma 1, Definition 2, and a simple induction proof that for some path
5,, & =€j for k=1,...,0=0. The sufficient part also can be obtained in

Pk Tk
a straightforward manner from Definition 1. (For details see Moriconi [17].)

We now have

Corollary 1. & and t do not satisfy (AC,e) if and only if

R e

T —

5 5

24 .

f&?ggg) ig undefined.

We are now in a position to prove the main results.

Theorem 1. If & and E satisfy (AC,¢) then

Val((C,%,,8)) = Val({P,#,9,£))

&

Proof. By hypothesis and the Consistency Lemma we know that there

is a unlque descriptor

@,0)5 ¢ (AC,9)
j

such that its control set %i is satisfied by & and E. From Lemma 2
Since it can

(r,#,0,6) is defined and furthermore must follow 83'

s

easily be shown that

we must have

<pg<t‘§>> - <pé-<tz3’>

Therefore,

Val ((C,#,9,£)) = Val((P,#,¢,t)) .E.D.

25.
By a similar argument we get
Theorem 2. 1If (P,%,0,6) is defined then

Val((C,#,0,£)) = Val({P,#,0,E))

Theorems 1 and 2 simply state the intuitive fact that whenever the

hypotheses of either theorem is satisfied, i.e., whenever either there is

a descriptor in (AC,¢9) with its control set @) satisfied for ¥ and

t or the execution sequence (p,%,0,8) is defined, we have

H]

Val((C,%,,))

Ap_£)) _
val((e,%,0,0)) = {p_(tD) = (4;)
| 3

g

]

just as we would expect.

Combining Corollary 1 with Theorems 1 and 2 establishes the functional
equivalence of an interpreted program and its corresponding interpreted case

description.

6. GENERAL HEURISTICS

We now describe some of the general heuristics we employ which
in many cases suffice by themselves to generate Inductive assertions; but

more often, they are used in concert with a (partial) case description.

26.

The specifics of this interrelatiomship are shown in the next section.
The portions of the rules we describe that manipulate the output assertion
and test predicate are similar in content to those of Wegbreit [21] and
Katz and Manna [12]. A significant difference, however, 1s that we de-
velop only a few heuristic rules, of which normally only one applies,
such that when they are employed (usually in conjunction with a (partial)
case description) a consistent assertion is usually formed on the first
try. Hence, we generally avoid fruitless attempts at generating and trying
to prove verification conditions for inconsistent predicates. TFurthermore,
having shown in Section 4.3 that a (partial) case description is a simple
and easy to understand representation of a program, when the heuristics
fail the human can in many instances recognize ''pattermns”, i.e., invariants,
in successive descriptors with relative ease.

For simplicity in the statement of the heﬁrisﬁic rules, we view an

£

exit from a loop to be of the form
——————

i g—-ws-—--n--— L (x,Y)

| {
b e e — P (x,y) L
F "% i—»——-—-w ¥ Gy

where the cutpoint for the loop immediately preceeds the exit test and is
marked by 1{2,;) representing the inductive assertion for the loop,
P(x,y) 1is the exit test, and @;{;,§} is some conjunct of a predicate

Ut

2N

§,§} known to be true when P(§,§} ig satisfied. We observe that

Vilx,y) is usuallyvdifferent from $(£;§>. However, in the simplest

case W¥'(x,v) is merely ¢{x,§}, i.e., there are no statements between

27 .

’4"(;,55 and the branch statement under consideration.
We now consider the following heuristics which are applied in the

specified order to formulas in their Ypnatural” form.

1. Convert \if'(;,§) to comjunctive form, i.e., .\W (;{,;). =
\Efi (2, 7) Neo oA \if{'l(;g,;), and consider each ﬁf%(i’,?) separately with one
goal being to form for each \éi;(;,;) an appropriate Ik(;{,;} that

satisfies 1k(;,§) = (P (;;,;)» = \%!i (x,y)) where 1 (x,v) = 11(§,§) Ao N 13(;,3;), E

2. (Transitivity) 1If \if;.h(;{”,;) is of the form thltZ and
X,y form t.R
P(x,y) 1s of the form t3 Zté,’ where t}.’tz’t:fté@ are terms and R}.,Rz
are inequality relations, then to find the appropriate lk(;{’;) we

normally employ the usual transitive closure properties with the domain

being the integers unless otherwise specified. 1If \?i(g,gr‘) contains

quantification we apply a tramsitivity axiom directly to P(;,gr—) =:>}lf;(§,§}

m

nd if necessary make the appropriate subscript changes when arrays occur

within the quantified expression. If no tramsitive rule applies to R1

and RZ we simply choose lk(g,;,;} = ‘3{;(;,%.

Rules 3,4, and 5 will normally be considered as yielding trial in-

ductive assertions for which we generate a (partial) case description for

the loop under consideration to verify the correctness of or to generate
an entirely new LKGC—,;) before attempting to prove any verification

conditions.

3. (Equality) The reason for using this rule almost exclusively

in conjunction with a (partial) case description is to avold making erroneous

28.

assertions which in the case of an equality branch can happen quite easily.
We view a few specific cases.

{a) 1f P(;,§) is an equality branch with P(;,;) # w;(§,§)
&ﬁ P(§;§§ ig of the form ti==0, compute a (partial) case description
for the loop. We then use this (partial) case description to determine
vhere the ti cccurs in 1k(§;§§. For example, suppose we have
A=0=¥X=Y*Z, There are numerous plausible 1 (}?,37) such as
X+A = Y*Z, X*C.?A=Y*Z; L& (CHAY=Y*Z, X*CtA=Y*Z*CtA and

so on where C 1is a comstant. We avoid this proliferation of possible in-

ductive assertioms by generating the (partial) case description from which

on without human

in many cases we can generate a consistent inductive asserti

intervention.

(b) 1If P(x,y) is an equality branch with P(x,y) # Wi(§,§}

and is of the form ti==tj where ti% tﬁ¢Cg then one possibility is to

(x,7) = V' (x,y) where V! (x,y) 1s obtained from ¥'(x,y) by re-
i i

t
oy
placing all occurences of ti by tj’ and then if that falls, try re-

placing tj by ti. This appears to be sufficient for many applications,

but if it is not we again revert to a (partial) case description to guide

further substitutions.
4. 1f PG&x,y) # \éfi(%?,?}g let 1«k<§,§> = »4:;(?5,5?}.
5. Let 1}:&5} be P(E&):%(Z,?).

6. 1If P(§,§) and $£(§;§} have been used by a previous rule

and additional invariants are still needed, i.e., invariants for which

29.

&;(Q,;)} is no help in finding, we fofm a (partial) case description for

the loop under consideration and attempt to extract the required invariants

directly from it.

We reiterate at this point that these rules simply exhibit the general
flavor of the approach rather than a detailed analysis of all heuristics

which are employed. Let us now proceed to discuss the specifics of the

method.

7. EXAMPLES AND DETAILS OF THE METHOD

We now want a descriptor to reflect only what is computed for a par-
ticular part of the program, i.e., we want to know what is computed in the

loops requiring inductiveassertions. As a result we must slightly modify

the algorithm given in Definition 2 so that it reflects this change. This
can be done by simply considering as the output variable set the local

variables of the loop occurring on the left side of an assignment state-

ment. Rather than terminating the process at the HALT node we necessarily

stop immediately after exiting the loop.
We present three types of examples. The first illustrates the generation
of an inductive assertion by using only the test predicate and output

assertion. The second example shows the separate use of output-assertion-

test-predicate analysis and a (partial) case description, obtaining parts

of the inductive assertion from each. In the third example we discuss in

detail how to combine the output assertion, test predicate, and a (partial)

iy W

30.

case description to mechanically gemerate inductive assertions.

Notation. We assume that by now the reader is familiar with the derivation
of 2 case description. As a result we henceforth present only interpreted (and
simplified) descriptors in the rables. We also refer to the imput, inductive,
and output assertions as simply ¢, 1, and ¥ (respectively) since theilr arguments

will be obvious from context.

Looking at Figure 4 (taken from [13]) we see a simple exchange sort pro-
gram with V= VY M2 <M LN= A@’ir—l)‘ < AM)). This first example can be done
with relative ease by some other methods as well. We consider it to illustrate
how we process formulas in their "natural” form thus eliminating some inter-

mediate manipulations.

By taking V¥ backwards over ©&(3,10,12) we get

>

I>N= (J=0 = M2 g_MSN:éA@VEuE) < AM)).

Applying the rewrite rules of TIMPLY [3], which is a natural-deduction-

type system that processes formulas in their "'natural’ form, immediately

vields

) A

P"""
.
A
2
N’
Mot

T>NA J=0=% M2 _<_Mﬂ<“N::>A(M=

Rule 2 now gives the invariant

J=0 >YME <M< I=AM-1) <AQD) -

3%,

We now proceed to examine some other more prominent characteristics of our
method by comsidering the next two examples.

For the Wensley Division Algorithm of Figure 2 with ¥={P/Q~-E < Z<P/Q)
we try to fina the appropriate 1 at arc 7. We begin by extracting as
much of the inductive assertion as possible from the output predicate V.
Using Rule 1 we split ¥ into ¢1==PfQ ~E< Z and $2==Z < P/Q. Dragging

wl backwards to arc 7 we get

D<E=P/Q-E<LY . (10)

Doing the same with ¢2 gives
D<E=Y<P/Q . (1L
Applying Rule 2 to (10)"'a£d (11), respectively, we get
P/Q -DKYAYLP/Q - (12

Thus far the derivation of . 1is fairly standard.

We now observe local loop variables A and B which are not in
(12). To establish additional loop invariants containing A and B,
Rule 6 suggests we form a (partial) case description for the loop as
seen in Col. 1 of Table 4. Looking again at Figure 2 we see that B

and D are on one path through the loop and A and Y on the other.

32.

We, therefore, attempt to relate them in this manner via the descriptors
in Table 4.

Before considering our approach for relating these variables let us
first look at another standard method for doing it. The method basically
entails expressing A and Y after mn iterations and then eliminating
a factor common to both equations thus yielding én invariant. In the

example under consideration, such expressions for A and Y would be

L@ 0§ gD

i=1

{

> (13)

noL (-1

(n)
= (14)

y@ _ 3@

i=1

where the superscripts indicate the iteration count with a (0) super-
script designating the jnitial value for the particular variable. Ve

observe that (13) and (12) have no elements in common. So at this
point we have mno way to relate them; however, possibly we can relate B

and D. Expressions for B and D are

i -

s _ 5@ . g % , (15)
i=1
koS

p™ _ 5@ . g %) (16)
t=1

Simplifying (13) and (16) and solving for the like term we have

B(ﬂ)

NG

D(ﬂ) .
p @) 2"

33.

wvhich gives loop imvariant

7

it

2B = QD

: At this point we might be able to substitute the invariant (173 - into

(13) or (l4) to possibly introduce a common variable. Suppose we

choose to substitute %? for B im (13). This would result in (13)
being written as

n D(i»l)

N R (18)
=1 1
i
n D(i»l)
We can now eliminate the common term by —5 from (14) and (18)
i=1
to get
m) _,(0)) 5
LR SO R (19)

Plugging the appropriate values into (19) yields the invariant

Y = AfQ (20}

The reason for this lengthy description of an alternate method is

to illustrate its dependence on several things. First of all it is often

essential to find the invariants in the “proper' order to avoid unnecessary

attempts at simplification and elimination. In this example attempting
to relate (13) and (l4) was unnecessary since (17) needed to be
found before (20). This problem could become greatly magnified by more
complex programs. Secondly, in order to apply this technique one needs
to be able to)generalize each computational statement to the ﬁ-th interation.
One also must have at his disposal a powerful simplifier to be able to
manipulate the resultant expressions. A third deficiency in this approach
is pointed out by the next exanple. |

Our technique exhibits a very different approach. We, in a sense,
try to eliminate the induction variable without generalizing and actually
finding an expression for it. More specifically, we seek to eliminate

what we will call induction constants. We use this term for the entities

to be eliminated because they are "eonstants' that represent a combination
of a constant and a particular value of the induction variable. Tor
example, rather than generalizing to say n/10 (n being the usual in-
duction variable) we might have 1/5. We work directly with the 1/5
ignoring the possibility of generalizing to the n=-th level. We henceforth
prime all induction constants to distinguish them from actual constants
(unprimed).

The marking of induction constants is normally quite trivial and can
be done during the descriptor generation process. While isolating the
induction constants, we necessarily " factor out’ of each expression the

initial variable assignment in a manner similar to that done in say

(13)-(16). TFor example, we would replace

35.

X «X/C by X =X

Xe<X+C by X=X

where X,C, and { denote a variable, constant, and induction comstant
respectivély, These simple replacements can easily be extended to other
forms of statements. Suppose we have a statement of the form X < X+Y.
Initially we would write X @-X(OD + Y(O). However, subsequent iteratioms
would depend on the form of Y. If v 1is of the form Y « Y¥Y/C, then
following the initial jteration X ¢« X+Y would be of the form
X @-X(O> + Y(O) .£. These simple transformations suffice for the examples
we consider here. Of course, additional replacement rules need to be added
in generai.. However, it appears that this can normally be done with relative
case as circumstances demand. This “factoring out" of the initial
assignment is reflected in Col. II of Table 4.

We again observe thag path 51 does not include the assignménts to
A and Y but does cover the assigmments to B and D. Using Col. IL

we therefore try to relate B and D but ignore A and Y. Our goal 1is

to eliminate the induction constants between

[V R

8= (/2 + 5 and D= (1)
Eliminating the 1/2' is trivial glving

B = (Q/2) * D . 22)

62 traverses both pairs of statements. From Col; 11 we get (21)
then (22) as above and next consider A=Q/2 and Y=1/2. Since this
is the initial time through these statements we have mo induction constant,
i.e., A @-Aio) + B(O) and Y &-Y<O> +—D<O)/2. So in this initial step
only, we can eliminate a constant between the two expressions. In this

case we can.easily eliminate the 1/2 getting
A=Q¥Y . (23)

We note that normally we would go on to the next descriptor rather than
attempt this type of substitution as we do not have an induction counstant
to gulde the substitution.
Suppose we do go on tb 63. This is almost the same as 61 so we
can again relate B and D by eliminating the 1/4' to get (22).
Locking at B, -we see ‘that it traverses both sets of statements as

does B Eliminating the 1/4' between B and D again gives (22).

X
We now want to eliminate the jnduction constants 1/2° and 1/4' from

A= (Q/2) ¢+ 1/2' and Y = 1/4', i.e., we want to find a k such that

where ¥ 1s a constant and ci and cé are the induction constants
1/2' and ,1/4'. We easily solve 1/2' = k-1/4' to get k=2. We now
multiply Y=1/4" by 2 to get 2Y = 1/2'. Ve can now eliminate the

1/2' to get (23), 1l.e.,

37.
A= (Q/2):2¢Y = Q*Y

Having established the same invariants for several paths, we now
have a high degree of confidence that they are correct, i.e., that

the inductive assertiom is
(12) A (22) A (23) .

An alternate approach would have been to simply start with say 64

(a path through both sets of statements) and use its result as the trial
inductive assertion. We admit that this approach is not as unlversal as
some other techniques, but when it works it is quite efficient and
straight-forward, and when it does not we again point out that the human
ig left with the possibility of recognizing "patterns" in successive

descriptors of the loop's (partial) case descriptionm.

As our next example we reconsider the multiplication program in

Figure 3 with V¥ =Y=B*DA. This example has a few subtle features that

make the gemeration of its inductive assertions somewhat difficult. We

100k at two distinct approaches to finding an assertion at arc 2 before

viewing ours.
The first is similar to the method of Wegbreit [21] and Katz and

Manna's top-down method [12]. We begin by backing ¥ wup to arc 2 getting

A=0=7Y=B*DA . (24)

38.

This suggests that there was an A in the expression Y =B *DA before

exiting the loop that "disappeared' upon exit. Thus there are man
& PP Y

possible inductive assertions, e.g., Y +tA=B%*DA, Y -A=8B%DA,

y+A=B *DA+4A, etc. The above methods suggest trying some of these

(i.e., generate and try to prove the verification conditions) and see if

they work. This is clearly undesirable.
The second approach is the one already discussed and is similar in

content to the difference equations of Green [9] and the bottom=-up method

of Katz and Manna [12}. The difficulty with this approach is (i) the

(ii) what we call the loop-dependence

order-dependence problem and

problem. Subpaths & (9,10) and B (8,11) (also © (22,23) and © (21,24%)
both contain assigmments to Y and XB. When this occurs it 1s mnecessary

to know which branch was followed for each loop traversal to be able to

enalyze the computation. To do this an additional variable is added to

keep the proper branch history. Furthermore, the statement A« A-1 on

arc © (13,12) (also A ~A+1 on o (26,25)) creates what we call a

loop-dependence problem. TFor example, to represent the n-th iteration for

the statements on subpath & (7,8,11,6,12,13) one would tend to write

@) - x©@ . {Zl 1
i=1 i

However, this cannot be the case since A « A-1 1is usually not traversed

the same number of times as the other two statements. We must therefore

39.

introduce another induction variable. The end result is numerocus in-
duction variables causing a potentially difficult generalization and
(usually unsolvable) elimination procedure. The authors referred to
make no claim to solve this problem. This should simply point out the
difficulty in applying their techniques directly.

We are mow in a position to demonstrate a way of finding the in-
ductive assertions at arcs 2, 6, and 19 of Figure 3. The approach we
take combines the use of the output assertion and the body of the loop
to guide the search.

We begin by getting (24) and applying Rule 3 which says to generate
a (partial) case description for the loop as seen in Table 5. It is
important to note that in generating Table 5 we traverse 0O {6,12)
getting XB=0. If we have an XB in the kernel set for this outer
loop we set_itvto 0 since XB is "unknown' outside of its loop, viz.

d

at arc 2.

Looking at Col. II, we know from (24) that for 51 we want to

relate the elements of ¥®' such that
{Y=1'/\B=l'/\A=DA»1'}/\A=O=>Y=B*DAQ (25)

Once in this form there are several straight-forward ways to eliminate the
snduction constants such that (25) 1is true. One is to simply substitute

0/A from the hypothesis giving

{Y=1‘AB=P’ADA=1m}@Y=B*DA . (26)

40.

To distinguish among the induction constants we mark each with a different

number of primes. We do likewise in (25). Substituting all hypotheses

§ of (26) into its conclusion we get

!T! => ‘i! = ‘iﬂ.kl!" ’ L (27>

which is true. We now back substitute from (25) into (27), replacing

each differently marked induction constant by the appropriate expression
Y/1', B/1", and DA-A/1'', to get the invariant

i.e.,

Y=B* (DA-A) . (28)

The identical result can be found in a gimilar manner for 62, 633...

at arc 6. This

We now attempt to find the inductive assertion 1 6

again would be difficult to find using some of the other standard techniques.

j Since we have already found (28) to be an invariant at arc 2, we

| use it as a new @ thus beginning the algorithm in Definition 2 at avrc 2

; with ¢ set to (28). We do this since we know that we will have to prove

the verification condition
(28) A 8(2,3,4,5,6) = 6 ?

the hypothesis being the result obtained by moving (28) <forwards over

the path specified by . 1In other words, by viewing (28) as a new ¢

41.

we seek to use this fact as much as possible in finding lge

Since we know that (28) 1is an invariant at arc 2 we back it up

to arc 6 over path 8(2,14,13,12,6) to obtain
B =0=Y=3B%(DA- (A-1)) . 29
Again Rule 3 specifies the generation of a (partial) case description to

avoid the proliferation of possible assertions at arc 6. Viewing (28)

as a new ¢ 1in the generation process we get Table 6. Similar to (25)

we consider

(Y=B* (DA-A)+1' A XB=B -1'] A XB=0=Y=B* (DA - (A-1))

(30)
By eliminating the 1°' ;e immediately get the loop invariant
Y =B % (DA-A) + (fos)
The same invariant results for 62$... s the inductive assertion at arc 19

also follows easily by the same method.
We make the observation at this point that in more complex examples
we might have ﬁany more possibilities for the substitution of inductive
constants. However, the information obtained directly from the program
» in the form of a (partial) case description plus the use of known assertions

as done above often gquickly guide us to the proper result. If not, we can

42.

exploit the technique's interactive qualities.

8. CONCLUSION

We have now shown that the technique is capable of handling fairly
complex programs. We have used the notion of a (partial) case description
as a tool for identifying eraoneous program paths, Y“ehecking'' output

assertions, generating inductive assertions, and as the basis for man-

machine interaction.

At preseﬁt we expect to develop-aa interactive system allowing the
human to recognize 'patterns’ imn the descriptors. As pointed out, this
human intervention would normally occur only when our heuristic rules
do not apply or when the appropriate assertion becomes obviocus to the
user thus making it expeditious to terminate thé generation process.

It is clear, however, that more and better heuristic rules are needed.
We anticipate new rules which jnterface smoothly with (partial) case
descriptions to surface as we gain experience with the system.

The theorem-proving required is within the scope of some present
automatic theorem proving systems which are adept at simplification and
proving verification conditions (see, e.g., Bledsoe [1,3] or Deutsch [51).

We emphasize that we do not foresee this or any other proposed
technique bringing to frultion the practical verification of large,
complex programs which now exist and were written in an arbitrafy fashion.
However, we do feel that many of the ideas developed here will carry over

almost directly into an environment in which the programmer writes

43.

hierarchically well-structured programs creating the Floyd assertioms

along with the program construction rather thanm ex post facto. We

anticipate that in this case our tools could provide a practical basis

for the verification of large, complicated programs.

ACKNOWLEDGMENTS

T am indebted to my supervisor Professor W.W. Bledsce for his

help and continual encouragement. Thanks is also due to Dr. Dallas

Lankford for his numerous suggestions throughout this research.

L,

REFERENCES

Bledsoe, W.W.; "Program correctness.'' Departments of mathematics

and computer sciences report, ATP-15, The Univ. of Texas, Austinm,

Tx., Jan. 1974.

Bledsoe, W.W.; R.S. Boyer; and W.H. Hennmeman; ''Computer proofs of

1imit theorems.” Artificial intelligence, 3(1972), 27-60.

Bledsoe, W.W.j and P. Bruell; "A man-machine theorem-proving system."
1JCAI-3 (Aug. 1973), 56-65; also in Artificial intelligence, 5(1%74),
51-72.

Church, A.; Introduction to mathematical logic. Vol. 1, Princeton

Univ. Press, N.J., 1956.

Deutsch, L.P.; "An interactive program verifier." Ph.D. Dissertation,

Univ. of California, Calif., June 1973.

Elspas, B.; K.N. Levitt; and R.J. Waldinger; "'An interactive system
for the verification of computer programs." SRI Project 1891, ‘

Stanford Research Tnstitute, Menlo Park, Calif., Sept. 1973.

Elspas, B.; K.N. Levitt; R. Waldinger; and A. Waksman; ''An assessment
of techniques for proving program correctness.” Computing surveys,

4, 2 (June 1972), 97-147.

Tloyd, R.W.; "Assigning meanings toO programs." Mathematical aspects

of computer science, _T. Schwartz, ed., Vol. 19 (American mathematical

J
society, Prcvidence, R.I. (1967)).

Green, M.W.; ""The use of difference equations as an aid to specifying
assertions." '"Research in interactive program proving techniques.”
SRI Report 8398-11, Stanford Research Inmstitute, Menlo Park, Calif.,
May 1972.

10.

13.

16.

17.

18.

19.

45.

Grief, I.; and R.J. Waldinger; “A more mechanical heuristic approach
to program verification.” Proceedings, Colloque sur la Programmation,

Institut de Programmation, Paris (April 19743 .

Kaplan, D.M.; "Regular expressions and the equivalence of programs.”

J. comp. and sys. sciences 3, 4 (Nov. 1969), 361-386.

Katz, S.M.; and Z. Manna; "A heuristic approach to program verification."

1JCAI-3 (Aug. 1973), 500-512.

King, J.C.; "A program verifier." Ph.D. Dissertation, Carnegie-Mellon

Univ., Pittsburgh, Pa., 1969.

Luckham, D.C.; D.M.R. Park; and M.5. Paterson; "On formalized computer

programs.” J. comp. and sys. sciences 4, 3 (June 1970), 220-249.

Manna, Z.; "Properties of programs and the first-order predicate

calculus.” J. ACM 16, 2 (April 1970), 244-255.

£l

Mendelson, E.; Introduction to mathematical logic. Van Nostrand Co.,

Princeton Univ. Press, Princeton, N.J., 1964.

Moriconi, M.S.; "Semiautomatic synthesis of inductive predicates."
Departments of mathematics and computer sciences report, ATP-16,

The Univ. of Texas, Austin, Tx., June 1974.

Naur, P.; "Proof of algorithms by general snapshots.” BIT 6, &4 (19663,
310-316.

Pratt, T.W.; "Case descriptions of programs: an informal introduction.”

The Univ. of Texas C.S. report TSN-32, Austim, Tx., Oct. 1972.

20. Shoenfield, J.:; Mathematical lopic. Addison-Wesley, 1967.

2l. Wzghbreit, B.; "The synthesis of loop predicates.” Comm. AT

et
e

]
™o

P
Fri

reb. 1974), 102-112.

g
Y

46.

S L e e s oy s

47.

FACT « 1
I+0

(I=N)——%ZPFACT
T

<

Ie—1+1.

FACT « FACT* 1L

FIGURE 1. FACTORIAL PROGRAM

48.

Interpreted
Unreduced Descriptor Descriptor Descriptor

1 (0<N<50); FACT<l; I+0; = {0<N<50, 0=N} € = {N=0}
(I=N); Z<FACT = {Z<«1} o = {z2+1}

2 (0<N<50); FACT+1; I<0; = {0<N<50, "“(0=N), € = {N=1}
n(I=N); I<I+1l; FACT<FACT*TI; (0+1)=N} * = {z<1}
(I = N); 2Z<FACT = {Z<1%(0+1)}

3 (0SN<50); FACT¢1l; I<0; = {0<N<50, V(0=N), € = {N=2}
nv(I=N); I+I+1l; FACT+FACT*I; ~((0+ 1) =1, T = {z+2}
n(I=N); I<I+1; FACT+FACT*I; (0+1)+1=N)

(I=N); Z<+FACT = 7z < (1%(0+1))*
‘ ((0+1) + 1)}
52 (0<N<50): FACT<1l; I+0; = {0<N<50, ™ (N=0), O

[~(I=N); I<I+1; FACTSFACTAT]" L

(I=N); Z<FACT

.o, ~(N=50), N=51}

{z<1%1%2%,, %51}

Table 1. {(Partial)

Case Description for Factorial Program of Figure 1.

”é”,

¢ = {(0<P<Q) A (O<E)]}

FIGURE 2.

WENSLEY'S QUOTIENT ALGORITHM

B

49.

50.

Interpreted
Descriptor Descriptor
6, = §¢0,1,2,5,6,7,9,10) ¢ = {P/Q-E<0<P/Q<1/2}
@ = {0<P<Q, O<E, P<04+Q/2, £ = {2«0}
1/2<E}
= {Z«0}
62 = (0,000,7,9,10) € = {P/Q-E<1/2<P/Q<1
% = {0<P<Q, O<E, ~(P<0+Q/2), # = {z«1/2}
1/2<E}
= {Z+(0+1/2)}
6, = (0,1,2,5,6,7,8,2,5,6,7,9,10) @ = {P/Q-E<0<P/Q<1/4
@ = {0<P<Q, O<E, P<0+Q/2, % = {Z+0}
n(1/2<E), P<O+ ((Q/2)/2),
((1/2)/2)<E}
« = {2<0}

Table 2. (Partial) Case Descripticn for Wensley

Algorithm of Figure 2.

5%.

Y «<Y-1
XB «~ XB+1

10

Y «~Y+1
XB < XB -1

FIGURE 3.

20
¥
22 \“hB’> 0
Y e« Y+ 1 Ti21
XB «~ XB +1 b4
Y &Y =1
XB < XB ~ 1
23

MULTIPLICATION PROGRAM

26

{A«v;w*

Interpreted

Descriptor Descriptor
6, = §(0,...,6,12,13,14,2,15,16) ¢ = {B=0, DA=1}
@ = {DA#0, DA>0, ~(B#0), v(DA-1#0)} x = {Z<0}
w = {2<0}
8, = 6¢0,...,8,11,6,12,13,14,2,15,16) € = {B=1, DA=1}
% = {DA#0, DA>0, B#0, B>0, “(B-1#0), w = {z2«1}
w(DA=~1#0) }
w o= {Z<(0+1)}
55 = §(0,...,3,17,...,21,24,19,25,26, @ = {B=1, DA=-1}
14,2,15,16) - w = {Z+1}
¢ = {DA#0, ~(DA>0), B#0, B>0, “(B-1#0),
~(DA+1#0) } |
w = {Z«(0-1)}
§, = §¢0,...,8,11,6,7,9,10,11,6,12,13, [
14,2,15,16)
" @ = {DA#0, DA>0, B#0, B>0, B-1#0,
v (B-1>0), V((B-1)+1#0),
~(DA-1#0) } ’
% = {z2«((0+1)-1)}
§_ = 6¢0,...,8,11,6,7,8,11,6,12,13,14,2, © = {B=2, DA=1}

15,16) ~ x = {2+2}
% = {DA#0, DA>0, B#0, B>0, B-1#0
N((B-1)~-1#0), V(DA-1#0)}

w = {z+(0+1)+1} -

Table 3. (Partial) Case Description for Multiplication
Program of Figure 3.

53.

¢ = {TRUE]
1«2
J <0 11
2

FIGURE 4. SIMPLE EXCHANGE SORT

54.

il

5,=5(0,1,2,5,6,7,9)
© = {0<P<Q, E>1/2}
#={A 0, BeQ/h, De1/2, Y « 0}

W'={A=O,’B=(Q/2)-3§' s
D= (1)'%’5' ? ng}

5,=5(0,...,4,6,7,9)
€= {Q/2<P<Q, E>1/2}
={A«Q/2, B Q/4, D« 1/2, Y « 1/2}

ﬁ‘z{A:Q/Z, B’—‘(Q/Z)'}z" s
D=(l)'}é" Y='1§}

53=‘6(O’1’2353637$8,2:5:6:759)
&= {0<P<Q/2, 1/4<E<1/2}
#={A 0, B<Q/8, De1/4, Y « 0}

¥'={A=0, B=(Q/2)-%" ,
D=(1)-%' , Y=0]

5,=5(0,1,2,5,..+,8,3,4,6,7,9)
€ = {Q/4<P<Q/2, 1/4<E<1/2)}
#={h<Q/4, B<Q/8, De1/b, ¥ «1/4).

x'={A=(Q/2)-%" , B=(Q/2) %",
D= (1>'}4' s L= %'}

Table 4. From Loop in Wensley Algorithm

of Figure 2.

55.

It

&, =8(0,...,8,11,6,12,13,14,2,15)
@={DA=1, B=1)
%={Y <1, B 1, A< DA-1)

#'={Y=1', B=1", A=DA-1'}

52=a(0,,,.,8,11,6,7,8,11,6,12,13,14,2,15)‘
€={DA=1, B=2}
*=[Y 2, Be2, AeDA-1}

A'={Y=2"', B=2', A=DA-1')

Table 5.

I i1
51=5(2,’~,8,11;6,12> 7' ={Y=B% (DA-A) +1', XB=3-1")}
€= {A>1, B=-1]

%= {Y « B¥(@DA-A)+1, XB « B-1}
62=6(2,...,7,9,10,11,6,12) #'={Y=B% (DA-A)-1', XB=B+1")
€= {A>1, B=-1]
%= (Y «B*(DA-A)-1, XB « B +1)
Table 6.

Tables 5 and 6 are from the Multiplication

Program of Figure 2.

