Some Notes on Computer Generation of

Counterexamples in Topology
by

A. Michael Ballantyne

ATP 24 - February 1977

ATP=24 Some Notes on Computer Generation of 1975

Counterexamples in Topology

A. Michael Ballantyne

In [1] and [2], efforts at producing a topology theorem prover are described.
In [2] we describe a method of representing some topological theorems which seems
to have enough power of expression to be of real value to a mechanical topologist.
With some reflection it also appears that this representation can be used as the
basis for a program which finds finite (finite topological spaces) counterexamples
to some statements which are not theorems.

Almost all the work in computational logic has been geared toward the develop-
ment of effective proof procedures for the computer. Hopefully when such programs
are developed, they will afford the working mathematician a mechanical helper. When
considering the activities of the research mathematician, it becomes apparent that
some routine which can refute false conjectures, can in many ways be a more useful azid
than some program which can only verify valid conjectures (see [3] in which Bledsoe
argues the need for research in automating the hunt for counterexamples).

When a student attacks a homework exercise from a textbook, he usually is
assured that what he is trying to prove is, in fact, valid. When he is forced to
step our of this rather narrow circle of confidence, he must take a different
attack at the problem. Now, instead of driving for a proof, he must in addition,
look rather carefully for a counterexample. What follows are some observations on
what such a search entails.

First, let me comment briefly on Resolution. What Resolution amounts to is
a search for a counterexample. If the algorithm produces O then we know that
no counterexample is to be had. If, on the other hand, the program grinds forever
then we have a counterexample. If the program halts in some finite time without

producing cj, then we also have a counterexample. A resolution program will

usually terminate without producing o only when the Herbrand universe is
finite. 1In this case the Herbrand universe with the correct interpretation is

a counterexample. Most interesting statements have an infinitelHerbrand universe.
One could describe Resolution as a brute force enumerative approach to finding a
counterexample. In passing we mention that Roach and Siklossy [4] have implemented
a program which refutes conjectures which arise in simulated robot tasks. This
program does not explicitly construct a counterexample, but instead disproves a
conjecture by showing its absence from a finite enumeration of the consequences of
the hypotheses.

In general, mathematicians are quite a bit more clever than either of these
two approaches. Effective human problem solvers encode the problem well and bring
a lot of knowledge to bear. From now on we will be using very elementary point
set topology as a basis for our discussionms.

Suppose we had the following definitiom:

Definition. Let (X,7) be a topology. Then a set A C X 1is said to be regularly

open if KO = A,

In other words, a point set is regularly open if when we take its closure and
1

then from that take its interior, we get A back. Clearly any regularly open

set is open. The natural question to ask is whether the terms open and

regularly open are equivalent. More exactly, is
(I v A[OPEN(A) ===3REGOPEN(A)]

, ; . . 1
One's first inclination is to look to the standard topology E (the real
numbers with the usual topology), and within this context to look at the most

familiar open set, the open interval Ja,b] for some a, b ¢ R. Unfortunately

?gpr any set A, AO denotes the interior of A (the largest open subset of A),
A denotes the closure of A, and A' denotes the complement of A, X-A.

we have TE:ETO = {a,b]0 =]a,b[. That is, when we close J]a,b[we pick up the
points a,b but then promptly lose them when we take the interior. So we need
to be a little more clever. We need to find an open set that picks up some

other set of points when we take its closure and doesn't let go of all those
points when we apply the interior operator. After some fiddling the natural
choice of é set A 1is made by taking an open interval J]a,b[and deleting from
it some point ¢ to get the two intervals la,c][and Jc,b[. Now when we close
up A we pick up the points a,b,c and when we take the interior we drop a,b

and keep c¢. Diagramatically we have

I>
‘!

i

-
L,

A < 2
A
A -]"“""”“"'” B __,ﬂ

In a certain sense we could have picked a simpler A? CR, namely R {xo}'
for any Xq € R. This set A* is a simpler counterexample in the semse that its
closure picks up one point and loses none when we then take the interior. Although
both choices A and A' are perfectly satisfactory, the second is preferable
for the reason that it is the meagerest counterexample obtainable, in the sense

mentioned above, once we have fixed our topological space to be E'.

Actually E' is a much more complicated topology than we need. If we abstract

from our second counterexample, what we really have is a set A which is not all

of X but whose closure is X. Since X is both open and closed this assures

us that X#A. Diagramatically we have

| i

! {

i !

4 kY

1 4

! N z \
H .

N \\ PE—

*
In our second counterexample we knew that A was not equal to X since we put

. A*‘
XO in .

is, we will start off with some arbitrary open set A and put an arbitrary point,

In our abstracted counterexample we will do the same thing -- that

call it in A'. Since we don't really care what A is, we will assign it

Xq
the simplest value possible. Since A=é will not do, we give A the value
{po} for some point Py These assignments are consistent with the axioms of

topology, hence we have created for a counterexample, the following small topology

and an assigmment to A within that topology.

X = A, s 7

Rl L =[17,83,4.5
b o ..w_,_.jX

We denote open sets with a circle and closed sets with a rectangle. Note that the

set {po} had to be an open set since from our statement (I) we know that A
must be open.

Counterexample number 3's structural simplicity and apparent ease of con-
struction would offhand indicate that we could write a program which would have
to know only the rudiments of topology to be able to comstruct such simple
counterexamples .

In what follows we will assume that the reader knows how the program

described in [2] attempts to prove a theorem.
it

to prove the theorem.

GRAPHER) uses the statement of a theorem to draw a picture from which it tries

()

Essentially that program (let's call

If GRAPHER were trying to prove
OPEN(A) —3» REGOPEN(A)

where A
(i)
(ii)

is a Skolem constant, it would rewrite the theorem in the following way.
OPEN(A)-——)KO = A

OPEN(A) —3 AL & A AT

0.

AC;D A A-aC-A

program constructs.

The first half of the conclusion is proved immediately from the graph which the
The little o's indicates

e
L NOTE:
//’ that the set is open;
P
B
e
- ©

c means the set is closed
A > A
!
%
v

{

-

‘\‘\
l
> 7

The GRAPHER tries to prove the second conclusion of (ii) and rewrites it as
follows
(iii) O?EN(AO) N X, € A —> ¥ € A

The arc XO.._-) {xo} is added to the curremt graph but to no avail. The

program makes a few other unsuccessful probes and then gets suspicious. Maybe

(I) is not true! So now GRAPHER tries to assert the negation of the con-

clusion; i.e. % ¢ AO which is immediately rewrititen as Xy € Aéa All these

facts are incorporated into the picture until we finally have

~

> <
/
| €
%
C)/

There do mot appear to be any contradictions in the diagram so the program tries
to assign values to the various objects in the diagram subject to the restraints
imposed by the relations depicted in the graph and the axioms of topology.

Basically what the algorithm does is to start from the bottom of the diagram and

work upwards -- assigning the smallest possible value to each object. TFor the

time being we will informally step through the program's actions. Later we will
give a more precise specification of the algorithm.

When we view the graph we see that the two smallest objects, excluding ¢, &{xo}
are A and A'. The GRAPHER always starts to work on the uncomplimented set

for reasons which, if not clear now, should become clear later.
1. The algorithm tries to assign A the smallest possible value which is .

2. This choice for A 1is substituted for A throughout the graph. All
possible reductions are performed. This means that X=:{=c}. This
causes trouble though for we have Xy € K; in other words x5 € c} So

A=¢ is not a viable choice.

3. The program realizes that it must put a point in A. It uses the only
point so far discussed. It therefore tries to assign the value {xo}

to A. But the program immediately detects x,'s simultaneous presence

0

in A and A'. Hence this too is an impossible assigmment.

4. The program now discards x "activates' another point and
prog P Py

O!
gives A the value {p,.}. So far, this choice appears to be okay.
0

At the time our partial assigmment to X 1is {xo, po}.

5, We now move "up" the graph and find the smallest superset of A. Since
from the graph we have both A C A and AC ZO and also KO C A we

operate on A next. Since we see that A is constrained tc contain

.._0

at least x, and Pg > {x } is our first assigmment to A~ . At

0

this point our open sets are {pe} and {pO,xO}.

0’Po

6. The program continues to work up the graph. The set which is immediately

above KO is A. We assign to A the minimal assignment, that is, {XO’pO}"

7. At last the program works its way up to X. X also gets the value {xo,po}.
The values of the other sets now fall out immediately. We are finally left

with

A= {po}
X = {xg,po}

T = {{xo,pO},{pO}} .

Diagramatically we have

which was what we constructed as counterexample 3. It appears that the human

and the program are doing pretty much the same sort of thing.

Some notes on the algorithm

The program starts at the bottom of the graph and works its way upward. The
notion of upward is well defined since the graph can contain no loops. If there
ever arises a chain of inclusions of the form AO c A1 c...c An < AO then the
links corresponding to those relations are removed and the diagram notes the
fact that A0 = A1 =, . .= An'

If the sets A and A' appear in the graph, the algorithm will only attempt

to assign values to A. The reason being that we would have to know what X 1is

before we could give A' a meaningful value. The assignment to X 1is essentially

the last important assignment. The assignments occur primarily in a depth-first

fashion. TFor example, if our graph were

ﬁ/c ,
\

A\L\/ 5
=

the algorithm would traverse the graph in the order

V

ABCDEX.

The exception occurs when some set A has several subsets, say B,C mentioned
in the graph. Then both B,C must be assigned values before A. To illustrate

this, suppose our graph looked as follows:

C/ \;/
A/ \l
then our order of assignment goes

A, B, E, D, C, F, X .

The reason behind this funny order is that at each choice point we assign the
smallest value to a set with respect to the restrictions implied by the graph.

One of the most crucial restrictions is the values of a set's subsets.

10.

Let A be a set to which we want to assign a value, call it v(A). Let

A "’An be the immediate subsetsof A. Then our initial choice of a value

1
for A is

n

v@a) = U v(@A))

. i

i=1
whenever a choice v(A) for A 1is made, a new copy of the graph is made with
that v(A) substituted for A throughout. The REDUCE operations described

in [2] are applied to the nodes of this modified graph and the search begins

from where we left off. For example, suppose we have

Aé//’fﬁﬁzﬁ&\\\\\w

=B
,/'AU6\\ %

e "\.\ é/// /
\) $

and we assign to A the value ¢. Then ¢ is substituted for A throughout

the graph and we wind up with

Ol) e U0 |

gince ¢ = ¢ and B U ¢ = B.
If an assignment causes a contradiction then we back up (a2 la MICROPLANNER)

to our last assigmment and trv to add another point. We use the next available

1.

point in POINTLIST (the list of points available to GRAPHER) that does not cause
a contradiction. For example, the program never tries to add p to A if
p e A'. If the program cannot add a new point, it backs up to the next choice
point and tries again. The program never tries to add two new points to a node.
It appears to be the case that if one new point is not sufficient, then no finite
number of new points will work.

At all times the program is keeping track of the topology 7. Whenever open
sets are assigned values, they are put into the topology and all finite uniomns
and intersections of the new set with previous sets are added also.

Having described these basic principles, we can look at what the algorithm

does with some other examples.

Theorem I7 VA VB[ANB = ANB]

The program rewrites this as

ANB CANB A ANB C ANB where A,B are Skolem constants

The first conjecture is proved immediately from the graph, leaving only the

second. The program rewrites this as

x. € ANB —3 XO e AANB for x another Skolem constant.

0 Y o

The hypothesis is asserted and the conclusion attempted. A failure here evokes

an attempt at a counterexample. Now the program asserts

xoé ANB

In other words,

s

:D S 4 >!

\

12.

. 4
We now have the following graph (Af\ﬁ)

The program's first step is to assign ANB the value é By the reductioms
mentioned in [2] this forces us to assert A CB' and B C A'. The program
now tries to assign A the value ¢. This produces a contradiction since

A=¢=¢ and we have X, € A. So the program tries the next point, xy. At

this point the graph contains the following substructure.

A E

A 3\) SL{mB \/
K

B

‘n:a%

\1:;5 \M”b/

13.

Before the program can assing A = {;5} a value, it must first assign {;c—_(;} ne
a value. Obviously the minimal value is {xo}. The next set to which the program
tries to assign a value is B. But before it can do so B must have a value.
Since B can have neither the value ¢ mnor {xo} (Why?) it is given the wvalue
{po}. Now B is assigned the wvalue {xo,po} and X is assigned the same value.

So we have the, by now familiar, topological space

We will do one more example in some detail to show that not all our counterexamples
are the same.

Let us try to extend our knowledge of regularly open sets. As Bledsoe
mentions 1in [3], one of the natural steps to undertake is to test for closure
with respect to some function. Specifically, if P is a n-ary predicate and

f 1is some defined n-ary function then P 1is closed with respect to £ if
v Al’ e .,An[P(Al) Ao A P(An)———)'P (f(Al, - .,An))] .

When dealing with sets, some of the most obvious functions to comsider are
U,N. This would seem especially true in topology since topology is nothing more
than a family of sets closed with respect to union and intersection [with some

cardinality restrictions]. So, going back to our notion of regularly open set,

two possible theorems pop into mind

1. Regopen(A) A Regopen(B) ——>> Regopen(A B)

2. Regopen(A) A Regopen (B) ———3sRegopen(AUB)

14.

Indeed, the GRAPHER establishes the truth of (1) immediately. The second con-
jecture is more difficult. After the program has defined the main concepts, we

have (2) in the restated form

2'. OPEN(A) A !—-\.O = A N OPEN(B) A 33_0 = B——>O0PEN(AUB) A AUB™ = AUB

The first conclusion is immediately verified and the second is redefined as

AUB cAUBC A AUBC c AUB .

The first inclusion relation is also immediately verified. The program grinds

on the second conclusion, redefining it as:

X, € AUB -—-—-)xO e AUB .

The hypothesis is asserted but we have failure on the conclusion. Now the program
tries for a counterexample and it asserts %, € (AUB)', or, as the GCRAPHER

prefers to say, X, € A'NB'. At this point our computer-produced graph contains

the following subgraph, (using the fact that AUB=AUB to deduce that X € (XU ﬁ-)o):

X
v_

Avu

o GEY,
K/\ 7 Sy |
v

’ ; / 6 Xy @ /
v . °
" w \\\

15.

Note that the fact X, € A*NB' dictates that Xy € A' and Xy € B'. The
graph that the machine constructs does contain these facts. We do not draw them
in here for the graph is already complicated enough. The complinentary pair of
arcs between A and KO indicate equality. WNow the program begins by assigning
to A the value ¢. When ¢ is substituted for A throughout and the reductions
are made, then the graph reduces to a graph containing nodes pertaining to B only.
This reduced-graph contains the fact that Xq e B and xo ¢ B' [try to see how
this happens] hence A=<}v is not possible.

The program tries to put the point X into A but this does not work since

Xy € A'. A is now given the value {po}. Of course KO gets the same value and
the program tentatively assigns A the same value.

The GRAPHER now tries to give B a value. The possibilities .é’
{xo}, {po} are easily eliminated. [Note that if B={p0} then B=A and we
are back to the case where the .graph talks only about A.] Now B gets the
value {pl}. Hence EO gets the same value. B also gets the same value. This
choice for B fails since it means that AUB {(which is the same as AUB’ is
equal to {po,pl} . But from the graph we know that %, € AUB. So the program
realizes that it must give another point. The first point on the list to try is

x,. and so for the time being B= {pl,xo} looks good. Let us recap our assign-

0

ments so far

A=30= {py}

B =30 = {py,pg)
A = {py)

B = {py>%y)

At this point our space X= {XO’pO’pl}’ and our open sets are A,B,A",B' and all

i6.

possible unionms. In other words

7 = {{pghs (o)i lpgepyJ), {py, %0

Hence the closed sets, call them 7' are {{Pl,xo}{PO,xO},{xo},{Pl}}. Hence

we have the following topology

X

m——

We have AUB = {po} U {pl} = {po,pl}. Hence AUB = AUB = {pO}U{pl’XO} = {Po’pl’xo}

— = =0
and AUB = (AUB)" = {p.,p;s%3)g = {pyrPysPg)-

But notice that in this topology;> §0=={x0,p1}‘ violate;-the restriction
in the graph that B C EO. So GRAPHER looks at its last assigmment, which was
the assigmment of {xo,pl} to B and tries to redo it. It finds that it cannot
redo B so it looks at the assigmnment of {pl} to B. There is nothing GRAPHER
can do to this assigmment since by its rules, if one new point won't work, two
new poiﬁts won't work. The next assignment that GRAPHER can undo is the assign-
ment of {po} to A. GRAPHER makes the tentative assignment {po,xo} to A

and proceeds as before. This time everything works and we have the following

space and topology

17.

JRR—

We would like to present one more counterexample that was generated after the
previous work was done. The algorithm had evolved some in the meantime, but is
sufficiently like the algorithm mentioned to make the following example meaningful.

The computer was asked if every subspace of a normal space is normal. For
those who have forgotten, a topological space is normal if every two disjoint closed
sets can be separated by open sets. In response to the query, the machine printed

the following four point space as a counterexample.

18.

Note that X with the indicated topology has no pairs of disjoint closed
sets and hence is normal. However, we drop the point P, to form the subspace
X', we now have the two disjoint closed sets {pl} and {pz}. But every open
set that contains Py also contains Ps and every open set that contains Py
also contains Py hence {pl} and {pz} cannot be separated by open sets. We
were pleasantly surprised by the appearance of this example since the standard
textbook counterexamples are quite complicated. For example, if is the first
uncountable ordinal and « the first infinite ordinal, then the space
X=[0,0] x[0,w0] 1is normal. If we form X' by dropping off the cormer point
©,w), then X' 1is not normal (X' is called the Tychonoff plank). Other
examples are formed by embedding some non-normal space in a cube (which is always

normal).

19,

Conclusion

We have presented an algorithm for constructing small counterexamples to
false topological theorems. We make no claims for any sort of generality -- even
within the realm of point set topology. The algorithm has been applied to quite
a number of simple false assertions and it did succeed in generating simple
counterexamples. There are a lot of interesting complications associated with
generalizing the procedure. One of the most apparent is what to do with the
tantalizing problem of cardinality: that is, when we step into the domain of

the infinite. To a large degree, though, the only way these topologies differ

is that they are infinite. What I mean is that there are, I feel, very few facts

about the concepts finite and infinite, countable and uncountable that people

have as a working part of their mathematical knowledge. I feel it is a challenging,
but not an overwhelming task to isolate many of the facts and incorporate them

into a mechanical mathematician.

REFERENCES

[1] Bledsoe, W.W. and Peter Bruell. A man-machine theorem proving system.
A.I. Jour., 5(1974), 51-72.

[2] Ballantyne, Mike and Bill Benmnett. Graphing Methods for topological
proofs. Univ. of Texas, Math. Dept. Memo ATP 7, 1973.

[3] Bledsoe, W.W. Discussions on theorem proving. Univ. of Texas, Math.
Dept. Memo ATP 10, Nov. 1973.

[4] L. Siklossy and J. Roach. Proving the impossible is impossible is
possible: disproofs based on hereditary partitions. IJCAI-73,
383-387.

