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PREFACE

This paper develops three key ldeas: (1) the Knuth-
Bendix-Slagle approaches to term rewriting are reworked into a
straightforward form which has been the model for all subsequent
treatments of term rewriting, (2) the algebraic properties of
term rewriting systems are systematically developed to the point
that the generalization to equivalence class term rewriting
systems is clearly called for even if the precise details of how
to accomplish that are not evident, and (3) the inclusion of
term rewriting systems in general logical systems via blocked
immediate narrowing and blocked inference (resolution, chaining,
etc.) of other kinds provides the basis of practical systematic

treatments of equality in computational logic.

When I wrote this—paper I did not appreciate the debt which
ijs owed to the earlier work of Evans (Proc. Camb. Phil. Soc. 47
(1951), 647-649) and Newman': (Ann. Math. 43 (1942), 223-243),
primarily because the Knuth and Bendix paper does not discuss
the evolution of their approach. In retrospect 1 can now see
how profoundly Evans' work influenced Knuth and Bendix, and in
“turn how profoundly Newman influenced Evans. The genesis of
Slagle's sets of simplifiers still remains a mystery to me, but
it was from him that I got the idea to consider finite and
unique termination separately. Slagle also introduced the
notion of a priori fully narrowed sets of clauses, but for
reasons known only to him, he did not consider iterated immediate
narrowing. Perhaps the reasons are obvious after one examines
the efforts required to establish the refutation completeness
of blocked immediate narrowing in “Canonical inference.” The
key idea which unlocks refutation completeness proofs for
immediate narrowing is the Knuth and Bendix completion procedure.

Dallas Lankford
Ruston, Louisiana
November 1980




CANONICAL AIGEBRAIC SIMPLIFICATION IN COMPUTATIONAL LOGIC

by Dallas S. Lankford

ABSTRACT

An expansion of the concept of complete set of reductions is developed
and a new general approach to the finite terminetion pfoblem is‘presented.
Through consideration of mathematical sﬁructures from logic and universal
algebra, a general design approach to the construction of canonical
simplification routines is présenped which is applicable to many well-known
theories, including commutative theories, such as groups, rings, Bbolean
algebras,’and modules over rings. Also‘based on the concept of reduction, a ‘
new refutation complete restriction of paramodulation is described which

appears to be a sighificant advance in computational efficiency.




1. INTRODUCTION

A variety of methods for the treatment of equality in computational logic
have been suggested in the past. The case for using equality axioms in
automatic deduction has been investigated by Kowalski (8), but most approaches
have favored a separate inference process, often a variation of paramodulation
which was introduced by Robiﬁson and Wos (14). From a theoretical standpoint,
paramodulation is a valuable conceptual asset for theorem prover design, if
oﬁly because it provides a basic model of a refutationally complete theorem
prover for equality. Iliowever, as experiments have shown, paramodulation is
practically unacceptable'because of catastrophnic exponential clause explosion.

Systems based on the equality axioms are sinilarly inefficient.

One theme which emerged from the ensuing searcn for computationally more
efficient equality procedures has been the attempt to extend complete
restrictions of resolution to analogous complete restrictions of paramodulation, &:
ekemplified by Chang (2), Chang and Slagle (3}, Kowalski (8), Lankford (9), and
Vios and Robinson (18). However, many complete restrictions of resolutibn,
especially combinations of strategies, fail to have analogous complete
restrictions for paramodulation. Furthermore, experimental results have
indicated that these kinds of restrictions do little to improve the power and

efficiency of theorem provers for eguality.




A more promising trend has been the investigétion of a number of ideas
related to the informal notion of what has been called simplification or
reduction. In an early study of a kind of reduction known as demodulation,
Wos, et al. (17) recognized the primary obstacle to an adequate theory of
simplification, citing the existence of unsolvable word precblems as an
insurmountable barrier against the development of universal canonical
procedures for equality. Still, the unsolvability of the word problem for
some theories does not imply the unsolvability of the word problem for éll
theories; and, indeed, a primary goal of this paper is to illustrate how
well-known mathematical solutions to the word'préblem for specific’theories
canrbe systematically used to construct more efficient procedures for
equality in computational logice. In addition, experiments. such as those of
Bledsoe, et al. (1) and Huet (6), which support the folklore of the utility
of ad hoc simplification in computational logic, and the theoretical articles
of Plotkin (13) and Slagle (15) point to the need for a better understanding

of the practical and theoretical role of reduction in theorem proving.

The results of this paper may be viewed as generalizations and extensions
of two sources, Knuth and Bendix (7) and Slagle (15), both of which are
concerned with decision procedures for equational theories that are based on
certain sets of reﬁrite rules. These two sources grapple with two central
problems in the development of a practical theory of reduction, that of
determining when an algebraic theory can be axiomatized by such sets of

rewrite rules, and that of combining the associated decision procedures with




rules of inference in a refutationally complete manner. Knuth and Bendix (7)
explore the former problem, investigating an algorithm which often detects
the solvability of the word problem for a given theory by mechanically
deriving the appropriate set of rewrite rules, which they call a complete set
of reductions, from the axioms of the theory. Their method involves
expressing the axioms of the theory as a set of rewrite rules which possess

a finite termination property, and deriving additional rewrite rules from the
axiom set until the initial and derived rewrite rules satisfy a closure
condition. While the importance of their method is attested to by a number
of examples, including a solution to the word problem for free groups on no

- generators and no relations, their method does not apply directly to
commutative theories, since a commutative rewrite rule fails to possess the
finite termination property. Slagle (15) attacks the latter problem, |
suggesting ways to combine such sets of rewrite rules; which he calls sets of
simplifiers, with resolution and paramodulation, and establishing refutation
'completenessrfor some specific canonical inference rules, for example, blocked
subsumption hyper-resolution and paramodulation in conjunction with two

additional inference rules called identity and fixed paramodulation.

In Section 2, I merge the two variant concepts of canonical reduction, namely,
complete sets of reductions and sets of simplifiers. The principal difference
between my approach and the approach of Knuth and Bendix (7) is that,
borréwing from Slagle (15), I redefine a set of reductions to be a set of

rewrite rules which possess a finite termination property, as opposed to a




set of rewrite rules that satisfy a certain order relation. Except for
Theorem L of Knuth and Bendix (7), all of their theorems which develop the
completeness test clearlylremain true for this more general concept of
reduction. Consequently, my discussion will be cursory, relying where
possible on their results. The primary new result of this section is an
alternate approach to the finite termination problem which is at least as
convenient for application purposes and perhaps conceptually more transparent

than the approach of Knuth and Bendix (7).

In Section 3; I begin with a summary of some well-known facts from logic
and universal algebra which provide the theoretical framework for a discussion
of the algebraic properties of sets of reductions. A thorough development

of the requisite preliminaries is beyond the scope of this paper, so I will

assume familiarity with portions of Universal Algebra, by G. Gratzer (L) and

Cylindric Algebras, Part I, by L. Henkin, J. D. Monk, and A. Tarski (5},

whicﬁ are more than adequate for the task at hand. After the preliminaries,

I first partially characterize a set of reductions by showing that a complete
set of reductions constitutes an algorithmic realization of the canonical
homomorphism from the absolutely free algebra of terms to the free algebra on
a countable number of generators for the class of algebras which satisfy the
rewrite rules that form the complete set of reductions. Because complete setls
of reductions do not exist for all axiom sets, this partial characterization
is clearly insufficient., To complete the characterization, I show that ihne

free algebra on a countable number of generators for the class of algebras

1. This is not entirely accurate. At the very least one must free the
diamond lemma of the method used to establish uniform termination, which
had in fact been done by Newman in 1942. And I st£ill have not been able
to determine if the unique termination theorem of Knuth and Bendix is
the same as the one in "Canonical inference.’
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which satisfy the rewrite rules of a set of reductions is the homomorphic
image of the algebra that is the homomorphic algorithmic realization by the
set of reductions of the absolutely free algebra of terms. I then employ this
algorithmic realization of an intermediate algebra between the absclutely

free algebra of terms and the free algebra as the basis of a general method
for constructing decision procedures for equational theories which contain
commutative axioms. Finally, I apply the method to obtain decision procedures
for the commutative theory of groups and the commutative theory of rings, and
indicate how this approach may be used to obtain decision procedures for

other well-known commutative theories, such as Boolean algebras and modules

over commutative rings.

In Section L, I outline a new complete restriction of paramodulation
that I call derived reduction, which is essentially the process tnat Knuth
and Bendix (7) used to derive complete sets of reductions from incomplete
sets, Their process generates inferences from tﬁe axiom set until a closure
condition is satisfied, or until an equation is inferred which cannot be
expressed as a rewrite rule without destroying finite termination. Derived
reduction uses the same generating process until equations which destroy
finite termination are inferred, at which point derived reduction continues,
using bidirectional substitution of eguals into and by the equations which
are not representable as rewrite rules. £Even though a set of eguations may

not be extendable to a complete set of reductions, derived reduction is

refutation complete. Incidentally, as a corollary to the refutation




completeness of derived reduction, it follows that the functional reflexive
axioms are not needed ; and, in addition, substitution into variable positions
need never be allowed. The proof of refutation completeness is not contained
in this paper, but will be the subject of a subsequent article% Here 1 am
mainly concerned with providing an adequate description of derived reduction,

through examples, for design and implementation of practical theorem provers

for equality.

2. This proof was to have been based on the solution to the functional
reflexive problem (10), which contained an error that the author and others
were unable to repair. The case when all equality literals occur as units
and is discussed in "Canonical inference." Univ. of Texas, Math, Dept.,
Automatic Theorem Proving Project, Austin, Texas 78712, report ATIP-32,
December 1975. So, the reduction methods solve the functional reflexive
problem when equations occur as units, but it remains open whether the
rewrite rule methods can be extended to the non-unit case without the
functional reflexive axioms. The functional reflexive problem has been
reported solved for ordinary paramodulation in "Proving theorems with the

modification method." by D. Brand, Siam J, Comput. 4, 4 (Dec. 1975), 412~

430. But we have been unable to understand that development. In any case,
the method of proof there seems substantially different from what is needed
to extend the rewrite rule methods. An open problem which might immediately
shed some light on the rewrite rule question is M. Richter's conjecture of

the ground refutation completeness of uniform substitution. Uniform

substitution differs from ordinary substitution in that when a substitution
is done, not just one occurrence, but all occurrences (throughout the entire
clause being substituted into) must be replaced. And if in turn the
refutation completeness of ground, uniform, unidirectional substitution

“could be shown, then the rewrite rule methods could be established for the

general case.




2. REDUCTION

4 primary motive for using reduction is the desire 1o replace the equational
part of a theory by a decision procedure so that no extraneous inferences with
equality are ever made. Although the existence of unsolvable word problems
precludes the full achievement of this objective, the soundness of this
approach is supported by encouraging experimental results, namely, the
widespread application of ad hoc simplification routines as a utilitarian

part of the inference process.

The most conspicuous feature of these ad hoc simplification routines is
the use of thé equational part of a theory as a set of rewrite rules. For
the purposes of this informal preliminary exposition, let us assume that our
only interest is in proving theorems about groups. Of course, any other well-
known algebraic structure could be used in place of group theory in this
account, and the reader should find no difficulty in creating alternate
examples to suit his taste. From the equivalent axiocmatizations of the
‘equational theory of groups, I have arbitrarily selected the so-
called right group axioms, x+ 0=x, x + (=x) =0, and (x+y) +2z =
x + (y + 2) , for my foundation. A set of rewrite rules for group theory is
these axioms {or, as we shall see later, a finite set of consequences of these
axioms) restricted to unidirectional substitution of equals.- Since each

equation has two sides, each equation potentially represents two rewrite rules,



for example, x +0 = x is potentially X +0 =3 X or X —3» x +0
where the arrow indicates tnat when inferences are formed, the right side
replaces the left, and not vice versa. The process of determining which of
the two rewrite rules related to a given axiom to choose for the construction
of an ad hoc simplification routine is related to the finite termination
problem which will be discussed later. ©So, for the present, let us assume we
are given some criterion which determines for each axiom one of the rewrite
rules associated with it; and, furthermore, let us assume that this criterion

has selected X +0 —p x , X + (-X) —>0 , and (x +y) +2 —>x + (y +2) .

Another intrinsic feature of these simplification routines is that the
rewrite ruies are successively applied to an expression (perm, -atom, literal,
clause, etc.) until a corresponding "canonical" expression is obtained. To
the purist, whether the output of a simplification routine is canonical or
not depends upon whether or not the routine realizes a decision procedure for
the underlying rewrite rules. But since an ad hoc simplificétion routine can
be idealistically regarded as a heuristic approximation to a decision
procedure for the underlying rewrite rules, it is not unreasonable to call
its output canonical. To clarify what is meant above byr"successively applied
to an expression", I will briefly outline one of several possible constructions
of an ad hoc simplification routine for the above three rewrite rules of group

theory. An immediate reduction I of an expression E (relative to a set of

rewrite rules R } is the result of replacing one occurrence of L@ in E
by R é s wWhere 8 is any substitution and L ——-) R 1is a rewrite rule

(of (R, ). .t should be noticed that immediate reduction does not depend upon




unificavion in the rull sense of the word, but rather matching of the left
side of a rewrite rule with some subterm of an expression. For example, the
only immediate reductions of (x + 0) + (=(x+ 0)) are x + (=(x +0)) ,

(x +0) + (=x}, O, and x + (0 + (=(x+0))) . As has been said, an ad hoc
simplification routine successively produces immediate reductions until a
canonical expression is obtained., But in view of the above example, since
there are in general many immediate reductions of a given expression, the
simplification routine must be designed so that only one immediate reduction

is associated with each expression.

One approach to extracting a function from the relation of
reduction is to arbitrarily order the rewrite rules so that the routine
produces immediate reductions first by the first rewrite rule, or if the first
does not apply then by the second, and so on. For our present description,
let us choose the order in which the rewrite rules appear above. This still
does not entirely solve the function extraction problem, since, as is seen in
the example above, a single rewrite rule may produce more than one immediate
reduction of a given expression, e.g., x + (=(x + 0)) and (x + 0) + (-x) are
immediate reductions of (x + 0) + (=(x + 0}) be X +0 —>»x . To complete
the function extraction process, let us assume the left-most application of
the rewrite rule is distinguished, for example, x + (-(x + 0)) is the

immediate reduction associated with (x + 0) + (-(x + 0)) by the ad hoc

simplification routine just completed,




iy expository construction of an ad hoc simplification routine above has
overlooked two central design problems for reduction routines, finite
termination and unique termination. The finite termination problem is
intimately related to the earlier problem of determining which of the two
potential rewrite rules to associate with a given axiom., For example, it can
easily be seen by length considerations that an arbitrary choice, such as
x —> x + 0 , leads to infinite sequences of immediate reductions, e.g.,
0 —>0+0 —>0+(0+0) —>..., and in such a case the‘ad hoc routine
doesn't halt. Since a new general approach to the finite termination problem
will presently be described, let us témporarily defer a deeper investigation.
To illustrate the unique termination problem, let us take as an example the
equation -0 = O which is a consequence of the group axibms; If the ad hoc
simplification routinekdescribed above were a decision procedure for group
theory then the canonical outputs for the terms -0 and O would be
identical, which is not the case (since -0 and O have no immediate
reductions, the canonical ouﬁputs are =0 and 0O ), Knuth and Bendix (7)
"have discovered a. necessary and sufficient closure condition for such routines
which possess the finite termination'property to have the unique terminaticn
property, and I will presently elaborate on one version of their test. It
should be recognized that because of unsolvable word problems, for some
theories one or both of the finite and unique termination problems must be
unsolvable. However, the finite termination problem can always be solved
heuristically by the introduction of a depth parameter, and even if the

routine does not have the unique termination property the credence is that
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simplification is still useful since it not only incorporates a number of
equality inferences into a single inference but also obviates retention of

the intermediate inferences,

dy fundamental goal in this section is to formalize the concept of
reduction described above and to present a new approach to the finite
termination problem. I cannot claim any great originality for my
formalization, since it consists of a redevelopment and enlargment, a merging,
if you will, of the concepts of Knuth and Bendix (7) and Slagle (15). For a
tﬁ;roﬁéh understanding of all proofs of this section, familiarity with Knuth
and Bendix (7) is helpful. However, since the new approach to finite
termination is independent of their results, detailed knowledge of their
article is not an absolute prerequisite. For the practical minded‘reader,
the thecrems of this section can be compréhended witnout an understanding of their
’proofs, and therefore easily applied to the design and construction of

practical simplification routines.

The term structure of the first order predicate calculus can be inductively

defined as follows. The symbols of the language consist of: a countable number

of variable symbols vy, Vps V35 .ee ; COnstant symbols C1s €25 C35 ece ; and

function symbols £15 f2, f3, seo 5 Where each function symbol is assigned a

positive integer di called the degree of fi . The set TO is the set of

all variable symbols and constant symbols. The set T.

i+ 1 is the set Ti

together with 21l strings of the form f£.(ty,...,ty ) , where t., ... , and
Jyvle ] d,j 12

ty are members of Ti o Terms are just those strings which are members of
J

i1



Ti for some non-negative 1i . I will often use other symbols in place of
variable, constant, and function symbols, and more readable forms for terms,

like (x +0) + (-(x + 0)) instead of fl(fl(vl’cl) »Eo(£1(vyse9))) &

A set of reduction relations is a finite non-empty set of objects of the

form L —>» R where L and R are terms? A term u 1is an immediate
reduction of a term t (with respect to a fixed set of reduction relations
R ), demoted t —» u , in case there exists a member L —> R of (R and
a substitution @ such that u is the result of replacing one occurrence

of LO in t by RO . It is convenient to think of immediate reduction
as a form of paramodulation restricted to unidirectional substitution, i.e.,
L& does not replace RG , and one way unification, i.e., L& occurs in

t . A set of reduction relations [R. has the finite termination property

in case for each term 1t +there exists no infinite sequence { ——3 t‘l .

to =» ... of immediate reductions. A set of reductiong is a set of

reduction relations which has the finite termination property. 4 term u 1is
a reduction of a term %t , denoted t 3% u , in case t —>p tl —r o o
= t —> u. Included in the definition of reduction are the cases

t —>¢t u when t —3» u , and t —p#* t when t 1is ifreducible, that is,
when t has no immediate reductions. Thus, -——3# 1is the reflexivse,

transitive completion of =2 . A set of reductions has the unique termination

property in case 1t ——3it u and t =% v , with u and v irreducible,
implies that u and v are identical terms. A set of reductions is complete

when it has the unique termination property.

3. Because we will consider reduction relations with the finite
termination property, we usually assume that each variable
symbol which occurs in R also occurs in L .

L, Thus, by definition a set of reductions has the finite

termination property.
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4 central result of Knuth and Bendix (7) is a closure condition which,
wnen applied to a set of reductions, determines whether or not it is complete.
Let us now direct our attention to an extension of that test to this more
general concept of reduction. The only proof in their development which

needs modification is that of the following latiice condition,

Theorem 1 Let (] be a set of reductions, (R is complete iff when
t —> u and t —> v there exists a term w such that u —>% w and |

Y emmedit W e

Proof Let R be a complete set of reductions and let ¢t —3» u and
t =—>» v . Since Gl has the finite termination property, there are
irreducible terms i, and iv which satisfy U =it i, and Vv —x iv .

Because R is complete, iu and iv are identical terms.

Conversely, suppose that when % -;—> u and t e=p v there exists a
term w such that u =»* w and Vv —3* w . The crux of the matter is
that, because of the finite termination property, the depth of the immediate
reduction tree of -each term is finiie. We therefore induct on the depth of
the immediate reduction tree of t+ . For depth 1, u and v are
irreducible, hence, by the laitice condition, identical. For the induction
step, let the depth be k + 1 . OSince the immediate reduction trees of u
and v have depth less than or equal to k , it follows by the induction

hypothesis that u and v have the unique termination property. By the

i3



lattice condition, there exists a term w such that u =3»r w and
V =3t w ., By finite termination, let W =3 i, with i irreducible.
Notice that any irreducible reduction of t that is also a reduction of u
and of v is identical to i, . OSince the choice of u and v was

arbitrary, it follows that any two irreducible reductions of t are

identical terms.

The completeness test of Knuth and Bendix (7) is phrased in terms of
concepts which are not widely known to workers in the field of computational

logic, so I have translated their test into 3 more traditional form below,

Theorem 2 Let G‘ be a set of reductions, let % be any simplification ‘
algorithm, that is, any algorithm which asscciates with each term t a
corresponding R -irreducible term t° ;5 such as the one extracted from the
immediate reduction relation for the ad hoc simplification routine above, and
let P(R) be the set of all paramodulants t = u of pairs of reductions
Ly =—>»R; and Lp —» R, of R such that t = u is obtained from
Lo = Ry by unifying Ll on a subterm of L, which is not a variable, and

replacing the unified occurrence of Ly in L, by Ry .

0{ is complete iff t* and o are identical terms for each member

t =u 'of °(R) .

Proof When the concept of superposition is rephrased in terms of the

14




concept of paramodulation, this proof is essentially like the proof to tne
Corollary to Theorem 5 of Knuth and Bendix (7)? and so the details are

omitted.

Example 1 for small sets of reductions, the above test can be carried

out by hand, so let us apply the test to two sets of reductions, one complete

and one incomplete.

For the former, let ﬂ{ consist of the three reductions
Rl, x+ (=x) —»0,
R2. (=x) +x ———>;O , and
, R3e =~{-x) —> x .
It can easily be seen by length considerations that this 6{ has the finite
termination property. By inspection of cases, it can be verified that P(G{)
consists of
| Pl. 0=0 , by Rl and.Rl,

P2, (-x) +x =0 , by Rl and K3,

n

P3, 0=0 , by R2 and R2,

Ph. x + (-x) =0 , by R2 and R3,

H

P5. x=x , by R3 and R3, and
P6. -x = -x , by R3 and R3.
Notice that in the definition of P(R) it is not necessary to keep
the paramodulant éf a reduction L =% R with itself onto L , since the

paramodulant is R =R , as typified by Pl, P3, and PS5 above. But since the

5. The cases (interaction and non-interaction) are the same, but
the details of the proof seem different, ¢ f., "Canonical

inference.”

15




paramodulants of a reduction L —3 R with itself onto a proper subterm of
1 must be tested, the weaker definition of P(fR) was used for simplicity.
Now let »* be the simplification algorithm which was constructed for the ad
hoc simplification routine earlier. It automatically follows that t* and
u®  are identical for the equations t = u of Pl, P3, PS5, and P6, and it is
easy to check that t* and u"  are identical for the equations t = u of

P2 and PL4. Thus, by Theorem 2, this R is a complete set of reductions.

EQ{_Ehe lattg;? let R consiét of the three reductions of group theory,
Rl. x+0 —>»x , R2, x + (-x) =—>0 , and R3. (x +y) +2 —>x+ (y + 2)
For the moment, let us assume that this 6{ has the finite terminatiocn
property, and let # be the séme simplification algorithm as above. This R
is incomplete because O + z = x + ({-x) + z) is a paramodulant of R1 and R3
on the subterm x + y of R3, and (O + 2)” s, which is O + z , and

(x + ((=x) + 2))¥ , which is x + ((-x) + 2z) ,Aaré not identical terms.
3

Let us agree that a set of reductions 61 satisfies the closure condition

relative to a simplification algorithm % 1in case P(G{} has the property
that t° and u are identical terms for each equation t =u of (R

As is shown by Theorem 2, the closure condition solves the unique termination
problem, but it is necessarily dependent upon finite termination. So for tihe
closure test to be useful there must be available some general, computationally
efficient test for finite termination. One such finite iermination test, based
on length considerations, has already been alluded to in Example 1.

Unfortunately, that test fails for some important axioms, such as associative

16




axioms. A more general method, which accepts associative axioms, has been
investigated by Knuth and Bendix (7). It is based on a class of partial
orderings > , of the set of terms, which have three properties: (1)

is a total ordering of the ground terms, (2) t > u implies t8 > ud
for any substitution @ , and (3) if t > u and w is the result of
replacing one occurrence of t in v by u then v > w . Properties (2)
and (3) above guarantee that when L > R for each L —> R of (R it
necessarily follows that t —> u implies t 2> u . This, together with
property (1) above, insure finite termination. While the adequacy of their
approach is supported by examples, including a solution to the word problem
for free groups on no generators and no relations, I have established the
folldwing characte‘rization of the finite termination property, and developed

a new test for finite termination which seems conceptually more transparent.

Theorem 3 A set'of reduction relations R has the finite termination
property iff there exists a function u‘” defined on all terms, whose range

is a subset of the non-negative integers, and which satisfies t — u

implies Wt > full .

Proof The reverse implication is clearly true, so let R be a set of

reductions, and let ﬂtu be the maximum of the sequences of immediate
reductions originating with t . Clearly, if t —3 u then [uf| 4 th -1,

and so Ht“ > “u“ .

17




Theorem 3 suggests the desirability of general classes of functions
which have the property t —3» u implies utfl:> uu“ s and the next theorem

helps establish one such class.

Theorem L Let R ve a set of reduction relations, let fq, ... , f
be the function symbols which occur in terms of |] s 1et Fi5 see Fi be
functions from the non-negative integers to the non-negative integers such

that

(1) the degree of each F‘j is the same as the degree of fj , and

(2) Fj(xl",‘:’xk""’xdj) < Fj(xl,...,y,...,xdj) when x & ¥ 5

for J = ls.ee5i,

and let {[~“, be a non-negative, integer-valued function on the variable and
constant symbols which satisfies

(3) "i‘j(tl,...,tdj)“ =5y el seees utdj“ ) 5 for 5= 1,u..,i .
Extend this function to a function on all terms by A ‘

(W) “f(ul;...‘,un)” = uulu + eee +““n” when f 'is not among the fj .

¢ Jluell > zr ol for a1l substitutions 6 and a1l L —>R in

R then R is a set of reductions.

Proof Given t —> u , it is demonstrated below by induction on the
term structure of t that ”tu > Uu“ . When t 1s a variable or constant
symbol, t —3 u is simultaneously the notation for "u is an immediate

reduction of t" and a member of R . since It 9" > Uueﬂ by hypothesis,

18




/ ?
using the empty substitution for @ establishes "t“ > llull . For the
induction step, let t be f(tl,...,tm) . On the one hand, if t =3 u
is obtained by applying a reduction relation to one of the t, of f(tl,...,tm)
then f(tl,...,t',...,tm) — f(tl,...,u’,,..,tm) with t' ——> u’
represents t —> u . It follows from the induction hypothesis that [Jt']| >
Hu'u . By considering the two cases, f is among the fy , ..., ’fi s and
f is not among them, it is clear that "t“ > ”uu . On the other hand, if
t —>»u is LO —> RO for some O then “t“>uu“ by hypothesis.

Thus, by Theorem 3, (R. is a set of reductions.

A rich supply of norm functions ll*ll can easily be generated by
selecting the F5~ to be polynomial functions in a finite_number of arguments
over the non-negative integers, whose domains are restricted to the non-negative
integers. Formally, a polynomial in a finite number of arguments over a ring
is a function F defined by a rule of the form F(Xy,..e,X ) = %; IE‘-EF 55
where 13Y sij are products of the Xy and ry are membersiof the underlying
ring. For example, F(xl,xz) = 3xy + sz + Txy%, + 9x12x23 is a polynomial
over the integers in x; and x, . Since condition (2) of Theorem L is easily
estéblished by induction for all such polynomials, it foilows that a
corresponding norm function “'\‘ can always be constructed inductively by
1 fj(tl,...,tdj)“ =r5Cflegll5eees Ntdj 1) and by ll£uy,...u)ll = ol +
eas + uun“ when f 1is not among the £f. . Thus, for this class of

J
polynomial-based norm functions, if the reduction condition, o el > lr ell

for any substitution 6 and any L —3> R of (R. s is satisfied then

finite termination follows by Theorem L. This still does not really show that
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any such norm functions exist, because a set of reductions does not necessarily
satisfy the reduction condition., However, examples are easily constructed,
and I will illustrate a solution of the finite termination problem by applying

the reduction condition to the polynomial functions below for the three group

reductions.

Example 2 Given the three group reductions
' Rl, x+ 0 —> x ,
R2., x + (=x) —>» 0 , and
R3. (x+y)+a2a—>x+(y+32),
let F, and F_ be the polynomials defined by
F+(xl,x2) =2x) + X, +1 , and
F (x) =x, and |
let the norm function [I'll be defined as above by
lof =1,
Wvll = 2 for any variable symbol v ,
ey + toll = 2liegl + el + 1, ana
-t = Yt | .
The reduction condition is verified by checking‘that
(2i+ 1) +1 > i,
(2i +1i) +1 > 1, and
2(2i + 3+ 1) +k+1 22i+(2+k+1) +1

for any positive integers 1 , J , and Kk .
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The results of this section by no means comprise a complete and perfect
practical theory of reduction. Wnile a computationally satisfactory test for
unique termination has been found, only necessary and not sufficient conditions
for finite termination have been given. First of all, both the approach to
finite termination of this paper and the approach of Knuth and Bendix (7)
assume an arbitrary initial choice of one of the two potential reductions
associated with each axiom of a given theory. In the approach of this section,
a second arbitrary choice occurs in the selection of the polynomials to

associate with the function symbols of the reductions. 4An analogous arbitrary

second choice is assumed in the approach of Knuth and Bendix (7). Now this
first arbitrary choice is amenable to computation, since a finite set of
equations has finitely many sets of potential reductions. The second is
apparently not amenable td computation, since here there are infinitely many
.sets of corresponding polynomials; and, in the casé of Knuth and Bendix (7),
infinitely many sets of corresponding weights of function symbols. Ideally,
what would be desired in each case 1is some criterion whereby only a finite
subset of the infinite set need be tested. But for the present, trial and

error remains a quintessential aspect of the approaches to finite termination.
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3. SOME ALGEBRAIC PROPERTIES OF REDUCTION AND THEIR APPLICATIONS

To further delineate the role of reduction in computational logic, I have
scanned the mathematical literature in search of mathematical structures to
use for the framework of a description of reduction as a decision procedure
for the underlying theoryg As it turned out, some of the mathematical theory
needed for a deeper probe into the nature of reduction has been developed as
parts of studies of universal algebra and cylindric algebra. Since a complete
development of the necessary parts of those areas issbeyond the scope of this

paper, I must rely upon the reference texts of Gratzer (L) and Henkin, et al. (5).

A type of algebras T is a finite sequence, ’rl,'{.. ’ q1§ s of non-

negative integers. An algebra of type T is a pair of sets A , F , where

F is a finite set {fl,...,qn} of functions such that the domain of fi is
A'Tiv, the set of all 'Ti~tuples of A, and the range of fi is a subset of

A « Thus, each fi is a function of T& arguments, and implicit in the
definition above is that f; 1is a member of ‘A when T; = 0 « As an example,
let us construct the family of absolutely free term algebras, which will be

the focus of later attention. Td that end, let us define a first order

predicate calculus of type T to be a language based on a countable number

of variable symbols and a finite number of constant and function symbols,

S1 5 ece 5 Sp s where the degres of eaca s; 1is rri . In other words, this
is just a first order predicate calculus with a degree function ’F that has

a finite domain. The set of all terms Tq, has a natural structure as an

8. Throughout we use an informal notion of algorithm. The normal
algorithms of Markov (11) provide a theoretical model when
reductions consist only of the associative reduction and
ground reductions. However, it is not clear whether normal
algorithms are equivalent to reduction systems (though we
are rather certain that they are).

22



algebra of type T , called the absolutely free algebra of terms, when

functions are defined by
fi(tl,.oe’tq—i) = Si(tl,o-c’tTi) @

An algebra homomorphism of type ‘T is a function 6 Dbetween algebras A , F

and B , G of the same type T which satisfies
e(fi(a]_:"-:aq‘i)) = gi( 6(31))-”: 6(a Tl)) s When 'ri # 0 yand
Q(fi)=gi,when Ty=0.

The lemma below, which will be used later, serves to illustrate these ideas.

Lemma 1 If T.T is the absolutely free algebra of terms, A , F is an

.,

algebra o type T , and I is any function from the variable symbols of T,r

to A then 1 extends uniquely to a homomorphism € from T,r‘ to 4 .

Proof Let 6 be defined inductively by indetifying the constants of Tq-
with the corresponding O-ary functions of A ;, and by
s(si(tl"")t ‘rl}) = fi( e(tl):”', e(trrl)} )
where, for clarity, I have used the function symbol s; to denote the

corresponding function of the algebral T'T o

The word problem can be couched in algebraic terms as follows. Suppose
we are given a finite set of equations E which are taken as axioms of a
theory. Let S be the set of function symbols which occur in £ and let
T ‘, S be thev associated absolutely freé algebra of terms. A congruence
relation C on an algebra A , F of type T is an equivalence relation on

A which satisfies the substitution property: for Jj = 1l,..,m, if ay; © asy,

for i - l,.oa, j then fj(all,‘o',alTj) C fj(aZl,oso,azrrj) B Let us assume
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familiarity with the usual notions of structure, interpretation, satisfiability,

truth, and model for first order theories. Let C(E) denote the relation on
T,T defined by
t C(E) u iff t = u is true in every esquality model of E .
Because of the Godel completeness theorem7for first order languages, an
equivalent definition of C(E) is
t C(E) w iff t =u 1is a consequence of E .

It can easily beAchecked that C(E) .is a congruence relation on TT 2 S o

My intention is to construct the quotient algebra related to C(E) . In

general, given an algebra A , F and a congruence relation C on A s let
A/C denote the set of all equivalence classes, that is, the family of all sets
C(a) = {x } x G a}”. A/C» has a natural algebraic structure when functions
{Fl,...,Fm} are defined by
Fi(c(al):"uc(aq‘i)) = C(f(ays.-52 Ti)) .
The quotient algebra of A , F relative to C is the algebra 4/C , 5’ above.

Associated with the quotient algebra is the canonical homomorphism & from A

to A/C which is defined by
g(a) = c(a) .

The quotient algebra T‘T /C(E) , 0’1' is called the free algebra for the

equational theory E . Its connection with the word problem is that

G(t) = @(u) in T,T/C(E) iff t=u is a consequence of E , where
is the canonical homomorphism. Thus, the word problem is solvable in case
there is an algorithmic realization of the canonical homoniorphism from the

absolutely free algebra of terms to the free algebra for the theory.

6. consequence
7. 1 am now no longer sure who to give credit for this result.

Walter Taylor in his "Equational logic” survey in the Houston
Journal of Mathematics ?1979) creditss Birkhoff, G. "On the
structure of abstract algebras.™ Proc. Cambr. Philes. Soc. 31

(1935), 433-45k.
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#dy primary objective in this section is to characterize a set of reductions
in thegalgebraic setting described above. As a first approximation, I
show that a complete set of reductions 62 may be viewed as an algorithmic
realization of the canonical homomorphism from the absolutely free algebra of
terms to the free algebra for the equational theory E((R) , where E(R)
denotes the equations L =R such that L —> k belongs to G{y. Next I
will show that the free algebra for an equational theory E is isomorphic to
the free algebra on a countable number of generators for the class of algebras
which are models of E . Through a well-known result of Garrett Birkhoff on
equational definability, this characterization leads to a useful tool for
identifying unsolvable problems for complete sets of reductions. Birkhoff's
condition for equational definability is that the class of models of'the
theory must be closed under the formation of subalgebras, homomorphié images,
and direct products. As an application of this tool, a complete set of
reductions does not exist for fields or integral domains, since those classes
are not clocsed under,direct products. In addition, a complete set of reductions.
does not exist for some equatiohal definable algebras, so it is highly
desirable to have a mental model of an incomplete set of reductions. I provide
such a model by showing that the free algebra for the equational theory E(R)
is ine homomorphic image of the algebra that is the homomorphic algorithmic
realization by 0{ of the absolutely free algebra of terms. I then employ
this model as the basis of a general method for constructing decision
procedureé for equational theories which contain commutative axioms. Finally,
I apply the method to obtain decision procedures for the commutative theory of

groups and rings, and indicate how this approach may be used to obtain
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decision procedures for other well-known commutative theories, such as Boolean

algebras and modules over comnmutative rings.

Theorem 5 If R is a complete set of reductions, and #* 1is any
simplification algorithm, that is, any algorithm which associates with each
term t a corresponding R -irreducible term t¥ , then c(E(RY)(v) = c(ER) (w

in Tq , S Aiff t* and u* are identical terms.

Proof If C(E(R))(t) = C(E(R))(u) then t c(E(R)) u, that is, t =u
is a consequence of E(G{) . That t* and w* are identical is now show by
inductiéﬁ‘on the consequence structure. The initial consequences of E(62) P
which are the equations of E(G{) “and substitution instances of them and
X = x , can be shown to satisfy the identical term condition. For the
induction step, the immediate consequences are (1) u=t , if t =u was a
previous consequence, (2) t =v , if t =u and u =v were previous
consequences, and f(tl,...,tk,...,tm) = f(tl,,..,u,..,,tm) » if t, = u was
a previous consequence. For (1), u* and t* are identical because, by the
induction hypothesis; t¥ and u* are identical. For (2), use a similar
argument. For (3), by the induction hypothesis tk* and u® are idéntical;
'hence, by unique termination, (f(tl,o..,tk,...,tm))* and (f(tl,...,u,...,tm)*

aré identical.

Conversely, if t* and w'  are identical terms then clearly t = u is

a consequence of E(R), so t C(E(R)) u .
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The concept of a free algebra on a countable number of generators which
satisfies a set of equations is included in a more general notion of free
algebra below, which I have taken from Gratzer (4). Let ‘){ be a class of
algebras of a fixed type, let A be a member of ?{ 5 and let G be a
function whose range generates A , that is, A 1is the smallest subalgebra of

A which contains RANGE(G) . 4 is said to be a free algebra over ?{ with

generating family G in case for any algebra B of X and any function W

from DOMAIN(G} to B, there is a homomorphism €& from A to B such that
5" = O e°g s 1e€oy ‘// is the composition of 6 with G . It easily
follows that the homomorphism 6 is unique, so that, in the .jargon of
univers-al algebra, the free algebra over % with generating family G can

be depicted by the diagram

G :
DOAAIN(G) > A

which is called the universal mapping property for A . Next s L show that the
free algebra for an equational theory E 1is isomorphic to a free algebra on a
countable number of generators over the class 7] of models of E by proving

that it satisfies the required universal mapping property.
Theorem 6 If E is a set of equations then TT /C(E) satisfies the

universal mapping property for the free algebra over the class m of models

of E with generating family G = {(vi,C(E)(vi)) l vy is a variable symbol} .
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Proof Let B be any member of m and let sl' be any function from

DOMAIN(G) to B . It is convenient to depict the completed proof by the

diagram
DOMATIN(G) .—-—f—-—-—a T /C(E) .:-—-—-27-—-—- T
6
; g
B

where 7) denotes the canonical homomorphism from Tq to TT/C(E) . Clearly
G generates Tp /C(E). Since DOMAIN(G) is the set.of variable symbols, W¥

has a unique extension to a homomorphism ¢ by Lemma 1. Thus by the universal
mapping prope:ty for quotients it follows that théi‘e exists a unique homomorphism

© such that ¢ = 60"] . Now it easily follows that SIJ = Bed .

The above result is peripheral to my development, but as I have said,
it does lead to a helpful test for identifying futile lines of work, namely
attempting to find complete sets of reductions when the task is impossible.
tven for.theories which are equational definable the word problem may be
unsolvable, so it is exigent to have guidelines for that situation. Toward
that end, let 62 be a set of reductions, let =+ be any simplification
algorithm which satisfies

(£5(tyseeest .Ti))* = (£5(t7%50005t Ti*))* ,

3

has a natural algebraic

and let T.* be the image of Ty under # o Tp

T

structure of type T when operations o; are defined by

Oi(tl,cgo’t ‘ri) = (fi(tl,o-a,t rri) )* ;

and, moreover, 3 1is clearly a homomorphism from T‘T s S onto TT* s O »
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Theorem 7 If E is an equational theory, (R is a set of reductions,

and E((R) is a set of consequences of E then the free algebra for E is

a homomorphic image of T‘T% s O e

Proof It can be seen that Tq/C(E) is a homomorphic image of Tq./C(E(Gl)}
by showing that @ (C(E(R))(t)) = C(E)(t) defines a homomorphism & onto
Tq-/C(E) . That Tq./C(E(ﬁk)) is a homomorphic image of Tq-* 5 0 follows
by observing that Y(t) = C(E(R))(t) defines a homomorphism Y onto

Ter /C(E(R)) .

Theorem 7 forms the basis of an approach to the word problem for theories
with commuatative axioms. Given an equational theory E | s isolate a subset
of h and the well-known consequences of E which can be expressed as
reductions, form the intermediate algebra Trr* ;s and by some, as yet
unspecified, method construct the free algebra for E . The next example will

serve to illustrate. this apprecach.

Example 3 The equational theory of commutative groups is the set &
consisting of the four axioms
Gl. x+0=x,
G2, x+ (=x) =0,
G3. (x+y) +z=x+(y+2), and
Ghe x+y=y +x .,
Let (R be the thrée reductions
Rl. (x+y) +2 —>x+(y +2),
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R2, ~(=x) —>» x , and

R3. —=(x +y) —> (-x) + (=) ,
and notice that finite termination is assured by the polynomial functions F
and F_ defined by

Fo(x,x) = 2%y + xp + 1, and

F_(x) = 2x .
An analysis of the structure of Tq-* shows that its members are (1) 0 ,
(2) any variable symbol Vi s (3) -1 where I is an irreducible of the
first or second kind, and (L) a finite sum of irreducibles of the first three
kinds, wnich I will denote by 2 . It is well-known that the free algebra
for group theory.is isomorphic to the countable direct sum of the group of
integers Z , + , which I denote by EB:Z s> * and which is the group of
functions from the natural numbers N to Z such that ‘{'n ‘ f(n) = O}' is
finite, where the group operation is pointwise addition of functions. With
the above characterization of the free algebra for group theory as 63‘2 s *
it is easy to "see" the homomorphism from T1¥* onto the free algebra for
group theory. Let Occ(e,}i) denote the number of occurrences of e in j{ 5
and define the homomorphism O from T.T* onto ‘the free algebra by-

| Occ(O,ji) - Occ(~0,2) , when n=1 ,and
6 (X)(n) =

Occ(vn _ l,ﬁi) = Oce(=v, _ l,}i) » Wnen n 2 2 .

Clearly a8 is a homomorphism and onto. In addition, @‘Z s + 1s clearly

isomorphic to a subgroup of Tq-* s S0 there is a representation of the free

algebra within Tq ' .
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To illustrate the process of mapping to Tq-* described above, let us
examine a sample proof of x + ((=(x +2)) +y) =x+ ((-x) + (y + (-2))) .
First, the irreducibles of both sides are produced,

x + ((=x) + ((~2) +y)) and x+ ((=x) + (y + (-2))) .
Mapping to @Z , + identifies both irreducibles with the same element
O , if n=1 , because there are no occurences of O ,

O , if n =2 , because the occurrences of x and -x. cancel,

il

f(n) = 1 , if n=3 , because there is one occurrence of y ,
-1 , if n=1U4 , because there is one occurrence of -z , and
0 s otherwise, because there are no other variable symbols,

The image of this f above back in Tq-% is y + (~z) , so the image of the

original equation is y + (-2) =y + (-2) .

This example may seem contrived unless I explain my selection of G{ and
then show how free algebras for other theories can be constructed. The primary
impetus for my approach is found in the following assemblage of ideas. By
theorem 7 it follows that the free algebra for commutative groups is a
homomorphic image of the free algebra for groups. The free algebra for groups
has been shown by Knuth and Bendix (7) tq be realized by the complete set of
reductions which consists of

KBl X +0 =3 X ,

KBZ2. O+ X —3x ,

KB3, x + (=x) —>» 0 ,

KBh. (x) +x —> 0 ,

KB5. (x+y)+z—>x+(y+2z) ,
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KB6., -0 =—3>»0 ,

KB7. =(=X) =3 x ,

KBB. ~(x+y) —> (-y) +(-x) ,

KB9. x + ((-x} +y) —>y , and

KB10. (=x) + (x +y) —3>y .
It can be shown that the homomorphism from the free algebra for group theory
to @2Z , + has the same definition as the previous homomorphism 6 . By
inspection of KBl - KB10O it can be seen that the effect of the reductions KB,
KB2, KB3, KBL, KBS, KB9, and KB1O is duplicated by e s which leaves only
KB5S, KB7, and KBS as essential reductions. Because the image algebra of the

algebra of irreducibles Tq-* is commutative, I replaced KBS by R3.

Although I have justified my selection of 6{ in this case, how should
one proceed when the free algebra for a suitable subtheory is not conveniently
available? sxamination of KBl - KB10 indicates that many of the reductions of
the desired set will corresponé'to well-known identities of the theory. For
theories composed of "randon{ axioms, the algorithm of Knuth and Bendix (7)
should be a powerfui aid in the search for the free algebra. Let us trace the
"by hand" approach below through a construction of the free algebra for

commutative ring theory.
Example i Examination of the axioms and elementary identities of

commutative ring theory cause me to postulate that the set of reduction

relations consisting of
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CRl. x+0 —>»x ,

CR2. 0 +x —>»x ,

CR3. x + (-x) —>0 ,

CRh. (-x) +x —>»0 ,

CRS. (x+y) +2 —3>x+(y+2) ,
CR6e x ¢ 1 =—>x ,

CR7: 1 ¢ X —3» X ,

CR8., (x e y) e 2 —>x . (y +z2) ,

®
N

st

®

CR9. x» (y+2) —>»(x y) + (x

CR10, (x +y) ® 2 =»(x°2) +(y *2) ,_
CRlly =0 —>»0
CP.iZ.,,—(-x) — X
CR13. =(x + y) = (=x) + (~y) ,
CR1h. X ¢+ 0 —> 0 ,
CR15. 0 ¢ X —3> 0 ,
CRlb. x ¢ (=y) —> =(x - y) , and
CR17. (=x) + ¥y —> =(x + y)
has the finite termination property. In preparation for Theorem L, let the
norm function Jlell be defined by
ol =lolf=lll=2 ,
”t -+ u”-—— 4 Ht” o+ uu“ +3 ,
lle o ull= JJef| 2 lul] +2 , and
fl=tll = 2t]] +1 &
It is easily checked that the reduction condition of Theorem L is satisfied.

The irreducibles of T.T* in this case can be seen to be (1) 0 , (2} 1,
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(3) -1, (L) vy, (5) -v;y, (6) finite products of variable symbols which I
will denote by Tvy (7 —TTvi , and (8) finite sums of irreducibles of
types (2) through (7) which I will denote by qf . The free algebra for ring
theory is well-known to be the polynomials over the ring of integers 2 , + ,
in a countable number of variable symbols Xl > Lo s X3 s oss which I denote
by Z(Xy) . Let me briefly remind the reader of the construction of Z(Xy)
For this reminder, let N be the set of natural numbers {O s 1L 32 5 coe }
and define :
H={t:y—>n | {n ] 2(n) #0} is tinite}.

One thinks of Jf as being the finite products

TT‘ X f(n)

fny A0 O
et z(ip) = {7 :8F —z | {r | r(0) #03 is finite} , and notice that
2(X;) is a ring when operations ® and @ are defined by
F @ o
(F ® o))

H

F(f) + G(f) , and

> F(g) - G(n)

g#h =

i

where # is defined by

(f72) (n) = £(n) +g(n) .
A decision procedure for Z(Xi) is constructed as follows. Let the finite
products TTXi of Z(Xi) be identified with corresponding products c(TTXi)
containing the same occurrences of symbols in their natural order, €.g.;
c(X1X3X1X2) is X1X1X2X3 . Since elements of Z(Xi) are finite sums of finite
strings  +7[X, , two members of z(X;) are equal iff the number of occurrences
of products corresﬁonding to c(TTXi} minus the number of occurrences of
expressions —1TXi corresponding to —c(T[xi) is identical in both members

of each c(TrXi). A decision procedure can now be errected within qu* by
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ordering the oproducts c(]fxi) through c(TrXi) £ C(TTYi) iff the length of
c(TTXi) is shorter than the length of c(TrYi) s, or at the first position from
the left that they differ, the corresponding variable symbols A& and vy
satisfy j < k . Let us illustrate this decision procedure with a sample

proof below.

To prove in a commutative ring that (x + y)2 = x2 + 2xy + y2 s let us
assume that the equation is given as |
(v + v,) ¢ (vg +vy) = (vy e vq) + ((vy ¢ vp) + ((v = ) + (vp = v)) .
The left side of this identity reduces to the swn’df, which is
(Vl e Vl) + ((VQ e Vl) + ((Vl e V2> + (V2 ° Vg})) s
in Tq.* s and the right-is already irreducible. Both of these map to the
same term in the realization of Z(Xi) in Tq-* , namely

(vy e vy) + ((vl e Vo) + ((vy e vy) #+ (vy « v5))) .

These two examples help us believe ihat the methods suggested by this
section will result in decision procedures for many other well-known
commutative theories, such as Boolean algebras and modules over a commutative
ring. The methods were developed to overcome the difficulty of expreésing a
commutative axiom as a reduction, but it should not be overlooked that some more
general notion of reduction could not only be acceptable for commutative axioms
but also more efficient for computational purposes. However, the fact thalt some
important theories, such as integral domains and fields, do not have decision
procedures for their-equatibnal parts suggests that methods based on Theorem 7
will continue to be important in that they offer a conceptual guide for the

construction of heuristic approximations to unavailable decision procedures.
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L. D<ZRIVED REDUCTION

The existence of unsolvable word problems, and the fact that the
construction of the free algebra must be done theory by theory are
inconveniences which help direct our attention to combining sets of reductions
with inference rules in z refutationally complete manner., Some work has been
done in this direction by Plotkin (13) and Slagle (15), but since derived
reduction is based on ideas of Knuth and Bendix (7), I will not mention their
work here. The best use of the algorithm which often derives ccmplete sets of
reductions from incomplete sets would seem to be combining that algorithm with
a simultanééﬁ;WSeaféﬁ for a refutation, which is what derived reduction does.
The refutation completéness of derived reduction, which is related toc a
solution of the functional reflexive problem by Lankférd (10)? will be the
subject»ofra subsequent article., Here I am primarily concerned with providing
and adequate description of derived reduction, through examples, for design
and implementation of practical theorem provers for equality. Also, I will
mention a refutationally complete restriction of derived reduction which may

significantly improve its effectiveness.

For a thorough discussion of the algorithm, consult Knuth and Bendix (7).
I will content myself here with a brief statement of comparison between
nmy approach and theirs. Both algorithms are based on Theorem 2, but my
approach treats finite termination through Theorem L, whereas theirs is

dependent upon the class of partial orderings mentioned earlier.

9. Reference (10) did not withstand careful analysis. See pageyé
of this paper for comments.
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Example 5 Let us assume that our interest is in proving theorems about
groups, and, in particular, that we would prove if x + x = 0 then the group
is commutative. Derived reduction begins in the usual manner with the axiom(s)
and the denial of the conclusion,

4e X+ x=0 , and

D. a+b#b+a .
Of course, elimination of quantifiers through Skolemization is assumed. It
would be senseless to rederive a complete sét of reductions for group theory,
so the presence of the reductions KBl - KB1O is assumed. Furthermore, let us

and F_ , defined by

assume the presence of two functions, F,

F(xy) =2x+y+1 , and

F_(x) =2* ,
and a corresponding norm function Wl cefined as in Example 2, It is easy
to check that the norm function -1l , by Theorem L, establishes the finite
termination of XBl - KB10. Now the aim of reduction is to replace the equational
part of>a theory with a decision procedure, so a reasonable beginning for
derived reduction is to attempt to incorporate the axiom(s) as a reduction into
the complete set of reductions 62 consisting of KBl - KB1O, and to try to
exténd the resulting set of reductions to a complete set. The first step is
easily accomplished by ncticing that i + 1 > 1 for any positive integer 1 ,
so that the axiom A may be added to 62 as

Rl. X+ X =2 0

without destroying finite termination. Next, the test for unique termination

. 10
is applied to this new set of reductions G{l . Let me assume the existence

10. (Rl consists of KB1-KB10 and R1.
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of an algorithm which produces the members t = u of ?(6{) of Theorem 2,

sequentially testing thatt1¢*  ana ¥

are identical. The algorithm that 1
have in mind will be reflected in the order that I discuss its outputs below.

0l. 0 = 0 is produced by KBl and R1l, and so is deleted.

02. O 0 1is produced by KB2 and Rl, and so is deleted.

03. 0+ 2z =x + (x+ 2z) 4is produced by KB5 and R1, and since (0 +2)"
is z and (x + (x + z2))" is x + (x + z) , the set of reduction ‘?1 is
not complete. The heuristic of Knuth and Bendix (7) is to determine if
z=x+ (x + z) can be added to the current set of reductions, in this case
R, , without destroying finite termination. In this case,

K2, x + {x + 2) >z
qualifies as a reduction because 4
21+ (2i+3+1)+1>1

for all positive int‘egers i and j . After this is done, the new set of
reductions 6{2 consisting of 0{1 and R2 is tested for completeness. The
next reduction generated by this process is

R3 =X =2 X .
After each new reduction ié generated, the previous reductions are tested to
see if they collapse further under the new reduction. For R2 this did not
happen, but for R3 a number of the previous reductions are transformed,
resulting in some deletions. Fof example, KB3 is transformed into x + x —3>» O
which is redundant because of R1l, and thus deleted, while K88 is transformed
into x+y =y +x . As is seen, this process will sometimes result in
equations which cannot be expressed as reductions, but in such a case derived

reduction continues, allowing paramodulation into and by both sides of these

11. whether
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equations. After the reduction process using R3 is completed, the new set of
reductions 6{3 is

Ri1le 2+ 0 e X

R12, O+ X =3 X

R'3. (x+y)+z—>x+(y+12z) ,

R, x + (x+ 2) =—>» 2 , and

R'5, X+ X =30 ,
and the equation list is

El. x+y=y+Xx .
Let us assume alternate rounds of extending th% complete set followed by a
round of the special paramodulation described above. In this case, the first
round of paramodulation produces the contradiction

C. a+b#b+a

by E1 and D.

Zxample 6 In a group, x +x =0 implies (x +y) + ((=x) + (=y)) =0 .

This example is like the last, except that the denial of the conclusion is

Do a+ (b+ ((-a) +(-b)) £0 .
Derived reduction proceeds as beforé, until after the production of R3 of
Example 5 the denial is replaced by

D'y, a+ (b+(a+b))#0 .
Paramodulating E1 (of Example 5) into D' produces a + (b + (b + a)) # 0 which
reduces by R'L and R'5 (of Example 5) to the contradiction

c. 0#0 .

12 { toward
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gxample 7 In group, x + (x + x) =0 dimplies ({((x +y) + ({(=x) +
(=y))) +y) + (~({x+y) + ((-x) + (=y))) + (-y)) =0 . This example,
introduced by Hobinson and Wos (14) for a comparison of resolution and
paramodulation, has received repeated attention as a "difficult® theorem for
equational provers. Nevins (12), using paramodulation and prohibiting
substitution into variable positions, which has been shown complete by
Lankford (10), has reported a computer proof in which 415 new formulas were
generated, With the methods of this section, a much.more efficient proof 1is
believed possible,13Again I begin with the ten group'reductions, the

hypothesis expressed as a reduction
a Rle x+ (x +x) —>» 0 s
and the Skolemized, reduced, denial of the conclusion

D. a+(b+ ((-a) + (b+ (a+ ((-b) + ((-a) +(-b))))))) #0 .
The first round of reduction production is similar to that of Zxample 5,
resulting'ln | |

R2., x+ (x+(x+32)) —>» 2z .
The next round of reduction production results in output
O =X =XxXx+X o

Strictly speéking, this does not qualify as a reduction, since 21 and 3i+ 1
are incomparable. I could handle this situation through a redefinition of the
norm function, but the above output is a definition of the function -~ in
terms of the function + , and as such represents a meta-reduction which only

needs to be used for one round of reduction. So I will assume that derived

reduction is further restricted to identify and use meta-reductions. Other

13. Our belief was subsequently confirmed, see W. W. Bledsoe's
“Non-resolution theorem proving,” In Proc. IJCAI-75, and
also in Artif. Intell. 9 (1977), 1-35.
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techniques, similar to meta-reduction, were discovered by Knuth and Bendix (n
as extensions of their basic algorithm. After the round of meta-reduction,
the reduction list, equation list, and reduced denial are
R'le X +0 =3 x ,
B2, O + X =3X ,
R' 3. (x+y)+z—§x+'(y+2) s
Rihe x+ (x+ (x+32)) =>2 ,
R'S5. x+ (x+x) —>0 ,
Bl. x+ (y+(x+y))=y+(y+(x+x) , and
D, a+(b+(a+t(a+t(b+(a+(b+(b+(a+(a+(b+1)))))))N))#0.
On the second round of derived reduction, El paramodglates into D' to yield
2a, a+ o+ (a+ (a+ (b (a+(at(d+a))) A0 ,
and R'3 into R'5 produces
DR2B. x+ (y+ (x+ (y + (x+¥y)))) —>0 .
On the third round R'3 and DR2B produce .
DR3. x+(y+(z+(x+++x+F+2))))) —>0 ,
which reduces DR2A to the contradiction A

C. 0#0 &

Even though these examples make derived reduction seem attractive as a
step towards more efficient theorem provers for equality, there are some
design problems which have yet to be solved. Implicit in the workings of
derived reduction is an algorithmic realization of the finite termination

test. As long as the norm function is realized by polynomials, an easy
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algorithm exists, based on treating ﬂtﬂ and ”uﬁ of the members t = u of
P(G{) which are not of the form x = x as elements of a ring, and computing the
members d of z (Xi) which corresponds to Jt|l - Jlull . If the non-zero
coefficients of q{ are all negative then t =u corresponds to the

reduction u —>» t ; if the non-zero coefficients of QX are all positive
then t = u becomes t —> u ; otherwise, t and u are incomparable.
However, if some of the underlying functions for the norm function are not
polynomials then I know of no algorithmic test. I would hope that either
effective algorithms for the non-polynomial case could be developed, or

perhaps some effective process for identifying when a theory can be treated

with polynomials alone. To jllustrate my lack of information in this

direction, I do not know whether the ten group reductions can be identified

as reductions through a norm function based on polynomials. Knuth and Bendix (7)
do have an algorithmic realization of the finite termination test which was

used to derive the ten group reductions, so it may be that their approach is

more favorable for computation purposes.

It might be thought thal some of the problems raised in this paper are
not very important to comput ational logiciané if it is assumed that unsolvable
word problems are pathological creatures far removed from the usual terrain
of theorem proving. Early examples of unsolvable word problems would support
this view, since they jnvolved large numbers of equations. However, a recent
example of a theory with an unsolvable word problem consisting of the
associative axiom and seven ground equaticns, not dissimilar to the defining
relations for the group of rigid translations of the square, given by
Trakhtenbrot. (16), indicates the importance of a firmer foundation for the

theory of reductione.
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